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Abstract— Mobile robots are traditionally developed to be
reactive and avoid collisions with surrounding humans, often
moving in unnatural ways without following social protocols,
forcing people to behave very differently from human-human
interaction rules. Humans, on the other hand, are seamlessly
able to understand why they may interfere with surrounding
humans and change their behavior based on their reasoning,
resulting in smooth, intuitive avoiding behaviors. In this paper,
we propose an approach for a mobile robot to avoid interfering
with the desired paths of surrounding humans. We leverage a
library of previously observed trajectories to design a decision-
tree based interpretable monitor that: i) predicts whether the
robot is interfering with surrounding humans, ii) explains what
behaviors are causing either prediction, and iii) plans corrective
behaviors if interference is predicted. We also propose a
validation scheme to improve the predictive model at run-
time. The proposed approach is validated with simulations
and experiments involving an unmanned ground vehicle (UGYV)
performing go-to-goal operations in the presence of humans,
demonstrating non-interfering behaviors and run-time learning.

I. INTRODUCTION

Autonomous mobile robots are rapidly finding their way
into our society in an increasing number of applications,
including delivering packages in urban environments or
deployed in warehouses assisting human workers. As these
robots share space with humans, we must consider how
they affect the human experience; that is, how surrounding
humans behave in the presence of a moving robot. In many
cases, these robots treat surrounding humans as stationary
obstacles, often moving in unnatural ways, leaving the human
solely responsible for learning to work around the robots.

More recently, advanced machine learning techniques like
Long Short Term Memory (LSTM) networks and Deep
Reinforcement Learning (DRL) have been used to generate
more natural robot behaviors around humans [1]-[3]. While
good robot behaviors can be produced, the approaches often
contain black-box models [4], and are unable to provide
explanations or reasoning for decisions. In addition, these
approaches typically are not adaptable at run-time and re-
quire dedicated training phases. Humans, on the other hand,
accommodate others in very intuitive and easily interpretable
ways. We are generally aware of our actions, and we can
assess and explain if attributes of our behavior (e.g., how
fast we are moving) will lead to some type of interference
with other people, causing them to change their path [5]. We
not only are able to explain whether we are interfering, but
also intuitively use this explanation to change our motion—
without exactly predicting where others will go. If robots
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Fig. 1. In our proposed approach, a robot predicts, explains and finds a
corrective action to avoid interfering with an oncoming human.

could reason about their behavior and plan corrective actions
in a similar way, their motion would be easy to understand
and interpret for surrounding humans. In Fig. 1, we show a
motivating example for this work in which a robot is able
to predict, explain, and find a correction to avoid interfering
with a person’s intended path.

To achieve this behavior, we propose a novel method that
leverages decision tree theory [6], [7] to predict, explain, and
plan corrective actions at run-time in situations in which a
robot will interfere with the motion of surrounding humans.
Different from other learning-based approaches, besides the
explainability aspect, another contribution of our work is that
previously unobserved and misclassified data are considered
at run-time through validation criteria to improve and refine
predictions and corrective actions in future operations.

The rest of this paper is organized as follows: in Section II,
we discuss related literature. In Section III, we formally
define the problem and in Section IV, we describe our
decision-tree based explainable monitoring and planning. In
Sections V and VI, we present simulation and experimental
results and finally we draw conclusions and discuss future
work in Section VIL.

II. RELATED WORK

With recent advancements in mobile robots, there has
been growing interest in enabling robots to navigate human
environments in an intuitive and socially acceptable manner.
Recent works in the field of machine learning have made sub-
stantial progress in enabling such behaviors, including [1],
[8], where the authors use recurrent neural networks (RNNs)
or long short term memory networks (LSTMs) to predict
motion of humans, which is used to generate safe robot
motion. While these methods are effective for predicting
human trajectories, they contain complex network architec-
ture, and it is difficult to understand the mapping from input



states to prediction. Authors in [9] use deep reinforcement
learning (DRL) to attain socially acceptable behaviors, and
in [3], the authors use DNNs to achieve similar results. While
these approaches demonstrate good robot behaviors, none
can provide explanations for why the resulting behavior was
appropriate. In this paper, we complement the aforemen-
tioned works by interpreting and explaining predictions to
generate non-interfering robot behaviors.

In our more recent work [10], we exploited Hidden
Markov Model theory to obtain probabilistic predictions of
temporal reachable states and developed a virtual physics-
based planner, similar to the “social-force” developed in [11]
to operate the robot. In this paper, we bypass this requirement
of explicit predictions and rely only on a more compu-
tationally efficient binary classification to achieve socially
acceptable motion in co-robotic environments.

Towards explaining machine learning models, authors
in [12], [13] provide techniques to explain the predictions
of a classifier. Instead of using global explanations, they
find local reasoning as to why a data point was assigned
to a certain class in simple classification learners, such as
decision trees (DT). We take inspiration from these works
and our previous work [7], where we have shown that DTs
can be used to control a robot under bounded disturbance.
We extend this work to handle a more dynamic environment
considering multiple actors.

III. PROBLEM FORMULATION

Consider a mobile robot tasked to navigate an environment
while avoiding other actors, in particular, humans. Without
prior knowledge about the intended goal of the surrounding
humans, this robot would not be able to predict their path.
We note however that humans tend to move in certain way,
typically in the direction of the desired goal. Let us define the
path followed by a human as g, with ¢ = 1,..., N}, where
Nj, is the number of humans in sensing range with the robot.
With such premises we would like to design a framework for
a robot to directly predict interference with all the humans in
its sensing range and plan its motion accordingly to minimize
the deviation of human paths due to its presence along the
way. Formally, the problem can be cast as:

Problem 1: Non-Interfering Motion Planning and Con-
trol. Design a policy to predict and explain future interfering
interactions between a robot and surrounding humans and to
plan corrective actions, u, that do not cause human paths to
deviate more than a distance J from the intended trajectory:

lgn(t) — gn ()] < 6,Yh =1,...,Nu(t),t 20 (1)

where gy, (t) and g (t) are the observed path and intended
path of the i*" actor at time ¢ respectively.

A correlated problem that we propose to investigate in
this work is to improve robot behavior over time in response
to previous experience. To this end, we create a strategy
to validate and update predictions and planning at run-time
when undesirable behaviors are observed or when run-time
observations are unmodeled in the training data.

IV. APPROACH

Our proposed interpretable monitoring framework follows
the architecture in Fig. 2.
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Fig. 2. Block diagram of the presented approach.

At the core of our framework we leverage decision tree (DT)
theory to predict interferences and correct robot behaviors.
With observations of surrounding humans ay, (), a local DT,
Tr is constructed with a dataset of human-robot trajectories
to compute a prediction P, (t) and explanation & () as to
whether the robot will interfere (\) or not interfere (—\) with
paths of surrounding humans. Then, when interference is
predicted, a cascaded (secondary) tree 7. is used to generate
corrective behaviors that reduces robot interference with
human paths. Finally, a validation scheme is proposed to
update the dataset online, improving future DT operations.
In the next sections, we describe in detail each component
of our framework.

A. Decision Tree Formulation and Training

Decision trees (DTs) are a form of supervised learning
that consist of white-box models which make predictions
easy to interpret [6]. In this work, DTs are constructed as
binary classification models that are made up of a network
of nodes; the outermost nodes, known as leaves, correspond
to labels given in the training (decisions). Internal nodes
define the split criteria for leaves based on the input variables
(attributes). In this work, we grow DTs using the Gini Index
as the splitting criterion (see [7] for more details).

For training, we generate a dataset of trajectories in both
simulation and in real experiments that consist of human
motion from multiple initial to final positions with varying
velocity in the presence of a moving robot. In the train-
ing, the robot does not react to the humans, so that the
prediction model can learn when an interference occurs. In
simulation, humans are controlled by a virtual physics-based
method [10], which triggers a reaction (interference) if a
distance threshold, d;p, is violated. By training in this way,
the desired effect is that the robot plans actions that keep a
minimum distance of §;, from all surrounding humans.

Attributes should be meaningful to the application, and
typically more attributes improve the precision of the predic-
tion. However, too many attributes can lead to redundancy
and poor classification [6]. For the human-robot interaction
case in this work, attributes are derived from the joint state
between the robot and surrounding human, based on explicit
sensor data available and implicit data we can compute (e.g.,
velocity from range sensor readings over time). Specifically,
we define the attributes as

a=[d, dy 6 d d v, v, (] )

where d,, d,, and 0, are relative x-y positions and heading,
respectively, d and d’ are the Euclidean distance and distance
derivative (i.e., the rate of change of the Euclidean distance)
between human and robot, and v;, and v, are the human and



robot velocities, respectively. The robot’s operating “lane,” ¢
is a discretization of the robot’s y-position, assuming that the
robot is typically moving forward, i.e., along the z-direction.

To validate the attributes, which were chosen via experi-
mental sensitivity analysis, we analyzed the average predictor
importance [6] of the attributes over 100 random local
trees taken from subsets of the training data. A non-zero
importance indicates that the attribute is valuable to decision
tree predictions, and it is clear in Fig. 3 that while some
attributes may be more important than others, all attributes
have an effect on the prediction.

Attribute Importance

Fig. 3. Attribute importance as a proportion of total attribute importance.

Through the training, we obtain a global dataset & =
(as, As) that includes both the attributes and corresponding
classes of all training instances.

B. Prediction and Explanation

Let us now consider first the case of one human ap-
proaching the robot. To predict interference, we construct
local DTs at run-time with the observed attributes related
to a surrounding human, ay,(t), since a global DT for the
entire training set can often return inaccurate and imprecise
predictions and explanations due to the presence of irrelevant
data. A local tree, 7}, is trained by collecting a subset of
points Sp(t) C S from the global dataset that are within a
neighborhood A of the attributes of v (t):

Sn(t) CS||lan(t) —as]| <A Vas €S 3)

The distance A is a measure of how close the local training
data should be to the observed data. The exact value of A
is selected based on the quality of the available training
dataset. With a very rich dataset, a small A may result
in very accurate predictions and explanations. For a sparse
dataset, A should be large enough to ensure the decision
tree has enough context to generate accurate predictions and
explanations. After constructing the local tree, the prediction
Pn(t) € [A\, -] is obtained by evaluating the run-time
observation a,(t) in the tree: Py (t) = T (o, (t)).

Given a prediction, we compute an explanation &j(t)
by traversing the path through 7. A prediction directly
corresponds to a leaf, V), within the tree. If 1) is the root of
Tr, an explanation is computed by traversing a path, I" from
Vy to V), taking into account the split criterion, ¢, for the
N; internal nodes along the path. The conjunction of split
criterion along I' is the explanation of the prediction:

N;
En(t)= /\ cr with T |Py(t) (4)

k=1

Traversing all other paths, I'; € g with j = 1,..., Ng
that lead to the opposite decision, =Py, (t), in a similar way,

provides a set of counterfactual rules, C,(t), to the previously
obtained prediction:

Nq
cu(t)="\/
j=1

>z

cr with Ty | =Py(2) (5)
k=1

where each path I'; contains IN; nodes to the leaf. These
counterfactuals denote which attributes, if changed, would
reverse the decision.

Shown in Fig. 4 is an example of a local DT used for
prediction and explanation based on the following attributes,

(1) = d, dy 0 d d v, v ¢
Cnlt) = 1143 —4.71 —81 4.93 —0.43 1.0 0.6 0

The output of the DT is Pp(t) = A, shown by the dark red
path and leaf node. Through (4) we compute an explanation:
En(t) = Interfering because: {d' < 0.24,d, < 1.76}
Through (5), we compute the following counterfactuals:
Ch(t) = Not Interfering when:
{d' >0.24,d, < 1.15} v
{0 > —56,d" > 0.24,d, < 1.15} V
{-045 < d <0.24,1.76 < d, < 1.83} Vv
{-0.58 < d' <0.24,d, > 1.83,d < 4.65}

d <0.24
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Fig. 4. Example prediction DT. The internal nodes (white squares) of the
tree are binary tests on one of the attributes and the leaf nodes (colored
squares) are the class decisions. The bold path shows the current decision.

The point at which this prediction is made is highlighted in
Fig. 5, taken from our MATLAB simulations.
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Fig. 5. Human (red) and robot (blue) trajectories, showing the point (in
yellow) at which a prediction is made. The markers fade as time increases
and the actors reach their goals.

As seen in the example, DTs used for prediction provide a
logical and interpretable explanation, but the counterfactuals
cannot be controlled by the robot’s actions alone, as they
pertain to human-dependent attributes.

C. Corrective Counterfactual Analysis

In case of interference, the counterfactuals provide a set of
configurations in which the robot would not have interfered
with the path of the human. However, it is not practical to
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Fig. 6. Example correction decision tree. Nodes and split criteria only
pertain to vy, £]. The bold path shows the optimal counterfactual C,,« ().

manipulate attributes like distance derivative d’ or relative
heading 6, since they depend on human motion.

The only controllable attributes in our case are the velocity
and lane to track by the robot, o, = [v,., ¢]. To generate
actionable counterfactuals, we build a secondary tree, 7T, in
which we first fix the human dependent attributes o, =
ayp \ ;- and search in the training set for similar attributes as
done in (3) creating a new set S, C S (note that S, C S.).
In this way, the new DT remains local in the human-related
attributes but includes different lanes and velocity pairs,
enabling the system to find suitable corrections. The new
DT output in this way will be decisions and counterfactuals
that only include v, and /.

In Fig. 6, we show the correction tree associated with the
example in Section IV-B and Fig. 4 in which the robot was
initially running with v,, = 0.6 and ¢ = 0. After running the
procedure in this section, with (5), we obtain the following
set of actionable counterfactuals:

C(t) = Not Interfering when:

{v, < 0.25,£ < 0.5} Vv
{v, <0.25,£> 0.5} V
{0.35 < v, < 0.45}

To decide which counterfactual to select, we consider two
measures that describe the quality of the nodes of the tree,
node error, e,, and node risk, r,, with n = 1,... N.(t),
where N.(t) is the number of counterfactuals. Node error
is the fraction of differently classified training points at a
specific leaf. For a leaf that predicts =\, the node error is:

en =1—p(A) (6)
Node risk is a weighted measure of impurity (Gini Index in
our work):
2
rm=1-2 p’ ™
i=1

where p; is the fraction of elements labeled with class
i = [A,—)\]. A lower node risk indicates that there will be
less of chance of an incorrect decision. In our approach, we
combine both measures by taking the product e,,r,,, since our
goal is to identify the best node to use. The use of the product
is viable here because both node error and node risk represent
different probabilities that rely on information about the
training points for the local tree, enabling the use of the
general multiplication rule of probabilities for identifying the
best node [14]. Then, the optimal counterfactual is computed
as follows:

n* = argmin(e,r,) ®)

The selected counterfactual rule, C,«(t) consists of an opti-
mal velocity and lane a* = [v, £*]. In the example shown
in Fig 6, a* = {v, < 0.25,£ < 0.5}.

D. Corrective Planning and Control

Once a counterfactual rule is selected, the robot moves to
implement the correction, which is represented as a “ghost”
moving target, and the robot switches into a pure-pursuit
based mode of operation [15] until it reaches the ghost
vehicle. This is necessary because the corrective action
represents what the robot should have been doing at the
instance ¢ at which the correction was found, meaning that
the robot would only satisfy non-interfering conditions if
vp(t) = 0¥ and £(t) = £*.

During the pure-pursuit corrective operation, the robot
uses the ghost vehicle’s state to make predictions until the
tracking error between robot and ghost e(t) = py(t) —
p-(t) =~ 0, after which it reverts to performing predictions
based on the actual state of the robot. This is needed because
as the robot performs corrective behaviors, we observe
transition states that are unmodeled in the training data, since
the robot does not react to the humans in the training.

E. Multiple Decision Trees

In this section, we discuss how our approach extends to
scenarios with multiple actors. Predictions and explanations
can be computed as discussed previously, as the system needs
to understand if it’s interfering with each actor individually.
Finding corrections, however, is more challenging, as the
corrective action must not only remove interference with one
actor, but also should not cause interference with others.

To consider different counterfactual rules of multiple DTs
at once, we use decision tree ensemble models (DTEM). The
main principle behind DTEM (Fig. 7) is that a group of
weak learners come together to form a strong learner. Some

Fig. 7.
learners come together to form a stronger learner.

General example of a Decision Tree Ensemble Model. Two weak

popular methods for generating DTEMs include bagging,
boosting, or using random forests, but these consist of
random sampling methods [16], which are not viable for our
case, since we need to capture all relevant data.

We instead take principles of majority voting DTEMs
[17], which typically compare predictions from each DT,
and select the majority output. We extend this concept
by considering a single combined corrective tree, 7., that
incorporates the local training data of all individual trees,
rather than just the prediction.

Before combining, the local data for each person are nor-
malized such that |S;(¢)| = |S;(¢)| with ¢,j = 1,..., Ny,
where | - | gives the size of the enclosed dataset. In this



way, corrections will not be incorrectly biased towards those
with more local data. We combine to obtain the training
dataset: S(t) = [S1(¢),...,Sn, (t)], with which 7 is con-
structed and counterfactuals are analyzed with the procedure
discussed in Sec. IV-C, to obtain the optimal target, a*, and
the robot is controlled as described in Sec. IV-D.

Building 7. in this way, however, only enables the system
to find the best action if one exists within the data, meaning
that there can be cases where all considered corrective
actions are interfering. This can happen if: 1) the considered
corrective data are sparse, meaning that the training set is
not rich enough or 2) all possible actions are not feasible,
for example, if the robot is surrounded by a crowd. For the
former case, we propose a randomized approach to choose
a velocity-lane pair that is not included in the local data:
o, \ at) € 8(t). By doing so, the vehicle explores new
options until it finds a solution. If no solution is found, the
robot switches into a fail-safe mode of operation, which
consists of a very low velocity and a reactive obstacle
avoidance behavior for safety.

F. Online Validation and Updating

Due to the dynamic and dense nature of the environment,
new and unmodeled human behaviors can be observed and
corrective actions may not always eliminate all interference.
Since our DTs are constructed at run-time, it is possible to
introduce new data to the training set S as observations are
made. To avoid an exploding dataset, we introduce two test
cases for adding new data: 1) decision validation, and 2)
checking for unbounded observations.

Case 1 Decision validation is necessary when corrective
actions from 7, still result in an interference. This can occur
when observations contain attribute values that are close to
splitting conditions in the DTs leading to misclassification,
or when a correction cannot be found within the DTEM. If
the robot observes that the distance threshold d;, is violated
at run-time, the recorded attributes are included in S.

Case 2 If an observation is outside the bounds of the
training data, reliable predictions or corrections cannot be ex-
pected. It has been shown for learning components that test-
ing data within the vertices of the smallest convex set around
training data produces the most accurate predictions [18]. In
this work, convex hulls are generated around local training
data using the Quickhull algorithm [19] to form a boundary
denoted Conv(S). Then, we check if observations are within
the outermost points of each dimension (attribute) of the
convex hull using linear inequalities [20]:

min(Conv(8)) < ap(t) < max(Conv(S)) )

If any part of ay,(t) is outside the convex hull, the data are
labeled and included in S. The dataset updates at run-time
through the presented test cases, resulting in more refined
local trees, and therefore better decision making in the future.

V. SIMULATIONS

We performed a series of simulations in MATLAB
to test the effectiveness of our approach. Training in-
cluded velocities v, = [0.2,0.4,0.6,0.8,1.0Jm/s, and lanes
£ =1[-2,-1,0,1,2]m simulating a classical non-holonomic
UGV. The robot considers humans within a range of 5m and

has a nominal velocity of 0.6m/s, and corrections are limited
to any discrete velocity or lane seen in the training, that is
from v, and £, respectively.

In the baseline simulation shown in Fig. 8, the robot (blue)
is tasked to move from (0,0)m to (6,0)m while predicting,
explaining, and correcting to avoid interfering with a person
(red) moving along a trajectory previously unknown to the
robot (i.e., different from the training set). The paths are
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Fig. 8. Baseline simulation.

shown in Fig. 8(a), and prediction, explanation, optimal cor-
rection, and ghost vehicle are shown in Fig. 8(b). The robot
predicts Pp(t) = A and determines that it must apply the
correction: a* = [v, < 0.25,¢ < —1.5]. The ghost vehicle
(yellow marker) immediately applies these corrections. In
Fig. 8(c), the distance between robot and human is shown to
verify that the distance threshold §;;, = 1.5m is not violated.

In Fig. 9, we show the effects of online validation and
learning by performing a simulation with DTs trained on an
incomplete training dataset. The robot’s goal is (14, 0)m and
the humans in this simulation take identical paths in suc-
cession to test whether the robot has improved its behavior.
The robot makes an incorrect decision at first, applying the
explanation and correction shown in Fig. 9(b), only slowing
down to v, < 0.25m/s. Both test cases (Sec. IV-F) are
violated, shown by the deviation in the red path of Fig. 9(a)
and the observation (red point) outside the partial convex
hull in Fig. 9(d). Note that partial 3-dimensional convex
hulls are shown for visualization purposes, due to the high
dimensionality of our attributes, o € R8. The magenta path
in Fig. 9(a) shows no interference, as a different correction
was selected (Fig. 9(c)), since the observations are now
included in the local data (Fig. 9(e)).

We also extensively test our approach in handling multiple
people at a time, shown in Fig. 10. The robot navigates
through 10 people, changing its lane (¢) and velocity (v,.)
to avoid interfering. This test was run for 50 trials with
random human trajectories. All decision tree operations in
these simulations took between 30 — 90ms. Our approach
successfully eliminated interferences 72% of the time, with
an average minimum distance of ., = 1.58m. Where
interference occurred, we observed that the robot was in
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Fig. 9. Simulation of run-time validation and updating.

Fig. 10. Human (red) and robot (blue) paths in a multi-actor simulation

dense crowds, negotiating with on average N, (t) > 7.

VI. EXPERIMENTS

The proposed approach was also validated experimen-
tally on a Clearpath Robotics Ridgeback Omnidirectional
Platform (see Fig. 1) in indoor environments. In the first
experiments, a VICON motion capture (MOCAP) system
was used to obtain robot and human states. In the second
experiment, the robot uses an on-board ASUS Xtion RGB-
D camera with the SPENCER people tracking package [21].
Below we present a few cases that capture the essence of the
proposed framework. Videos of the presented experiments
can be found in the submitted supplemental material.

1) MOCAP Experiments: In the first experiment shown
in Fig. 11, the robot predicts, explains, and takes corrective
actions proactively to avoid the human. The robot moves
from (—2.5,0)m to (2.5,0)m at a nominal velocity of v, =
0.6m/s, and the distance threshold ¢;, = 1m. The robot
predicts Pp,(t) = A and explains:

En(t) = Interfering because: {d’ < 0.21,d, > 2.59}

—Distance between actors|
=== Distance Threshold

50 100 150 200
Iteration

Distance (m)
P

(b) Distance between actors.

(a) Snapshots of experiment.

Fig. 11.  Snapshots and distances of lab experiment.

With the correction tree, the robot computes:

Cr(t) = Not Interfering when: {v, > 0.5,£ > 0.5}
Thus, the corrective action is to maintain nominal velocity,
and move to the lane in the positive y-direction. The mini-
mum distance between actors is dpy,i, = 2.09m (Fig. 11(b)).

In the experiment shown in Fig. 12, we examine the effects
of online validation and updating. As a proof of concept, we

(a) Experiment snapshots before (b) Distance between actors be-
updates. fore update.

50 100 150 200 250 300 350 400
Iteration

(c) Experiment snapshots after (d) Distance between actors after
updates. update.

Fig. 12.  Experiment showing the effects run-time updates.

removed a large portion of our training data, and as shown
in the first run in Fig. 12(a) we observed that the robot
moved incorrectly toward the human. The distance threshold
is violated, 0, = 0.91m (Fig. 12(b)), and the person alters
his path, reacting to the robot’s interfering behavior. After the
model is updated and reinforced at run-time, the robot makes
the appropriate correction and no interference is observed,
with dpin, = 2.13m (Fig. 12(c-d)).

In Fig. 13, we show the effectiveness of our approach
with two people in the lab environment. The robot has the
goal to reach (2.5,0)m and successfully avoids interference
with both people at once, even in a small space, showing
that our approach scales to accommodating multiple actors
at the same time. The trajectories for all agents are shown in
Fig. 13(e), and the minimum distance between any human
and robot was 1.23m, which is above the threshold §;;, = 1m.

2) On-Board Sensing Experiment: To demonstrate the
applicability of our approach outside MOCAP settings, we
deployed our technique on the same robot using only the
on-board RGB-D and Lidar sensors to identify and track
surrounding humans and localize itself. Fig. 14 shows the
results for this experiment in which the robot is able to
successfully avoid interference with surrounding people and



(a) Initial positions of (b) Robot performs cor- (c¢) Intermediate posi-
actors. rective behavior. tions of actors

between

(d) Final positions of (e) Trajectories of ac- (f) Distance

actors. tors. actors.

Fig. 13.  Snapshots, trajectories and distances of 2-person lab experiment.

reaches its goal without violating the distance threshold
despite noisy camera measurements and uncertain person
detection and tracking.

(a) Initial positions of (b) Robot performs cor- (c) Actors arrive at final
actors. rective behavior. positions

(d) Robot first person (e) Trajectories of ac- (f) Distance between
view. tors. actors.

Fig. 14. Snapshots and trajectories of 2-person lab experiment.

VII. CONCLUSIONS & FUTURE WORK

In this work, we have presented a novel approach for
interpretable prediction and planning of a robot in a co-
robotic environment. We relax the requirement of explicitly
predicting human paths, and instead directly predict, explain,
and find counterfactual rules for interfering behaviors with
binary decision trees and a library of pre-trained trajectories.
Unique from other works in this field, we validate robot
behaviors to update the predictive model at run-time, re-
sulting in improved behaviors in future operations. While
we focused on human-robot operations in this work, our
framework works for any path planning operation with
multiple actors. The results overall show desirable robot
behaviors among humans, though we found that performance
can decrease in very dense crowds.

In current and future work we are exploring the idea
of training decision trees using probabilities measured, col-
lected, and updated at run-time to assist decision making
in traditional planners and controllers. In addition, we plan
to study how learning online can be leveraged safely and
efficiently without any reliance on a pre-trained dataset.
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