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An Interpretable Monitoring Framework for
Virtual Physics-Based Non-Interfering
Robot Social Planning

Rahul Peddi

Abstract—A majority of collision avoidance and motion plan-
ning algorithms deployed on autonomous mobile robots tend to
be reactive to the presence and motion of nearby dynamic actors.
While these algorithms can produce collision free navigation, they
do not necessarily follow social protocol and exhibit unnatural
motions that force actors to behave very differently from their
planned paths. As humans, we can reason about why and how
we might interfere with others and use this reasoning to alter our
motion proactively. We also adapt our motion based on different
priorities, which affect how we accommodate and interact with each
other. In this letter, we propose an approach for a mobile robot
to generate similar non-interfering and priority-based behaviors
that pertain to how the robot accommodates dynamic actors. We
augment a very efficient but reactive virtual physics-based planner
with Hidden Markov Models and a Decision Tree-based monitor
that: i) predicts if the robot will interfere with a nearby actor,
ii) explains what factors cause the prediction, iii) plans priority-
based corrective actions, and iv) updates the prediction model at
runtime to improve and refine robot behaviors. Our approach is
validated with simulations and extensive experiments on ground
and aerial vehicles in the presence of dynamic actors.

Index Terms—Collision avoidance, human-aware motion
planning, intention recognition, motion and path planning.

I. INTRODUCTION

S AUTONOMOUS mobile robots become more ubiq-
uitous, we find them serving different purposes within
shared environments, including delivering packages in residen-
tial and commercial areas or working in warehouses assisting
human workers. Typically, safety is achieved through obstacle
avoidance behaviors that treat dynamic actors as though they
are stationary, which can force the robots themselves and the
actors to move in unnatural ways. In this way, a robot can often
find itself too close to some actors, deviating unnecessarily, or
“frozen,” unable to perform its task [1].
As humans, we combine competing notions of accommo-
dating each other’s paths while also maintaining our own path
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¥ I will interfere with this person because d, < 1m and d, < 2m
v 1 will not interfere if my velocity < 0.5m/s
v | want to prioritize a high velocity so | will select velocity = 0.4m/s

Fig. 1. In our proposed approach, a robot predicts, explains and finds a
corrective action on top of a virtual-physics planner to avoid interfering with
oncoming actors.

or desired speed. We consider these factors simultaneously to
navigate in natural, socially-acceptable ways. Moreover, we
prioritize how we accommodate others based on our specific
environment or task. For example, a doctor rushing to aid an
injured person will prioritize speed as much as safely possible.
Importantly, we make these decisions without explicitly predict-
ing the paths of other actors, and we can explain and understand
why we make these decisions, continually learning and adapting
our behaviors as we experience different scenarios. If a robot
could reason about its behavior and plan corrective actions in
a similar way, it could generate similarly natural and intuitive
motion around other actors, while maintaining priorities related
to how much it should accommodate to surrounding actors.

This problem has been explored extensively by the mo-
tion planning and machine learning (ML) communities. Virtual
physics-based (VP) planners, also known as artificial potential
fields, are well known and widely used because they are very
efficient and generally effective for performing collision avoid-
ance [2]-[4]. However, VP planners suffer from local minima
issues and can result in safe, but undesirable robot behaviors.
Advanced ML approaches [5], [6], on the other hand, can
explicitly and quickly make predictions about the trajectories of
actors, but with more uncertainty due to their black-box models.
Moreover, it may not be always necessary or practical to predict
the exact trajectory of every nearby actor to generate good robot
behaviors [7], [8].

We acknowledge that despite their local minima issues, VP
planners are desirable due to their efficiency, general good per-
formance, and low computational burden, and we also recognize
that ML techniques can be used for fast prediction, potentially
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assisting VP planners, but introduce additional uncertainty due
to their typical black-box nature and lack of interpretability. With
these considerations in mind, in this work we consider such VP
planning methods and augment them to compensate for their
local minima issues by including an interpretable decision tree
(DT)-based monitoring and planning that bypasses the task of
predicting the actor paths and directly predicts and explains if
the VP planner will interfere with nearby actors. This predic-
tion and explanation is then used to determine how the robot
can counteract and avoid interference while maintaining the
robot’s priorities. To further improve prediction and planning
we propose a Hidden Markov Model (HMM)-based framework
that learns from observations to adapt the information used by
the DTs at runtime. In Fig. 1, we show a motivating example
for our work, in which a robot equipped with our approach
predicts, explains, and finds a priority-based correction to avoid
interfering with an oncoming person.

This work presents three main contributions: 1) the design
of an interpretable DT-based monitor that predicts, explains,
and finds corrections when a robot will interfere with nearby
dynamic actors; 2) the formulation of a priority-based reward
function to identify the correction that optimizes how the robot
should behave; 3) an HMM-based model to build and update
decision trees at runtime and improve predictions and planning
over time without storing a large amount of data.

The rest of this letter is organized as follows: in Section II,
we discuss related work, in Sections III and 1V, we provide
preliminaries and formalize the problem addressed in this work.
In Section V, we describe our approach and in Sections VI
and VII, we present simulation and experimental results. Finally,
we conclude and discuss future work in Section VIIL

II. RELATED WORK

The growing presence of autonomous mobile robots in shared
environments sparks the need for novel approaches to generate
intuitive, socially acceptable robot motion. Virtual physics-
based (VP) planners [4], [9] are very efficient and easy to
implement, but tend to suffer from local minima issues in which
the robot can get trapped. Approaches such as the Social Force
Model (SFM) [10] expand this idea by modeling human behav-
iors. However, SFM-based robot motion planners are often tuned
to serve a specific purpose, such as robot companions [3]. Two
widely-used planners, optimal reciprocal collision avoidance
(ORCA) [11] and dynamic window approach (DWA) [12], show
improvement over basic VP planners, but both can often take
circuitous and time-consuming paths to avoid others, sometimes
even “freezing” indefinitely [1], unable to find a path to the goal.

More recently, researchers in Machine Learning (ML) have
contributed a number of learning-based approaches to solve this
problem. Authors in [13]-[15] use deep reinforcement learning
(DRL) to plan socially aware collision avoidance. These ap-
proaches often generate desirable robot behaviors, but leverage
black-box models, making it difficult to understand the reason-
ing for the outputs. Other works have blended DRL methods with
physical obstacle avoidance approaches [16], [17] to achieve
more intuitive behaviors, but require a dedicated training phase
to improve robot behaviors and are not interpretable. Also
leveraging DRL, crowd-based prediction and planning [6], [18]
is being explored to handle dense environments using recurrent
neural network (RNN)-based and attention-based methods to
narrow down how best to navigate through crowds. Several
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works have also considered how actors will respond to future
actions of robot [19], [20], and have emphasized the idea of robot
motion that does not disturb nearby humans. We further explore
these ideas by directly predicting and explaining whether the
robot will interfere with the paths of multiple actors, and using
the explanation to identify how to best correct robot behaviors in
a way that heeds the interfering actors, while avoiding creating
interference with other actors.

Inprevious work [2], we began to address these issues by using
Hidden Markov Model (HMM) theory to update at runtime a
data-driven predictive model for safe navigation around multiple
actors. Our more recent work in this area [7] relaxed the require-
ment of explicitly predicting actor paths and uses decision trees
for control. In this work, we build on these previous contributions
and utilize HMM theory to generate and update DTs at runtime,
while also using interpretable prediction to support and assist
a VP planner on a robot when it is expected to interfere with
nearby actors.

III. PRELIMINARIES

Letus consider a mobile robot equipped with a VP planner that
is tasked to navigate to a goal in the presence of dynamic actors.
Specifically, our planner is inspired by an efficient and scalable
virtual spring-mass-damper system borrowed from our previous
work [2], in which the input w is comprised of an attractive
force that draws the robot towards its goal and repulsive forces
that send the robot away from the obstacles. Generally, this
formulation is in terms of forces and accelerations, but can be
cast as kinematic constraints, depending on the capabilities and
inputs of the robots, many of which typically only accept velocity
commands. Thus, for ease of implementation on a wide range
of robots, we cast the input u as a velocity which is governed
by attractive and repulsive effects.

The attractive input that moves the robot from its position
pr(t) towards the goal p, is computed as follows:

Uats (t) = kate ([P (t) — Dyl|)dyg M

where ﬁg is the unit vector directed towards the goal and kg, is
the attractive spring constant. In this work, the resulting velocity
vector is limited by a maximum target speed: ||wq:(t)|] < v*.
We assume here that the robot is able to quickly reach its target
speed, and the desired effect is that the robot slows down and
stops once it is close to the goal.

The repulsive inputs are computed as follows:

kre (dho(t))c_ih,o dh(t) S lo
re t) = P ’ B 2
rep (1) {0, otherwise 2

where k., is a repulsive spring constant, dp,(t) = l5(t) — lo
and I, (t) = ||p,(t) — pr(t)]| is the distance between robot and
dynamic actor h, [, is the reaction distance threshold, and &ho
is a unit vector in the direction away from the actor.

We then combine the attractive and repulsive effects along
with a damping term with coefficient ¢, to compute the input:

W(t) = Uare(t) + > trep(t) — cault — 1) 3)
j=1

VP planners, as it is well-known, are a reactive approach
for motion planning and robots using these types of planners
can often get stuck in local minima or experience prolonged
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Fig. 2. Examples of VP planner trajectories and repulsive inputs. The trajec-
tories are shown by blue (robot) and red (actor) markers that fade as time passes.
Yellow (robot) and green (actor) markers represent the goals.

divergence from the goal. Local minima occur when repulsive
and attractive inputs are equal leading to u = 0, and prolonged
divergence occurs when a repulsive input sends the robot away
from the goal and is not approaching u,..,, = 0 quickly enough
for the robot to converge to its target. Shown in Fig. 2 are
examples of two trajectories in which the VP planner results in
a failure (Fig. 2(a)—(b)) due to a local minima and prolonged
divergence from path, and one example of a successful VP
motion plan (Fig. 2(c)). Figs. 2(d)—(f) display the magnitude
of the repulsive input on the robot for each of these trajectories.

IV. PROBLEM FORMULATION

Consider a mobile robot equipped with the aforementioned
VP planner navigating a shared environment with other dynamic
actors. With the premises presented in Section III, we would like
to directly predict when the VP planner will lead to interference
and plan motion accordingly to correct the behaviors of the robot.
Formally, the problem is:

Problem 1. Interpretable Interference Monitoring: Design
a policy to predict and explain future interfering interactions
between a robot and nearby actors and find corrective control
actions, U, for a VP planner such that the following non-
interfering conditions are met:

[lp-(t) — pi()]| > s, Vi=1,..., Np(t)
lp-(t) — prl| < oy 4)

where p,-(t) and p; (¢), represent the robot and actor ¢ positions,
p;. and p; are the reference positions of robot and actor ¢ along
their respective desired paths, and ds is a minimum distance
threshold that can be obtained through testing (in this work it
is set to 1 m), and o, and o}, are deviation thresholds for robot
and actor paths, respectively. In this work, we assume the desired
path of actors can be estimated by analyzing changes in direction
of motion and checking the minimum distance between robot
and actor within the robot’s sensing range.

The robot also has different behaviors depending on the
assigned priorities. For example, in a conservative case, a robot
may accommodate actors more, while a more aggressive robot
may prioritize moving faster, accommodating less to the motion
of nearby actors. In this work, for ease, we assume that the robot
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Fig. 3. Block diagram of our priority-based interpretable monitoring and
planning framework.

considers commonly observed behavioral priorities [8], [21] that
pertain to distance, deviation, and velocity, as follows:
1) Maintain a safe distance from dynamic actors (Ry).
2) Minimize deviation from the robot’s desired path (R, ).
3) Minimize actor deviation caused by the robot (R, ).
4) Minimize deviation from robot’s target speed (R,).
Given the above priority considerations, we can then formu-
late the following reward function:

R(B) = B1Rs + P2Ro, + B3Rq,, + BaRy, (&)

where 3 = 81 2 B3 [4]isthe setof parameters that defines
the weights given to each of the 4 considerations. It should be
noted that different priorities can be considered beyond those
mentioned above.

Then, the problem becomes the following:

Problem 2. Priority-Based Motion Planning: Find a correc-
tive input action within w4, from Problem 1 for the robot that
maximizes the objective reward function given a particular set
of priorities 3:

u* = arg max R(3) (6)
u

Finally, a corollary problem we investigate is how the robot
can learn and improve its behavior at runtime in a manner that
does not become more computationally expensive over time, and
is viable for long term deployment.

V. APPROACH

Our proposed priority-based interpretable monitoring and
planning framework follows the architecture in

At the core of our framework, a series of decision trees is used
to: 1) predict and explain interference between the robot and the
actors, 2) obtain corrections and 3) select the proper correction
for the virtual physics planner based on different priority metrics
imposed on the robot. To enable runtime learning and adaptation,
a Hidden Markov Model (HMM) is trained both offline and at
runtime to characterize probabilities of interference. In the event
that the DT predicts that the VP planner will not interfere, then
no correction is needed and the robot plans motion according to
(3). In what follows we will discuss in more detail each element
of Fig. 3.

A. Probability-Based Decision Tree Theory

Decision trees (DTs) are a form of supervised learning that are
interpretable, due to their white-box models [22]. DTs take in a
set of input variables (attributes) to predict a target output. When
the output takes a discrete set of values (classes), the DT is aclas-
sification tree. In these trees, the outermost nodes correspond to
class labels and internal nodes represent conjunctions of features
that return the respective class labels. DTs where the output takes
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continuous values are known as regression trees [23], and the
outermost nodes in these trees correspond to real numbers. In
this work, classification trees are used to predict and explain
a future interference, and regression trees are used to estimate
priority rewards to decide how to correct robot behaviors.

Typically, DTs are trained with a dataset of historical obser-
vations containing input variables and associated labels. A key
feature in this work is that DTs are both constructed and con-
stantly updated at runtime, meaning that new data are constantly
observed and incorporated into the construction of DTs. Storing
historical observation data can become computationally expen-
sive over time, bringing about the need for a faster approach to
update and build DTs at runtime.

To this end, we propose a probability model for fast updating
and construction of DTs. We take inspiration from the emission
matrices within Hidden Markov Models (HMM) [2], in which
the state space of the system, S € R¥, includes a finite set of
unique states s; € S,7 = 1,..., N, and each state can be associ-
ated to an emission, G € RM and g;, € G, where k = 1,..., M,
with M € N. Given N unique states and M unique emissions,
the right-stochastic matrix A € RY*M in which the sum of
rows is 1, lists the probability a;; of obtaining an emission gy,
given a state s;, and is formed as follows

ail airm
A=+ (7

aN1 aN M

In a typical HMM framework, values within A do not account
for the fact that there may be very few occurrences of a particular
state, assigning very high probabilities with very little informa-
tion, which may lead to inaccurate classification. We instead
include this consideration by treating emissions as classes and
computing classification probabilities that connect a particular
state s; to a class gy by leveraging a generalized logistic function
(GLF) [24], which is an extension of the sigmoid function, of
the form:

_ L
T 14 Qe be e

where L is the maximum value; since this function is used to
compute and update probabilities between 0 and 1, a natural
choice for this value is L = 1. The logistic growth rate is defined
by b and x is the midpoint of the curve. The parameter ()
can be treated as an initial bias on the midpoint (x = 0) of
the function. If @) > 1, the GLF has a bias towards a lower
probability, a;(0) < 0.5, and vice versa. When ) = 1, there
is no bias and a;x(0) = 0.5. The value of @ is a user defined
parameter that depends on the application and can be used to
tune how conservatively a classification model makes decisions.

The value of  must capture the desired comparison between
output classes. In this work, x is computed as a weighted
difference between observations of a certain state in each class:

N‘Sik*

—Ng, . N,

Sik 54
v = N, - min (1, TZ) Nsi >0
N, =0

(®)

ai(x)

€))

where £* = —A and k = X represent the classification outputs
in our work, N, . and N,,, are the number of non-interfering
and interfering observations at state s;, respectively, and Ny, is
the total number of observations of s;. The value IN; is a buffer
chosen to reduce the impact in cases with very few observations
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Fig. 4.  Generalized logistic function used to compute P(—1). Also shown is
the complementary curve for P(2)

while allowing cases with sufficient observations (Ng, > N;)
retain their intrinsic values. Shown in Fig. 4 is the GLF that
we obtained via experimental testing for this work, where the
midpoint is ¢ = 0, the parameter () = 1, and the growth rate
is b = 4.5, giving the following expression: p(x) = 1%%4”
Since growing DTs requires a dataset containing input states
and outputs, we leverage A to generate a fixed number of
data, in which the distribution of outputs corresponds to class
probabilities in .4. An important benefit of using this method to
build and update DTs and probabilities at runtime is that the only
data storage requirements for each state are the values contained
within (9), which can be adjusted at runtime by updating the
number of state and output observations, and recalculating prob-
abilities with (8) and (9). The complexity of this method does
not increase with time, and is viable for long term deployment.

B. HMM and DT Training

The training data used to build HMM matrices consists of
trajectories of a robot using the aforementioned VP planner
with different target speeds in the presence of one actor moving
from various initial positions to various goals. In training and
simulations, actors are also controlled by the presented VP
planner, to account for the fact that other actors are non-hostile
and will alter their paths to avoid collisions with the robot.

The attributes (inputs to DTs) are based on the available sensor
data about the robot and actors. Specifically, we leverage the
following attributes that we have experimentally validated in
our previous work [7]:

(10)

where d,;, d,;, and 0, are relative X-y positions and heading and vy,
and v,- are the actor and robot speeds, respectively. Each unique
set of attributes represents one of the states, or rows, within
the probability matrix: a; = s, € S, with ¢ =1,..., N. The
collected attributes are limited to a small sensing range around
the robot since the goal of the robot is to avoid interfering with
nearby actors. The attributes are discretized uniformly to prevent
aninfinite or exploding state space. While uniform discretization
is leveraged given the smaller sensing range, it is worth noting
that for a robot considering a much larger sensing range or
a different application, a variable discretization may be more
desirable, so that predictions regarding actors closer to the robot
are more accurate and granular than those further from the robot.

The output classes are either interfering (1) or not interfering
(—1), and are assigned based on a violation of any condition in
(4) at any point in a trajectory. The regression outputs describe
how well a set of attributes performs for a certain set of priorities
(Prob. 2 in this work). Below, we define how each of the rewards
within (5) are computed.

a=[d, d, 0 v, v
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The safe distance reward, Rgs, is constructed such that the
maximum reward of 1 is assigned when the threshold constraint
05 is not violated and the reward proportionally decreases as a
violation worsens.

The reward for actor path deviation is assigned differently as
follows, since the desired effect is lower deviation:

0,
Ry, =4 e}l

o
e h y

llpn(t) — pill > on
" (1)
llon(t) — Pyl < on

where o), represents the maximum permitted deviation that
satisfies conditions in (4). The robot path deviation reward R,,.,
is similar to the actor deviation reward, but instead uses robot
current and desired position.

The velocity reward can be represented by any function that
has a global maximum at the desired speed and decreases as the
robot’s speed diverges from vg.s. We capture this effect with a
quadratic function that has a vertex at (vges, 1), as follows: R, =
—a(v, — vges)? + 1, where a is a constant that determines the
rate at which the reward decreases.

During training, an observed set of attributes is rounded to
the nearest state, s; € S, which is then associated to a class
label (A, 1) and a priority based reward output (5). Then, the
class probabilities are computed with (8) and (9) to populate a
classification matrix 4., and the regression matrix, A, is built
based on the priority-based rewards obtained during training.

C. Prediction and Explanation

At runtime, to predict and explain interference with a sur-
rounding actor, we build local decision trees with an actor’s
observed attributes ay,(t). Local trees are more desirable for
prediction and explanation, because DTs constructed using the
entire state space can contain irrelevant information, reducing
the quality of predictions and explanations [23]. The local tree,
7;,}‘, is trained using a subset of states s;,(¢) from S that are
within a distance A of the attributes of a, (¢):

sp(t) C Sst]lap(t) —si|| <A Vs; €8 (12)

The parameter A defines how close the local training states are
to the observed state, and this value should be chosen based on
the quality of the training set. It should be noted that too low a
A may remove relevant data, while too large a A provides little
benefit over a global tree. Then, the prediction Py (t) € [, —A]
is obtained as follows: Py, (t) = T, (aun(t)).

An explanation &, (t) is then computed by traversing the path
I" from the root of the tree, V), to a prediction leaf, V), taking
the conjunction of each split criterion, ¢, for the N; nodes along
the path:

N;

En(t)= /\ e with T | Py(t)
k=1

13)

Traversing all paths, I'; € g with j = 1,..., Ng, that lead to
the opposite decision provides a set of counterfactuals, Cp, ():

Ng N;

Cut)="\/ N with T; | ~Pu(t)

j=1k=1

(14)

where each path I'; contains N; nodes to the leaf [7].
In Fig. 5 we show an example of a decision tree that predicts
and explains a future interference with one approaching actor.
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Fig. 5. Prediction and explanation decision tree ’7;,h.
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I Not Interfering
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Fig. 6. Correction decision tree 7.

The attributes in this particular example are the following:

d, d % VL Uy
t) = Y
=10 5 24 10 08
The prediction is Py, (t) = A (interfering), indicated by the red
path in the figure. Through (13), the following explanation is
obtained:
En(t) = Interfering because: {d, > —0.5/N0.9 <), <
1

Through (14), the following counterfactuals are then ob-
tained:
C(t) = Not Interfering when:

{d; < —0.5} Vv
{dy > —0.5Av, <09} V
{dy > —-0.5A0v, > 1.1}

D. Counterfactual Analysis and Priority-Based Correction

When the VP planner is predicted to interfere with an actor, the
counterfactuals of the DTs tell which attributes, when changed,
can revert the prediction. The robot, however, cannot change
attributes that are related to actor motion, and can only control
its maximum target speed, v,., which is used to obtain w (1).
To find corrective target speeds for the robot, we build a set of
secondary trees, 7'Ch and 7;,h, in which we fix all attributes except
v, and find similar states from S as done in (12), creating a new
set s, C S (note that s, C s.). In this way, new DTs are still
relevant to other local attributes but include varied robot speed,
enabling DTs to find from within the finite state space S via (14)
a set of non-interfering target speeds, v" .

In Fig. 6, we show the correction tree associated with the
example introduced in Section V-C. The robot was moving at a
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TABLE I
REWARDS FROM 7,

[0 €Veorr | 0 [ 01 | 02 | 03 | 04 | 05 [ 06 | 07 | 10|
[ Reward | 0.601 | 0.690 | 0.744 | 0.747 | 0.801 | 0.771 | 0.732 | 0.554 | 0.619 |

desired speed of v,, = 0.8. Through (14), we obtain the following
set of counterfactuals:
Cy(t) = Not Interfering when:

{v, <045} V

{0.45 < v, < 0.65} V
{0.65 < v, < 0.7} V
{v, > 0.95}

In this example, the set of non-interfering speeds
from our state space S is v, =1[0 0.1 0.2 0.3 0.4
0.5 0.6 0.7 1.0]

While each target speed within v” . may satisfy the condi-
tions for a non-interfering case, some may result in better or
worse performance, depending on the priority behavior of the
robot (Problem 2).

The optimal target speed for given priority parameters is
computed by comparing the output of non-interfering speds,
v e vl in the reward tree of actor h, as follows:

corr?

v* = arg max 7, (Veorr )
v

15)

This is then set as the maximum target speed for the attractive
input, discussed in Section III.

Shown in Table I is the output of the reward tree with the
following parameters 3 = [0.25 0.25 0.25 0.25],taken from
the running example in the previous sections (Figs. 5 and 6). The
non-interfering speeds are compared using the predicted reward,
and through (15), we obtain that v* = 0.4 m/s.

E. Extension to Multiple Actors

The set of non-interfering speeds for multiple surrounding
actors is the intersection between individual sets. Let v”
represent a set of non-interfering speeds for a single actor h
within the sensing range of the robot. Then the intersection of

sets of all actors is represented as follows:
N h
Veorr = ﬂ vcorr
h

The set of combined non-interfering speeds, ¥, includes
speeds for which P, = =A Vh =1,..., Nj, where Ny, is the
number of actors within the sensing range of the robot. Then the
optimal target speed for all actors is found similarly as in (15),
but now includes summing the rewards:

(16)

Np,
v* = arg max E ﬁh(ﬁcorr)
Y h=1

a7

There may, however, exist cases in which no global solution
can be found, that is ¥, = &, due to particularly dense
conditions and contradicting corrections. In these cases, the
system reverts to a fail-safe mode, in which the robot moves
at a very low target speed with our VP planner. We treat this as
fail-safe because, in addition to our assumption that actors are
non-hostile, assigning a low speed has been shown to effectively
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Fig. 7. Trajectories and results of robot (cool colors) and actor (warm colors)
comparing the presented approach with different objectives and the standard VP
planner without our approach. Velocities are indicated by the color-bars within
the trajectories.

communicate to actors that the robot is accommodating [8] giv-
ing the actors more time to react and perform avoiding maneu-
vers. However, when actors take upon the burden of avoidance,
interfering conditions are often violated. These cases, as with all
observations, are recorded and probabilities are updated through
(8) and (9) at runtime, refining predictions so that the robot can
learn to avoid getting into a similar interfering state in the future.

VI. VIRTUAL SIMULATIONS

In this section we provide several MATLAB simulations to
evaluate and compare our approach with other methods. Sim-
ulation training included a robot equipped with the previously
described VP planner with target speeds in the interval v, =
[0.0,1.0] m/s, discretized at 0.1 m/s increments. The desired
speed was set to vges = 0.8m/s. In the training, the robot per-
formed its trajectory in the presence of one actor also running the
aforementioned VP planner, which had different initial and final
positions in each trajectory with a nominal speed of v;, = 1m/s.

In the first simulation, we show the outcome of the running
example presented throughout this letter so far (Figs. 5 and 6),
in which a robot with a 5 m sensing radius is navigating in the
presence of one actor and has a goal at (10, 0) m. The distance and
deviation thresholds are d5, o, 0, = 1m. Fig. 7 compares our
approach under two different priority behaviors, and contrasts
results with the standard VP planner.

In Fig. 7(a) the robot prioritizes minimizing actor deviation by
using priority reward parameters 3 = [0.2 0.1 0.6 0.1]. The
resulting trajectory consists of a very low target speed of 0.2 m/s,
and no deviations. In Fig. 7(b) we repeat the same case study,
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TABLE II
RESULTS FROM COMPARATIVE SIMULATIONS

Success | Average Actor Average Max Target Speed | Average Added
Rate (%) | Deviation (m) | Robot Deviation (m) | Deviation (m/s) Time (%)

Standard VP Planner 62% 0.792 1311 0 21%
—Neutral Priorities 87% 0351 0407 0598 5%
Desired Speed 86% 0336 0463 0507 1%
ing Actor Deviation | 89% 0.298 0.283 0.702 9%
ORCA 75% 0433 0981 0544 %
DWA % 0361 511 0.821 64%

but the robot is now tasked to prioritize maintaining its desired
speed (3 =10.2 0.1 0.1 0.6]). As can be noted in Fig. 7(d)
the robot maintains a speed of 0.6 m/s, closer to the desired
0.8 m/s, the maximum actor deviation (Fig. 7(e)) is 0.17 m, and
the robot’s is 0.05 m due to the underlying VP planners but
interference conditions (4) are not violated. Fig. 7(c) shows the
VP planner without our approach. The robot interferes with the
actor’s path significantly, causing a maximum actor deviation of
1.76 m (Fig. 7(f)), which violates the interference threshold.

We also extensively tested our approach in dense multi-actor
environments, where the robot traverses 12 m, sharing an envi-
ronment with 10 simulated actors running a standard VP planner
to avoid the robot. A video for this simulation is included in
the supplemental material. We compare our approach under
different priorities with two widely-used planners: ORCA [11]
and DWA [12], which is the standard planner on ROS-enabled
systems. The results over 10 trials, in which the robot navigates
through a total of 100 actors, are shown in Table II.

The success rate is defined as the proportion of total actors
that were interfered. When prioritizing minimal actor deviation,
our approach outperforms others with an 89% success rate.
However, we find that results are similar under different pri-
orities, since the solution set, ¥.,,, is often limited in dense
environments. The actor deviation objective is the most con-
servative, resulting in lower speeds and higher added time of
49%, when compared to the time an unobstructed path to the
goal would have taken. The standard VP planner has the lowest
added time, but has a success rate of 64%. In the cases in which
our approach fails, we found that the robot was negotiating with
dense crowds (N, > 6) within its sensing range and no solutions
were available.

The presented approach outperforms ORCA in all metrics,
but we do note that ORCA outperforms the standard VP planner,
because ORCA expects surrounding actors to follow the same
algorithm and perform reciprocal avoiding behaviors. While
actors using VP planners are not exactly finding reciprocal
velocities, they are partially satisfying ORCA expectations by
avoiding the robot. DWA, on the other hand, is searching for a
set of admissible velocities given the occupancy in the robot’s
sensing range. Since this approach is not considering the future
motion of dynamic actors, we observe a larger robot deviation,
added time, and a poorer success rate, when compared to other
approaches.

VII. HARDWARE EXPERIMENTS

The proposed approach was also validated experimentally
using unmanned ground (UGV) and aerial (UAV) vehicles in in-
door environments. HMM and DT operations were implemented
in MATLAB and interfaced with ROS through the ROS Toolbox,
and executed at 10 Hz. Multiple experiments were performed,
but to conserve space, we only show a few representative cases
and more are available in the provided supplemental material.
For all experiments, the distance threshold §; = 1m and the
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(a) Robot slows down after predict- (b) Robot no longer predicts inter-
ing interference ference with actors

2 1 0 1
X (m)

(c) Robot returns to desired velocity (d) Trajectories minimizing actor
to reach its goal deviation.

0
a'

08

06

04

02
-1

0

3

0 0s
[

2t 5 !

]> ‘
0F

ar

ol

3 a2 -1

3

Y lm)

Y (m)

X 1m) X un)

(e) Trajectories minimizing velocity (f) Trajectories with a standard VP
deviation. planner.

Fig. 8. Ground vehicle experiment trajectories and snapshots of robot (cool
colors) and actor (warm colors) comparing the presented approach with different
objectives and the standard VP planner without our approach.

deviation thresholds o, 0, = 0.5 m. The training speeds were
set to 0.2, 0.4, and 0.6 m/s while v4.s = 0.6 m. The robot starts
at (—2.5, 0) m and is tasked to reach a goal at (2.5, 0) m.

Fig. 8 shows results from ground vehicle experiments on
a Clearpath Robotics Ridgeback Omnidirectional Industrial
Robot inside our lab tracked by a VICON motion capture system
(MOCAP). With the more conservative priorities (Figs 8(a)—
(d)), the robot reduces its target speed to v,, = 0.2m/s and no
deviation on either the robot or the actors paths is detected. When
the robot prioritizes maintaining desired speed, our approach
only reduces to v, = 0.4 m/s with a minor deviation from its path
of 0.04 m. Under the standard VP planner, the robot deviates
0.53 m, and the actor deviates ~1 m from the desired path,
violating the 0.5 m threshold.

We also successfully tested the applicability of our approach
outside MOCAP settings. We deployed our technique on the
same UGV using only the on-board RGB-D camera for person
detection and Lidar sensors for localization in the presence of 3
actors. Videos of these experiments and more cases are provided
in the supplemental material.

In the UAV experiment, we replicated a failure case shown in
simulation (Fig. 7(c)) with an aerial vehicle. We used the DJI
Tello mini drone in the same lab environment, with the same
goal and parameters. Fig. 9 contains trajectories and snapshots
from these experiments. The UAV with the standard VP planner
deviates 1.45 m, taking a longer path to reach the goal. With our
approach, the robot adapts its speed and deviates only 0.11 m.
Notably, the UAV reaches the goal 2 s faster, despite slowing
down to avoid interference.
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Fig. 9. UAV experiment trajectories, snapshots, and results.

VIII. CONCLUSIONS & FUTURE WORK

In this work, we have presented a novel approach that lever-
ages virtual physics planning by compensating for local minima
failures through a decision tree-based explainable monitor to
create proactive non-interfering behaviors between a robot and
nearby dynamic actors. A HMM-based probability model was
also introduced to enable DT to update and improve predictions
at runtime. Finally, we presented a reward-based method to
trigger different non-interfering behaviors given the priority
objectives of the robot. The main benefits of our approach are
that it leverages the efficiency and low overhead of VP planning
methods and provides human interpretable explanations when
interference is detected. This framework scales well in real world
settings as demonstrated by the different experiments conducted
with different robots with different sensing capabilities. Dealing
with multiple actors still remains a challenge in dense situations
where a global solution doesn’t exist. While in this letter, the
robot switches into a fail-safe mode, we note that there can be
situations in which a sequence of actions may be able to create
non-interfering behavior while maintaining a certain level of
performance of the robot. In future work, we plan to expand
on these thoughts and further investigate how we can consider
crowd interactions and prioritize actors carrying out tasks of
varying value in dense environments.
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