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ABSTRACT
Bridge sampling is an effective Monte Carlo (MC) method for estimating the ratio of normalizing constants
of two probability densities, a routine computational problem in statistics, physics, chemistry, and other
fields. The MC error of the bridge sampling estimator is determined by the amount of overlap between
the two densities. In the case of unimodal densities, Warp-I, II, and III transformations are effective for
increasing the initial overlap, but they are less so for multimodal densities. This article introduces Warp-
U transformations that aim to transform multimodal densities into unimodal ones (hence “U”) without
altering their normalizing constants. The construction of a Warp-U transformation starts with a normal (or
other convenient) mixture distribution φmix that has reasonable overlap with the target density p, whose
normalizing constant is unknown. The stochastic transformation that maps φmix back to its generating
distribution N (0, 1) is then applied to p yielding its Warp-U version, which we denote p̃. Typically, p̃ is
unimodal andhas substantially increasedoverlapwithφ. Furthermore,weprove that the overlapbetween p̃
andN (0, 1) is guaranteed to be no less than the overlap between p and φmix, in terms of any f -divergence.
We propose a computationally efficient method to find an appropriate φmix, and a simple but effective
approach to remove the bias which results from estimating the normalizing constants and fitting φmix with
the same data.We illustrate our findings using 10 and 50 dimensional highly irregularmultimodal densities,
and demonstrate howWarp-U sampling can be used to improve the final estimation step of theGeneralized
Wang–Landau algorithm, a powerful sampling and estimation approach. Supplementary materials for this
article are available online.
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1. Motivation

Markov chain Monte Carlo (MCMC) methods, such as the
Metropolis–Hastings algorithm, enable us to simulate from an
unnormalized density without knowing its normalizing con-
stant. However, inmany scientific and statistical studies the very
quantities of interest are normalizing constants or ratios of them
(see, e.g., Voter 1985; Kass and Raftery 1995; Meng and Wong
1996; DiCiccio et al. 1997; Gelman and Meng 1998; Shao and
Ibrahim 2000; Tan 2013). A well-known example from physics
and chemistry is the computation of partition functions, which
describe the statistical properties of a system in thermodynamic
equilibrium. A partition function is the integral of an unnor-
malized density q(ω;T, v) = exp {−H(ω, v)/(kT)} , where T is
temperature, k is Boltzmann’s constant, v is a vector of system
characteristics, and H(ω, v) is the energy function. Because of
the high dimensionality of H, Monte Carlo (MC) methods are
often the only feasible tool for estimating a partition function,
that is, the normalizing constant of q (see Bennett 1976; Voter
and Doll 1985; Ceperley 1995).

Two key objects in statistics which can be expressed as
normalizing constants are observed-data likelihoods and Bayes
factors. Focusing on the latter, let Y be our data, and let M0
and M1 be two plausible models parameterized by �0 and �1,

CONTACT David E. Jones djones@stat.tamu.edu Department of Statistics, Texas A&M University, College Station, TX 77843.
Supplementary materials for this article are available online. Please go towww.tandfonline.com/r/JASA.

respectively. The Bayes factor is then the ratio of the model
likelihoods, P(Y|M0) and P(Y|M1), where

P(Y|Mi) =
∫

P(Y|�i,Mi)P(�i|Mi)u(d�i)

is the normalizing constant of the unnormalized density,
P(�i,Y|Mi) ∝ P(Y|�i,Mi)P(�i|Mi), for i = 1, 2. In most
Bayesian analyses, MC draws of �i from P(�i|Y ,Mi) are made
for the purpose of statistical inference, often using MCMC
methods. Hence, to estimate P(Y|Mi), it is desirable to use
methods that require only these available draws (plus perhaps
some draws from another convenient distribution).

One such method is the bridge sampling approach intro-
duced by Bennett (1976) and generalized and popularized by
Meng and Wong (1996). In this article, we propose a method
to improve the efficiency of bridge sampling in the multimodal
context. Specifically, we introduce a class of stochastic trans-
formations, Warp-U transformations, that can warp two mul-
timodal densities into densities having substantial overlap but
without changing their respective normalizing constants. For
bridge sampling, an increase in distributional overlap implies
superior statistical efficiency. The key idea of Warp-U transfor-
mations is to approximate the unnormalized density of interest
q by a mixture distribution (e.g., a normal mixture), and then to

© 2020 American Statistical Association
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construct a coupling which allows us to (stochastically) map q
to a unimodal density in the same way that the approximating
mixture can be mapped back to a single generative density (e.g.,
a single normal density). Our work builds on the warp trans-
formations (centering, scaling, and symmetrizing) for unimodal
densities that were proposed by Meng and Schilling (2002).
Our method also has an intrinsic connection with the theory
of optimal transport (e.g., Villani 2003), albeit here we typically
seek only a reasonable transport (from one density to another)
which can achieve a beneficial compromise between statistical
efficiency and computational efficiency.

The utility of Warp-U transformations is especially promis-
ing because bridge sampling is similar to many other mixture
sampling approaches, which may also benefit from the strategy.
Indeed, a number of methods in the literature turn out to be
special cases of bridge sampling or adaptations of it, as demon-
strated by Mira and Nicholls (2004). For instance, the marginal
likelihood approaches of Chib (1995) and Chib and Jeliazkov
(2001) based on Metropolis–Hastings output correspond to
bridge sampling with specific choices of the bridge density.
Similarly, the defensive sampling method of Hesterberg (1995)
for estimating normalizing constants can be directly interpreted
as bridge sampling. The “balance weight heuristic” introduced
by Veach and Guibas (1995) is a generalization of bridge sam-
pling where the unnormalized densities to be integrated are
not necessarily included among the sampling densities. This
more general bridge sampling is also covered by the likelihood
approach proposed by Kong et al. (2003), which reformulates
MC integration as an estimation problem with the dominating
measure as the estimand. Their likelihood framework provides a
unified way of deriving and characterizing various methods for
boosting the statistical efficiency of MC estimation strategies,
such as the control variates approach of Owen and Zhou (2000);
see Tan (2004), Meng (2005), and Kong et al. (2006) for details
and illustrations. There is a possibility to cast Warp-U bridge
sampling methods under the same likelihood framework and
thereby make further connections with other methods, but that
is a topic for future exploration; see Section 6.2.

Our proposed Warp-U bridge sampling method can also
be used to improve the accuracy of powerful adaptive impor-
tance sampling based algorithms which combine sampling and
estimation. In Section 5, we illustrate this application of our
method in the special case of the GWL algorithm (Liang 2005),
an extension of the discrete algorithm proposed by Wang and
Landau (2001). There are numerous other adaptive importance
sampling methods that have been proposed and these could
potentially benefit from a similar combination with Warp-U
bridge sampling, for example, dynamic weighting (e.g., Wong
and Liang 1997; Liu, Liang, and Wong 2001) and layered adap-
tive importance sampling (Martino et al. 2017).

Our article is organized as follows. Section 2 briefly
overviews bridge sampling and the warp transformations of
Meng and Schilling (2002), highlighting their power for increas-
ing distribution overlap. Section 3 defines and illustrates the
Warp-U transformation we propose and then establishes the
theoretical result that Warp-U transformations never reduce
distribution overlap. Section 4 outlines a computationally effi-
cient strategy for finding a specific Warp-U transformation and
studies the properties of the corresponding estimator. Section 5

demonstrates that the estimation performance of the afore-
mentioned GWL algorithm can be improved by combining it
with Warp-U bridge sampling. Section 6 discusses limitations
and future work. The appendices in the online supplementary
materials provide a proof of Theorem 1, computational details,
and guidance on selecting the tuning parameters of ourmethod.

2. The Basics of Warp Bridge Sampling

Bridge sampling (Bennett 1976; Meng and Wong 1996) esti-
mates the ratio of the normalizing constants of two unnor-
malized densities by leveraging the overlap between the two
densities. Any method that can increase this overlap has the
potential to reduce the MC error. The warp bridge sampling of
Meng and Schilling (2002) explored this idea by transforming
the original MC draws so that the densities of the transformed
draws have substantially more overlap.

Let qi be an unnormalized density with normalizing constant
ci, for i = 1, 2. Furthermore, let u be the underlying measure
common to both densities, typically the Lebesgue or counting
measure. We use pi to denote the normalized density, that is,
pi(ω) = c−1

i qi(ω), for ω ∈ �i, where �i is the support of qi.
Our goal is to estimate the ratio r = c1/c2 or λ = log(r), using
the draws, {wi,1,wi,2, . . . ,wi,ni}, from pi, for i = 1, 2. In some
instances, we wish only to estimate one normalizing constant
c1, in which case we will select q2 = p2 to be a convenient
density with c2 = 1 (discussed in Section 3). Below, we begin by
assuming that draws from p1 and p2 are given, but in Section 5
we combine our estimation strategy with the GWL sampling
algorithm.

2.1. Bridge Sampling

Here, we review the key aspects of bridge sampling that will
be used in this article. For a complete treatment, the reader is
referred to Meng and Wong (1996) and the practical introduc-
tion byGronau et al. (2017). AnRpackage developed byGronau,
Singmann, andWagenmakers (2017) is available at https://cran.
r-project.org/web/packages/bridgesampling/.

Bridge sampling relies on the fact that for any function, α,
defined on �1 ∩ �2 and satisfying 0 <

∣∣∣∫�1∩�2
α(ω)p1(ω)

p2(ω)u(dω)

∣∣∣ < ∞, the following identity holds:

r = c1
c2

= E2[q1(ω)α(ω)]
E1[q2(ω)α(ω)] , (1)

where Ei represents expectation with respect to pi. Here, α

serves as a “bridge” connecting p1 and p2. The bridge sampling
estimator of r is the sample counterpart of (1), that is,

r̂α =
n−1
2

n2∑
j=1

q1(w2,j)α(w2,j)

n−1
1

n1∑
j=1

q2(w1,j)α(w1,j)

. (2)

For example, both importance sampling and geometric bridge
sampling are special cases of bridge sampling, with αimp ∝ 1/q2
and αgeo ∝ 1/√q1q2, respectively.
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Different choices of α lead to estimators with different statis-
tical efficiency, which we quantify by the asymptotic variance of
λ̂α = log(r̂α), or equivalently, the asymptotic relative variance
of r̂α , E(r̂α − r)2/r2. Under the assumption that all the MC
draws used in (2) are identically and independently distributed
(iid), Meng andWong (1996) derived the first-order asymptotic
variance of λ̂α , from which they found that the optimal bridge
has the form

αopt(ω) ∝ 1
s1q1(ω) + rs2q2(ω)

, where si = ni
n
, i = 1, 2.

(3)

Before we proceed, we emphasize that the bridge sampling
method itself does not require the assumption of iid sampling;
otherwise the method would be too limited to deserve a general
R package. The iid assumption was invoked by Meng andWong
(1996) to make the theoretical calculation both feasible and
insightful, in the sense that the resulting optimal bridge (3) takes
an appealing mixture form which provides practical guidance.
Indeed, regardless of whether the iid assumption holds, (3)
provides a very effective bridge. In contrast, without the iid
assumption the optimal bridge has a very involved expression
(Romero 2003), and offers little practical guidance. Therefore,
for the rest of the article we invoke the iid assumption only
for theoretical claims (e.g., when we refer to the “optimal”
approach) or for simulation simplicity.

Because αopt depends on the unknown quantity r, Meng
and Wong (1996) proposed an iterative sequence that rapidly
converges to r̂opt, that is,

r̂(t+1)
opt =

1
n2

n2∑
j=1

[
l2,j

s1l2,j + s2r̂(t)opt

]
1
n1

n1∑
j=1

[
1

s1l1,j + s2r̂(t)opt

] , (4)

where li,j = q1(wi,j)/q2(wi,j), for i = 1, 2, and j = 1, 2, . . . , ni.
Meng andWong (1996) showed that, under the iid assumption,
the asymptotic variance of λ̂opt = log(r̂opt) is(

1
n1

+ 1
n2

)[(
1 − HA(p1, p2)

)−1 − 1
]

+ o
(

1
n1 + n2

)
, (5)

which is the same as the asymptotic variance of the unobtainable
optimal estimator λ̂αopt = log(r̂αopt). Here, HA(p1, p2) is the
sample-size adjusted harmonic divergence between p1 and p2:

HA(p1, p2) = 1 −
∫

�1∩�2

[
w1p−1

1 (ω) + w2p−1
2 (ω)

]−1 u(dω),

(6)

with wi = s−1
i /(s−1

1 + s−1
2 ), i = 1, 2. Using a likelihood

that treats the baseline measure u as the (infinite dimensional)
parameter, Kong et al. (2003) showed that r̂opt is the maximum
likelihood estimator for r (again, under the iid assumption),
thereby further confirming its optimality.

2.2. Warp Bridge Sampling

For i = 1, 2, consider a transformation Fi of wi,j such that
(a) the unnormalized density, q̃i, of the transformed draws,
w̃i,j = Fi(wi,j), has the same normalizing constant as qi,
and (b) HA(p̃1, p̃2) < HA(p1, p2). Then by (5), the optimal
bridge sampling estimator based on the transformed draws
{(w̃i,1, . . . , w̃i,ni); i = 1, 2} will have smaller asymptotic variance
than that based on the original draws {(wi,1, . . . ,wi,ni); i =
1, 2}, assuming the draws are independent. This observation
motivated the Warp transformations proposed by Meng and
Schilling (2002), whose contribution also demonstrated empiri-
cally the benefit ofWarp transformations under general MCMC
settings (i.e., without requiring iid draws).

The simple idea of Warp-I transformations is to increase
overlap among densities (e.g., in terms of HA in (6)) by shifting
them so that they share a common location. Specifically, let μi
be a location parameter (e.g., mean or mode) of pi, for i = 1, 2,
and suppose that the dominating measure (e.g., the Lebesgue
measure) is invariant to translation. Let w̃(I)

i,j = wi,j − μi and
denote the corresponding unnormalized density by q̃(I)i (w) =
qi(w + μi); clearly this density has the same normalizing con-
stant ci as the original target qi(w), for i = 1, 2. The Warp-I
bridge sampling estimator is then obtained by replacingwi,j and
qi in (2) with w̃(I)

i,j and q̃(I)i , respectively.
The next obvious transformation is to match both the loca-

tion and the spread. Let μi be a location parameter and Si be a
scaling parameter, for i = 1, 2. TheWarp-II transformation then
sets w̃(II)

i,j = S−1
i (wi,j −μi) and q̃(II)i (ω) = |Si|qi(Siω+μi). The

dash-dot curve in the left panel of Figure 1 illustrates that p̃(II)1
overlaps more with p2 than p1 does. It also overlaps more than
the Warp-I transformed density p̃(I)1 does (not shown).

Warp-III transformations increase overlap further bymaking
the densities in question symmetric via a stochastic transfor-
mation. Specifically, a Warp-III transformation sets w̃(III)

i,j =
ξjS−1

i (wi,j − μi), where ξj takes on the value 1 or −1 with equal
probability (independently ofwi,j). The unnormalized density of
w̃(III) is q̃(III)i (ω) = |Si|

[
qi (μi − Siω) + qi (μi + Siω)

]
/2, an

example of which is shown in the right panel of Figure 1 (dash-
dot curve). Below we show that stochastic transformations are
also very powerful in dealing multimodality, a challenging issue
inMC based estimation and indeed in statistical inferencemore
generally.

3. Warp-U Bridge Sampling

Consider a unimodal density, φ, such as a N (0, Id) or t-
distribution. The key idea of our approach is to construct a
stochastic transformation of the original MC draws such that
the density for the transformed draws is much closer to φ. To
simplify the exposition, we consider the problem of estimating a
single normalizing constant and fix the other density used in the
bridge sampling estimator (2) to be φ. The problem of estimat-
ing a ratio of two normalizing constants can then be handled in
the following two ways. First, we can use two bridge sampling
estimators, one in the numerator and one in the denominator,
based on the Warp-U transformed draws {w̃i,1, . . . , w̃i,ni} ∼ p̃i
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Figure 1. Graphical illustration of Warp-II (left) and Warp-III transformations (right). The dashed and the solid lines are the curves of p1 and p2. The dash-dot lines are p
(II)
1

(left) and p(III)1 (right), obtained byWarp-II andWarp-III transformation, respectively. The shaded areas highlight themuch increased overlap between thewarp-transformed
densities and the reference density p2 = N(0, 1).

and draws from the convenient unimodal auxiliary distribution
{zi,1, . . . , zi,mi} ∼ φ, for i = 1, 2, respectively. The two esti-
mators can share the same auxiliary distribution φ, or even the
same set of auxiliary draws. We emphasize again here that we
do not require any of these draws to be iid, though typically
those from the auxiliary distribution are iid by design. Second,
we could disregard φ after the warp transformation and then
use one bridge sampling estimator of the ratio r based only on
the full set of the transformed draws {w̃i,1, . . . , w̃i,ni , i = 1, 2}.
This second strategy is effective because if p̃1 and p̃2 both overlap
significantly with φ then they are likely to also have substantial
overlap with each other.

Since we focus on a single unnormalized density q, we drop
the double indices and let {w1, . . . ,wn} be n draws from p =
c−1q, where p is assumed to be a continuous density on R

d.
Similarly, we use {z1, . . . , zm} to denote m iid draws from φ.
For concreteness, we set φ = N (0, Id), but other choices of φ

can work equally well or even better. For instance, if p is heavy-
tailed thenφmix may requiremanyGaussian components to well
approximate p, in which case using t-distribution components
will likely be more parsimonious and computationally efficient.
In general, a good choice for the components will be fast to
evaluate (compared with p) and have tails similar to p. More
discussion on the choice of the mixture components is given in
Section 6.2. Importantly, a precise match to p is not required,
only a reasonable approximation.

3.1. ConstructingWarp-U Transformations

When q is multimodal, we could approximate it by a Gaussian
mixtureφmix and then perform standard bridge sampling using
q and φmix. Warp-U bridge sampling aims to improve on this
approach but begins in the same way. Let

φmix(x; ζ ) =
K∑

k=1
φ(k)(x) =

K∑
k=1

πk |Sk|−1 φ
(
S−1
k (x − μk)

)
,

(7)

where φ(k) represents the kth component in φmix, including its
weight πk, for k = 1, . . . ,K, and ζ collects the transformation
parameters {πk,μk,Sk, k = 1, . . . ,K}. Alspach and Sorenson
(1972) showed that any piecewise continuous density can be
approximated arbitrarily well by a Gaussian mixture of the
form (7) as K → ∞ (specifically, they demonstrated uniform
convergence). In practice, for a reasonable choice of K, it is
usually possible to find a φmix that has substantial overlap with
p. Section 4 will discuss how to estimate φmix. Here, we assume
that φmix is known.

The Warp-U transformation uses a coupling between aug-
mented random variables drawn from φmix and p, and we
now specify this relationship. Suppose X ∼ φmix, depicted in
Figure 2(a) as the solid line, then we can write X = S�Z + μ�,
where Z ∼ φ and is independent of �, a discrete random
variable distributed such that P(� = k) = πk for k = 1, . . . ,K.
Figure 2(b) shows the joint distribution of � and X, with their
marginal distributions on the two faded vertical plates. The
random index � induces a random transformation

F�(x) = S−1
� (x − μ�). (8)

It follows trivially that if we draw (x, θ) from the joint distribu-
tion of (X,�), then x̃ = Fθ (x) ∼ φ.

Next, letW be a random variable from p and� be a random
index. We create a coupling between (W,�) and (X,�) by
requiring that�|W and�|X have the same distribution, that is,

�(k|ω) � P(� = k|W = ω) ≡ P(� = k|X = ω)

= φ(k)(ω)/φmix(ω), k = 1, . . . ,K. (9)

We can then decompose p into K components, that is, p(ω) =∑K
k=1 p(k)(ω), where

p(k)(ω) = p(ω,� = k) = p(ω)
φ(k)(ω)

φmix(ω)
. (10)

Figure 2(c) shows the joint distribution of (W,�) (thick dashed
curves) and their marginal distributions (thin dash curves in
the two vertical plates). The Warp-U transformation is then
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Figure 2. Illustration of Warp-U transformation. (a) φmix (solid line) and p (dashed line); (b) the joint and marginal distributions of X and � (solid line); (c) the joint and
marginal distributions ofW and � (dashed line); (d) the joint and marginal distributions of � and X̃ (solid line) and those of � and W̃ (dashed line), where X̃ and W̃ are
obtained via Warp-U transformation.

constructed by again using the map in (8) but with (W,�) in
place of (X,�),

W̃ = F�(W) = S−1
� (W − μ�) ∼ p̃. (11)

Intuitively, because the transformation F maps the multimodal
φmix back to the original unimodal (generating) density φ,
when it is applied to the multimodal p, it can achieve similar
a “unimodalizing” effect because φmix was chosen to approxi-
mate p.

In practice, to apply a Warp-U transformation to wj, we
calculate �(·|wj) according to (9), draw ψj from �(·|wj), and
finally apply the deterministic transformationFψj towj. Graph-
ically, each p(k) in Figure 2(c) is recentered and rescaled, like
its counterpart, φ(k). The dashed lines in Figure 2(d) are the
joint distribution of � and the Warp-U transformed variable,
W̃. In the faded left vertical panel of Figure 2(d), we see that the
distribution of W̃ overlaps substantially with φ.

When K = 1, the Warp-U transformation is the same as
the Warp-II transformation provided that we choose φmix to be
a location-scale family. For K > 1, Theorem 1 in Section 3.2

ensures that there will be additional overlap between p̃ and φ

compared to the overlap between p andφmix, except for in trivial
cases, for example, when p = φmix.

3.2. Theoretical Guarantee for GeneralWarp-U
Transformations

Figure 3 summarizes the key variables and distributions under-
lying a general Warp-U transformation, which does not assume
that φ is the normal density.We do still require that φ shares the
same support� as our target p. Another generalization included
in Figure 3 is that the “index variable” � (and hence also �)
is permitted to take on any distribution π with support � and
dominatingmeasure v, and in particular� (and�) is no longer
required to be discrete.

For all θ ∈ �, the map Fθ in Figure 3 is required to be one-
to-one, onto, and almost surely differentiable, and to satisfy� =
Fθ (�). We denote its inverse map byHθ . Since we specify X ∼
Hθ (Z), where Z ∼ φ, the conditional distribution X

∣∣� = θ is

φX|�(x|θ) = φ(Fθ (x))
∣∣F ′

θ (x)
∣∣ , x ∈ � (12)
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Figure 3. Relationships among the random variables and their distributions for Warp-U transformation. Here for almost surely (with respect to v) all values of θ ∈ �,Fθ
and its inverseHθ are one-to-one, onto, and almost surely (with respect to u) differentiable maps from� → �.

and the (marginal) density of X is

φmix(x) =
∫

�

φX|�(x|θ)π(θ)u(dθ)

=
∫

�

φ(Fθ (x))
∣∣F ′

θ (x)
∣∣π(θ)u(dθ). (13)

Let �(·|x) be the conditional distribution �|X = x,

�(θ |x) = φX|�(x|θ)π(θ)

φmix(x)
, θ ∈ �, (14)

and, as before, let the variable � be defined through P(� =
θ |W = ω) = �(θ |ω). The joint distributions of (� ,W) and
(�,X) therefore share the same conditional specification:

p� ,W(θ ,ω) = �(θ |ω)p(ω) and
φ�,X(θ ,ω) = �(θ |ω)φmix(ω), (ω, θ) ∈ � × �. (15)

Considering this shared structure, here and in what follows we
sometimes use the dummy variables (ω, θ) to refer to realiza-
tions of both (W,�) and (X,�), and prevent confusion through
our notation for the density functions in question.

The key consequence of the coupling (15) is that the overlap
between φ and the density of theWarp-U transformedW: W̃ =
F�(W) ∼ p̃, is greater than that between φmix and p. To prove
this mathematically, we need a measure or multiple measures
of overlap. The notion of f -divergence, or more precisely its
complement (since small divergence corresponds to large over-
lap), serves well for our purposes. For any (nontrivial) convex
function f on [0,∞) such that f (1) = 0, the corresponding f -
divergence between two probability densities p1 and p2, when
p1 is absolutely continuous with respect to p2, is defined as

Df (p1||p2) =
∫

�

p2(ω)f
(
p1(ω)

p2(ω)

)
u(dω). (16)

Theorem 1 states that Warp-U transformations can never
increase any f -divergence, and typically reduces them unless
the transformation or f is trivially chosen; the proof is given in
Appendix A in the supplementary materials.

Theorem 1. Let theWarp-U transformationF� be defined as in
Figure 3, with the conditions given in the caption. The following
results then hold.

(I) For any f -divergenceDf , we have Df (p̃||φ) � Df (p||φmix).

(II) If f is strictly convex, then the equality in (I) holds if and
only if �(θ ; ω̃) ≡ p(Hθ (ω̃))

φmix(Hθ (ω̃))
is free of θ (almost surely with

respect to v × u).

The Hellinger distance, the weighted harmonic divergence
in (6), and the L1 distance are all f -divergences, with fHe(t) =
0.5(1−√

t)2, fHa(t) = w1(1−t)/(w1+w2t), and fL1(t) = |1−t|,
respectively. The weighted harmonic divergence in (6) is an
especially important case because it determines the asymptotic
variance of bridge sampling estimators; see (5). Consequently,
Theorem 1 says that the bridge sampling estimator based on
p̃ and φ has smaller asymptotic variance than that based on p
and φmix, thus supporting the use of Warp-U transformations
(Section 3.3 gives the explicit form of these two estimators).
Interestingly, inequality (I) does not necessarily hold for Lp
distance when p �= 1 (and hence Lp distance is not an f -
divergence when p �= 1). As a simple counter-example, let
K = 1 in (7) and therefore φmix(ω) = |S|−1φ

(
S−1(ω − μ)

)
.

Then p̃(ω) = |S|p(Sω + μ), and

Lp(p̃,φ) =
(∫ ∣∣|S|p(Sω̃ + μ) − φ(ω̃)

∣∣p u(dω̃)

)p−1

= |S|1−p−1
Lp(p,φmix),

so Lp(p̃,φ)> Lp(p,φmix) whenever |S|1−p−1
> 1 (and

Lp(p,φmix) > 0).
Part (II) of Theorem 1 means that a Warp-U transformation

will always result in real gain, asmeasured by any strictly convex
f -divergence, unless one of two situations occur: (A) φmix is a
perfect fit to p, in which case obviously �(θ , ω̃) = 1; or (B)
p �= φmix, but the Warp-U transformation F� is unfortunately
(or unwisely) chosen such that it renders the “likelihood ratio”
�(θ ; ω̃) flat as a function of θ . Situation (B) includes the trivial
caseswhereFθ does not depend on θ , or θ does not vary because
π is a singleton, as well as some more complex scenarios.

An illustration of Theorem 1 is given in Figure 4 and Table 1
for the case of a tri-modal target distribution p and an approxi-
mating density φmix withK = 2. The green region in Figure 4(f)
shows that the final overlap between p̃ and φ after Warp-U
transformation is greater than the sum of the overlaps between
p(k) and φ(k), for k = 1, 2. We call the additional overlap cross-
overlap, and it is this phenomenon which is key to Warp-U
transformations. Table 1 lists several f -divergences for the pairs
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Figure 4. Illustration of the increase in the area of the overlapping region after Warp-U transformation. (a) p (dashed line) and φmix (solid line); (b) the 1st component of p,
denoted as p(1) (thin dashed line), the 1st component of φmix, denoted as φ(1) (thin solid line), and their overlap (shaded in red); (c) p(2) , φ(2) , and their overlap (shaded in
yellow); (d) the corresponding curves and shaded areas after Warp-U transformation; (e) the yellow region is added on top of the red region; (f ) the green area shows the
additional cross-overlap between the 1st and 2nd components induced by the Warp-U transformation.

Table 1. The overlapping area, and the distances between p andφmix andbetween
p̃ and φ.

Densities Overlap area L1 distance Hellinger distance Harmonic divergence

(p,φmix) 0.66 0.68 0.28 0.145
(p̃,φ) 0.92 0.16 0.08 0.013

(p,φmix) and (p̃,φ), and it confirms that the f -divergences are
much lower in the latter case. Indeed, due to cross-overlap, the
overlapping area for the pair of densities (p̃,φ) is nearly 40%
larger than that for (p,φmix).

3.3. Warp-U Bridge Sampling

After the parameters ζ for φmix have been chosen, the Warp-U
transformation is determined. The unnormalized density of the
transformed draws {w̃1, . . . , w̃n} can then be expressed as

q̃(w̃; ζ ) =
K∑

k=1
cp(k)(ω = Skw̃ + μk)

= φ(w̃)

K∑
k=1

q(Skw̃ + μk)

φmix(Skw̃ + μk)
πk. (17)

Clearly, the normalizing constants of q̃ and q are both c, and
hence we can estimate c with the bridge sampling estimator

based on {w̃1, . . . , w̃n} ∼ p̃ and {z1, . . . , zm} ∼ φ, that is,

ĉ(U)α ≡ r̂(U)α = m−1 ∑m
j=1 q̃(zj; ζ )α(zj; p̃,φ)

n−1 ∑n
j=1 φ(w̃j)α(w̃j; p̃,φ)

. (18)

As mentioned in Section 2.1, the optimal choice of α(·; p̃,φ) is
proportional to (s1p̃+ s2φ)−1. Since φmix also has some overlap
with p, the normalizing constant can alternatively be estimated
with the bridge sampling estimator based on {w1, . . . ,wn} ∼ p
and {x1, . . . , xm} ∼ φmix, that is,

ĉ(mix)
α ≡ r̂(mix)

α = m−1 ∑m
j=1 q(xj)α(xj; p,φmix)

n−1 ∑n
j=1 φmix(wj; ζ )α(wj; p,φmix)

. (19)

Theorem 1 implies D(p̃,φ) � D(p,φmix) when D is the
weighted harmonic divergence in (6), so the asymptotic variance
of λ̂(U)α = log

(
ĉ(U)α

)
is smaller than that of λ̂(mix)

α = log
(
ĉ(mix)
α

)
under the optimal choice of α, when the draws are independent.
Even when we choose some other α (e.g., the geometric mean√p1p2) or the draws are not independent, we can still expect that
the increased overlap obtained by the Warp-U transformation
helps (18) to outperform (19), at least when both use the same
n andm.

In challenging situations, our choice of φmix may be a poor
match with p. This will clearly impact the quality of the corre-
sponding Warp-U transformation, but D(p̃,φ) � D(p,φmix)
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will nevertheless still hold. Perhaps the most important case
where the Warp-U transformation is not beneficial is when p
has many highly isolated modes. The cross-overlap discussed
in Section 3.2 will then be small, and so will the reduction
achieved by D(p̃,φ). Consequently, in this scenario, the extra
computation required by the Warp-U transformation is not
worthwhile.

4. Warp-U Computation Details and Numerical
Examples

The key step in applying Warp-U bridge sampling is to iden-
tify a mixture density φmix that adequately overlaps with p,
under reasonable constraints on computation. In relatively low
dimensional (�10) problems, we can obtain φmix based on the
expression for q, for example, using iterated Laplace approxima-
tions (see Bornkamp 2011; Gelman et al. 2013). However, these
methods are too costly and unstable in high dimensions. Below
we outline a simple method which uses the draws {w1, . . . ,wn},
can capture a good proportion of the mass of p, and has com-
putational cost that is linear in dimensionality. We then adopt
another practical strategy to remove an over-fitting bias due to
this simple method.

4.1. Fitting φmix: Diagonal CovarianceMatrices

Suppose that p is D dimensional and that our draws from p
reasonably represent the regions of nonnegligible density. We
seek a normal mixture φmix in the form of (7) to approxi-
mate p, where Sk is a positive definite diagonal matrix, Sk =
Diag{σk,1, σk,2, . . . , σk,D}, for k = 1, . . . ,K, and hence ζ =
(π1, . . . ,πK ,μ1, . . . ,μK ,S1, . . . ,SK) . Unlike usual statistical
inference problems where ignoring correlations can have very
serious consequences, for Warp-U transformations using diag-
onal covariance matrices is often an acceptable compromise
between computational efficiency and MC efficiency. Indeed,
as discussed in Section 3, it is not necessary for φmix to be
a great fit to p in order for us to benefit significantly from
Warp-U transformations. In the next section, we provide further
empirical evidence to illustrate this point.

Since a mixture of normal components without suitable
restrictions has unbounded likelihood (Kiefer and Wolfowitz
1956; Day 1969), we estimate ζ by the penalized MLE proposed
by Chen, Tan, and Zhang (2008). In particular, we make use of
the EM procedure proposed by Chen and Tan (2009), but with
a “robustified” penalty function

pn(ζ ) = − 1√
n

K∑
k=1

D∑
d=1

{
ÎQ2

d
σ 2
k,d

− log(σ 2
k,d)

}
,

where ÎQd is the inter-quantile range of the draws from p in the
dth dimension. Because EM tends to become trapped at local
modes, we apply it M times, randomly generating a new initial
point ζ (0) for each repetition as follows. The initial values for
the πk’s and Sk’s are π

(k)
k = K−1 and σ 2

k,d = 1.5ÎQ2
d for all

k and all M replications. For the mean parameters μk, for the
firstM/2 replications, we randomly sampleK of available draws
from p (without replacement) to be the initial values. For the
second M/2 replications, along the dimension with the largest
estimated variance, we first identify a region where 95% of the
draws from p reside and divide it into K subregions so that each
subregion contains approximately the same number of draws.
We then sample one draw from each of the K subregions to set
the initial mean parameters. Our EM stopping criterion is |1 −
(l(t)n /l(t−1)

n )| < 10−6, where l(t)n is the value of the (un-penalized)
log-likelihood at iteration t. In our simulations, the EM usually
stopped within 100 iterations. After obtainingM estimates of ζ ,
we choose the one with the largest likelihood value to be the
parameter, ζ̃ , for Warp-U bridge sampling. Simulations show
thatM as small as 2 to 10 is sufficient to obtain a local maxima
that serves well for the purpose of ensuring adequate overlap
between p and φmix.

4.2. Overcoming Adaptive Bias and Setting Tuning
Parameters

Let ζ̃D be the estimate of ζ obtained by applying EM to all the
draws from p, D = {w1, . . . ,wn}, and let λ̂

(U)
D = log

(
ĉ(U)D

)
be

the corresponding Warp-U bridge sampling estimator. Because
ζ̃D is a function of the draws from p, the distribution of the
corresponding Warp-U transformed draws, {w̃1, . . . , w̃n}, is no
longer proportional to q̃(·; ζ ) in (17) when we substitute ζ =
ζ̃D . In other words, λ̂

(U)
D has an adaptive bias induced by the

dependence of ζ̃D on D, demonstrated in Figure 7 (see Sec-
tion 4.3).

Since the additional bias of λ̂
(U)
D is due to the dependence

of ζ̃D on the draws from p, an obvious remedy is to use two
disjoint subsets of the draws from p for estimating ζ and for
bridge sampling. We can then switch the roles of these subsets
to gain more statistical efficiency. Figure 5 depicts the sub-
sampling strategy we use to obtain two separate bridge sampling
estimators, λ̂(U)Hi

, i = 1, 2. Each λ̂
(U)
Hi

is obtained by usingL � n/2
of the draws from p to estimate ζ and the other 50% of the draws
for the Warp-U bridge sampling specified by the estimated ζ .
Our final estimator λ̂

(U)
H is the average of λ̂(U)H1

and λ̂
(U)
H2

. Clearly,
both λ̂

(U)
H1

and λ̂
(U)
H2

are individually valid. The only concern is
that the two estimators may be highly correlated causing their
average to have high variance. However, under the setting of

Figure 5. A strategy for removing the adaptive bias without (unduly) increasing the variance of the Warp-U bridge sampling estimator. Each λ̂
(U)
Hi , i = 1, 2 uses up to 50%

of the draws from p for estimating ζ and the other 50% for Warp-U bridge sampling. We then average the two estimators.
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iid draws from p and φ, our empirical investigations detailed
in Appendix B in the supplementary materials suggest that
the correlation between λ̂

(U)
H1

and λ̂
(U)
H2

is often very small, for
example, <0.06. Thus, when the iid assumption approximately
holds, the variance of λ̂(U)H is nearly half that of λ̂(U)Hi

, for i = 1, 2.
Appendix B in the supplementarymaterials gives further details
and suggests a strategy for approximating the variance of the
final estimator λ̂

(U)
H .

As depicted in Figure 5, we may choose L < n/2 to reduce
the EM computation, which is a reasonable strategy given that
φmix does not need to be a very precise approximation to p. The
number of components K can be chosen using standard model
selection criteria such as the Bayesian information criterion
(BIC) applied to the L data points used for EM. In particular,
such model selection criteria protect against over-fitting by use
of a penalty termand can be expected to provide amixture that is
a good approximation to p, at relatively low computational cost.
In terms of statistical efficiency, a good approximation to p is
what is required because the asymptotic variance of both stan-
dard bridge sampling and Warp-U bridge sampling decreases
as the approximation φmix improves, see (5) and Theorem 1.
On the other hand, given that greater K implies greater com-
putational cost per iteration of Warp-U bridge sampling (and
standard bridge sampling to a lesser extent), we may anticipate
that once computation is accounted for the best choices of K
will be those around where the curve of BIC against K begins
to level out, indicating diminishing returns, as opposed to the
value of K at exactly the minimum BIC value. Figure 6 shows
that this is indeed the case for the 10-dimensional example to
be discussed in Section 4.3: the BIC curve (left panel) starts
to flatten out around K = 20–40, and the precision per CPU
second (right panel) shows that this is also the optimal range
of K for Warp-U bridge sampling in terms of computational
efficiency.

Appendix C in the supplementary materials provides further
practical guidance for setting K, L, andm (the number of draws
from φ), which we now summarize. First, we suggest setting
K ≤ n/100 because our simulations suggest that φmix tends to

overfit forK > n/100 which can even cause the RMSE of λ̂(U)H to
increase. Another reason to avoid large K is that computational
cost increases quadratically with K. Next, we found that a rea-
sonable choice of L is min(50K, n/2) because the reductions in
the RMSE of λ̂

(U)
H are relatively small when we increase L past

50K. Lastly, in terms of precision per CPU second (PpS, defined
as the reciprocal of RMSE×CPU seconds), when K is already
large, increasing m is a more efficient strategy for reducing the
variance of λ̂

(U)
H than increasing K further. However, when K

is small it is often more efficient to increase K rather than m,
because if there are fewer components in φmix than there are
major modes of p, or if the modes of p are asymmetric or heavy
tailed, then large reductions in RMSE can usually be obtained
by increasing K.

Setting L = n/2, assuming diagonal covariance matrices
(see Section 4.1), and treating K as fixed, the computational
complexity of our complete method isO((n+m)Kg(d)), where
g(d) ≥ O(d) is the cost of a single evaluation of q. Here, we have
assumed that the number of EM iterations and initializations are
fixed. IfK needs to be chosen then the EMpart of our algorithm,
which costs O(nKd), has to be repeated for each plausible value
of K. However, in practice, unless the only suitable values of K
are very large and completely unknown, then it is the number
of evaluations of q (cost g(d)) that is most crucial, and this is
therefore the focus of our computational efficiency comparisons
in Section 5.

4.3. Examples in 10 and 50 Dimensions

To illustrate the effectiveness of using diagonal covariance
matrices and the above bias reduction strategy, we first consider
a 10 dimensional example where p is set to be a mixture of 25
multivariate skew-t distributions, whose density is given in the
R package “sn” by Azzalini (2011); also see Azzalini (2013). We
specify the degrees of freedom of the 25 skew-t distributions to
take various values between 1 and 4, the skew parameters to
take values between −100 and 200, and the scale matrices to
be non-sparse. To evaluate our methods properly, we simulate

Figure 6. BIC as a function of K (left) and the precision per CPU second as a function of K (right) of the optimal bridge sampling estimators λ̂
(U)
H (solid lines, m = n)

and λ̂
(mix)
H (dashed lines) withm = n (black), 16n (red), and 32n (green). Recall that “mix” refers to the ordinary bridge sampling estimator using p and φmix, that is, the

logarithm of (19).
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Figure 7. The columns show the |bias|, standard deviation, and RMSE of (i) λ̂(U)D,Z = log(ĉ(U)D,Z ) (dotted lines), theWarp-U estimator specified by ζ̃D , which is estimated

fromD = {w1, . . . ,wn}, (ii) λ̂(U)I,Z = log(ĉ(U)I,Z ) (solid lines), the Warp-U specified by ζ̃I , which is independent ofD, and (iii) (dashed lines) the average of two Warp-U
bridge sampling estimators with half of the draws from p for estimating ζ and the other half for bridge sampling. The subscript “Z” indicates “Diag” (top row) or “Full”
(bottom row) covariance matrices in the Gaussian mixture model.

104 replicate datasets, each of which contains 2500 independent
draws from p.

We consider three Warp-U bridge sampling estimators,
with diagonal covariance matrices for φmix. They are λ̂

(U)
D,Diag,

λ̂
(U)
H,Diag, and λ̂

(U)
I,Diag, where the first subscript specifies whether

λ̂ is computed by estimating ζ using all the draws from p (D), by
setting L = n/2 and using the scheme in Section 4.2 (H), or by
estimating ζ from an independent set of draws (I). For all three
estimators, we use the optimal choice of α and set m = 2500,
that is, the number of independent draws from the auxiliary
φ = N (0, I10). The estimator λ̂

(U)
I,Diag serves as a benchmark for

comparison because it is free of adaptive bias.
The lines in the top row of Figure 7 show the bias (left panel),

the standard deviation (center panel), and the RMSE (right
panel) of the three estimators: λ̂

(U)
D,Diag (dotted lines), λ̂

(U)
H,Diag

(dashed lines), and λ̂
(U)
I,Diag (solid lines). Results are plotted for

all values of K between 5 and 20 inclusive. Larger values of K
generally represent a better approximation to p but more com-
putation (and potentially less gain from using Warp-U bridge
sampling as opposed to standard bridge sampling between p and
φmix). The top left panel of Figure 7 shows the excessive bias of
λ̂
(U)
D,Diag compared with λ̂

(U)
I,Diag. In contrast, the bias of our bias

adjusted estimator, λ̂(U)H,Diag, is as low as that of the benchmark
λ̂
(U)
I,Diag. In the top center panel of Figure 7, we see that the

variances of all three estimators are very similar, and decrease
as K increases. The decrease is because on average larger K
corresponds to more overlap between p and the calibrated φmix,
and thus more overlap between p̃ and φ. The top right panel of
Figure 7 shows the RMSE of the estimators which is similar for
λ̂
(U)
H,Diag and λ̂

(U)
I,Diag, but much larger for λ̂

(U)
D,Diag because of its

large bias.
The bottom row of Figure 7 shows similar results to those

discussed above, but in the case where the covariance matrices
of the components of φmix are not constrained to be diagonal.
In this setting, we denote the three estimators by λ̂

(U)
D,Full, λ̂

(U)
H,Full,

and λ̂
(U)
I,Full. The results broadly match those in the top row of

Figure 7, except that the bias (bottom left panel) and RMSE
(bottom right panel) of λ̂

(U)
D,Full are even larger than those of

λ̂
(U)
D,Diag. This is because with full covariance matrices, we have

significantly more parameters to be estimated, and hence more
substantial over-fitting bias. However, Figure 7 clearly shows
that our method removes the adaptive bias regardless of its
magnitude, and differences between using full and diagonal
covariance matrices when fitting φmix are minor (compare the
dashed lines in the top and bottom panels). Since fitting φmix
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Figure 8. Contours of the density p projected onto different pairs of dimensions.

with diagonal covariance matrices is computationally much less
expensive, λ̂(U)H,Diag achieves better RMSE per CPU second than
λ̂
(U)
H,Full; see Appendix D in the supplementary materials for fur-

ther demonstration.Hence, fromhereonwe always use diagonal
covariance matrices and the estimation strategy in Section 4.2
and denote the final estimator by λ̂

(X )
α = 1

2

(
λ̂
(X )
α,1 + λ̂

(X )
α,2

)
,

where X = U or “mix.” Recall that “mix” refers to the ordinary
bridge sampling estimator using p and φmix, that is, the loga-
rithm of (19).

Next we consider a 50 dimensional example. For this exam-
ple, p is a mixture of 30 distributions, including normal
distributions, t-distributions (including Cauchy distributions),
and multivariate distributions with gamma and/or exponen-
tial marginal distributions and normal copulas. The four two-
dimensional projection contour plots of p in Figure 8 show
the density has very long tails and is quite skewed in some
directions. Evaluating p is about 700 times more costly than
evaluating φ (the auxiliary density). The simulation results are
based on 104 replications, and in each replication, n = 104
samples were drawn from p.

Figure 9 shows the total computational cost, the RMSE, and
the PpS of λ̂

(X )
opt . As in the 10 dimensional example, the RMSE

decreases as K increases up to n/100, and when K > n/100,
the mixture model overfits the data (i.e., the draws from p),
resulting in a slight increase in the RMSE of λ̂(mix)

opt . On average,

log(RMSE) of λ̂
(U)
opt is about 60% of that of λ̂

(mix)
opt , but the com-

putational cost of λ̂
(U)
opt is 4.7 times that of T(mix)

opt , so in terms of
the PpS, λ̂(mix)

opt is superior to λ̂
(U)
opt . In addition, for large K, when

we increasem from n (black lines) to 16n (red) and 32n (green),
the total computational cost of λ̂

(mix)
opt increases by only a small

fraction, but the gain in statistical efficiency is substantial. Thus,
in this illustration λ̂

(mix)
opt is preferred to λ̂

(U)
opt . However, such

preferences vary with machines and implementations, because
we have not optimized the function evaluation routines or other
aspects of the code. Furthermore, the relatively high computa-
tional cost of λ̂

(U)
opt seen in Figure 9 is partly due to obtaining

the Warp-U transformed draws {ω̃1, . . . , ω̃n}, which does not
require any target evaluations. In other scenarios, evaluations
of q may dominate the computational cost more, and then
computational efficiency would depend mostly on the number
of target evaluations. In particular, in such cases, increasing m
from n to say 16n would represent an 8.5 (i.e., (16 + 1)/2))
multiplicative increase in computation, as opposed to the rel-
atively modest increase seen in the left panel of Figure 9, and
therefore the computational cost of λ̂(mix)

opt would bemore similar
to that of λ̂

(U)
opt for a given log(RMSE). We consider measuring

computational efficiency by the number of target evaluations in
Section 5, and find λ̂

(mix)
opt and λ̂

(U)
opt to be closely comparable.

Opportunities for reducing the computational cost associated
with Warp-U bridge sampling will be discussed in Section 6.
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Figure 9. The total computational cost (left), the log(RMSE) (middle), and the PpS (right) of λ̂(U)opt (solid lines, m = n) and λ̂
(mix)
opt (dashed lines) with m = n (black), 16n

(red), and 32n (green).

5. Warp-U Extension of GWLMethod

As we emphasized earlier, bridge sampling is applicable to
general MCMC settings. We therefore do not need the draws
to be independent, as long as they are from the target p, or
at least in the long run. There are cases, however, where the
available draws are from a distribution that is known to be
different from the target p. Indeed, some of the most promising
approaches for estimating normalizing constants combine the
tasks of sampling and estimation into one coherent algorithm,
but often do not directly sample from p. An important case
of such a combined approach is the GWL algorithm proposed
by Liang (2005). GWL is particularly useful in the current
context because of its ability to efficiently sample from highly
multimodal distributions. We therefore take it as a benchmark,
and illustrate how it can be combined with Warp-U bridg-
ing sampling to obtain an improved estimator for normaliz-
ing constants. More generally, our strategy of incorporating
a Warp-U bridge sampling step can be tried on other algo-
rithms that combine sampling and estimation of normalizing
constants.

5.1. GWL Algorithm

We begin by briefly describing GWL, which shares some sim-
ilarities with other energy based methods such as the equi-
energy sampler (Kou, Zhou, and Wong 2006). Suppose that we
want to compute the integral

∫
S q(ω)u(dω), denoted by a set

function g(S), for some unnormalized density q and bounded
region S. Typically S is the region over which q has nonnegligible
density, that is, q(S) ≈ 1. We divide S into r subregions
S1, . . . , Sr , which are defined by target energy bins; that is, within
each Si, the energy level, defined by − log q, is roughly the
same. Let the current estimate of the integral

∫
Si q(ω)u(dω) be

denoted by ĝ(Si), and set the initial estimate to be ĝ(Si) = 1, for
i = 1, . . . , r. GWL takes the inputsn0, δ0, andT (e.g.,n0 = 1000,
δ0 = e − 1 ≈ 1.718, T = 25) and proceeds as detailed
below. (Here, we have ignored an additional tuning parameter
in Liang (2005) that is not needed for computing normalizing
constants.)

GWL algorithm.
For stage t = 1, . . . ,T:

1. Set nt = nt−1(1.1)t−1, δt = √
1 + δt−1 − 1, and ĝ(t,1)(Si) =

ĝ(t−1,nt−1)(Si), for i = 1, . . . , r.
2. For k = 1, . . . , nt do the following:

(i) Use aMetropolis–Hastings step, with proposal density h,
to draw a sample ω from the current target density

ψ(t,k)(ω) ∝
r∑

i=1

q(ω)

ĝ(t,k)(Si)
I(ω ∈ Si). (20)

The (t, k) superscripts indicate that the current target
and the estimate of g(Si), for i = 1, . . . , r, are updated in
each iteration within each stage.

(ii) Update ĝ(t,k)(SIω) to (1 + δt)ĝ(t,k)(SIω), where Iω is the
index such that ω ∈ SIω , that is, a regional mass estimate
ĝ(t,k)(Si) is increased only if Si contains the draw ω.

It should be clear from the description above that, in the limit,
GWL samples the subregions S1, . . . , Sr with equal probability,
and within each Si, it samples according to q. Therefore, its sta-
tionary distribution is not the targeted q, butwhat can intuitively
be described as a “redistributed” q that equalizes the masses of
the energy bins:

ψ(ω) =
r∑

i=1

q(ω)

g(Si)
I(ω ∈ Si). (21)

Liang (2005) verified this convergence assuming that the inter-
mediate densities of (20) can be sampled from exactly. Practi-
cally, we can sample from them approximately, say by repeating
the Metropolis–Hastings step many times between each update
of the estimate of g(Si), for i = 1, . . . , r. However, Liang (2005)
used only one Metropolis–Hastings update in his illustrations,
and we follow this practice (but with an ideal proposal, see
Appendix E in the supplementarymaterials). His proof assumed
nt grows sufficiently fast with t, but the multiplicative factor 1.1
he suggested may not always be adequately large, though it is
computationally problematic to increase it much further.
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Since GWL samples the subregions uniformly, the final esti-
mators ĝ(Si) = ĝ(T,nT)(Si) estimate the integrals g(Si) only up
to a common constant, denoted A, which depends on δ0 and
the number of iterations made at each stage of the algorithm. To
estimate the log normalizing constant of q, namely λ = log(c),
we must remove A, which can be done by running GWL with
a modified version of q as we now explain. Choose S2, . . . , Sr to
be such that

(⋃r
i=2 Si

)c has negligible mass under q, and choose
S1 ⊂ (⋃r

i=2 Si
)c such that its volume |S1| is finite and known

(Liang 2005). Next, run GWL with q replaced by

qmod(ω) =
⎧⎨⎩
q(ω) for ω ∈ ⋃r

i=2 Si,
1

|S1| for ω ∈ S1,
0 otherwise.

The basic idea is that on S1 we can treat q as uniform since its
actual distribution contributes little to the normalizing constant
of q. Lastly, for each S ∈ {S2, . . . , Sr}, Liang (2005) estimated
the integral

∫
S q(ω)dω by ĝ(S)/ĝ(S1). Assuming convergence

of GWL, a consistent estimate of λ is thus given by λ̂GWL =
log(

∑r
i=2 ĝ(Si)/ĝ(S1)).

The key strengths of GWL are its adaptive nature and that
it exhibits good mixing properties even for multimodal tar-
gets, the latter property being a benefit of asymptotic uniform
sampling across energy bins. In practice, a limitation of the
algorithm is that the MSE of λ̂GWL is bounded below for fixed
n0 and the specified geometric growth in nt , as can be seen in
the top left panel of Figure 10 (discussed in Section 5.3). (Liang,
Liu, and Carroll (2007) attempted tomitigate this phenomenon,
but the convergence properties of the updated algorithm again
may not be ideal, and further developments are still beingmade;
see for example Jacob and Ryder (2014).) Here, we simply view
GWL as a related method to compare against and combine
with. For these purposes the lower bound on the convergence
of λ̂GWL does not play a large role because the number of target
evaluations we allow is approximately equal to or lower than the
number required by GWL to achieve its minimum MSE. For
further details of GWL, the reader is referred to Liang (2005),
Liang, Liu, and Carroll (2007), Bornn et al. (2013), and Jacob
and Ryder (2014).

5.2. Combining GWLWithWarp-U

Consider a situation where GWL has been run for T∗ < T
stages. We suspect that it is near convergence, and want to
determine if we can reduce the MSE by using the computation
to complete only the remaining T − T∗ stages (the GWL-only
approach) or to make the use of Warp-U bridge sampling to
obtain the estimator λ̂

(U)
opt (the GWL+Warp approach). Draws

from our target p are required to implement the latter approach,
but can be obtained from the GWL run without any additional
target evaluations. To see this, first let Gi denote the set of
samples collected from subregion Si during the T∗ stages of the
GWL run, for i = 1, . . . , r. With this notation, we propose the
following addition to GWL.

Warp-U addition.

1. For l = 1, . . . , n, repeat the following two steps:

(i) Sample a subregion index k ∈ {2, . . . , r} using the prob-
abilities bi ∝ ĝ(Si)1{Gi �=∅}, for i = 2, . . . , r.

(ii) With uniform sampling, select a sample ωl ∈ Gk, that
is, select one of the samples in subregion Sk collected by
GWL.

2. Apply Warp-U bridge sampling with {ω1, . . . ,ωn} and m
draws from φ to obtain the estimate λ̂

(U)
opt .

The first step obtains draws from p restricted to
⋃r

i=2 Si, and the
second step applies Warp-U bridge sampling using these draws.
The indicator 1{Gi �=∅} in bi indicates that we sample only regions
fromwhich there are samples during the GWL run. Since q(ωl),
for l = 1, . . . , n, has already been evaluated during the GWL
run, the only new target evaluations required for the above
Warp-U addition are related to Step 2 not Step 1: in particular,
n(K − 1) + mK evaluations are needed to compute the K − 1
terms of q̃ in (17) (i.e., terms of the form q(Skw̃+μk)) for which
Skw̃l+μk �= wl, for l = 1, . . . , n, and the fullK terms of q̃ for the
m draws from φ. In Step 2, we could alternatively apply standard
bridge sampling to p and φmix to obtain λ̂mix

opt , as described in
Section 3.3. We refer to this alternative approach as GWL+BS.

5.3. Illustration of the GWL+Warp-U Algorithm

We consider the 25 skewed-tmixture example from Section 4.2.
We run the GWL-only algorithm for T = 25 stages, and again
set δ0 = e − 1. We try n0 = 103, 104, 105 and find that larger
n0 requires more stages for the estimator λ̂GWL to converge
but leads to lower RMSE; see the top left panel of Figure 10.
We choose n0 = 104 as a compromise between RMSE and
computational cost. The value of n0 is not the target of our
comparisons, nor is the choice of the proposal density h or the
partition S1, . . . , Sr . We therefore use our knowledge of the true
target p to configure these components to favor the GWL-only
algorithm; see Appendix E in the supplementary materials for
details.

The solid lines in the top left panel of Figure 10 indicate
the RMSE when the GWL-only algorithm (with n = 104) is
run for 5, 9, and 11 stages, and we see the RMSE is stabilized
after stage 9. For reference, the same three RMSE values are
indicated by a horizontal line in the top right, bottom left, and
bottom right panels of Figure 10, respectively. Running GWL
for more than 9 stages does not improve the RMSE, but we can
improve it using the Warp-U addition detailed in Section 5.2,
even if we do not increase the overall computational cost. In
the top right panel of Figure 10, the hollow symbols show
the RMSE for the GWL+Warp-U estimator λ̂

(U)
opt , in the case

where the GWL component was run for only 10 stages, thereby
saving the computation needed for an 11th stage to be used for
Warp-U sampling. Of course, we may decide we do not need
to use all of the saved computation. The x-axis of Figure 10
gives the number of target evaluations we use for the Warp-U
step, in units of log10 of the proportion of target evaluations
needed for an 11th stage of GWL, that is, at 0 on the x-axis the
computational cost of the Warp-U sampling matches that of an
11th stage. The different hollow shapes correspond to different
values of K (number of mixture components). For comparison,
the horizontal line indicates the RMSE under the GWL-only
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Figure 10. The top left panel shows the RMSE of λ̂GWL at each of 25 stages, for n0 = 103, 104, 105. The solid lines indicate the results for 11-stage, 9-stage, and 5-stage
runs of the GWL-only algorithm with n0 = 104. The top right panel shows the RMSE of the GWL+Warp-U estimator (hollow symbols) and the GWL+BS estimator (solid
symbols), where the initial GWL run is for 10 stages. The number of target evaluations used by the Warp-U or ordinary bridge sampling step is given on the x-axis as a
proportion of the target evaluations that would be needed for an eleventh stage of GWL (on a log10 scale). The different shapes correspond to different settings of K . The
bottom left and right panels show similar results where the initial GWL run is for 8 and 4 stages, respectively.

algorithm after 11 stages (for which the x-axis is irrelevant). At
0 on the x-axis the GWL-only and GWL+Warp-U methods use
the same number of target evaluations, but the GWL+Warp-U
method yields substantially lower RMSE for all four values of K
(2, 5, 10, and 20). Indeed, the RMSE obtained is even lower than
that achieved by theGWL-only algorithmwithn0 = 105 after 11
(or 25) stages, which uses a factor of 10 more target evaluations
than used by the GWL+Warp-U runs (with n0 = 104). This
example suggests that applyingWarp-UwhenGWL is at or close
to convergence offers a way to substantially lower RMSE with
only the number of target evaluations required to run one more
stage of GWL (or even fewer). The improvements offered by
GWL+Warp-U are thus almost free because we can stop GWL
one stage early, and in any case the number of target evaluations
required by the Warp-U part is relatively low.

For further comparison, the solid shapes in the top right
panel of Figure 10 show results for the GWL+BS method, that
is, where the two bridge sampling densities are p and φmix.
Note that, at any given point on the x-axis the number of target

evaluations is the same for the GWL+BS and GWL+Warp-U
algorithms, which is achieved by setting m = n(2K − 1) in
the GWL+BS algorithm and m = n in the GWL+Warp-U
algorithm. We see that GWL+BS again achieves substantially
lower RMSE than is obtained by simply running an 11th stage
of the GWL-only algorithm. The RMSE under the GWL+BS
method is also seen to be marginally lower than that under the
GWL+Warp-U method, but now that we have controlled the
number of target evaluations, we see the performance is very
similar.

Naturally, Warp-U or standard bridge sampling can be
applied after any number of GWL stages; we do not have to
wait until we are sure of convergence. To investigate this, we ran
the GWL+Warp-U and GWL+BS algorithms again but where
the initial GWL run was shorter. The bottom left and bottom
right panel of Figure 10 show results in the case where the
initial GWL run was 8 and 4 stages, respectively. These results
are qualitatively similar to before, except that GWL+Warp-U
occasionally performs slightly better than GWL+BS (e.g., when
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K = 5 in the bottom right panel). The main constraint on when
Warp-U or standard bridge sampling can be used is that GWL
needs to have been run for long enough to have explored regions
where p has high density. Otherwise, weighted resampling of
the GWL samples will not yield approximate draws from p.
This is not a major issue in practice because, as can be seen
in the top left panel of Figure 10, GWL substantially reduces
RMSE in its initial stages, and it is likely to be the latter stages
where applying Warp-U or standard bridge sampling is most
appealing.

6. Strategies for Making Further Improvements

We have seen that stochastic Warp-U transformations can
improve overlap betweenmultimodal densities by transforming
them into approximately unimodal ones, andTheorem1 implies
that in terms of statistical efficiency, Warp-U transformations
are always beneficial. However, this says little about computa-
tional efficiency, which is an important direction for further
research, as is identifying a good approximating mixture distri-
bution φmix. Below we briefly discuss both.

6.1. Reducing Computational Cost

Perhaps one of the most promising approaches for reducing
computation is to construct a complementary sampling method
that is itself efficient but also computes many of the quantities
needed in the final estimation step. In general, it is reasonable to
expect that posterior sampling will require substantially more
computational resources than the final Warp-U estimation step
(which should nevertheless be as efficient as possible). Indeed,
in Section 5.3, we saw that sampling using the GWL algorithm
required substantially more computation than the final estima-
tion step.

Another approach is to reduce the cost of evaluations of the
transformed density q̃. From (17), it can be seen that the density
q̃ is at least K times more expensive to evaluate than q, the latter
being used in ordinary bridge sampling. It is therefore of interest
to find ways to reduce the computational cost of evaluating q̃, as
compared to q. Direct density approximation is unlikely to be
fruitful in high dimensions. A plausible strategy is to randomly
select only some of the K terms in (17) to evaluate, as is done in
the mixture sampling method of Elvira et al. (2019); they ran-
domly partitioned the set of sampling densities and then used
these partitions in computing importance weights. Specifically,
Elvira et al. (2019) set the importance weight for a sample ω∼ps
to be the reciprocal of the average of the sampling densities in
the same partition as ps evaluated at ω. We could apply a similar
approach by viewing the terms cp̃(k)(ω̃) = cp(k)(Skω̃ + μk))
in (17) as the weighted and unnormalized sampling densities.
However, we do not know from which weighted component
cp̃(k) each sample ω̃ ∼ p̃ originated. Furthermore, the cp̃(k)

terms incorporate unknownweights, so the unweightedmixture
components of q̃ are not available and therefore we cannot
combine them using their empirical weights, as is required by
(generalized) bridge sampling, for example, the weights si, for
i = 1, 2, in (4). Regarding the unknown sampling component
cp̃(k), it may be sufficient to stochastically impute the index

of the “true” component by drawing from the conditional dis-
tribution �(�|ω) in (14). A possible solution to the second
difficulty is to use the theoretical component weights incor-
porated in the cp̃(k) in the final bridge sampling estimator as
opposed to the observed weights. These possibilities need to be
explored.

6.2. Base andMixture Distribution Selection

Theorem 1 gives us the freedom to choose the base distribution
φ (now viewed as a generic density). As mentioned earlier, for
a heavy-tailed target p, a t-distribution may be more efficient
as a base density than the standard normal, rendering fewer
mixture components and thereby reducing computational costs.
In other contexts, the support of p may be bounded and then a
base density with bounded support would be more appropriate.
There are also cases where it would be beneficial for φmix to be
a mixture of several different base densities, though this would
require some modifications to the development here. With a
different choice of the base function, a different method for
fitting φmix would be needed, for example, for the t-distribution,
we could use the approach of Peel and McLachlan (2000) to
fit φmix.

Second, although our approach for fitting the Warp-U
parameters ζ is promising in practice, it is almost certainly
not optimal. Kong et al. (2003) showed that a standard bridge
sampling estimator is in fact a maximum likelihood estima-
tor (MLE), and it may be possible to use the same likelihood
framework to find an optimal estimator for ζ . More specifically,
let φi be the pdf of N (μi,�i), for i = 1, . . . ,K, and φmix =∑K

i=1 πiφi. Then the maximum likelihood estimator of c (with
p = q/c as before) identified by Kong et al. (2003) is

ĉ =
2∑

i=1

ni∑
j=1

q(wi,j)

n1ĉ−1q(wi,j) + n2φmix(ωi,j)
, (22)

where {ω1,1, . . . ,ω1,n1} are draws from p, and {ω2,1, . . . ,ω2,n2}
are draws from φmix. The estimator (22) is the same as ĉ(mix)

opt =
exp(λ̂(mix)

opt ). If Warp-U transformations can be correctly incor-
porated into this likelihood framework thenwe can use theMLE
of (c, ζ ) to improve upon our current approach. Jones (2015)
provided initial insights into this likelihood formulation, but
also identified challenges for making this likelihood approach
fruitful for warp bridge sampling.

6.3. It’s Time to Build a Bridge

The vast majority of the MC literature is about improving MC
sampling efficiency, that is, how to design MC sampling algo-
rithms most effectively. In contrast, bridge sampling, with or
without warp transformations, is about improvingMC inference
efficiency, that is, how to gain more precision with a given set
of MC draws. Adding warp bridge sampling to GWL provides
an example of bridging the sampling and analysis approaches,
a strategy we believe has much more to offer than the current
literature recognizes. We therefore invite interested readers to
join us in laying further foundations for this much needed
bridge.
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