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DOUBLE HAPPINESS: ENHANCING THE COUPLED
GAINS OF L-LAG COUPLING VIA CONTROL VARIATES
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Abstract: The recently proposed L-lag coupling for unbiased Markov chain Monte
Carlo (MCMC) calls for a joint celebration by MCMC practitioners and theoreti-
cians. For practitioners, it circumvents the thorny issue of deciding the burn-in
period or when to terminate an MCMC sampling process, and opens the door
for safe parallel implementation. For theoreticians, it provides a powerful tool to
establish elegant and easily estimable bounds on the exact error of an MCMC ap-
proximation at any finite number of iterates. A serendipitous observation about
the bias-correcting term leads us to introduce naturally available control variates
into the L-lag coupling estimators. In turn, this extension enhances the gains of
L-lag coupling, because it results in more efficient unbiased estimators, as well as a
better bound on the total variation error of any MCMC iteration, albeit the gains
diminish as L increases. Specifically, the new upper bound is theoretically guaran-
teed to never exceed the one given previously. We also argue that L-lag coupling
represents a coupling for the future, breaking from the coupling-from-the-past type
of perfect sampling, by reducing the generally unachievable requirement of being
perfect to one of being unbiased, a worthwhile trade-off for ease of implementation
in most practical situations. The theoretical analysis is supported by numerical
experiments that show tighter bounds and a gain in efficiency when control variates
are introduced.

Key words and phrases: Coupling from the Past, maximum coupling, median abso-
lute deviation, parallel implementation, total variation distance, unbiased MCMC.

1. If Being Perfect is Impossible, Let’s Try Being Unbiased
1.1. Perfect coupling — too much to hope for?

We thank Pierre Jacob and his team for a series of articles (e.g., Jacob,
O’Leary and Atchadé (2020); Jacob, Lindsten and Schén (2020); Heng and Jacob
(2019); Biswas, Jacob and Vanetti (2019)) that revitalized our experience (e.g.,
Murdoch and Meng (2001); Meng (2000); Craiu and Meng (2011); Stein and Meng
(2013)) of working on coupling from the past (CFTP; Propp and Wilson (1996,
1998)) and, more generally, perfect sampling. The clever “cross-time coupling”
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idea of Glynn and Rhee (2014), which can be considered a form of coupling for
the future (CFTF), allows us to move away from the CFTP framework, which
became popular around the turn of the century with its promise of providing per-
fect /exact Markov chain Monte Carlo (MCMC) samplers (e.g., see the annotated
bibliography of Wilson (1998)). However, research progress on perfect or exact
samplers has slowed significantly since then, because they are very challenging,
if not impossible, to develop for many routine Bayesian computational problems
(e.g., see Murdoch and Meng (2001)).

In its most basic form, a CEFTP-type perfect sampler couples a Markov chain
{Xi,t > 0} with itself, but from different starting points, and runs two or more
chains until they coalesce at a time 7. This apparent convergence does not
guarantee, in general, that X, is from the desired stationary distribution ().
By shifting the entire chain to “negative time” (i.e., the past), { Xy, ¢t < 0}, Propp
and Wilson (1996) have shown that if we follow this coalescent chain until it
reaches the present time, that is, ¢ = 0, then the resulting Xy will be exactly
from 7(z). Perhaps the most intuitive way to understand this scheme is to realize
that running a chain from its infinite past (¢ = —o0) to the present (¢ = 0) is
mathematically equivalent to running the chain from the present (¢ = 0) to the
infinite future (t = +o00). The CFTP is a clever way of realizing this seemingly
impossible task, relying on the fact that if the coalescence occurs regardless of
how we have chosen the starting point, then the chain has “forgotten” its origin,
and hence has settled in the perfect asymptotic distribution.

However, being perfect is never easy, especially in the mathematical sense.
No error of any kind is allowed, and this requirement has manifested in two
ways that greatly limit the practicality of perfect sampling. First, constructing
a perfect sampler, especially for distributions with continuous and unbounded
state spaces—which are ubiquitous in routine statistical applications—is a very
challenging task in general, despite its great success for problems with some spe-
cial structures, such as certain monotonic properties (see Berthelsen and Mgller
(2002); Corcoran and Tweedie (2002); Huber (2004, 2002); Ensor and Glynn
(2000); Huber (2004); Murdoch and Takahara (2006)). Second, even if a perfect
sampler is devised, it can be excruciatingly slow, because it refuses to deliver an
output until it can guarantee its perfection, and one must devise problem-specific
strategies to speed this up (e.g., Thonnes (Thonnes(1999); Dobrow and Fill
(2003); Mgller (1999); Dobrow and Fill (2003); Corcoran and Schneider (2005)).
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1.2. Unbiased coupling — a new hope?

A relaxation of the exact sampling paradigm with important practical con-
sequences has been proposed by Glynn and Rhee (2014) and Glynn (2016), who
put forth strategies for the exact estimation of integrals using MCMC. The dif-
ference between exact sampling and exact estimation is a large conceptual leap
that allows us to bypass most of the difficulties of perfect sampling, while main-
taining some of its important benefits. Building on the work of Glynn and
co-authors, the L-lag coupling of Biswas, Jacob and Vanetti (2019) and Jacob,
O’Leary and Atchadé (2020) aims to deliver unbiased estimators of E[h(X)],
for any (integrable) h, where X, denotes a random variable defined by 7(X).
One may question if this is really a weaker requirement because the fact that
E[h(Xz)] = E[h(X3)] for all (integrable) h immediately implies that 7(X) = 7(X)
(almost surely). This is where the innovation of L-lag coupling lies, because it
does not couple a chain with itself from two or more starting points [e.g., two
extreme states, as with monotone coupling; see Propp and Wilson (1996)]. In-
stead, it couples two chains that have the same transition probability and start
from the same starting point or, more generally, the same initial distribution g,
but are time-shifted by an integer lag, L > 0.

To illustrate, consider the case of L = 1, which was the focus of Jacob,
O’Leary and Atchadé (2020). Two chains X = {X;,t > 0} and Y = {V;,¢ > 0}
are coupled in such a way that both of them have the same transition kernel (and,
hence, the same target stationary distribution), and there exists with probability
one a finite stopping time 7, such that X; = Y;_1, for all t > 7. This construction
allows them to show that the following estimator based on both X and ),

T—1

Hi(X,Y) = h(Xp) + Y [h(X)) = h(Yj-1)], (1.1)
j=k+1

is an unbiased estimator for E[h(X,)], for any k£ > 0 (under mild conditions).
Heuristically, this is because the sum in (1.1) is the same as 3 72, [h(X};) —
h(Yj—-1)], because any term with j > 7 must be zero, by the coupling scheme.
Furthermore, for the purpose of calculating expectations, we can replace h(Y;_1)
with h(X;_1), for any j, because X;_1 and Y;_; have identical distributions,
by construction. However, h(Xy) + >, ;. 1[R(X;) — h(X;-1)] is nothing but
limy_, o0 h(X}), which has the same distribution as h(Xy).

The cleverness of constructing an estimator based on both X and ) to ensure
E[H(X,Y)] = E[h(X,)], for any h, bypasses the requirement that X itself must
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be perfect. The series of illustrative and practical examples in Jacob, O’Leary and
Atchadé (2020) and in Jacob, Lindsten and Schon (2020), Heng and Jacob (2019),
and Biswas, Jacob and Vanetti (2019) provide good evidence of the practicality
of this approach. The use of parallel computation for estimating I = E;[h(X)]
supports using E[Er[h(x)|U;]], where the inner expectation is the estimate ob-
tained from the jth parallel process, U;, and the outer mean averages over all
processes. However, if each inner mean is a biased estimator for I, then the ac-
cumulation of errors can be seriously misleading. This has been documented in
the Monte Carlo literature extensively, for instance, in Glynn and Heidelberger
(1991) and Nelson (2016). Hence, unbiased MCMC designs allow one to take full
advantage of parallel computation strategies, without having to worry about the
accumulation of bias as the number of parallel processes increases.

1.3. Using control variates — even higher hope?

The expression (1.1) also opens a path to explore further improvements, and
that is the starting point of our exploration. In Craiu and Meng (2020), we
noticed that (1.1) can be expressed equivalently as

T—2
(X y) ‘r 1)VE +Z )]7 (1'2)
ji=k

where AV B = max{A, B}. Expression (1.1) renders the insight underlying
Jacob, O’Leary and Atchadé (2020), which is that Hy(X',)) achieves the desired
unbiasedness by providing a time-forward bias correction to h(Xj), whenever
7 > k+1; hence coupling for the future. (No correction is needed when 7 < k+1.)
The dual expression (1.2) indicates that Hy(X,)) can also be viewed as a time-
backward bias correction to h(X,_1) for its imperfection, because k < 7 — 1.

Most intriguingly, each correcting term A; = h(X;)—h(Y}) in (1.2) has mean
zero, by the construction of {&X’, V}. However, the sum Z]T;,z [h(X;)—h(Y;)] does
not necessarily have mean zero, because 7 is random and it depends critically
on {X,}. Indeed, if this sum had mean zero, then X(;_;),; would have been
a perfect draw from 7(X), because then E[M(X_1)y)] = E[h(Xz)], for any
(integrable) h, which would imply that X _yy, ~ 7.

However, the fact that E(A;) = 0 suggests that we can use any linear combi-
nation of A; as a control variate for Hy(X,)Y). Using control variates to reduce
estimation errors is a well-known technique in the literature on improving MCMC
samplers and estimators by using efficiency swindles, such as antithetic and con-
trol variates, Rao—Blackwellization, and so on, some of which we have explored
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in the past (e.g., Van Dyk and Meng (2001); Craiu and Meng (2001, 2005); Craiu
and Lemieux (2007); Yu and Meng (2011)). For example, for any finite constant
n > k + 1, the estimator

n—2 T—2 n—2
H}y (X, Vi) = Hy(X,9) = Y A = h(Xrnywr) + Y 85— Y A (1.3)
j=k j=k j=k

shares the mean of H(X,)), but can have a smaller variance, with a judicious
choice of n. Intuitively, this reduction of variance is possible because of the poten-
tial partial cancellation (on average) of the A; terms in the last two summations
in (1.3).

Indeed, Section 2 investigates a more general class of control variates, and
derives the optimal choice by establishing the minimal upper bound within the
class on the total variation distance between the target m and 7y, the distribution
of Xj. This leads to both an improved theoretical bound over that of Biswas,
Jacob and Vanetti (2019), as reported in Section 2, as well as a more efficient
estimator than (1.1) owing to a parallel implementation. Section 3 describes
the estimation methods and algorithms, and Section 4 provides examples and
illustrations of both kinds of gains. Section 5 discusses some future work.

2. Theoretical Gains from Incorporating Control Variates
2.1. L-lag coupling: An elegant and powerful method

The scheme of L-lag coupling extends the coupling of { Xy, Y;_1} to the more
general form of the coupling of { Xy, Y;_r}, for some fixed L > 1, as detailed in
Biswas, Jacob and Vanetti (2019). The significance of this extension can be best
understood by expressing the L-lag coupling idea in its mathematically equivalent
form of seeking 71, such that X5 = Yy, for all £ > 71, and letting L — oo while
keeping k fixed. Heuristically, it is then clear that the larger L, the closer the
distribution of Y;, is to the target, because X, ;1 should converge to Xoo ~ 7
as L — oo, and X and Y share the same target .

Indeed, by extending (1.1) to a general L, Biswas, Jacob and Vanetti (2019)
show that (under mild regularity conditions) the total variation distance between
Tk, the distribution of Xj, and 7 is bounded by a very simple function of 77, and
(k,L):

—L—k
drv(m, ) < E[Jk,z], with Jpp = max {07 [TLL—‘ } ; (2.1)
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where [a] denotes the smallest integer that is no less than a. We can clearly see
the impact of increasing L or k, because larger values of either of them make it
more likely that 7, —L—k < 0, and hence Jj, 1, = 0. Perhaps a clear demonstration
of this fact is when 77, follows a geometric distribution with success probability
p and state space {L +1, i > 0} (because 7, > L, by definition) or, equivalently,
0 =7—(L—1) ~ Geo(p). Then, letting ¢ = 1 — p, we have (see Biswas, Jacob

and Vanetti (2019))
k+1

1—ql
We see that the bound is a decreasing function of both k and L, though it
decreases much faster with k, which controls the rate of convergence, than it

drv(mg, ) < E[Jp 1] = (2.2)

does with L, which controls only the (constant) scaling factor. We also observe
that the bound can be trivial, because it can be larger than one for small & and/or
L, whereas dry cannot, suggesting there is room for improvement. Nevertheless,
(2.1) is a remarkable bound because it encodes all the intricacies relevant for the
convergence speed of X, including the choice of Xy, into a univariate (truncated)
coupling time Jj, 1. In the case of (2.2), the bound also immediately establishes
the geometric ergodicity of X', and provides a rather practical way to assess the
bound by estimating p or, more generally, by assessing Jj, 1, directly, say, from a
parallel implementation (see Section 3).

It is perhaps even more remarkable to see that the left-hand side of (2.1)
is a property of the marginal chain X (and, equivalently, of the )’ chain), but
its right-hand side depends on the construction of the joint chain {X',Y}. This
suggests that we can seek improvement by better coupling. Furthermore, as we
establish below, even without changing the coupling scheme, we can still obtain
better bounds by using more efficient estimators than (1.1).

For a general L, the forward-correction expression in (1.1) becomes (Biswas,
Jacob and Vanetti (2019))

Ji,L

Hy 1 (X,Y) = h(Xk) + Z [W(Xktsz) = (Vi (j—1yp)] » (2.3)
j=1

and it is easy to verify that the backward-correction expression (1.2) takes the

form
Jk,Lfl

Hy (X, ) = M(Xpypg, )+ Y [M(Xkgjr) = h(Yissn)] - (24)

§=0
Remark 1. The (random) subscript in Xy j;, cannot be reduced to (1 — L)V k
when L > 1, the most obvious extension of the index (7 —1) V k in (1.2). This is
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because k+ Jj, L > (1 — L)V k, but the inequality can be strict when 7 > k+ L.
For example, if 7 = L + k+ M, where M is a positive integer less than L (which
does not exist when L=1), k+ Jy 1 L=k+ L, but (r—L)Vk=k+ M.

Remark 2. Whereas (2.3) and (2.4) are equivalent as equalities, they may lead
to different inequalities depending on how we bound their respective right-hand
sides. This is both a bonus and a trap, as we discuss below.

2.2. Deriving the optimal bound over choices of control variates

For notational simplicity, we drop the variables k, L from the notation of
Ji,r, and we let Ay ; = h(Xpyjr) —h(Yiyjr). Then, we know Ay ; has mean zero
for any {k,j} and L. This means that for any random sequence 77 = {n;,j > 1}
such that: (A) it is independent of {X', ¥}, and (B) >_,_; Eg|n;| < oo, we can use
Chy = >_j>1MjA%k,j as a control variate for Hy ;, = Hy, (X, ), because E[C;] = 0.
That is,

A7 (X, Y) = Hyp(X,Y) = Y njAy, (2.5)

ji>1

is also an unbiased estimator of E[h(X)]. Next, we examine how to choose 7.

To choose 7, instead of minimizing Var[H ,gng] which is not an easy task and
will also likely produce an h-dependent solution, we first follow the argument
used by Biswas, Jacob and Vanetti (2019) with a given 1. We then minimize a
class of bounds of drv (¢, 7) over the choice of 77 that satisfies (A) and (B). This
leads to a sharper bound than (2.1), a special case corresponding to 77 = 0, which,
in general, is not an optimal choice, as shown below.

We proceed by using the same argument as in Biswas, Jacob and Vanetti
(2019) for proving (2.1), but using (2.5) instead of (2.3). However, when applying
(2.5), we must retain the expression of Hy, ,(X,)), as given by (2.3). (Interested
readers are invited to try using (2.4).) Specifically, the unbiasedness of (2.5)
implies that, for any k > 1,

J
E[h(Xx) — h( =E Z (Xktj) — h(Yk+(g 1)L anAk,]
7j=1 7>1

=B [MXrjn) = hYerg-no)] Lg<ay = D0 (M Xnjn) = h(Yir i)
i>1 =1

(2.6)
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=B M Xiin)lg<ry —ml +> hVarin) [y — 1jpa<n] — MY i<
§>1 Jj=1

The interchanges of sum and expectation in the (infinite) sums hold under as-
sumption (B) and the additional assumption that the h function is bounded. To
compute the total variation distance, let h € H = {h : sup, |h(z)| < 1/2}, as in
Biswas, Jacob and Vanetti (2019). Consequently, (2.6) implies

1
drv(mp, ) < 5 > Eligesy —nil+ DBl — 1jj<yoiy] + Pr(0 < J)
i>1 i>1

=Y Ellgcjy — il +0.5Pr(J > 0), (2.7)

Jj=1

where J = J — ¢ and € ~ Bernoulli(0.5) is independent of .J. Note that the
support for J is {=1,0,1,...}. Set

S; =Pr(J >j)=Pr(J >j)+05Pr(J =j), foranyj>0. (2.8)

Recall that for any given random variable V', ming v E|V — U| = E|V — my/|,
where my is a median of V', and the notation ming |y means to minimize over
all U that are independent of V. Hence, in order to minimize (2.7) over 77, we
should set 7; to be the median of the Bernoulli random variable 1 G<Jb that is,
nj = 1{s,>05}- R

Let m ; be the smallest integer median of J. Then, for any j > mj, S; =1—
Pr(J <j) <1-Pr(J < mj) < 1/2 because Pr(J < mj) > 1/2, by the definition
of mjy, implying n; = 0. Therefore, we know the maximal number of nonzero
nj cannot exceed m ;. However, other than the ideal case with Pr(J = 0) = 1,
mj can be zero, but not —1, because Pr(J = —1) = 0.5Pr(J = 0) < 0.5. This
automatically implies that condition (B) is trivially satisfied. For this choice of
77, (2.7) yields our new bound for drv (g, 7):

B =) min{S;,1-S;}+05Pr(J > 0) (2.9)
Jj=>1

=> min{Pr(J > j),Pr(J < j)}. (2.10)
j=1

In deriving the last equality, we use the fact that S; +0.5Pr(J = j) = Pr(J > j)
and 1 — S; +0.5Pr(J = j) = Pr(J < j), and Pr(J > 0) = >, Pr(J = j).
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2.3. Understand and compare the bounds

It is immediate from expression (2.10) that our new bound cannot exceed
the bound of Biswas, Jacob and Vanetti (2019), as given in (2.1), because (2.10)
obviously cannot exceed } ;- Pr(J > j), which is E[J]. The next result reveals
alternative forms for the new bound, providing additional insights, including the
optimality of the choice n; = 1gj<p, 1

Theorem 1. Under the same reqularity conditions as in Biswas, Jacob and
Vanetti (2019), we have

Bir =E|Jer—myj, | +Pr(Jer >0)—0.5 (2.11)
=E|JeL — ka;L| +Pr(Jyr >0) = Sk (2.12)
=05 [1—|Pr(r>k+(j +1)L) + Pr(r > k+ jL) — 1]]

j=1
+ 0.5Pr(r > k+ L), (2.13)

where S = max{Pr(Jy > my, ), Pr(Jyr < my )} <05, and mj and

my, , are the smallest integer medians of jk,L and Jy, 1, respectively.

Proof. To reduce the notation overload, we drop the k, L for J, J, my, and m -
We have already established that the optimal 77 must be of the form 7; = 1<,
for some m > 0. Note here that the use of m = 0 permits 77 = 0 because j > 1.
This is also consistent with setting o = 1. We can minimize the right-hand side
of (2.7) with respect to such a class, that is, with respect to the choice of m.
However, it is easy to see that

Y El oy —mil =D Ellgen — Ly<m| — ElL = 1o )]
=1 >0

= ZE |:1{min{j,m}<j§max{j7m}j| — Pr(j = _1)
Jj=>0

=E [max{j,m} — min{J, m}} —0.5Pr(J =0)
= E|J —m| - 0.5Pr(J = 0). (2.14)
It is clear from (2.14) that the optimal m must be an integer median of .J, and

we choose the smallest one, m 7. With this choice of 7, substituting (2.14) into
(2.7) yields the expression

By, =E|J —mj| — 0.5Pr(J = 0) + 0.5Pr(J > 0) (2.15)
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= Pr(J > 0) + E[J —mj| — 0.5, (2.16)

which proves (2.11).
In order to prove (2.12), we start from (2.10). Let

G(j) =Pr(J <j) —Pr(J >j) =Pr(J <j) —Pr(J > ), (2.17)

for j > 0. Then, it is easy to verify that G(j) is a monotone increasing func-
tion, which means G(j) — G(my) share the same sign with j — my, for all
j # my. It follows that the sum in (2.10) can be decomposed into three parts,
A = Z;n:"fl Pr(J < j), B = 1y, sy min{Pr(J < my),Pr(J > my)}, and
C=3%ism,+1Pr(J = j). When m; =0, C' = E[J], B = 0 because 1(,,,~0; =0,
and A = 0 by convention because mj —1 < 1. If p; = Pr(J = j), then it is easy
to see that whenever mjy > 1,

my—1 my—1my;—1

A= Z th—i—(mJ—l)po: Z th-i-(mJ—l)Po

j=1 h=1 h=1 j=h
,]71 m,]fl
= (my—h)pn+ (my—Vpo= > (my—h)pn —po;  (2.18)
h=1 h=0
00 0o 00 h 0o
C= > 2m= > > m= > (-mim (219
j:m1+1 h:j h2m1+1JZMJ+1 h:mj+1

Noting that (mj — h)py, = 0 when h = mj, we see that when mj; > 1,

A+ B+ C=E[J—my| —po+min{Pr(J > my),Pr(J <my)}
=E|J —my| 4+ Pr(J > 0) + min{Pr(J > my),Pr(J <my)} — 1
=E|J —my| 4+ Pr(J > 0) — max{Pr(J < my),Pr(J >my)}. (2.20)

When mj =0, A=B =0, and C =) ;. hpy, = E[J], which is (2.12) because
Sk, = Pr(J > 0), cancelling exactly the Pr(J > 0) term. This completes the
proof of (2.12).

The proof of (2.13) also follows from (2.10), using the identities max{a,b} =
0.5[a+ b+ |a —b]] and Pr(J > j) + Pr(J < j) = 1 + Pr(J = j), for any j. This
leads to

> min {Pr(J > j),Pr(J < j)}
J>1
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=05 [L+Pr(J =j)— |Pr(J > j) — 1+ Pr(J > j)|]
j=>1

=05 [1—|Pr(J>j)+Pr(J>j—1)—1]+05Pr(J > 0).
jz1

Expression (2.13) then follows because {J > j} ={7 > k+ (j +1)L}.

The above result tells us that, whenever m ; = 0, our bound is identical to
the one given by Biswas, Jacob and Vanetti (2019). From (2.10), the two bounds
are the same if and only if G(1) > 0, which is the same as 2py > 1 — p;, where
pr = Pr(J = k). Clearly, this inequality is satisfied when m; = 0, that is, when
po > 1/2. Tt also implies that m; < 1, because for any j < my,

G(G)=Pr(J <j)+Pr(J<j)—1<2Pr(J<my)—1<0,  (2.21)

as Pr(J <my—1) < 0.5, because m is the smallest integer median. Therefore,
we have the following theorem.

Theorem 2. Under the same regularity conditions as those of Theorem 1, a
sufficient and necessary condition for the bound in Theorem 1 to equal E[J] is

2p0 > 1 —p1.

Remark 3. Theorem 2 implies that mj = 0 is a sufficient condition and m; <
1 is a necessary condition for the two bounds to be the same. However, the
condition mj = 1 itself is not sufficient.

Remark 4. An intriguing new insight provided by bound (2.12) is that not
only the average coupling time matters, but the variation of the coupling time
is important too. The S} ;, term also suggests that even the symmetry matters,
because Sy 1, achieves its maximum when the distribution is symmetrical locally
around the median.

Let ¢ = 7 — t, which is the number of steps needed after time ¢ in order to
couple (assuming the coupling has not already happened by time ¢). Then, the
sufficient and necessary condition in Theorem 2 is the same as

Pr(¢ < L) > Pr(¢ > 2L), (2.22)

suggesting that the new bound is more useful when the distribution of { places
more mass on the right side of the coupling interval (L, 2L] than it does on its left
side, that is, when (2.22) is violated. The implication is that the improvement of
the new bound, if any, will more likely come from those situations where either ¢
is small or 7 is large (for fixed L), that is, when the mixing is poor.
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3. Estimation and Practical Implementation

We assume that @) > 1 coupled processes {(Xt(q), Y;(Q)) : 1< ¢g<Q} arerun

in parallel and that, for all 1 < ¢ < Q, X(@ = {X;(Cq)}kzl and Y@ = {Yk(q)}k21

have been successfully L-coupled. The latter implies that the chains X(9) are run

L more steps than the (@ chains, and there exists a stopping time {T(Q) iqg =
1,...,Q} such that X(q)L = Yt(Q), for all t > 7(@).

3.1. Control variate estimators

We work with a modified version of (2.4) that incorporates control variates:

J -1
HZFE)(X(Q)73)(Q)):h<XISi)J,§"LL>+ Z [h(X;Si)JL) h(Yk(j-)]L)]
i,
B {h(X]g]L) h(y,gﬂ)} (3.1)
=0

where m ; denotes the smallest integer median of J. Henceforth, in order to

(q) (

simplify the notation, we use my . and m,, Q) to denote m and M ja) , TESpeC-

tively. An unbiased estimator for H, +(@) ( 7)7(‘1 ) is straightforward to produce,
but additional care must be paid to mamtain the independence between the esti-

mator for mg)L (or méQ)L) and (X(@, (@), To satisfy the latter, we construct the

unbiased estimators m,(f)L and fn,(f)L from all coupled processes but the gth one,

as described in Algorithm 1.

() (9)

Algorithm 1 Algorithm for computing m,’; and mk for a fixed k£ and all ¢ €

1,2,...,Q}

1. Compute J,g?%;
2. Sample independently ¢(? ~ Bernoulli(0.5) and set j,ng = J,Ez ¢,
3. Set m Lmed({J,ihL : 1<h<Q, h#q}] and mk L Lmed({J({lL) :1<h<

Q, h 75 q}J where med(A) denotes the median of the values in set A and |-| is the
floor function.

When L = 1, in order to reduce the variance of the unbiased estimator Hj, in
(1.1), Jacob, O’Leary and Atchadé (2020) recommend using the time-averaging
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estimator

1 T
Hk:r(ny) = m ZHt(X,y)-
t=k

We follow the same strategy, and consider the time-averaging version of (2.4)

T

@ [yl p@y— 1 (a)
Hyr, (X0, V) = r—k+1 ; h(Xt+J§?gL)
!
1 X (9) (@)
k1 ; ; MR A] BER)

and the average estimator that includes the control-variate swindle is then

HZ:(Z)L(X(q)v V@)

1 T
= B, (X0, 0) - 3 XD =y O] b 33)
t=k |\ j=0

Note that the original versions are obtained when k = r. Because each term in the
control-variate term above, h(Xt(j_)j L) — h(Yt(f; 1), has mean zero, we expect that
the gain from the control variate swindle diminishes when r increases owing to
the law of large numbers, leading to the overall control-variate term approaching

zero. We see this phenomenon in Section 4.

3.2. Estimating the total variation bound

When estimating By, 1,, we can use (2.11), (2.12), or (2.13). In our numerical
experiments we use (2.12), along the steps described in Algorithm 2.

In the next section, we investigate the performance of the control variate
swindle and compare the new total variation bound with (2.1) provided by Biswas,
Jacob and Vanetti (2019).

4. Examples and Illustrations
4.1. A theoretical comparison of the bounds: The geometric case

The distribution of the coupling time 77, is, in general, unknown. However,
there is one instance in which the distribution of 77, is exactly geometric. Specifi-
cally, when coupling two independent Metropolis samplers, the maximal coupling
procedure uses the same proposal for both transition kernels, and coupling occurs
when both chains accept it. The tractability of derivations in the geometric case
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Algorithm 2 Algorithm for estimation of By, 1, for any given k£ and L.

1. Compute J,g?% and m,(f)L, forallg=1,...,Q;

2. Compute the empirical means

LA @@ RS
q a
L= 5 g ’JW; —my |, Pkl = E 1@ soy
q=1 q=1 )

Q Q
1 1
Wi = G 2 sy = G 2 M anityy
q=1 ' q=1 ’ ’

3. Compute R
By = ek, +pr,L — ak,r Vb1,

where a V b denotes the maximum between a and b.

allow us to better understand theoretically the relationship between the bound
in Biswas, Jacob and Vanetti (2019) and ours.

We consider the case in which 6 = 7 — (L — 1) ~ Geo(p). Because J =
max {0, [(6 —k —1)/L1}, we see that

Pr(J=0)=Pr(6 <k+1)=1-—¢g"",
Pr(J>j)=Pr(0 > k+1+Lj) =, j=0,1,..., (4.1)

where ¢ = 1 — p. That is, the distribution of J is a mixture of (i) the Dirac point
measure dyg) with mixture proportion 1 — ¢"t1, and (i) a geometric distribution

with probability of success 1 — ¢* with weight ¢**!

. This implies immediately
that the bound given in Biswas, Jacob and Vanetti (2019) has the expression
(2.2).

For our new bound, in this case, it is easier to use expression (2.10) directly.
Let m be the largest integer such that Pr(J > m) > Pr(J < m); that is, m is the

largest integer that ensures

L—k—1 log[l+q"]
L Llog(q) J - (42)

qk—i-l—i-L(m—l) + qk+1+Lm >1 m — \‘

Clearly, when m < 0, our By 1(p) is the same as the old bound (2.2). When
m > 1, we have
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m o)
Bir(p)=» Pr(J <j)+ > Pr(J=>j)
j=1 j=m+1
m
{by (4.1)} = Z [1 k+1+Lji| Z LG
J=1 j=m+1
o qk+1+L[1 _ qu] qk+1+mL
1-— qL 1— qL
k+1+L1 _ ,mL _ (m—1)L
q [1—g¢ q ]
=m-— - . (4.3)

We can also compute By, 1,(p) directly from (2.13) as an infinite sum

Bip(p) =053 [1— [¢FTHHEOY 4 MR 4] 4 05641, (4.4)
Jj=1

Figure 1 compares the bounds (2.2) (dashed line) and (4.4) (solid line) for
different values of p, L, and t. One can see that the new bound is sharper,
and that only for larger values of p, corresponding to fast-mixing chains, are the
two bounds indistinguishable. The horizontal line in Figure 1 marks the obvious
bound, because dtyv < 1. Note too that for very small values of p, both bounds
are vacuous, but the new bound has a larger range for being nonvacuous.

The simulations in the remaining two examples rely on the unbiasedmcmc
package of Pierre Jacob, available from: https://github.com/pierrejacob/
unbiasedmcmc/tree/master/vignettes. Additional programs for implement-
ing the new ideas in this paper are available as supplemental material from the
authors.

4.2. An empirical comparison of the bounds: Ising model

The Ising model example follows the setup in Biswas, Jacob and Vanetti
(2019). We consider a 32 x 32 square lattice of pixels with values in {—1, 1}, and
with periodic boundaries. A state of the system is then z € {—1,1}3?*32 and
the target probability is defined as mg(x) o< exp(8 ij x;x;), where i ~ j means
that z; and x; are pixel values in neighboring sites. This illustration uses the
parallel tempering algorithm (PT, see Swendsen and Wang (1986)) coupled with
a single site Gibbs (SSG) updating. It is known that larger values of /3 increase
the dependence between neighboring sites, and that this “stickiness” leads to slow
mixing of the SSG. The target of interest corresponds to Sy = 0.46 and we use
12 chains, each corresponding to a different 7g(z), with 8 values equally spaced
between 0.3 and By = 0.46. Figure 2 shows the total variation bounds, where that
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Figure 1. Comparison of the bound (2.1) provided by Biswas, Jacob and Vanetti (2019)
(dashed line), and the new bound given in (2.16) (solid line). Note that for small values
of p, both bounds are vacuous.

provided by (2.1) is shown as a dashed line and that from (2.16) is shown as a solid
line. The bounds are derived for 1 < k < 25,000 and L € {1000, 2000, 3000, 4000}.
For smaller values of L, the patterns are similar, but TV bounds are larger for
smaller values of k. The new bound, (2.16), is computed from @ = 50 parallel
runs, and is averaged over 20 independent replicates, while (2.1) is averaged over
1,000 independent replicates of a single coupled process.

Although the numerical results confirm that our new bound never exceeds
the bound of Biswas, Jacob and Vanetti (2019), unfortunately, in this case, the
improvement from our bound is visible only when it is not needed, that is, when
both bounds exceed one. Whereas this is a disappointment for our effort to
improve the bound with a real gain, it is good news for practitioners, because the
bound in Biswas, Jacob and Vanetti (2019) is a bit simpler to use.
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Figure 2. Ising Model: Comparison of TV bounds for the PT algorithm for SGS for
L € {1000, 2000, 3000,4000}. The dashed line shows the bound (2.1) derived in Biswas,
Jacob and Vanetti (2019), and the solid line shows the new bound given in (2.16).

4.3. Comparing bounds and estimators: A logistic regression example

To compare the bounds and the unbiased estimators, we follow Biswas, Jacob
and Vanetti (2019) and consider a Bayesian logistic regression model for the
German credit data of Lichman (2013). The data consist of n = 1000 binary
responses, {Y; : 1 <i < n} and d = 49 covariates, {z; € R% 1 <i < n}. The
response Y; indicates whether the ith individual is fit to receive credit (Y; = 1) or
not (Y; = 0). The logistic regression model frames the probabilistic dependence
between the response and covariate as Pr(Y; = 1|x;) = [1 + exp(—=] 8)]. The
prior is set to § ~ N(0,10I;). Sampling from the posterior distribution is done
using the Pélya-Gamma sampler of Polson, Scott and Windle (2013), using the
R programs made available by Biswas, Jacob and Vanetti (2019) at https://
github.com/niloyb/LlagCouplings. In Figure 3, we compare the bound of
Biswas, Jacob and Vanetti (2019) (2.1) (dashed line) with our bound (2.16) (solid
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Figure 3. German credit Ddta: Comparison of TV bounds for the Pélya-Gamma sampler
for L € {2,5,10,20}. The dashed line shows the bound (2.1) derived in Biswas, Jacob
and Vanetti (2019), and the solid line shows the new bound given in (2.16). The bound
from (2.16) is obtained from running 50 coupled chains in parallel and averaging over
40 independently replicated experiments. The bound from (2.1) is averaged over 2,000
independent replicates.

line). The bound in (2.1) is averaged over 2,000 independent replicates. The new
bound is computed from running 50 coupled processes in parallel and averaged
over 40 replicates, yielding the same number of runs. The difference between the
two bounds is apparent for smaller values of L when the new bound is sharper
for small values of k, but the gain diminishes quickly as L increases.

We are also interested in the gains in efficiency for the Monte Carlo estimators
when implementing the control variate swindle. Using 500 independent replicates
of a single coupled process with lag L = 5, we obtain Monte Carlo estimates of the
posterior means for the regression coefficients. In Figure 4, we present the relative
reduction in variance (RRV), computed as RRV= Vary;ccov (B) /Var MC(B ), where
B is the posterior mean of the regression coefficients, 5 € R*, and Vary;c and
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Figure 4. German credit data. Relative reduction in variance (RRV) for the 49 regression
coefficients. Top panels: the lag is L = 5. Bottom panels: the lag is L = 20. Left
panels: RRV is obtained from the single estimators without and with control variates,
respectively, using k = 5 in (2.4) and (3.1). Right panels: RRV is obtained from the
average estimators without and with control variates, respectively, using £ = 5 and
r =30 in (3.2) and (3.3).

Varyccv denote the estimated Monte Carlo variances of B obtained without and
with the control variates, respectively. The left panel shows the RRV when using
the single-run estimators (2.4) and (3.1), while the right panel plots the RRV for
the mean estimators (3.2) and (3.3). We see clearly that the gain is significant
for r = k =5 (left panels), but diminishes when k& = 5 and r = 30 (right panels),
as discussed in Section 3.

5. Can We Do Even Better?

The idea of L-lag coupling has opened multiple avenues for future research.
The use of control variates is just one of them. Although the practical gain is
small or possibly even negative when we take into account the increased com-
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putation when computing the control variates, the theoretical gain is intriguing,
because we obtain a theoretically superior bound without imposing any additional
assumptions. This naturally raises the question of whether our bound is the best
possible without further conditions. We do not know. We do not even know
how to study such a question theoretically, because to the best of our knowledge,
this is the first time a tighter theoretical bound has been obtained by a better
empirical estimator. Whereas seeking other more efficient estimators seems to be
a natural direction, we must keep in mind that they would likely incur additional
computational costs.

One plausible direction is to go beyond linearly combining mean-zero control
variates, although we had no success so far. However, even without seeking
better bounds, our current bounds already offer the opportunity to investigate
fresh perspectives for optimizing an MCMC kernel using adaptive ideas, and we
intend to pursue these in future research.

Acknowledgments

We are grateful to Pierre Jacob for many useful comments and his gracefully
patient guidance through the package unbiasedmcmc, allowing us to perform the
simulations in our study. We also thank Yves Atchadé, Tamas Papp, Christopher
Sherlock, and Lei Sun for their helpful discussions and comments, and the NSERC
of Canada (RVC) and NSF of USA (XLM) for their partial research support.

References

Berthelsen, K. K. and Mgller, J. (2002). A primer on perfect simulation for spatial point pro-
cesses. Bull. Braz. Math. Soc. (N.S.) 33, 351-367.

Biswas, N., Jacob, P. E. and Vanetti, P. (2019). Estimating convergence of Markov chains with
L-lag couplings. In Advances in Neural Information Processing Systems, 7389-7399.

Corcoran, J. N. and Schneider, U. (2005). Pseudo-perfect and adaptive variants of the
Metropolis-Hastings algorithm with an independent candidate density. J. Stat. Comput.
Simul. 75, 459-475.

Corcoran, J. N. and Tweedie, R. L. (2002). Perfect sampling from independent Metropolis-
Hastings chains. J. Statist. Plann. Inference 104, 297-314.

Craiu, R. V. and Lemieux, C. (2007). Acceleration of the multiple-try Metropolis algorithm
using antithetic and stratified sampling. Stat. Comput. 17, 109-120.

Craiu, R. V. and Meng, X.-L. (2001). Antithetic coupling for perfect sampling. In Bayesian
Methods, with Applications to Science, Policy and Official Statistics (Proceedings of the
ISBA 2000 conference, Hersonnissos, Crete) (Edited by E. I. George), 99-108. Office for
Official Publications of the European Communities, Luxembourg.

Craiu, R. V. and Meng, X.-L. (2005). Multiprocess parallel antithetic coupling for backward
and forward Markov chain Monte Carlo. Ann. Statist. 33, 661-697.



L-LAG COUPLING WITH CONTROL VARIATES 21

Craiu, R. V. and Meng, X.-L. (2011). Perfection within reach: exact MCMC sampling. In
Handbook of Markov Chain Monte Carlo (Edited by S. Brooks, A. Gelman, G. Jones and
X.-L. Meng), 199-226. Chapman and Hall/CRC, New York.

Craiu, R. V. and Meng, X.-L. (2020). Discussion of ”Unbiased Markov chain Monte Carlo with
couplings” by Pierre E. Jacob, John O’Leary and Yves F. Atchadé. J. R. Stat. Soc. Ser. B
Stat. Methodol. 82, 578-581.

Dobrow, R. P. and Fill, J. A. (2003). Speeding up the FMMR perfect sampling algorithm: A
case study revisited. Random Struct. Algorithms 23, 434-452.

Ensor, K. B. and Glynn, P. W. (2000). Simulating the maximum of a random walk. J. Statist.
Plann. and Inference 85, 127-135.

Glynn, P. W. (2016). Exact simulation vs exact estimation. In 2016 Winter Simulation Confer-
ence (WSC), 193-205. IEEE.

Glynn, P. W. and Heidelberger, P. (1991). Analysis of parallel replicated simulations under
a completion time constraint. ACM Transactions on Modeling and Computer Simulation
(TOMACS) 1, 3-23.

Glynn, P. W. and Rhee, C.-H. (2014). Exact estimation for Markov chain equilibrium expecta-
tions. J. Appl. Probab. 51, 377-389.

Heng, J. and Jacob, P. E. (2019). Unbiased Hamiltonian Monte Carlo with couplings. Biometrika

106, 287-302.
Huber, M. L. (2002). A bounding chain for Swendsen-Wang. Random Struct. Algorithms 22,
43-59.

Huber, M. L. (2004). Perfect sampling using bounding chains. Ann. Appl. Probab. 14, 734-753.

Jacob, P. E., Lindsten, F. and Schoén, T. B. (2020). Smoothing with couplings of conditional
particle filters. J. Amer. Statist. Assoc. 115, 721-729.

Jacob, P. E., O’Leary, J. and Atchadé, Y. F. (2020). Unbiased Markov chain Monte Carlo with
couplings (with discussion). J. R. Stat. Soc. Ser. B Stat. Methodol. 82 , 543-600.

Lichman, M. (2013). Uci machine learning repository, 2013.

Meng, X. L. (2000). Towards a more general Propp-Wilson algorithm: Multistage backward cou-
pling. In Monte Carlo Methods, Fields Institute Communications (Edited by N. Madras),
85-93. American Mathematical Society, Providence.

Mgller, J. (1999). Perfect simulation of conditionally specified models. J. R. Stat. Soc. Ser. B
Stat. Methodol. 61, 251-264.

Murdoch, D. J. and Meng, X.-L. (2001). Towards perfect sampling for Bayesian mixture priors.
In Bayesian Methods, with Applications to Science, Policy and Official Statistics (Proceed-
ings of the ISBA 2000 conference, Hersonnissos, Crete) (Edited by E. I. George), 381-390.
Office for Official Publications of the European Communities, Luxembourg.

Murdoch, D. J. and Takahara, G. (2006). Perfect sampling for queues and network models. ACM
Transactions on Modeling and Computer Simulation 16, 76-92.

Nelson, B. L. (2016). ‘Some tactical problems in digital simulation’ for the next 10 years. Journal
of Simulation 10, 2—-11.

Polson, N. G., Scott, J. G. and Windle, J. (2013). Bayesian inference for logistic models using
Pélya—Gamma latent variables. J. Amer. Statist. Assoc. 108, 1339—-1349.

Propp, J. G. and Wilson, D. B. (1996). Exact sampling with coupled Markov chains and appli-
cations to statistical mechanics. Random Struct. Algorithms 9, 223-252.



22 CRAIU AND MENG

Propp, J. G. and Wilson, D. B. (1998). How to get a perfectly random sample from a generic
Markov chain and generate a random spanning tree of a directed graph. J. Algorithms 27,
170-217.

Stein, N. M. and Meng, X.-L. (2013). Practical perfect sampling using composite bounding
chains: the Dirichlet-multinomial model. Biometrika 100, 817-830.

Swendsen, R. H. and Wang, J.-S. (1986). Replica Monte Carlo simulation of spin-glasses. Phys.
Rev. Lett. 57, 2607-2609.

Thonnes, E. (1999). Perfect simulation of some point processes for the impatient user. Adv. in
Appl. Probab. 31, 69-87.

Van Dyk, D. A. and Meng, X.-L. (2001). The art of data augmentation (with discussion). J.
Comput. Graph. Statist. 10, 1-50.

Wilson, D. B. (1998). Annotated bibliography of perfectly random sampling with Markov chains.
In, Microsurveys in Discrete Probability (Edited by D. Aldous and J. Propp) 41, 209-220.
American Mathematical Society, Providence. Updated versions at http://www.dbwilson.
com/exact/.

Yu, Y. and Meng, X.-L. (2011). To center or not to center: That is not the question—an
Ancillarity—Sufficiency Interweaving Strategy (ASIS) for boosting MCMC efficiency (with
discussion). J. Comput. Graph. Statist. 20, 531-570.

Radu V. Craiu

Department of Statistics, University of Toronto, Toronto, Ontario M5S 3G3, Cananda.
E-mail: craiu@utstat.toronto.edu

Xiao-Li Meng

Department of Statistics, Harvard University, Cambridge, MA 02138-2901, USA.

E-mail: meng@stat.harvard.edu

(Received November 2020; accepted January 2021)


http://www.dbwilson.com/exact/
http://www.dbwilson.com/exact/
mailto:craiu@utstat.toronto.edu
mailto:meng@stat.harvard.edu

	If Being Perfect is Impossible, Let's Try Being Unbiased
	Perfect coupling – too much to hope for?
	Unbiased coupling – a new hope?
	Using control variates – even higher hope?

	Theoretical Gains from Incorporating Control Variates 
	L-lag coupling: An elegant and powerful method
	Deriving the optimal bound over choices of control variates
	Understand and compare the bounds

	Estimation and Practical Implementation
	Control variate estimators
	Estimating the total variation bound

	Examples and Illustrations
	A theoretical comparison of the bounds: The geometric case
	An empirical comparison of the bounds: Ising model
	Comparing bounds and estimators: A logistic regression example

	Can We Do Even Better?

