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Abstract—Routing and Spectrum Assignment (RSA) is a well-
known problem in Elastic Optical Networks (EONs), and the lit-
erature abounds with numerous heuristic algorithms that attempt
to efficiently utilize spectrum and mitigate spectrum fragmen-
tation. However, blocking performance modeling of EONs is a
relatively under-explored topic, mainly because of the complexity
of handling variable request sizes. In this paper, we analyze
three spectrum assignment policies and compare their blocking
performance. In the full slicing policy, every request is sliced into
multiple one-slot calls. In the partitioning policy, each request size
is allocated a dedicated spectrum partition, and each request can
be only assigned spectrum from its corresponding partition. The
partition with slicing policy is a hybrid of the two — there are
dedicated partitions for small request sizes, but large requests are
sliced into multiple sub-requests of the smaller sizes and assigned
spectrum from those partitions. We obtain expressions for the
bandwidth blocking probability for these three policies, and
validate the analysis with extensive simulation results. Our results
show that partitioning with slicing has the best performance.

I. INTRODUCTION

In recent years, Elastic Optical Networks (EONs) have been
widely studied to improve spectrum utilization by apportioning
bandwidth in terms of smaller spectrum slices in comparison to
fixed-grid wavelength-division multiplexed (WDM) networks.
In EONSs, the bandwidth is divided into a large number of fre-
quency slots/slices (FSs) and connection requests occupy only
as many FSs as needed, based on their data rate requirement
and the assigned modulation format. A successful connection
must satisfy both the spectrum continuity constraint (same
spectrum on all links of the path) and the spectrum contiguity
constraint (the assigned FSs must be contiguous).

The blocking caused by unsatisfied spectrum contiguity
constraint when there are sufficient FSs for the request is
also known as fragmentation blocking, as it is due to the
fragmentation of free spectrum on the link(s). There are many
proposals in the literature that attempt to mitigate fragmenta-
tion in the Routing and Spectrum Assignment (RSA) problem.
In [1], the authors show that the RSA problem in EONSs is an
NP-hard problem. A Mixed Integer Linear Program (MILP)
model for small networks and a heuristic algorithm for realistic
networks which jointly optimizes delay-bandwidth product,
fragmentation, and link congestion are proposed in [2]. An
indirect approach to avoid fragmentation using offline load
balancing and rewarding smaller-indexed spectrum choices is
proposed in our previous work [3]. Moreover, many assign-
ment policies that specifically target the fragmentation issue

have been studied. A flexible partition scheme in which the
entire fiber bandwidth is partitioned according to request size,
but a request can be assigned to its neighbor partition when
its corresponding partition is full to reduce the fragmentation
effect and improve the utilization of spectrum is introduced
in [4]. A joint first-last-fit spectrum assignment policy, based
on partition scheme, is presented in [5] to enhance the prob-
ability of successful establishment of a request and spectrum
efficiency. In [6], the authors propose a metric to quantify
fragmentation in a link, and propose a heuristic method based
on this metric to decrease the fragmentation. In [7], a partition
scheme that considers connection holding time is studied,
and a scheme is proposed to jointly optimize the blocking
probability and the quality-of-transmission. In [8], [9], the
authors introduce spectrum slicing technology which allows
calls to be sliced into different sub-requests, each of which
may then be assigned FSs independently (i.e., without the FSs
for the separate sub-requests being contiguous).

On the other hand, the literature is relatively sparse on
the topic of blocking probability analysis in EONs, despite
numerous modeling efforts for fixed-grid WDM networks.
This is mainly because of the complexity of the model induced
by two features of EONs - the large number of FSs per
fiber (compared to wavelengths in fixed-grid networks) and
the variability of the number of FSs requested by connections
(as opposed to one wavelength per connection in fixed-grid
WDM). One of the earliest efforts was [10], in which the
effect of bandwidth fragmentation on the blocking probability
is studied for a static model wherein the number of calls
on a link are given. Another significant paper is [11], which
used defragmentation to decrease the effect of fragmentation
blocking in EONs and proposed a reduced-state Markov chain
analysis to calculate the blocking probability for Poisson traffic
for random fit and first fit SA policies. While this is the best
available performance model to date, the approximate model’s
accuracy has room for improvement, suggesting the inherent
difficulty of the problem.

Motivated by SA algorithms that adopt spectrum partition-
ing and slicing, we analyze three SA policies in this paper
for dynamic traffic. In the full slicing policy, every request is
sliced into multiple one-slot calls. In the partitioning policy,
each request size is allocated a dedicated spectrum partition,
and each request can be only assigned spectrum from its
corresponding partition. The partition with slicing policy is
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a hybrid of the two — there are dedicated partitions for small
request sizes, but large requests are sliced into multiple sub-
requests of the smaller sizes and assigned spectrum from those
partitions. We obtain expressions for the bandwidth blocking
probability for these three policies, and validate the analysis
with extensive simulation results.

The paper is organized as follows. The system model is
presented in Section II. We present the analysis for the 3 SA
schemes for a single link in Section III, for a two-link segment
in Section IV, and finally extend it to a network in Section V.
Results are presented in Section VI, and the paper is concluded
in Section VII.

II. SYSTEM MODEL

We consider an EON with W FSs per fiber link to which
connection requests arrive according to a Poisson process.
Request sizes of calls may be different, and we assume that
type 4 calls require k; FSs to be assigned. In this paper, we
assume that there are 3 types of calls for ease of explanation,
but note that this may be generalized to a larger number of
types with some increase in computational complexity. Static
shortest path routing is assumed, and the arrival of each ith
type call follows a Poisson process with rate Agl) on path
. The holding time for all types of calls are assumed to
be exponentially distributed with identical mean i To avoid
fragmentation blocking, the bandwidth on a link is divided
into multiple cells such that a cell is a group of contiguous
FSs required by a call based on different assignment policies.
The main notations used in this paper are listed in Tab. I. A
connection request is assigned FSs according to one of the
three SA policies used for the network. The SA policies will
be described in more detail in the next section.

TABLE I

NOTATIONS
Notation Description
w Bandwidth of a link (number of FSs).
N j Number of ith type calls on link j.
k; Number of required FSs for type ¢ calls.
B; Number of busy cells on link j.
Bj Number of free cells on link j.
)\El) Arrival rate of ith type calls on path [.
i Expected holding time for a call.

III. SINGLE-LINK ANALYSIS
We start by describing the 3 SA policies and deriving the
blocking probability for a single link for each policy.
A. Fartition Assignment

The partition assignment scheme divides the link spectrum
into different partitions for different types of calls to avoid

fragmentation blocking.

il §

Fig. 1. An example of partitioning.

For type ¢ calls, we assume its corresponding partition has
a size D;. Therefore we have:

Z D, =W. 1)
Then we define d; = L%J as the number of cells for type ¢

calls in its corresponding partition, also called as the capacity
of the partition. Note that one guard band is required for each
call and therefore the actual number of FSs reserved for the
call is k; + 1. We show an example in Fig.1 where the link is
divided into 3 partitions for the calls with demand size 1,
2, 4 FSs. The dashed FSs denote guard bands. For every
connection, a cell is uniformly randomly assigned among
the available cells in its respective partition. If no cells are
available in its partition, the call is blocked even if there may
be spectrum available in the other partitions. The analysis
for this scheme is straightforward and follows the analysis
for single-wavelength requests in fixed-grid networks, but we
present it here briefly for completeness. For a single link, we
have the stationary distribution of the number of type 7 calls
as:

Pyt
T
(i) = =g 2)
ZQL:O %L!
where p; = % is the offered load for type ¢ calls. Blocking
happens only when the partition is full and therefore we have:

B. Full Slicing Assignment

Next, we analyze the full slicing assignment scheme. Here,
a type ¢ call requesting k; FSs is sliced into k; one-slot “sub-
requests” and each is assigned spectrum independently. A con-
nection request is successful only if all these k; sub-requests
can be assigned spectrum successfully. Since the sub-requests
are assigned spectrum independently, there is a guard band
needed for each, and thus, two FSs are needed for each sub-
request. We therefore divide the spectrum into C' = | | cells,
and each sub-request is assigned an available cell randomly.
We show an example in Fig. 2, where a 3-slot call is sliced into
three 1-slot calls and assigned spectrum randomly. The black
FSs are FSs occupied by existing connections and guard bands

-
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Fig. 2. An example of full slicing.
Then we have the stationary distribution for the number of
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ongoing calls of type ¢ as:
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If B= Zl k;n; denotes the number of busy cells on the link,
then its distribution is obtained as:

F(B) = >

(n1,m2,n3)|B=3", kin;

7'('(711,”2,7713). (5)

Blocking for type ¢ calls happens when B > C'—k;, and there-
fore its probability P; is given by: P; = ngchhﬂ F(B).

C. Fartition with Slicing Assignment

The partition scheme eliminates fragmentation by not mix-
ing up requests of different sizes, whereas the slicing scheme
does so by breaking down every request into equal-sized
sub-requests (at the expense of a guard band for each sub-
request). We propose the partition with slicing assignment
scheme as a hybrid of the above two schemes. Here, some call
types (typically small request sizes) have their own partition,
whereas the remaining call types (large request sizes) are
sliced into sub-requests of sizes equal to one ore more of the
small request sizes. Recalling that we assumed 3 call types,
let k3 > max(kq, k2) and ks = x- k1 +y - ka. The spectrum is
divided into two partitions for type 1 and type 2 calls, while
type 3 calls are sliced into x calls of size k; and y calls of
size ko. We show an example in Fig.3, where a 3-slot call is
sliced into one 1-slot and one 2-slot call. Random assignment
of cells is done within each partition. The black FSs are those
occupied by existing connections and dashed FSs are guard
bands. We now have the stationary distribution for the number

Fig. 3. An example of partitioning with slicing.
of type 7 calls:
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(6)

Blocking happens for type 1 calls when partition 1 is full, i.e.,
n1 + xns = dj, and blocking happens for type 2 calls when
partition 2 is full, i.e., no+yn3 = da. Type 3 calls are blocked
when either partition 1 or partition 2 has not enough cells for
type 3 calls. Therefore we have:

77(711, na, n3) =

N3 d2—yns

P = Z Z m(dy — xnz, nz, n3)

N3 di—zng

P2 = E E W(n17d2_yn37n3>
nz3=0 n;=0

N3 di—zns—z+1ds—ynz—y+1

O YD VD

ns =0 ni =0 no =0

where N3 = min(| 4|, Ldfj)

1
T

W(nl,n2,n3) (7)

IV. TWO-HOP SEGMENT ANALYSIS

We now consider a two-hop segment of a path. Here, there
are three paths: the path using link 1 only, the path using link
2 only, and the path using both links. We use subscript ¢, 1 for
type ¢ calls using only link 1; ¢, 2 for type ¢ calls using only
link 2; and i, ¢ for the type ¢ calls continuing from link 1 to
link 2. The blocking probabilities for the calls only on link 1
or link 2 can be derived as in Section III. Here, we show how
the blocking probability of continuing calls is computed for
the three SA schemes.

A. Partition Assignment

In the two-hop segment, we can obtain the stationary
distribution of the number of calls in the ith partition by
solving a 3-D Markov chain:

(N1, N2, ni,a) =

ni1 M2 M
Pia1 Pi2 Pic

n;1! ng 2! ng ! (8)

d; d; min(d; —a,d; —fB) P31 Pf,z Pis ’
Za:0 ZB:O 27:0 al Bl 4!

Let BLC denote the number of cells that are available on both
links in the 4th partition. Then, the conditional probability of
having B; . cells is:

(7B )

R(Bic|nia, i, nic) =

9

where max (0, d; —n; 1 —nj2—Njc) < BZ—,C < min(d; —n;1—
Nie,di —Mi2 —nie). If B;. =0, atype i call is blocked in
its partition over the two-link segment, and the corresponding
blocking probability is:

d;
Pi7c = Z

ni,I:O ni12:0

d; min(d;—n;1,d;—n; 2)

>

ni,C:O

(R(0|ni,1, T2, ni,c)

'/T(ni,la N2, nzc)) . (10)

B. Full Slicing Assignment

To analyze the full slicing assignment in a two-hop segment,
we first assume that the links are independent of each other,
and use the sum of arrival rates of all calls that traverse a link
as the arrival rate for this single link. Therefore the offered
loads on these two links are:

Pil = Pi1 + Pic
Pi2 = pPi2 + Pic
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Then with equations (4) and (5), we can compute the prob-
ability F'(By) and F(B) of having B; and B, busy cells
on the two links, respectively. Completely ignoring the fact
that continuing calls use the same slots on both links would
produce vastly inaccurate results. Here, we rely on a tractable
approximation that yields sufficiently accurate results as veri-
fied by simulations later. We assume that the number of busy
cells from the continuing sliced calls B, follows a binomial
distribution, as follows:

min(B;, B in B
G(BC|Bl7B2) e < (Bl 2)>pCBC(1 _pc) (Bl,Bg) BC
an

where

Pec = min{pl,ca DP2.cy p3,c}

is the probability of continuation for the busy cells from the
sliced calls on the two-hop segment, and p; . = m
is the probability of continuation for ith type calls. Denoting
by B. the number of free cells continuing on the two-hop

segment, we have:

(5 (25,05,

C—B.
(c753)
If B. < ki, type i calls are blocked on the two-link segment,
and so the blocking probability is:

H(B|B1, Bz, B,) = 12)

C min(C—B;,C—B>)
(H(BC|B1)B27BC)
B.=0

G(BcBhBQ)F(Bl)F(BQ))- 13)

C. Partition with Slicing Assignment

Here again, we use the link load independence assumption
and then model the number of continuing calls using a bino-
mial distribution as above. Then, using equation (6), we have
the stationary distribution 7(nq,n2,,n3,;) for the number
of calls of different types on one link. We further assume
that the partitions are independent of each other. (Note that
they are actually not independent because the sliced calls are
accommodated on both partitions.) Then the distribution of
calls in partition 1 is given by:

da—ynsz

D

y=0

I(ny,ms;) = (1,1, Y, n3,1)- (14)
The distribution of calls in partition 2 is similarly obtained.
Following the binomial assumption, the number of continuing

type ¢ calls, n; . is distributed as:

N‘ sC N ¢ ic—MNi ¢
J (Mg cni, o) = ( )(Pz )ie(l —pi,c)N“ ne

N

. . Dic .
where NZ c = mln(nZ 1,7 2) and Pi,e = m is the

probability of continuation for type i calls. Therefore, in parti-
tion 1, we have the number of busy cells as By = nq 1 +xns 1,

By = ni2 + T - N3 2, and B, = Ni,e + T - N3 e We can
obtain using equation (12), the probability that there are B..
free cells continuing on the two-hop segment given the number
of busy cells By, By and B,. Then the blocking probability
for continuing type 1 calls in its partition is:

N3 di—xn3;1 Ns di—zxznz2 Ni.

DI IED D IEDY

n31=0 n1,1=0 n32=0 ni2=0 ni1.=0
N3, c

>

n3 =0

J(n:s,c713,1,n3,2)1(n1,17713,1)[(”1,2,”3,2))- (15)

( (0| By, Ba, Bo)J (n1,c|n1,1,m1,2)

With condition B, < x, the blocking probability for continu-
ing type 3 calls in partition 1 is:

a—1 N3 di—znz1 Ns di—zxzn3z2 Nic

PIDIEDIED IED TIPS

B.=0n3,1=0 n1,1=0 n32=0 ni2=0 n1,=0
N&,c

>

n31(::0

PS,Cl

(H(BCBI7 B, B:)J(n1,clni1,m1,2)

J(ng.c|ns 1, n32)I(n1,1,n31)I(n1 2, n3,2)) .

We can get the blocking probability for continuing type 2 calls
and type 3 calls in partition 2 following similar steps. Note
that the type 3 calls are blocked when either partition 1 or
partition 2 has not enough cells for type 3 calls. Therefore we
have: P3 ., =1—(1—Ps . )(1 — Ps,c,).

V. MULTI-HOP NETWORK ANALYSIS

We now extend our analysis to a multi-hop network.

A. Partition Assignment

For an [-hop path, we divide the path into (I — 1) inde-
pendent two-hop segments for analysis. With (8), we have the
probability for the number of calls in the ¢th partition in a two-
hop segment with link [ — 1 and link [ as 7(n; j—1, 74,1, i.c)-
We use Q(Bl 1) to denote the probability there are B;_; free
cells in partition ¢ on link (I —1). It is given by (the subscript
1 is dropped for simplicity):

d; Blld_nlc

=2 >

ni,e=0 n; ;=0

(d; — Bj_1 —

Ni,cy Ml mc)

(16)

Let S(B;|B;_1) denote the conditional probability that there
are B, free cells on link [ when there are B;_; free cells on
link (I —1). Then:

S(Bi|Bi-1)
B Z’rZLIO (di — Bi—1 — nj ¢, d; — By —
~ «—d;-B P

Zni,(::lo ' Zn = 0

N c, ni,c)

— , (A7)
(dz —B;_1— Ni,cy M1, Mic
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where Z. = min(d; — B;_1,d; — B;). Finally, we use
U(z.| By, B;_1) to denote the conditional probability that there
are z. continuing calls from link [ — 1 to link [ when there
are B;_; free cells on link (I — 1) and B free cells on link /.
Then:

U(zc|Bi, Bi—1)

_ m(d; — Bi_1 — 2ze,di — By — 2, 2c)

- == _ . (s
Zn L—() (d - Bl 1 — Nie, d7, Bl — Nicy ni,c)

We model load correlation among links by assuming that
the distribution on the [th link depends only on that on
link [ — 1; therefore, if we know the joint probability
T¢D(BU=Y By_1) that in ith partition, there are B¢~
free cells on the (I — 1)-hop path and B;_; free cells on link
(I —1), we have:

d; B Z

=2 >

Bl 1_OB(Z =0 2.=0

7BV B

<R<B(l)|dz - Blfl - andi - Bl — ¢ Zc)

U(ze| By, Bi—1)S(By|By—1)T"="Y(BU=Y B, )
(19)

Clearly, the blocking probability for calls on the I-hop path in
its partition is Pi(l) = Z%,:o TW(0, By).

B. Full Slicing Assignment

For an [-hop path, we give the joint probability
T (BW, By) which denotes the probability that there are B()
free cells on the entire [-hop path and B; free cells on link [

as:
B

c
TW(BW, B) = Z Z

B;_1=0BU-1)=0

min(C—B;_1,C—By)

>

B.=0

<H(B<”|Bll, By, B¢)G(Bc|Bi_1, B))

T=D(Be=b, Bl_l)F(Bl)). (20)
Note that on link I, we have B; + B, = C, S0 with equ_ations
(5), (11) and (12), we can obtain 7()(B®, B;). When BY) <
k;, the ith type calls are blocked on the [-hop path. Therefore
we have:

ki—1
Z Z TW(BWO B)). 1)
BW=0 B;=0

C. Fartition with Slicing Assignment

For the partition with slicing scheme, we present the anal-
ysis in partition 1 as an example. Let T (B® ny; ng))
denote the joint probability that there are B(!) free cells on
the [-hop path and n;; busy calls for type 1, nq 3 busy calls

for type 3 on link [. Then:

di—zng, -1 di—n11-1—TN3,1-1

> D

n3,1-1=0 ni;_1=0 BU-1)=0

TOBWY nyy,n3))

Ni,e N

2

nle:O TL3,C:0

J(nz.clnz -1, n3)TD(BEY gy 1,m3,1)
I(na,, n3,l)) .

Note that in partition 1, we have the number of busy cells as
B =ny,;+x-n3,, and B, = n1 .+2-n3 .. Thus the blocking
probability in partition 1 for type 1 calls on the I-hop path is:

(H(B(l) |Bi—1, By, Be)J (n1,¢|n1,i—1,m1,1)

(22)

N3 di—n3;

Z Z T(l)(07n1,l,n3’l).

ng, =0 ny ;=0

PY =

D. Reduced Load Approximation

Reduced load approximation is a well-known technique to
improve the accuracy of blocking analyses in circuit-switched
networks (e.g., see [14]). First, we calculate the initial blocking
probability B()(0) for a path with offered load p(*). Then,
for every iteration i, we use p()(i) = p((1 — BO(i — 1))
and calculate the new blocking value B (i) with the updated
value of the load. The procedure is iterated until the blocking
probability converges. It typically takes a fraction of a second
to compute the BP for a path.

VI. NUMERICAL RESULTS

We now present numerical results comparing the three SA
policies. We also performed call-based simulations for 107
calls and use the average results with 95% confidence interval
over 10 trials in order to verify the analytical results. We
use the NSFNET topology as shown in [4] with 320 FSs
on each link. QPSK modulation is applied with demand size
{2,4,16} FSs (excluding guard band) corresponding to data
rates {40,100,400} Gbps [15]. The network traffic load is
denoted by I', and we assume the following distribution for
the three types of calls: 40% type 1 with 2 FSs, 40% type 2
calls with 4 FSs, and 20% type 3 with 16 FSs. The source
and destination of calls are random (uniform distribution) and
a fixed shortest path is used for each node pair. The bandwidth
blocking probability (BBP) is reported in all the results. For
the two partition-based schemes, we calculate the partition size
based on the traffic load and request sizes as below:

pi(ki +1)
> pilki +1)

Fig. 4 shows the BBP for the three policies as a func-
tion of I'. Note that for partitioning with slicing, we have
ks = -k +y-ky and here we use x = 2, y = 3
which means that a 16-slot call is sliced into two 2-slot
and three 4-slot sub-requests. We observe that our analytical
results match the simulation results very well. Full slicing

di =
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scheme performs the worst compared to the other polices
since it doubles the spectrum usage with extra guard band
for each 1-slot sub-request. Partitioning with slicing performs
the best as it provides more flexibility compared to the pure
partitioning scheme while reducing spectrum usage compared
to full slicing.

10° T T T T T T

S
T
|

o

Bandwidth Blocking Probability

1077
Partitioning with Slicing(x=2,y=3)
10_4 L = - Parliti(.)n.ing
Full Slicing
5 --7-- Simulation for Partitioning with Slicing(x=2,y=3)
T --7- - Simulation for Partitioning
Simulation for Full Slicing
10'5 1 1
80 90 100 110 120 130 140 150

Traffic Load I’
Fig. 4. BBP vs. I for the SA policies.

Next in Fig. 5, we show a comparison of the partitioning
with slicing scheme for five different slicing settings (only
analytical results shown). We observe that as the load in-
creases, ¢ = 0,y = 4 becomes better than x = 2,y = 3
which indicates a trade-off between extra spectrum usage from
guard bands (more slicing) and the flexibility in spectrum
assignment. As more guard bands are added to the sliced calls,
the blocking performance becomes worse as it increases the
spectrum usage on the link.
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o Partition with Slicing(x=4,y=2)
Partition with Slicing(x=6,y=1)
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Fig. 5. BBP vs. I" for partitioning with slicing scheme with different slicing
strategies.

VII. CONCLUSION

In this paper, we present new blocking probability models
for partition and slicing-based spectrum assignment schemes
in elastic optical networks. In the full slicing policy, every
request is sliced into multiple one-slot calls. In the partitioning

policy, each request size is allocated a dedicated spectrum
partition, and each request can be only assigned spectrum from
its corresponding partition. The partitioning with slicing policy
is a hybrid of the above two. Results show that the models
are quite accurate, and that the partition with slicing policy
provides a good balance between reducing fragmentation and
wasted spectrum.
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