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ABSTRACT

This paper presents a case study where we integrate a software-
defined acoustic modem with a commercial autonomous underwa-
ter vehicle (AUV). The AUV has a frontseat and a backseat computer.
The frontseat computer runs pre-programmed user missions using
proprietary software. The backseat computer is installed with the
Mission Oriented Operating Suite Interval Programming (MOOS-
IvP) autonomy software along with the iOceanServerComms appli-
cation, enabling users to implement various customized operations.
The acoustic modem runs the UNetStack software. We created mul-
tiple applications, integrating the UNetStack with the MOOS-IvP
autonomy software. These applications utilize the iOceanServer-
Comms application and MOOS database that reside in the backseat
computer to allow for acoustic control of the AUV or retrieval of
vehicle information. Field experiments were performed in a local
lake that demonstrated the efficacy of the applications. We also
used the integrated AUV as a mobile testbed to collect acoustic and
navigational measurements for several community users.
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1 INTRODUCTION

Autonomous underwater vehicles (AUVs) are an effective tool in
aquatic sampling and ocean exploration. They can serve as low-cost
platforms for acoustic studies, including underwater communica-
tions and networking. In these applications, integration of acoustic
communications with autonomy is a necessity. This paper present
a case study where we integrated a software-defined acoustic mo-
dem with a commercial AUV. The Iver3 EcoMapper AUV [5] and
Subnero embedded acoustic modems [4] were the instruments used.
Applications in the Mission Oriented Operating Suite-Interval Pro-
gramming (MOOS-IvP) environments were developed to interact
with the UNetStack software [14] running on the acoustic modem.

The Iver3 vehicle is suitable for the design goals because it con-
tains a backseat computer, which allows the user to create autonomy
programs that interface with and control the vehicle. The Subnero
embedded modem was adopted due to its compact size, which al-
lowed easy integration on the Iver3 vehicle payload section. In
addition, the modem is a software-defined device, which gives the
user complete control of the modem parameters and actions using
the API of the modem over a TCP-IP link.

In commercial modems, the communication systems for con-
trolling the vehicle become more complex. The Compact Control
Language (CCL), developed by the Woods Hole Oceanographic In-
stitute (WHOI) [16], is used by multiple underwater vehicles, from
the WHOI (Seabed [15], REMUS 600, EMUS 6000 [17], REMWS
[18]); crawling vehicles developed by Foster-Miller and NSWC,
Panama City; CETUS II [6], Bluefin AUV [8], to name a few, for
controlling the vehicle movement.

Similar systems have been developed as the work presented in
this paper, but in the public domain there are no reports of the inte-
gration of a software-defined acoustic modem with the open-source
MOOS-IvP autonomy software running on the backseat computer
of an Iver3 vehicle. One such system described in [9], creates a net-
work of AUVs, autonomous surface vehicles (ASVs), buoys, a sensor
network, and command-and-control units (CCU), but the CCU is
human-operated, and the buoys housed transponders are used by
the AUVs for localization. In [13], the Unified Command and Con-
trol (C2) architecture uses MOOS-IVP on a backseat computer to
control the vehicle and the Dynamic CCL (DCCL) language to com-
municate with the AUV. In [10], an open access aquatic testbed
known as the yNet is developed for underwater mobile networks.
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Figure 1: The backseat computer with MOOS applications supports communications between the acoustic modem and frontseat

computer.

An effort is made to integrate Aqua-Net [12] into Robot Operating
System (ROS) [7] and MOOS-IvP.

Rest of the paper is structured as follows. Section 2 provides the
description of the platform used for the case study. In Section 3 we
define the methods used during the study. Section 4 illustrates the
results from several conducted field tests. Finally, we summarize
the contributions of our work.

2 PLATFORM

The Iver3 AUV is a medium-size vehicle from L3Harris. Two com-
puters are located in the main section of the AUV [5]. The front-seat
computer contains the Underwater Vehicle Controller (UVC), which
runs a preset mission created by the user. The UVC takes inputs
from various sensors, such as the GPS and compass, and determines
the next movement for the vehicle to perform to complete its mis-
sion. The UVC will also take input from the backseat computer,
which is connected to the front-seat computer via a serial connec-
tion, using defined data sequences called NMEA sentences. These
NMEA sentences from the backseat computer can request sensor
information from the UVC or command the UVC to control the
movement of the vehicle remotely of an Iver3 vehicle.

The MOOS-IvP software controls the vehicle remotely from the
backseat computer. MOOS-IVP is an autonomy software designed
specifically for aqueous vehicles, with a publisher-subscriber ar-
chitecture. In this architecture, multiple applications run indepen-
dently of each other and can only communicate through a central
database, which is called the MOOSDB. The different applications
can publish information in the form of variables to the database,
and each application can also subscribe to specific variables in the
database. Therefore, each application can be informed of any state
changes based on the values of variables in the MOOSDB.

The entire group of MOOS applications running at a given time
is called the MOOS Community. One such MOOS application is the
IvPHelm, which is the main autonomy application in the MOOS
community that determines the movement of the vehicle. [2]

Each MOOS mission is initialized using two different files. First,
the .moos file initializes the MOOS Community. Each application
is started using the parameters defined in this file. Second, the
behavior of the vehicle, such as the predefined mission paths that

the autonomy software should try to perform, is defined in the .bho
file.

To facilitate communication between the MOOS-IvP software
running on the backseat computer and the UVC running on the
front-seat computer,a MOOS application called iOceanServerComms
is available. iOceanServerComms relays NMEA sentences between
the frontseat and backseat computers using the serial connection be-
tween them. The operation of the iOceanServerComms application
is represented in Fig. 1.

The application creates NMEA sentences that request sensor in-
formation from the UVC and parses any NMEA sentences received
in response into the appropriate variables in the MOOSDB for each
of the MOOS applications to use. Also, iOceanServerComms will
create NMEA sentences based on the movements determined by
the IvPHelm application and relay them to the UVC to control the
movement of the vehicle.

The Iver3 vehicle allows for the addition of an extended payload
section to the vehicle. The payload section is added to the bow of
the AUV and contains a cavity where various sensors can be added
based on the needs of the user. Furthermore, the payload section
contains multiple ports that allow for mounting devices to the out-
side hull while still maintaining connections with equipment inside
the vehicle. For our purposes, an acoustic modem, the Subnero
Embedded Model modem, was installed inside the payload section.
The Subnero modem is a software defined acoustic modem with an
Application Programming Interface (API) that allows the user an
interface with the modem using a TCP/IP connection. A transducer
was mounted on the outside hull of the vehicle, as pictured in Fig. 2,
and connected to the Subnero modem inside the payload section.

Finally, the Subnero modem was connected to the backseat com-
puter via an Ethernet connection. Each Subnero modem has a
unique node address number that identifies that modem within
an acoustic network. Once all installation was completed, the Iver3
vehicle was able to communicate with a user at the shore using un-
derwater acoustic communication, which could be used to transmit
commands to the AUV or request information from the AUV.

The API of the Subnero modem is an agent-based fjage archi-
tecture [3]. Each agent utilizes services, which perform operations
based on messages it receives. There are different forms of messages.
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Figure 2: Acoustic transducer mounted on the Iver3 AUV.

First, there is the request message, which requests a particular ser-
vice to be performed by the agent. Another type of message is the
notification, which is a flag that shows that a particular event has
occurred and contains information relevant to that event.

An example of one such service is the DATAGRAM service, which
has multiple messages of interest. A datagram is an acoustic trans-
mission that is formed of a sequence of bytes. First, the DatagramNtf
message is a notification that occurs when the modem has received
an acoustic datagram message. This notification contains multiple
data fields, including the data received and the node address num-
ber of the transmitting node. Second, the DatagramReq message
can be sent to the agent to command the agent to begin the process
to begin an acoustic datagram transmission. The message contains
fields for the data sequence to send and the node address to send the
transmission to. Once the agent receives the DatagramReq message,
the agent will control the firmware of the modem to acoustically
transmit the datagram message. [14]

3 METHODS

This section presents the implementation of two MOOS applica-
tions, iModemDeploy and iModemInfo. The former supports acoustic
control and the latter retrieves the vehicle location/depth informa-
tion of the AUV.

3.1 iModemDeploy — Remotely Changing the
Current Mission

One such application created is to allow the user to remotely change
the current mission that is controlling the movement of the AUV. On
the backseat computer of the AUV, the MOOS mission is initialized
using the .bhv and .moos files. The .bho file contains three mis-
sions. The three missions are each wypnt_survey missions, which
are defined by a set of location waypoints that the AUV must
try to capture in order to complete the mission. A variable in the
MOOSDB, called MISSION, is created that provides a reference for
each backseat mission in the .bhv file. Using the condition com-
mand, each mission will only run if its associated mission number
is set for the MISSION variable in the MOOSDB. For instance, the
wypnt3_survey will only run when the MISSION variable is set to a
value of 3.
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A MOOS application was created that will set the MISSION
variable based on a received acoustic datagram transmission. The
MOQOS application is called iModemDeploy. A flowchart describing
the operation of iModemDeploy is pictured in Fig. 3.

‘ Open Socket Connection

| Remote Receive — wait for datagram |=

MISSION = #

DEPLOY = true
ENGAGE_IVPHELM = true
VEHICLE UNDERWAY = true
MOOS_MANUAL_OVERRIDE = false

!

New mission begins

Figure 3: The flowchart of the iModemDeploy operation.

The application first establishes a socket connection with the
modem over the Ethernet link. Next, the application will then, for a
set amount of time, wait for the modem to receive a datagram mes-
sage. The notification the agent creates after receiving a datagram
message is the DatagramNif message.

Once the DatagramNtf notification is created, the application
will check the data inside the associated field of the message. The
datagram message, to activate a specific mission, is defined as
the letter “D” and the number of the mission. For instance, if the
wypnt3_survey mission is requested to run, the datagram message
would need to be “D” and “3”. If this message is received, the MIS-
SION variable in the MOOSDB will be set to the desired mission
number to notify the IvPHelm to perform the specific mission.

To inform IvPHelm to begin the mission, the DEPLOY variable is
set to “true”. Next, the backseat program must take over the control
of the vehicle from the frontseat computer. To do this, the MOOSDB
variable MOOS_MANUAL_OVER-RIDE is set to “false” and VEHI-
CLE_UNDERWAY is set to “true”, which will inform iOceanServer-
Comms to begin issuing commands to the frontseat computer over
the serial connection. Finally, the application will terminate the
socket connection and begin the listening process anew.

Once the backseat mission is completed, the frontseat computer
will automatically regain control of the vehicle and will continue
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Figure 4: Experimental setup for testing acoustic control.

its predefined mission. If no message is received in the specified
amount of time or another message that is irrelevant to the opera-
tion of this application is received, the socket connection will be
closed, and the listening process will be restarted.

At the dock, the user connects a computer to a Subnero modem
using an Ethernet cable. The transducer of the modem is lowered
into the water to allow for communication. A drawing of the ex-
perimental setup is pictured in Fig. 4.

A C program called setmission.c was created that sends a Data-
gramReq message to the modem. The C program takes command
line user input, such as the node address of the modem installed
in the desired AUV and the number associated with the specific
mission to run. Upon reception of the DatagramReq message, the
Subnero modem will transmit the desired datagram sequence. Fi-
nally, the program will close the socket connection and terminate.

3.2 iModemInfo - Remotely Requesting Sensor
Information from the AUV

Another MOOS application was created to allow a user to remotely
request information from the AUV while it is deployed underwater.
Currently, the application, called iModemInfo, will respond with
the depth information of the AUV; however, any sensor data that
is available to the backseat computer and stored in the MOOSDB
can potentially be requested. The depth of the AUV is stored in
the TRUE_DEPTH variable in the MOOSDB, which is set equal
to the <COR DFS>, or corrected depth from surface, field of the
$OSI NMEA sentence that is sent to the backseat computer after
a request from iOceanServerComms for sensor and AUV status
data [11]. The parsing of the $OSI sentence to correctly set the
TRUE_DEPTH value needs to be added to the parse.cpp program
in the iOceanServerComms source code. To obtain the value from
the NMEA sentence, the MOOSChomp() function is used to select
the correct characters in the NMEA sentence character string and
convert to a floating point number. To obtain the TRUE_DEPTH
value for its own use, the iModemInfo application must register i.e.,
subscribe to the TRUE_DEPTH variable. Because datagrams, by
definition, are sequences of unsigned bytes, a floating point variable
is not suitable for transmission in its current form. To alleviate this
issue, a union data structure is used. The union data structure is
native to C/C++ and contains two variables. One variable is the
floating point representation, while the other variable is the byte
sequence representation of the number. By using the union data
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Figure 5: The flowchart of the iModemInfo operation.

structure, the byte sequence representation of the TRUE_DEPTH
value can be easily obtained and transmitted as a datagram.

The iModemInfo application follows a procedure similar to the
procedure outlined for iModemDeploy, and a flowchart of the oper-
ation of the application is shown in Fig 5.

First, a socket connection created between the modem and the
backseat computer over the Ethernet link. Then, the program will
wait a predefined amount of time for the modem to receive a data-
gram message. Once the DatagramNtf notification occurs, the pro-
gram will check the data in the notification to see if the message is
requesting information from the AUV, which is formed simply by
the letter “T". If the letter is received, the program will then create a
DatagramReq message to send to the embedded modem in the AUV.
The datagram that will be sent will be the byte representation of
the TRUE_DEPTH variable, which is obtained using the union data
structure. After sending the message over the socket connection to
the modem, the datagram message will be transmitted and iModem-
Info will end its socket connection to the modem and the listening
process will begin again. If no datagram message is received in the
allotted amount of time or a different datagram message is received,
the listening process will terminate and restart.

At the shore, a C application called depth.c was created that
forms the interrogation datagram message. The user computer is
attached to a modem on the dock with an Ethernet cable. After es-
tablishing a socket connection, the program creates a DatagramReq
message. The node address of the desired AUV modem is deter-
mined based on user command line input. The datagram to be sent
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Figure 6: Recorded vehicle track without iModemDeploy con-
trol
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Figure 7: Recorded vehicle track with iModemDeploy control.

is the letter “I”. Once the datagram is sent, the program will wait
for the modem to receive a datagram message, which will trigger
a DatagramNitf notification. By using a union data structure and
setting the byte array variable in the structure equal to the received
datagram, the floating point variable will be available to print to
the terminal window. Finally, the socket connection will be closed,
and the program will terminate. If the datagram is not received in
the allotted amount of time, an error will be printed in the terminal
window and the program will be terminated.

4 EXPERIMENTAL RESULTS

4.1 Verification of the iModemDeploy and
iModemInfo applications

To test the operation of the iModemDeploy application, an exper-
iment was conducted at Lake Tuscaloosa in Tuscaloosa, AL. The
experiment was setup with a single Iver3 AUV installed with an
Embedded Subnero modem, and another Subnero modem was setup
at the dock, which was connected to a laptop computer.

On the frontseat computer, a pre-designed mission was loaded
into the UVC to form the main mission that the application would
attempt to change to another mission. A mission was run with only
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Figure 8: Recorded AUV track of the frontseat mission.

Ask AUV for Depth button pressed

Connecting to 192.168.1.127:1100

Transmitting 5 bytes of data to 225
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Transmission Complete

Connecting to 192.168.1.127:1100

Waiting for a Datagram

Received a org.arl.unet.DatagramMtf : [87,183,122,78,122,223,19,64,]
Depth: 4.568240

Reception Complete

Figure 9: Output and response of the interrogation program.

the frontseat mission in control, and the recorded GPS and depth
track of the AUV is captured in Fig. 6.

The backseat mission was designed with three waypoint survey
missions that would each have a start waypoint at 185 meters due
east of the dock, but each mission moved 30 meters in a differ-
ent cardinal direction e.g., wypntl_survey moved 30 meters due
north. Each survey mission was designed to repeat 5 times before
terminating the mission and giving control back to the frontseat
computer.

After deploying the AUV and waiting for the AUV to submerge,
the setmission.c program was executed, and the requested mission
was wypnt1_survey. After the vehicle was retrieved, the GPS and
depth log was plotted of the path of the AUV, which is pictured in
Fig. 7. The result shows that the mission was switched from the
frontseat mission to the wypnt1_survey mission based on the figure-
eight pattern that appears in the second run of the experiment. The
figure-eight pattern, which is at the surface of the lake, is the AUV
running multiple attempts at capturing the two waypoints of the
mission, which is the designed behavior of the backseat mission.

4.2 Waveform transmissions using the
integrated AUV
For the experiment for testing the iModemInfo application, the

same experimental setup and a similar frontseat mission was used.
Fig. 8 is the recorded AUV track that shows that the AUV, after
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Figure 10: Use of the integrated AUV for acoustic waveform transmissions. (a) Experimental setup. (b) Students preparing the
vehicle for missions. (c) CTD measurements at the center of the lake. (d) AUV makes a box-shaped mission in the lake. (e)
Waveform spectrum recorded at the receiver, hung from the anchored boat. (f) Recorded waveform time series.

submersion below the surface, travels at a depth of around 5 meters
below the surface for the entirety of the mission.

Once the vehicle was launched and submerged, the depth.c pro-
gram was executed. Shortly after execution, a response was re-
ceived, and the received value was printed to the screen. The re-
sults, which were printed to the screen, are captured in Fig. 9. As
can be seen by the depth value of 4.97 printed to the screen by the
interrogation program shown in the figure, the result comports
with the depth of the AUV when submerged during its frontseat
mission, which us roughly 5 meters.

Underwater acoustic waveform transmissions require that the
AUV be submerged before transmissions. By integrating MOOS-IvP
and Unetstack, one iModemComms application is created to allow
for the intelligent scheduling of transmission. It takes the GPS and
depth information that is stored in the MOOSDB as NAV_X, NAV Y,
and TRUE_DEPTH and forward them to the Subnero modem to
control acoustic transmissions.

On the Subnero modem, a Unetstack API service that is useful
for this is the NODE_INFO service of the NodeInfo agent [1]. The
NODE_INFO service contains a variable called node.location, which
is a three floating point value array that is designed to represent the
location of the acoustic network node, also the location of the AUV.
By registering for the MOOSDB variables and creating a socket
connection with the Subnero modem, iModemComms can create
a message that commands the Shell agent of the AUV to set the
node.location array equal to the three values obtained from the
NAV_X, NAV_Y, and TRUE_DEPTH variables in the MOOSDB.

The Groovy script that controls the acoustic transmissions can
now use the node.location[3], which has been set equal to the value
from TRUE_DEPTH by iModemComms, as a test for when to trans-
mit an acoustic waveform. For instance, in our acoustic waveform
transmission experiments, the threshold depth, or the desired min-
imum depth below the surface, is 4 meters. By using an if state-
ment, the Groovy script can now test to make sure that the AUV is
below the threshold depth before transmitting an acoustic wave-
form by referencing the node.location[3] value. On October 7, 2021,
we conducted a field experiment to collect underwater acoustic
measurements using the integrated AUV; see Fig. 10 (a) for the
experimental setup. The site was the lake of Tuscaloosa with a wa-
ter depth of about 20 m; see Fig. 10 (c) for the CTD measurements
at the site. The AUV was preset with multiple missions, where
the vehicle moved around an anchored boat with different ranges.
An 8-element wideband hydrophone array was deployed from the
boat for acoustic reception. As part of the NSF CISE Community
Research Infrastructure (CCRI) effort [10], we transmitted acoustic
waveforms on behalf of a small pool of test users from Lehigh Uni-
versity, the University of Utah, and Michigan Tech. The acoustic
transmissions were centered at 28 kHz with a bandwidth of 8 kHz
and a nominal source level of 185 dB. Environmental, navigational,
and acoustic measurements were collected and distributed to these
test users. Fig. 10 (d) shows one of the mission tracks based on the
vehicle log file. Figs. 10 (e) and (f) show the acoustic data spectrum
and time series.



Integration of Acoustic Communication with Underwater Autonomy: A Case Study

5 CONCLUSION

This paper presents the integration of acoustic communication with
underwater autonomy. Multiple MOOS applications were made,
including iModemDeploy, iModemInfo, and iModemComms. These
applications interact with the iOceanServerComms application and
MOOS database, or MOOS-DB, that reside in the backseat com-
puter to execute user missions, retrieve vehicle information, and
intelligently schedule acoustic waveform transmissions. These ap-
plications are just the beginning of the possible applications that
can be created. One application under ongoing development is a
multi-hop network architecture that communicates with multiple
AUVs.
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