

1    **Molecular Dynamics Determination of Two-dimensional Nucleation Kinetic Coefficient for**  
2    **Modeling the Faceted Growth of Si (111) from an Undercooled Melt**

3    Victor Fabiyi<sup>a</sup>, Tyler Richmond<sup>a</sup>, Brian T. Helenbrook<sup>b</sup>, and Eunsu Paek<sup>a,\*</sup>

4    *a Department of Chemical and Biomolecular Engineering, Clarkson University, 8 Clarkson*  
5    *Avenue, Potsdam, NY 13699, USA*

6    *b Department of Mechanical and Aeronautical Engineering, Clarkson University, 8 Clarkson*  
7    *Avenue, Potsdam, NY 13699, USA*

8    **Abstract**

9    The discrepancies between kinetic model predictions and experimental observations of two-  
10    dimensional (2D) nucleation-mediated growth of silicon limits modeling reliability for existing  
11    and new crystal growth processes. Molecular dynamics (MD) simulations were performed to  
12    identify the mechanism of evolution of crystallites on a Si (111) facet and semi-quantitatively  
13    describe 2D nucleation kinetics using the forced-velocity solidification (FVS) and free-  
14    solidification (FS) MD simulations techniques. Both MD models predicted similar nucleation  
15    expressions but gave lesser nucleation energy barriers than predicted from Monte Carlo (MC)  
16    nucleation model. The estimated nucleation rate from MD was fitted to a polynuclear growth  
17    model to estimate a 2D kinetic model and compared to available experimentally reported growth  
18    rates. The Si (111) facet velocity model derived from the kinetic coefficient given in this work  
19    generally provided more conservative estimates of undercooling and the minimum undercooling  
20    that may result in kinetic roughening transition. In addition, the FVS model implemented in this  
21    work provided a unique opportunity for qualitatively describing the behavior of a crystal-melt  
22    interface and gave a molecular-level perspective on the interface stability criterion for the growth  
23    of single-crystal silicon during the horizontal ribbon growth (HRG) process.

24    **Keywords:** A1. Computer simulation, A1. Growth models, A2. Growth from melt, A2. Single  
25    crystal growth, B2. Semiconducting silicon, B3. Solar cells

26    \*Corresponding author email address: *epaek@clarkson.edu* (Eunsu Paek)

27 **1. Introduction**

28 Two-dimensional (2D) nucleation is a critical process for the growth of crystals such as silicon  
29 that develop facets as they grow from the melt. During nucleation-controlled growth on a substrate,  
30 crystal layers are born on the faceted surface of the substrate and spread to fill the surface. Over  
31 the years, extensive investigations of Czochralski growth (CZ) [1]–[3] have revealed that  
32 undercooling is needed for new layers (i.e., facets) to nucleate during crystal growth. Upon  
33 nucleation of facets at the coolest part of the solid-liquid interface, they are propagated along steps  
34 vicinal to the crystal-melt interface before kinetic roughening sets in at higher undercooling. The  
35 faceting at the solid-liquid interface of silicon has received renewed research interest [4]–[6] in the  
36 development of the horizontal ribbon growth (HRG) [7]–[9] process for efficiently growing high-  
37 quality silicon crystals from undercooled melt for solar cell applications.

38 During the HRG process, low-defect crystals are grown by continuously pulling a thin sheet of  
39 crystalized material off from a pool of molten silicon, where the growth of the sheet is maintained  
40 by a cooling source such as a helium jet. The advantages of HRG over Czochralski growth include  
41 an extended surface area for efficient heat removal and latent heat dissipation, faster growth rates,  
42 minimal material losses [10], and cheaper wafer production cost [11]. Helenbrook *et al.* [4]  
43 recently identified the existence of a facet at the triple junction point (i.e., where solid liquid and  
44 gas meet), indicating that the growth edge should be modeled as a facet rather than a low-angle  
45 wedge [4], [5].

46 To better understand the behavior of the growth tip of HRG-silicon and predict growth limiting  
47 factors, knowledge of facet nucleation parameters is required. Much of our understanding of  
48 nucleation at solid-liquid interface comes from classical nucleation theory (CNT) [12]–[14].  
49 According to CNT, the two-dimensional nucleation rate ( $\dot{N}$ ), expressed as nucleation events per  
50 unit time and area, is an exponential function of the inverse of undercooling ( $\Delta T$ ) represented as,

51 
$$\dot{N} = \frac{1}{2} = e^{-x(\rho \Delta T)} = e^{-x(\rho \frac{\Delta T^2}{2})} \text{ with } \rho = \frac{2\sigma T}{2} , \quad (1)$$

52 where  $\frac{1}{2}$  is the nucleation frequency of monolayer two-dimension islands,  $\rho$  is the pre-exponential  
53 factor,  $\sigma$  is the Boltzmann constant,  $\Delta T$  is the undercooling,  $A$  is the interfacial area,  $\sigma$  is the  
54 mass per unit area of a single Si (111) layer of atoms,  $\Delta H_f$  is the latent heat of fusion per unit mass,

55 and  $\gamma$  is the line tension between a layer of solid and liquid,  $\Delta G$  is the nucleation energy barrier  
56 can, and  $T$  is the temperature.

57 Despite the availability of the CNT model, experimental investigation of nucleation is difficult,  
58 and the determination of physical parameters is uncertain [15]. For instance, determining the  
59 nucleation rate ( $\dot{N}$ ) and line tension ( $\gamma$ ) between the solid and liquid (described in **Eq. 1**) is  
60 complicated, and there are no verified data from the literature [16], [17]. The associated difficulty  
61 with nucleation and crystal growth experiments leaves the subject of determining parameters to  
62 computer simulations [18]–[26] because of their ability to model atomic interactions and describe  
63 the trajectory of atoms during phase change. Although simulations capture the fundamentals of  
64 realistic nucleation theories, they use relatively small ensembles□ accessible to the current  
65 computing power□ and idealized interatomic potential, allowing only qualitative comparisons  
66 with experiments [15]. However, simulation data may be fitted to a model [27] that considers the  
67 relative contribution of nucleation rates and step-growth velocity to provide some quantitative  
68 comparison with experimental data [18], [28].

69 The two computational tools commonly used for tracking the time evolution RIDMMWHPMELWLDO□  
70 configuration are molecular dynamics (MD) and Monte Carlo (MC) simulations [15]. Although  
71 both models describe nucleation to be a stochastic process, MD models the phase space trajectory  
72 of an ensemble by solving NewWRMHTXDWLRLRIPRWLRZKLOH. These phase transitions in  
73 lattice models such as the Ising model [15], where a small change in free energy drives the change  
74 in thermodynamic properties. However, the time-dependent nature of nucleation from molecular  
75 simulations makes the attainment of steady-state nucleation rates more unlikely, with the departure  
76 from steady-state more pronounced for higher cooling rates ( $\sim 500$  K/ns) for a Lennard Jones liquid  
77 [15]. For instance, during quenching (cooling a liquid at high rates) simulations, unsteady  
78 nucleation arises from the fast-changing nature of cluster sizes before relaxation at a given  
79 temperature [15]. More recently, Prado *et al.* [29] employed MD to study the spontaneous  
80 nucleation of BaS from supercooled liquid and calculated steady-state nucleation rates that are  
81 valid for nucleation times larger than the typical relaxation time of supercooled liquids.

82 Despite the successes of MD in studying fundamental growth processes, to the best of our  
83 knowledge, MD has not been employed to quantitatively describe two-dimensional (2D)  
84 nucleation kinetics for the faceted growth of silicon on a silicon substrate. The silicon 2D kinetic

85 coefficient primarily used in analytical and numerical [4], [6], [30] modeling of faceted growth of  
 86 silicon was derived from nucleation rate determined from MC simulations fitted to a growth model  
 87 [27] to match experimentally observed growth rates [18]. However, the 2D kinetic coefficient  
 88 presented in ref. [18]□ and its subsequently corrected version [31], [32]□ estimates critical  
 89 undercooling as  $\sim 4.7$  K, which differs by about 3.2 K compared to experimental observations [33]□  
 90 [37], and does not capture kinetic transitions within the undercooling regime experimentally  
 91 reported [38], [39] for the growth of faceted dendrites. In this paper, we attempt to approximate a  
 92 2D nucleation rate model from molecular dynamics to provide an alternative kinetic model for  
 93 describing the faceted growth behavior of silicon and possibly predict kinetic transition that may  
 94 occur at elevated undercooling.

95 In this study, we implement two distinct MD solidification techniques, namely the free-  
 96 solidification [19], [25], [26], [40] and the forced-velocity solidification (FVS) [21], [22], [41]  
 97 models to assess reliability of molecular-level nucleation data. Our goal is to observe facet  
 98 nucleation and growth, determine critical nucleation parameters for kinetic modeling, and discuss  
 99 the fundamental behavior of an HRG crystal-melt interface. In the next section, we provide a  
 100 comprehensive description of our computational methods followed by the discussion of results,  
 101 including the evolution of crystallites on Si (111) via a 2D nucleation-controlled mechanism, the  
 102 determination of 2D nucleation rates, determination of 2D kinetic model for prediction of  
 103 undercooling, and the applicability of the FVS simulation model for the description of interface  
 104 mobility and heat flow across the solid-liquid interface during HRG.

## 105 **2. Interatomic Potential and Computational Method**

106 In this work, MD simulations are performed using the large-scale atomic/molecularly massive  
 107 parallel simulator (LAMMPS) [42]. We modeled the Si-Si interaction with the Stillinger-Weber  
 108 (SW) potential [43], which is given by

$$109 \quad \epsilon(r) = \epsilon_2(r) + \epsilon_3(r) \quad (3)$$

$$\epsilon_2(r) = \begin{cases} \epsilon_2^+ - \epsilon_2^- & r < r_c \\ 0 & r > r_c \end{cases} \quad (4)$$

$$110 \quad \epsilon_3(r) = \begin{cases} \frac{1}{2} \left( \frac{r}{r_c} - \frac{r}{r_c} \right)^2 & r < r_c \\ 0 & r > r_c \end{cases} \quad (4)$$

111 
$$3(\ , \ , \ ) = [ \ - \ o ]^2 [ \ ] [ \ ]. \quad (5)$$

112 The SW potential describes the interactions between silicon atoms  $i$  and  $j$  as a sum of two-body  
 113 and three-body interactions. The 2-body potential energy term  $\epsilon_2$ , in **Eq. 4** is a function of radial  
 114 distance  $r$  between the interacting atoms and is defined as a combination of exponential and  
 115 inverse power functions. In **Eq. 4**,  $\epsilon$  is a constant in energy units,  $\sigma$  is a constant in distance units,  
 116 while  $\alpha$ ,  $\beta$ ,  $\gamma$ , and  $\delta$  are all unitless constants. On the other hand, **Eq. 5** gives the 3-body potential  
 117 energy term ( $\epsilon_3$ ) as a function of three-way radial distances  $r_1$  and  $r_2$  between three interacting  
 118 silicon atoms. Here,  $\alpha$  and  $\beta$  are unitless constants,  $\theta$  is the angle between  $\mathbf{r}_1$  and  $\mathbf{r}_2$ , and  $\epsilon_0$   
 119 is a constant equal to -1/3. **Eq. 5** combines exponential and cosine functions that account for the  
 120 translational and rotational symmetry of the diamond structure of crystalline silicon.

121 FVS simulations involve applying a uniform displacement to all atoms every timestep in a  
 122 direction perpendicular to a crystal-melt interface located between two heat baths. This establishes  
 123 a macroscopically steady growth scenario. The interface temperature is then monitored as a  
 124 function of steady-state growth rate to investigate kinetics. Conversely, in the FS simulations, a  
 125 uniform temperature below melting point is applied to a crystal-melt simulation domain such that  
 126 crystals grow into the undercooled melt at a rate comparable to the expansion of the solid domain.  
 127 For both simulation techniques, the following initialization procedure was used to generate the  
 128 solid-liquid cell. We set up a simulation cell containing 36,864 crystal atoms with dimensions  
 129  $46.33 \times 53.50 \times 300.69 \text{ \AA}^3$ . The interfacial area employed here is considered large enough to  
 130 avoid finite-size effects based on previous works [19], [22]. We used a lattice spacing of 5.43  $\text{\AA}$ ,  
 131 oriented silicon (111) along the z-axis to serve as the growth direction and applied periodic  
 132 boundary conditions in all axes. Next, the system's potential energy was minimized, and random  
 133 Gaussian velocities were assigned to all atoms, followed by equilibration at 1000 K for 50 ps. The  
 134 system was placed in a canonical ensemble while heated to a temperature of 1525 K  $\square$  a value  
 135 lower than the reported equilibrium temperature range (i.e., 1677-1692 K) [19], [44]-[46] for SW  
 136 silicon  $\square$  and equilibrated for 100 ps. Half of the cell was melted by heating to 3000 K and  
 137 equilibrating for 100 ps, keeping the crystal half fixed. The melt region is then cooled to a  
 138 temperature of 2125 K, a temperature significantly higher than SW silicon melting point, and then

139 equilibrated for 100 ps. The resulting solid-liquid configuration (see **Fig. 1**) served as the starting  
140 point for the production runs for both the FVS and FS simulations.

141 In crystal growth simulations from initial solid-liquid cells, the size of solid and liquid domains  
142 may be even [19], [22], or a larger liquid domain [21] may be used to minimize artifacts. Since  
143 FVS has not been implemented for SW silicon, we conducted initial simulations (summarized in  
144 **Fig. S1-2 of the supporting information**) to determine the appropriate solid-liquid configuration.  
145 Our findings showed that a configuration with a larger liquid domain and a small thermal gradient  
146 ( $\sim 0.36 \text{ K}/\text{\AA}$ ) applied across the heat source and sink allowed for a narrow pull speed range (0.01 -  
147  $0.02 \text{ \AA}/\text{ps}$ ) that kept the interface far from the heat sink, resulting in insufficient data for  
148 establishing growth-undercooling relationships. Hence, we implemented a simulation domain  
149 (**Fig. 1a**) with a large thermal gradient of  $\sim 4.63 \text{ K}/\text{\AA}$  applied across the solidification and melting  
150 fronts. The temperature was maintained at 1525 K and 2125 K within two evenly-spaced thin  
151 regions (of thickness  $\sim 17 \text{ \AA}$ ) by velocity rescaling using the Berendsen thermostat [47] relaxed  
152 every 0.1 ps. Next, continuous pulling at velocities ( $v$ ) ranging from 0 -  $0.045 \text{ \AA}/\text{ps}$  was imposed  
153 on the entire system by adding  $vdt$  displacements to all atoms every time step ( $dt$ ) in the growth  
154 direction. Desired pulling speed is reassigned every nanosecond to minimize drifting since the  
155 system's momentum is not fixed. For energy conservation, the entire domain was placed in a  
156 microcanonical ensemble ( $NVE$ ) so that the number of atoms ( $N$ ), the volume ( $V$ ), and energy ( $E$ )  
157 stayed constant throughout the simulation. Thermodynamic properties are monitored with  
158 simulation time until the macroscopic properties reached steady-state and the interface became  
159 immobile.

160 In the FS simulations shown in **Fig. 1b**, solidification was carried out in canonical ensemble ( $NPT$ )  
161 with a constant number of atoms ( $N$ ), pressure ( $P$ ), and temperature ( $T$ ). We fixed the x and y  
162 dimensions of the cell, controlled only the z-component of pressure ( $P_z = 0$ ) using the Nose-Hoover  
163 algorithm, and varied the solidification temperature (i.e., thermostat set temperature) between 1647  
164 and 1674 K. The growth rate in the z-direction,  $\dot{z}$ , is estimated using

$$= \frac{3}{2} \cdot \frac{\dot{z}}{v}, \quad (6)$$

165 where  $a$  is lattice spacing equal to 5.43 Å,  $N$  is the number of atoms in diamond silicon crystal  
166 structure equal to 8,  $A$  is the area of the interface, and  $\dot{\gamma}$  is the liquid-to-solid conversion rate of  
167 silicon atoms.

168 For all simulations, the integration of Newton's equation of motion was performed using the  
169 velocity Verlet algorithm [48] at a timestep of 1 fs. Simulations at a given pulling speed for the  
170 FVS model or temperature for the FS model were independently reproduced over three initial  
171 solid-liquid configurations to ensure statistical accuracy.

### 172 **3. Results and discussion**

#### 173 *3.1. Observation of Crystal Growth*

174 This section explains the nucleation and growth behaviors of the forced-velocity solidification  
175 (FVS) and free-solidification (FS) molecular dynamics (MD) models. The extended version of the  
176 common neighbor analysis (CNA) implemented by Maras *et al.* [49], [50] in the Open Visual Tool  
177 (OVITO) [51] program is used to distinguish liquid and crystalline structures because of its  
178 suitability for materials that crystallize in the diamond structures like silicon [52]. **Figure 2** shows  
179 the molecular-level crystal growth process from solid-liquid interfaces, with the snapshot at 0 ns  
180 representing the initial solid-liquid configuration before the onset of crystallization. The atomic  
181 arrangements of atoms corresponding to the different color codes given in **Fig. 2** are presented in  
182 **Fig S3** to show the single-crystal atoms are grown on each monolayer. For the FVS model,  
183 solidification and melting is continuous after reaching a steady-state (at ~4 ns as shown in **Fig.**  
184 **S4a**) irrespective of the pulling speed imposed on the system. For example, at a pulling rate of  
185 0.02 Å/ps, the red-colored reference crystal layer (i.e., lower red-colored at 0 ns) in **Fig. 2a** is  
186 pulled across an axial distance equivalent to ~48 layers thickness (a single layer thickness is 3.13  
187 Å) before melting after ~8.5 ns of constant pulling, yielding approximate growth/melting rates of  
188 0.018 Å/ps. In general, the measured growth rate from the FVS technique was found to be 13%  
189 lower than the requested pull speed (plotted in **Fig. S4b**), which we corrected by using the  
190 measured growth rate for all calculations.

191 On the other hand, in the FS model shown in **Fig. 2b**, ~18 layers nucleate and grow from each of  
192 the two initial solid-liquid interfaces (i.e., the layers with light blue atoms at 0 ns) as the

193 undercooled silicon melt is consumed (diminishing of the grey liquid particles), highlighting the  
194 transient nature of the solidification front. One of the difficulties with the FS model is tracking the  
195 interface temperature and position because of the movement of the growth interfaces until the  
196 entire simulation domain is crystallized, so the thermostat temperature is generally taken as the  
197 interface temperature.

198 *3.2. Atomic Evolution of Crystallite*

199 In **Fig. 2**, the crystal-melt interfaces remained atomically flat for relatively large undercooling and  
200 growth rates. The observation of flat interfaces is not surprising from MD simulations as Buta *et*  
201 *al.* [19] reported silicon solid-liquid interfaces at undercooling up to 40 K. Fujiwara [53] attributed  
202 the molecular-scale planar interface to high step velocities measured on the Si (111) interfaces. In  
203 this section, by back-tracking the trajectory of a monolayer-thick slice to observe the changes in  
204 the atomic arrangement of atoms inside the slice as they approach the interface from the melt  
205 phase, we discuss the origins of the planar interface seen in MD for Si (111) facet and  
206 fundamentally explain the mechanism of 2D nucleation. An example from the FVS simulation at  
207 a pulling speed of  $\sim 0.01 \text{ \AA}/\text{ps}$  is presented in **Fig. 3a**. The inset figures show the crystal coverage  
208 of the interface with liquid atoms removed for a more precise observation of the process. From  
209 **Fig. 3a**,  $\sim 50$  crystal atoms (crystallites) emerge from the melt at a distance of  $\sim 3.13 \text{ \AA}$ , equivalent  
210 to one layer thickness away from the stationary interface. However, crystallites growth was slow  
211 until an interface coverage of 0.4 was reached due to the competition between the formation and  
212 dissolution of crystallites. Interestingly, the surface coverage of 0.4 corresponds to a cluster size  
213 of  $\sim 150$  atoms, consistent with the approximate critical cluster size required for the growth of  
214 silicon crystallites [23], [24]. As the slice moved closer to the interface, the clusters grew more  
215 rapidly, and their atomic arrangement became more orderly. Other samples layers (not shown here)  
216 from both MD models showed a similar crystallite growth trend.

217 Also, in **Fig. 3b**, we illustrate the mechanism for continuous growth in the FVS domain by  
218 considering the trajectory of a single layer (upper panels) sitting atop a flat one-layer thick Si (111)  
219 substrate (bottom panels) that had earlier evolved from the melt phase. The circles in the upper  
220 panel at 30 ps show nucleation sites inside a pool of undercooled melt. As simulation time  
221 proceeded to 90 ps, smaller adjacent clusters grew and merged to form an oversized island that  
222 expanded to create a nearly complete layer at 200 ps. The corresponding snapshots of the substrate

layer shown in the bottom panels show that a substrate layer is almost entirely formed (~ 90%) before another 2D island nucleates above it, indicating that growth occurs layer-by-layer. The molecular observation presented here sheds some light on the competing mechanisms of island nucleation and expansion. Typically, the island nucleation rate is predicted to be either faster than the island expansion rate or vice versa [12] [25]. In the former scenario, nucleation time is short so that more than one nucleus $\square$  and consequently more than one layer $\square$  may grow simultaneously (polynuclear growth). By contrast, for a faster island expansion rate, a nucleus formed in a pool of undercooled melt spreads in a two-dimensional manner to form a single layer which becomes a substrate for the next layer to grow, and so on. However, the observations from this work suggest that both events may not be entirely mutually exclusive on an atomic level. The rapid island expansion underlying the layer-by-layer growth mode from MD simulations results from the nucleation and merger of smaller crystallites atop the substrate layer to form a critical-sized single bi-dimensional island that eventually fills the surface. Hence, we provide an atomic-level understanding of the origins of flat crystal-melt interfaces during the nucleation-mediated growth of crystals from undercooled melt.

### 3.3. Nucleation Rate-undercooling Relationship

The relationship between solidification rate and undercooling ( $\Delta T$  ) is derived from the MD simulation. The undercooling is estimated as the difference between interface temperature (T) and the equilibrium melting temperature. Here, equilibrium melting temperature corresponds to the interface temperature (~1691 K) at roughly zero-growth velocity for the FVS simulations and a temperature of ~1677 K [19] for the FS simulations. In the FVS simulation, the measured growth rates are known from the pulling speeds ranging from 0.01 $\square$ 0.045 Å/ps, so their corresponding interface temperatures are determined from the intersections of the fitted thermal profile of the solid and liquid domains that developed inside the solidification front, as illustrated in **Fig. 4a** for a growth rate of ~0.01 Å/ps. On the other hand, the addition of one Si (111) layer thickness (corresponding to 384 interfacial atoms) at a time for a temperature range of 1647  $\square$ 1671 K (shown in **Fig. 4b**) in the FS simulation domain indicate layer by layer growth until the domain is fully crystallized. The T = 1671 and 1665 K curves show nucleation-limited growth with long pauses between nucleation and layer growth, but the average time for monolayer nucleation becomes shorter as the undercooling increases. The trend in layer addition in the FS model is qualitatively

253 similar to that of ref. [18] but a quantitative comparison of the MD and MC predictions may be  
254 difficult due to differences in the time and length scales. For instance, at equal undercooling of 18

255 ████

256 ████ The best-fit slopes from **Fig. 4b** are inserted to **Eq. 6** to  
257 determine the axial growth rates at the respective growth temperatures (or undercooling).

258 Assuming the time between the nucleation of each Si (111) monolayer represents the average time  
259 between critical nucleation events, the average two-dimensional nucleation rate can be estimated  
260 at each undercooling since the interfacial area is known. For the nucleation rates, (in units of  $\text{m}^{-2}\text{s}^{-1}$ ), plotted in **Fig. 4c**, we focused on moderate undercooling that gave the linear responses  
261 between the logarithm of nucleation rates and reciprocals of undercooling ( $1/\Delta T$ ). For FVS and  
262 FS simulations, undercooling values greater than 24 K and 12 K were respectively considered.  
263 Expressions similar to **Eq. 1** were derived from data shown in **Fig. 4c** to extract the pre-exponential  
264 and exponential factors. The individual nucleation rate models derived for the FVS and FS models  
265 are  $1.0 \times 10^7 \text{ e}^{-\frac{459}{\Delta T}}$  and  $6.4 \times 10^6 \text{ e}^{-\frac{383}{\Delta T}}$ , respectively as shown in see **Fig. S5a**. The contrast between the MD methods suggests nucleation rates may be slightly faster in the  
266 FVS model within a higher undercooling regime, and rates in the FS model may proceed more  
267 quickly as the undercooling approaches zero. The slight disparity between predictions of both MD  
268 methods may be related to the precision of interface temperature. For the FVS, interface  
269 temperature is determined at the solid-liquid junction, accounting for latent heat release during  
270 phase change which is not the case for FS simulations where a thermostat controls the interface  
271 temperature [54]. The latent heat release is expected to warm up the FVS interface, resulting in  
272 lesser undercooling for comparable growth rates and consequently larger nucleation kinetics than  
273 predicted by the FS model. However, from **Fig. 4c**, we see that the nucleation rates predicted by  
274 the FVS and FS models are pretty consistent in the overlapping undercooling region. Thus, a best-  
275 fit for the nucleation rate-undercooling relationship derived by combining the FVS and FS MD  
276 nucleation data shown in **Fig. 4c** is  $\dot{N}_2 = 9.0 \times 10^6 \text{ e}^{-\frac{439}{\Delta T}}$ . The MD nucleation rate  
277 compares to  $1.1 \times 10^7 \text{ e}^{-\frac{140}{\Delta T}}$  estimated from the MC method [18], [31] (also shown in **Fig.**  
278 **4c**). The MD and MC results comparison implies that the faster nucleation and growth rates  
279 observed in MD may be attributed to the lower (~ 69%) nucleation energy barrier required to form  
280 a Si (111) layer. However, nucleation rates from MD and MC model become comparable at  
281

283 infinitely large undercooling as the pre-exponential factors differ by only  $\sim 8\%$ . While the disparity  
 284 between the MC and MD prediction of nucleation parameters may explain why crystal layers grow  
 285 faster in the MD domain at comparable undercooling as observed in **Section 3.3**, the cause of the  
 286 disparity is tricky to explain. It is uncertain how the MC time and length scale differs from our  
 287 MD simulations since ref [18] did not explicitly describe their solidification configuration and  
 288 simulation domain size. Alternatively, we may explain the lower nucleation barrier from MD  
 289 simulations by the fact that the nucleation of the critical-sized 2D cluster from the merger of  
 290 undersized clusters occurs atop a well-formed Si (111) crystal (substrate) layer [19].

291 *3.4. Prediction of Undercooling for Experimentally Reported Facet Growth Rates*

292 Although nucleation rates from computer simulations occur on time and length scales inaccessible  
 293 by experiments, Obreten and co-worker [27] proposed a facet velocity,  $v_f$ , model independent of  
 294 surface area and valid for higher growth velocities. This model is given by:

295 
$$v_f = \frac{1}{3} \frac{2}{3} \frac{1}{3} \quad , \quad (7)$$

296 where  $h$  is the height of a single layer (3.13 Å),  $\Gamma$  is the two-dimensional nucleation rate,  $v_s$  is the  
 297 spreading velocity of a monolayer step,  $\alpha$  is a numerical coefficient near unity ( $\sim 0.97$ ),  $\beta$  is a  
 298 geometric factor ( $\sqrt{3}$  for circle and 4 for square). We take  $\alpha = 0.63$  m/s [30] which is consistent  
 299 with MD [19] and experimental [55] predictions and MD approximation of nucleation rate for  
 300 to estimate a 2D nucleation kinetic coefficient (in m/s/K units) given by  $3.4 \times 10^1 e^{-\frac{1.46}{T}}$ . This coefficient compares to  $2.2 \times 10^1 e^{-\frac{4.66}{T}}$  estimated  
 301 from MC data given in ref. [18].

303 Using parameters from molecular dynamics, the facet growth rate model in **Eq. 7** is extrapolated  
 304 to low undercooling values not captured in the nucleation model determined from simulation  
 305 data as shown in **Fig. 5**. Using the facet velocity versus undercooling curve (**Fig. 5**), the  
 306 undercooling at experimentally reported solidification rates can be predicted. For comparison, the  
 307 curve predicted from the MC simulation-derived 2D kinetic model is provided as well. Firstly, at  
 308 a typical CZ growth rate of  $3 \times 10^5$  m/s (see inset of **Fig. 5**), the MD kinetic model gives an  
 309 undercooling of 1.5 K compared to 4.7 K approximated from MC kinetic coefficient by Beatty and  
 310 Jackson [18]. Although experimental validation of simulation prediction is tricky due to varying

311 conditions at which experiments were performed, reliable investigations for low-defect facet  
312 nucleation and growth estimated undercooling to be between 1.5 and 1.7 K for CZ growth rate  
313 [56], [57].

314 With increasing undercooling, there is an exponential surge in facet growth rate. We assume the  
315 surge in growth rate corresponds to kinetic roughening transition known to occur at higher  
316 undercooling [28]. Physically, kinetic transitioning indicates a change in growth mechanisms  
317 associated with the transformation of grown crystal structures from single-crystalline to faceted-  
318 dendrite at higher undercooling, as suggested by recent *in situ* observations showing faceted-  
319 dendrites growth of silicon sets in at  $\sim$ 10 K undercooling [38], [39]. To estimate the onset of kinetic  
320 roughening, we found a linear fit for the growth rate-undercooling curve (i.e., an extension of **Fig.**  
321 **5** shown in **Fig. S5b**) corresponding to 0.085 m/s/K, a value comparable with the rough growth  
322 kinetic coefficients (in units of m/s/K) of  $\sim$ 0.12 for the (100) orientation [19] and  $\sim$ 0.12/  $\sqrt{2}$  (0.085)  
323 expected for the (110) orientation [22], [40]. The agreement between the linear fit and rough  
324 growth kinetics supports the argument of a kinetic transition at large undercooling. On the other  
325 hand, the linear fit for the extended MC curve also shown in **Fig. S5b** at higher undercooling  
326 resulted in a slope of 0.028 m/s/K, which is significantly smaller than the rough growth kinetic  
327 coefficient. Hence, the kinetic transition point is predicted by finding the least undercooling where  
328 there is a significant deviation between the linear fits described above and their corresponding  
329 original curves. The respective kinetic transitioning undercooling values extracted from the MD-  
330 and MC-based models are  $\sim$ 9.5 K and  $\sim$ 19.5 K, corresponding to 5% and 95% deviations from  
331 reported experimental observation of 10 K. The analysis presented in this section reveals that the  
332 MD-derived 2D kinetic coefficient captures a possible kinetic transition at higher undercooling.

333 Next, we compare the prediction of the MD kinetic model to the experimentally reported rates for  
334 the horizontal ribbon growth (HRG) of silicon from its melt to approximate undercooling at  
335 corresponding growth rates and verify the possible growth regime. At a growth rate of  $7 \times 10^3$   
336 m/s reported by Kudo *et al.*'s [58], the respective undercooling predicted from the MD and MC  
337 kinetic data are 3.2 K and 9.4 K. Bates and Jewett's [59] growth rate of  $1.4 \times 10^2$  m/s  
338 corresponds to undercooling values of 3.6 K and 10.7 K from the MD and MC models,  
339 respectively. And lastly, at a growth rate of  $2 \times 10^3$  m/s reported by Helenbrook *et al.* [4], MD  
340 and MC kinetic models give undercooling values of 2.6 K and 7.7 K, respectively. For all the

341 experimental growth rates mentioned above, the MD-derived kinetic model gave lower estimates  
342 of undercooling than MC kinetic data. The disparity between the MD and MC facet velocity model  
343 predictions may be directly attributed to the differences in nucleation rates and step kinetics from  
344 both simulation techniques.

345 Interestingly, at reported HRG growth rates [4], [58], [59], the corresponding undercooling values  
346 estimated from the MD-derived kinetic model are below the experimental lower limit of 10 K for  
347 the kinetic transition. This observation suggests it may be possible to grow single crystals at growth  
348 rates (stated above), assuming faceted growth mechanism controls. However, the unexpectedly  
349 low limiting growth rates ( $2 \times 10^3$  m/s) attained in the most recent HRG experiment [4]  
350 underscores the possibility of limiting factors such as heat flow, competing growth mechanisms in  
351 different crystallographic directions, grain boundary formation, or the presence of impurities in  
352 the melt. While we briefly discuss heat flow behavior across the crystal-melt interface here, the  
353 other limiting factors are subjects beyond the scope of this work and are currently being explored  
354 for future research.

355 *3.5. Applicability of FVS to HRG*

356 Lastly, we discuss the application of the FVS model for investigating the crystal-melt interface  
357 behavior of HRG-silicon. The constant-rate solidification at the solid-liquid interface located  
358 between a heat source and sink in the FVS approach closely models the HRG process in which  
359 molten silicon flows onto a cooled-flat surface for onward extraction of thin sheets of silicon at a  
360 constant pull speed. The cyclic melting and solidification in the FVS model are also akin to the  
361 melt replenishment that drives the continuous growth in horizontal growth processes. Although  
362 the FVS crystal-melt interface discussed here is considered a two-phase junction which is different  
363 from the HRG triple junction growth tip (i.e., comprising of a solid-liquid interface in contact with  
364 a gas phase), it provides a molecular perspective on the dynamics of heat flow within the bulk  
365 liquid and solid adjacent the interface.

366 The HRG is especially facilitated by the change in electrical and thermal properties of silicon as it  
367 goes through a liquid-solid phase change [60]. The potential energy and temperature profiles  
368 across the simulation cell with pull speed ranging from 0.005 to 0.045 Å/ps are presented in **Fig.**  
369 **6**. The typical change in bulk properties (see **Fig. 6a**) from liquid to solid signifies phase change  
370 across an interface region approximately 12 Å wide. Beyond a pull speed of 0.04 Å/ps, increasing

371 uncertainty in interface position (i.e., the broadening of the interfacial width from the potential  
 372 energy profile) within the solidification front develops, followed by the pulling of the interface  
 373 against the heat sink (boundary of the solidification front) at higher growth rates. We focus on the  
 374 pull speeds that kept the interface immobile within the solidification boundary for the discussion  
 375 here.

376 During crystal growth from the melt, thermal gradients develop because of the evolution and  
 377 absorption of latent heat [54]. Likewise, during phase transition in the FVS model, different  
 378 temperature gradients evolve in the melt-side and crystal-side of the interface (see **Fig. 6b**) in  
 379 response to the density drop (in a similar fashion as the potential energy drop shown in **Fig. 6a**)  
 380 accompanying latent heat release. The linearity of the temperature profiles developed inside the  
 381 solidification front stems from the large thermal gradient (4.63 K/Å) applied across the  
 382 solidification front. As pulling speed increased, ~~WKHPHOWVJUDGLHWGHEUHDVHGIURPIWWR~~ in contrast, resulting in  
 383 5.00 K/Å while ~~WKHMROLGMJUDGLHWLEUHDVHGIURPIWWR~~ in contrast, resulting in

$$\frac{d}{dx} - \frac{d}{dx} = , \quad (9)$$

384 the downstream (leftward) movement of the crystal-melt interface observed in **Fig. 6a**. Similar  
 385 trends were reported from both experiments and numerical simulations of the HRG process [4],  
 386 [6], [11], [61]. We explain the physics of the shift in interface position by considering the crystal-  
 387 melt interface boundary condition [60] for an established stable melt zone given by:

388 where constants  $\kappa_s$ ,  $\kappa_l$ ,  $T_c$ ,  $T_h$ ,  $\rho_s$ , and  $Q$  correspond to solid conductivity, liquid conductivity, the  
 389 cold bath temperature, the hot bath temperature, solid density, and latent heat, respectively. Also,  $\alpha$ ,  
 390  $\beta$ , and  $\gamma$  are interface temperature, lengths of solid, liquid domains, and pull speed, respectively. **Equation**  
 391 **9** considers only conductive heat transport in line with the previous prediction of dominant  
 392 conductive heat flux during steady-state heat flow through the growth interface [6], [60]. The  
 393 assumption of conductive heat flow dominating advection heat flow is reasonable for the FVS  
 394 model considering the huge thermal gradient (the thermal gradient is proportional to the conductive  
 395 heat flux) across the solidification front. Therefore, we expect the latent heat component (i.e., right  
 396 side of **Eq. 9**) to increase with pulling speed. In response, the solid conductive heat flux (first term  
 397 on the left side of **Eq. 9**) increases by shrinkage of the solid domain (decrease in  $\gamma$ ) while the

398 liquid conductive heat flux decreases by expansion of liquid domain (increase in  $\Delta T$ ) to balance the  
399 increase in latent heat flux, leading to the downstream movement of the interface. Consequently,  
400 the solidification front boundary dictated by  $\Delta T$  sets the limit for the pulling speed attainable for  
401 a given driving force (available solidification front thermal gradient).

402 The maximum pull speed from the FVS solidification model that maintained the interface within  
403 the solidification boundary was identified to be 0.04 Å/ps. Beyond this limiting pull speed, the  
404 crystal-melt interface became unstable due to the imbalance between the crystal contraction (~60%  
405 rise of thermal gradient estimated from **Fig. 6b**) and the melt expansion (~40% drop in thermal  
406 gradient calculated from **Fig. 6b**). The slower decline of the melt-side gradient compared to the  
407 rise of the crystal-side gradient implies a slow rate of heat removal from the melt, which is  
408 detrimental to the stability of the interface. For the first time using molecular-level simulations,  
409 we report that large heat flux in liquid is necessary for the stability of a growing ribbon at high  
410 pull speeds. Pirna and Helenbrook [6] reached a similar conclusion from analytical and numerical  
411 analyses that pull speed limitation during the HRG process depends on the magnitude of the heat  
412 flux in the liquid at the triple junction point (TJP). Noronha and Ydstie [62] also suggested the  
413 preferential heat removal from the liquid as a stability criterion for the TJP. In addition, this work  
414 offers a molecular dynamics perspective on the critical role of melt heat flux in the HRG process.

#### 415 **4. Conclusions**

416 The main aim of this paper is to determine a two-dimensional kinetic coefficient from molecular  
417 dynamics (MD) that could describe the experimental growth rates of silicon single-crystals.  
418 Consequently, we employed forced-velocity solidification (FVS) and free solidification (FS)  
419 simulation techniques to model crystal-melt interfaces at different growth rates. In both MD  
420 methods, we report rapid nucleation and spreading of nuclei to form a complete layer atop a  
421 substrate followed by layer-by-layer growth of Si (111) layers. Notably, our extension of the FVS  
422 model to silicon provides a comprehensive account of an alternative molecular approach for  
423 studying nucleation and crystal growth processes. We show that the precision of interface  
424 position $\square$  and by implication, interface temperature $\square$  offered by the FVS method results in a  
425 significantly higher nucleation pre-exponential factor.

426 Furthermore, we determined the dependence of nucleation rates on undercooling from MD  
427 simulations and show that MD simulations predict lower activation energy barriers for the

428 nucleation of new silicon facets compared to MC simulation prediction. Consequently, the derived  
429 2D kinetic coefficient (from MD nucleation data) extrapolated to lower undercooling values  
430 predicted relatively conservative undercooling values for experimentally observable growth rates  
431 reported from the CZ and HRG processes. Also, the MD-kinetic model captures the kinetic  
432 transition typically observed at higher growth rates and undercooling values. For practical  
433 applications, the kinetic model determined in this work could improve the modeling of silicon  
434 crystal growth processes compared to the currently available kinetic models.

435 Lastly, we provide a molecular-level analysis of steady-state heat flow across a crystal-melt  
436 interface of the FVS. The response of interface position to increased pull speed reported from  
437 atomistic simulations agreed with experimental and continuum-level observations for the  
438 horizontal ribbon growth of silicon from an undercooled melt. Furthermore, we report a pull speed  
439 limit related to heat transfer suggesting a substantial melt side heat flux is critical to stabilizing the  
440 crystal-melt interface at high pull speeds. The framework discussed in this work opens up an  
441 opportunity to study the dynamic behavior of crystal-melt interface during horizontal ribbon  
442 growth of silicon for different crystal orientations, which may improve our fundamental  
443 understanding of the origins of the relatively low HRG growth rates.

#### 444 **Acknowledgments**

445 This work was supported by the National Science Foundation under grant CMMI-1762802. We  
446 ~~BBB BBBB~~  
447 for use of their computing resources.

#### 448 **References**

449 [1] ~~JRFKUDOVNLJURZWKRIMLO~~ *Journal of Crystal Growth*, vol. 65, no. 1–3, pp. 189–213,  
450 Dec. 1983, doi: 10.1016/0022-0248(83)90051-9.

451 [2] ~~30RPDVJHZVNLDJRFKUDOVNL~~ father of ~~tKH~~ *Journal of Crystal*  
452 *Growth*, vol. 236, no. 1, pp. 1–4, Mar. 2002, doi: 10.1016/S0022-0248(01)02195-9.

453 [3] ~~SHOKRIIKHSKMLFVRJRFKUDOVNL~~ *WDOJURZWKRIMLO* *perprobleme 27: Plenary*  
454 *Lectures of the David Pshiyosni sc s "S e"mTi hci onn dFui cl ms " " D*  
455 *Mechanics" " Magnetism" " Low Temperature Phy*

456 ( D P G ) Mü n s t e r , M a c r o s s e Ed. Berlin, Heidelberg: Springer, 1987, pp.  
 457 241–263. doi: 10.1007/BFb0107924.

458 [4] % 7HOHEURRN3HOOHUPD%DUOVR%HVDL%G%6X%SHULPHWDODG%  
 459 ■ *Journal of Crystal Growth*,  
 460 vol. 453, pp. 163–72, Nov. 2016, doi: 10.1016/j.jcrysgr.2016.08.034.

461 [5] 3HOOHUPD%HUD%7HOHEURRN6X%LEODLUDG)DUOVR%DODWLJ%  
 462 Silicon Method single crystal ribbon %REVHUYDWLRMDGSURSRVHGOLPLWEFOHVKHRU%  
 463 of *Crystal Growth*, vol. 451, pp. 174–80, Oct. 2016, doi: 10.1016/j.jcrysgr.2016.07.012.

464 [6] 8LUDDG%7HOHEURRNDOMLVR%DFHWG%ROLGLILEDWLR%WKHRUL]RWDOULEER%  
 465 ■ *Journal of Crystal Growth*, vol. 555, p. 125958, Feb. 2021,  
 466 doi: 10.1016/j.jcrysgr.2020.125958.

467 [7] S. WilliDP%URFHVVIRUJURZLJ%JOHEUWDOV86%U%RFHV%HG%  
 468 Mar. 26, 2021. [Online]. Available: <https://patents.google.com/patent/US3031275A/en>

469 [8] JDW6LMKHHWJURZWKEWKKRUL]RWDOMXSSRUWH% 7HOHEURRN%  
 470 vol. 79, no. 1–3, pp. 572–577, Dec. 1986, doi: 10.1016/0022-0248(86)90522-1.

471 [9] 5LEER%URZWKR%6XEMWUDWH% A new approach to high speed growth of silicon  
 472 ■ *Journal of Crystal Growth*, vol. 104, no. 1, pp. 108–12, Jul.  
 473 1990, doi: 10.1016/0022-0248(90)90317-E.

474 [10] 6%UHHOHH%HYHORSPHW%I%PHOWL%DG%GLUHEWLRDO%VROLGLILEDWLR%SURFHVV%  
 475 ■  
 476 Massachusetts Institute of Technology, 2011.

477 [11] \*%OLYHURV%6X%6ULGKDUDG%%G%VWLH%OLFR%DIHUV%RU%RODUHOOV%  
 478 ■ *Ind. Eng. Chem. Res.*, vol. 52, no. 9, pp. 3239–3246, Mar. 2013,  
 479 doi: 10.1021/ie301857p.

480 [12] J. G. Dash, V. A. Hodgkin, and %HWODXIHUMPLFVR%DFHWG%UDL%RGDU%  
 481 ■ *Journal of Statistical Physics*, vol. 95, no. 5, pp. 1311–1322, Jun. 1999, doi:  
 482 10.1023/A:1004579223189.

483 [13] %DK%KHRUR%UWDO%URZWKDG%WHUIDFH%RWLR%UWDOOL%PDW%  
 484 *Metallurgica*, vol. 8, no. 8, pp. 554–562, Aug. 1960, doi: 10.1016/0001-6160(60)90110-3.

485 [14] ~~PHKELDOOLJDG~~ ~~PHDUV~~ ~~KHPROHFXODUPHKD~~ ~~VPRIMROLGLILFDWLR~~   
 486 *Acta Metallurgica*, vol. 12, no. 12, pp. 1421-1439, Dec. 1964, doi: 10.1016/0001-  
 487 6160(64)90130-0.

488 [15] ~~PHOWRDG~~ ~~PHUHHU~~ ~~DSWHU~~ - ~~RPSXWHU~~ ~~ORGHOV~~ *Pergamon Materials*  
 489 *Series*, vol. 15, K. F. Kelton and A. L. Greer, Eds. Pergamon, 2010, pp. 363-389. doi:  
 490 10.1016/S1470-1804(09)01510-7.

491 [16] L. Zou, J. Wang ~~PHVHWWDG~~ ~~PHWHMLRDG~~ ~~WUXEWXUHRIMPHEWLFOLTXLG~~  
 492 crystal multilayers at the air-~~ZDWHUDWHU~~ *Phys. Rev. E*, vol. 76, no. 3, p. 031602, Sep.  
 493 2007, doi: 10.1103/PhysRevE.76.031602.

494 [17] ~~PHOLFK~~ ~~KHMLJ~~ ~~FDEHDGPDJLWX~~ of the line tension in three-phase (solid-liquid-  
 495 *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, vol.  
 496 116, no. 1, pp. 43-54, Sep. 1996, doi: 10.1016/0927-7757(96)03651-5.

497 [18] ~~PHDWWWDG~~ ~~DFNVRORWHDUORPRGHOLRIMOLFRUWDOJURZWK~~ *Journal*  
 498 *of Crystal Growth*, vol. 211, no. 1, pp. 13-17, Apr. 2000, doi: 10.1016/S0022-  
 499 0248(99)00836-2.

500 [19] ~~PHWDOMWDDG~~ ~~ERW~~ ~~HWLEFRHILFLHWRIWWHSM~~ *Dwthe Si(111) crystal-melt*  
 501 *J. Chem. Phys.*, vol. 127, no. 7, p. 074703, Aug. 2007, doi: 10.1063/1.2754682.

503 [20] ~~PHWDOMWDDG~~ ~~ERW~~ ~~WRPLMWLEMPXODWLRMWGXRIWKH~~ *WUXFWXUHDGGDPLEV*   
 504 of a faceted crystal-~~PHOWDWHU~~ *Phys. Rev. E*, vol. 78, no. 3, p. 031605, Sep. 2008, doi:  
 505 10.1103/PhysRevE.78.031605.

506 [21] F. Celestini and J.-O. ~~PHLHUUH~~ ~~RHTXLOLEULXP~~ *PROHFXODUGDPLEV* ~~LPXODWLRRIUDSLG~~  
 507 *Phys. Rev. B*, vol. 62, no. 21, pp. 14006-14011, Dec. 2000, doi:  
 508 10.1103/PhysRevB.62.14006.

509 [22] F. Celestini and J.-O. ~~PHLHUUH~~ ~~PHDXVXULJNHWLEFRHILFLHWV~~ *PROHFXODUGDPLEV*   
 510 *Phys. Rev. E*, vol. 65, no. 4, p. 041605, Apr. 2002, doi:  
 511 10.1103/PhysRevE.65.041605.

512 [23] ~~PH54EKDJDG677H6WUXEWXUDOWUDMLWRLDRVLJHG~~ *WLOLFRFOXVWHUW*   
 513 *Phys. Rev. B*, vol. 65, no. 24, p. 245417, Jun. 2002, doi: 10.1103/PhysRevB.65.245417.

514 [24] 3%HDXFJDJHDG 10RXVVHDX 1%FOHDWLRLG crystallization process of silicon using the  
 515 Stillinger-Heimbrook Rev. B, vol. 71, no. 9, p. 094102, Mar. 2005, doi:  
 516 10.1103/PhysRevB.71.094102.

517 [25] 1DJDWDDDG 1DLWPLWLFPHFKDLVPVIRULHWDWLRLGWHPSHUDWXUH dependence in gold-EDWDOJHGMLOLFRJURZWK of *Journal of Applied Physics*, vol. 122, no. 8, p.  
 518 085106, Aug. 2017, doi: 10.1063/1.4991362.

519 [26] 1HUUDEFKH 1RIUEDFKDG 1ALGHUOROHEXODU-dynamics computer simulation of crystal  
 520 growth and melting in Al 50 1LIII EPL, vol. 81, no. 5, p. 58001, Feb. 2008, doi:  
 521 10.1209/0295-5075/81/58001.

522 [27] 1DEUHWHDVFKLHYDG 9%RVWDRY 8LILHGGHVFULSWLRRIWKHUDWHR 1%FOHDWLRLG  
 523 1 Journal of Crystal Growth, vol. 96, no. 4, pp. 843 848, Aug. 1989,  
 524 doi: 10.1016/0022-0248(89)90644-1.

525 [28] D. M. Herlach, D. Simons, and P.-BLFKRUWWDOLURZWKNLHWLFV 1%GHUFRROHGPHOWV of pure Ge, Si and Ge 6LDOORM *Philos Trans A Math Phys Eng Sci*, vol. 376, no. 2113, Feb.  
 526 2018, doi: 10.1098/rsta.2017.0205.

527 [29] 6LUDGR 1SLR 1DG 1EDRWWR 6%FFFHVVIXO 1WHVWRIWKH 1EODV 1LED 1%FOHDWLRLG  
 528 1 Computational Materials Science, vol. 161, pp. 99 106, Apr. 2019, doi: 10.1016/j.commatsci.2019.01.023.

529 [30] 2EHLMWHL 1DG 6%UDGR 1DPL 1EVRI 1SDUWLDOO 1DFHWHGPHOWEUMWDO 1WHUIDFHM computational approach and single step 1VRXUFH 1DOEXODW 1WV of *Journal of Crystal Growth*,  
 530 vol. 268, no. 1, pp. 299 319, Jul. 2004, doi: 10.1016/j.jcrysgro.2004.04.108.

531 [31] 1DOOHOH 1RPHUHPDUNVRWKH 1%GHUFRROLRIWKH 6L 1DFHWDGWKHORWHDUOR  
 532 1 Journal of Crystal Growth, vol. 325, no. 1, pp. 101 103, Jun. 2011,  
 533 doi: 10.1016/j.jcrysgro.2011.03.031.

534 [32] 1EDFNVR 1HVS 1MHW 1RPHUHPDUNVRWKH 1%GHUFRROLRIWKH 6L 1DFHWDG  
 535 1 Journal of Crystal Growth, vol. 325, no. 1, pp. 101 103, Jun. 2011,  
 536 doi: 10.1016/j.jcrysgro.2011.03.040.

537 [33] K.-MJDHGDKLJDORULWRDG 1XMLZDUD 1LWXREM 1HUYDWLR 1RIPXOWLSOH  
 538 parallel (1 1 1) twin boundary formation from step-like grain boundary during Si

 *Appl. Phys. Express*, vol. 13, no. 10, p. 105501, Sep. 2020, doi: 10.35848/1882-0786/abb57d.

[34] M. G. Tsoutsouva *et al.* **VLVLYHVLJDLRRIKHVUXFAXUDOGHIEVHHU**lation and evolution during the directional solidification of 110 **VHHGKGURZWKLGK**

*Materialia*, vol. 115, pp. 210–223, Aug. 2016, doi: 10.1016/j.actamat.2016.06.004.

[35] XMLZDUD\$ODHGDODHGD DGDRULWRMLWXREMHUYDWLRRIWZL boundary  
formation at grain-ERXGDUJURRYHGXULJGLUHEWLRDOVROLGLILFDWPR

Materialia, vol. 133, pp. 65–69, May 2017, doi: 10.1016/j.scriptamat.2017.02.028.

Solidification Control of Multicrystal SilicIRRU6RODUHOOWater. *Trans.*, vol. 46, no. 5,

[38] **UDJDVKLRDGIIKULEDDVKL\*URZWKPHFKDLMPRIWZ** related and twin-free facet Si

Acta Materialia, vol. 53, no. 10, pp. 3021–3029, Jun. 2005, doi: 10.1016/j.actamat.2005.03.022.

■ 39] K. Fujiwara *et al.* <http://dx.doi.org/10.1016/j.actamat.2008.04.021> +degree-of-  
 ■ *Acta Materialia*, vol. 56, no. 11, pp. 2663–2668, Jun. 2008, doi:

[40] S. Bergmann, K. Albe, E. Flegel, D. A. Barragan-DLDG%DJHULMRWURSLEMROLG □

liquid interface kinetics in silicon: an atomistically informed phase-field modeling  
*Simul. Mater. Sci. Eng.*, vol. 25, no. 6, p. 065015, Sep. 2017, doi: 10.1088/1361-651X/aa7862.

[41] **URXJKWRDG** **LLOPHUDROHFXODU** **GDPLFM** **YH** **WLDWLRIWKH** **FUMWDO**  
**EE** *J. Chem. Phys.*, vol. 79, no. 10, pp. 5095–5104, Nov. 1983, doi:

10.1063/1.445633.

[42] S. Plumpton, *MUSICAL HUMPDADU* *Santa Barbara National Laboratory*, 2005.  
[43] )EWLOOLJHUDGTHEHURPSXWHUMLPXODWLRRIORFDORUGHULERGHMHGS

[44] **URORYDGOMWD6WHSIUHHHHUJLHMDWIDEHW** *Journal of Chemical Physics*, vol. 137, no. 21, p. 214108, Dec. 2012, doi: 10.1063/1.4769381.

[45] P. M. Agrawal, B. M. RicHDG~~W~~KRPSVROROHFXODUGDPLFV~~M~~WXGR~~I~~WKH~~H~~HFWV of voids and pressure in defect-~~X~~FOHDWHGPHOWL~~M~~LPXODW~~M~~Phys., vol. 118, no. 21, pp. 9680~~9~~688, May 2003, doi: 10.1063/1.1570815.

[46] **URXJKWRDG~~B~~EKD~~V~~HLDJUDPRIMLOLFREPROHFXODUGDPLFV** *Phys. Rev. B*, vol. 35, no. 17, pp. 9120~~9~~127, Jun. 1987, doi: 10.1103/PhysRevB.35.9120.

[47] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak, *J. Chem. Phys.*, vol. 81, no. 8, pp. 3684~~3~~690, Oct. 1984, doi: 10.1063/1.448118.

[48] **HUOHWRPSXWHU~~SHULPHWVR~~ODV~~V~~LEDO~~X~~LG~~V~~IKHUPRGDPLFDO~~B~~URSHUWLHVR** Lennard-Jones Molecules *Phys. Rev.*, vol. 159, no. 1, pp. 98~~10~~3, Jul. 1967, doi: 10.1103/PhysRev.159.98.

[49] **DRHFXWW~~DGGHUV~~OROHFXODUGDPLFV~~M~~WXGR~~I~~PHOWL~~D~~GIUHH~~J~~** of small Lennard-~~-R~~HOFOX~~V~~WHU~~M~~ *Chem.*, vol. 91, no. 19, pp. 4950~~49~~63, Sep. 1987, doi: 10.1021/j100303a014.

[50] **DUNH~~D~~G~~E~~WUXFWXUDO~~E~~KDJH~~V~~DFRPSD~~I~~GHMLILFDWLR~~R~~IUDGRP~~W~~** hard-~~V~~SKHUH~~S~~DFNL~~M~~ *Phys. Rev. E*, vol. 47, no. 6, pp. 3975~~39~~84, Jun. 1993, doi: 10.1103/PhysRevE.47.3975.

[51] A. **WXNRZVNLD~~MXDOL~~DWLR~~D~~GDDOMLV~~R~~IDWRPL~~V~~LPXODW~~R~~EDWD~~Z~~LWK~~29~~** *Modelling Simul. Mater. Sci. Eng.*, vol. 18, no. 1, p. 015012, 2010, doi: 10.1088/0965-0393/18/1/015012.

[52] E. Maras, O. Trushin, A. Stukowski, T. Ala-**LLVLODDG~~ER~~MR~~E~~REDOWUDMLWLRS~~D~~WK~~29~~** *Computer Physics Communications*, vol. 205, pp. 13~~21~~, Aug. 2016, doi: 10.1016/j.cpc.2016.04.001.

[53] **XMLZDUD~~W~~DO~~URZWK~~~~%~~HKDYL~~RU~~V~~R~~ON~~I~~HOW~~URZWK~~~~B~~URFHVVHV** *International Journal of Photoenergy*, vol. 2012, pp. 1~~16~~, 2012, doi: 10.1155/2012/169829.

[54] **RDJ~~J~~OHGHOHY~~M~~WD~~R~~WDG~~G~~WHUPLDWLRRIW~~KH~~** crystal-melt interface kinetic coe~~FLHW~~URPPROHFXODUGDPLFV~~M~~LPXODW~~R~~ *Phys. Rev. B*, vol. 35, no. 17, pp. 9120~~9~~127, Jun. 1987, doi: 10.1103/PhysRevB.35.9120.

*Simul. Mater. Sci. Eng.*, vol. 18, no. 1, p. 015004, 2010, doi: 10.1088/0965-0393/18/1/015004.

[55] 999URRNRY6WDWLWLFMRL6XUIDEHV6WHSM4DGZER Dimensional Nuclei: A Macroscopic  
**SE** in *Modern Theory of Crystal Growth I*, Berlin, Heidelberg, 1983, pp. 75–111.  
doi: 10.1007/978-3-642-68938-3\_4.

[57] F. ULFHEDH, *Journal of Crystal Growth*, vol. 6, no. 2, pp. 205-206, Jan. 1970, doi: 10.1016/0022-0248(70)90044-8.

[58] B. Kudo, *Journal of Crystal Growth*, vol. 50, no. 1, pp. 247–259, Sep. 1980, doi: 10.1016/0022-0248(80)90248-1.

[59] [www.dwhm.org/zhzhw/rzjoh/olfr/khhw/jrzwk/hdz/risurjuhv/](http://www.dwhm.org/zhzhw/rzjoh/olfr/khhw/jrzwk/hdz/risurjuhv/) 4, Accessed: Mar. 26, 2021. [Online]. Available:

[60] MOHLOHIZDSSURDFKWRFRWLXRXVEUMWDOMKHHWJURZMK, *Journal of Crystal Growth*, vol. 104, no. 1, pp. 29–33, Jul. 1990, doi: 10.1016/0022-0248(90)90304-4.

[61] <https://doi.org/10.3390/cryst8010036> Crystals, vol. 8, no. 1, Art. no. 1, Jan. 2018, doi: 10.3390/cryst8010036.

[62] E. P. Noronha and B. E. Ydstie, <https://arxiv.org/abs/2102.07747> [*cond-mat, physics:nlin*], Feb. 2021, Accessed: Jul. 07, 2021. [Online]. Available: <http://arxiv.org/abs/2102.07747>

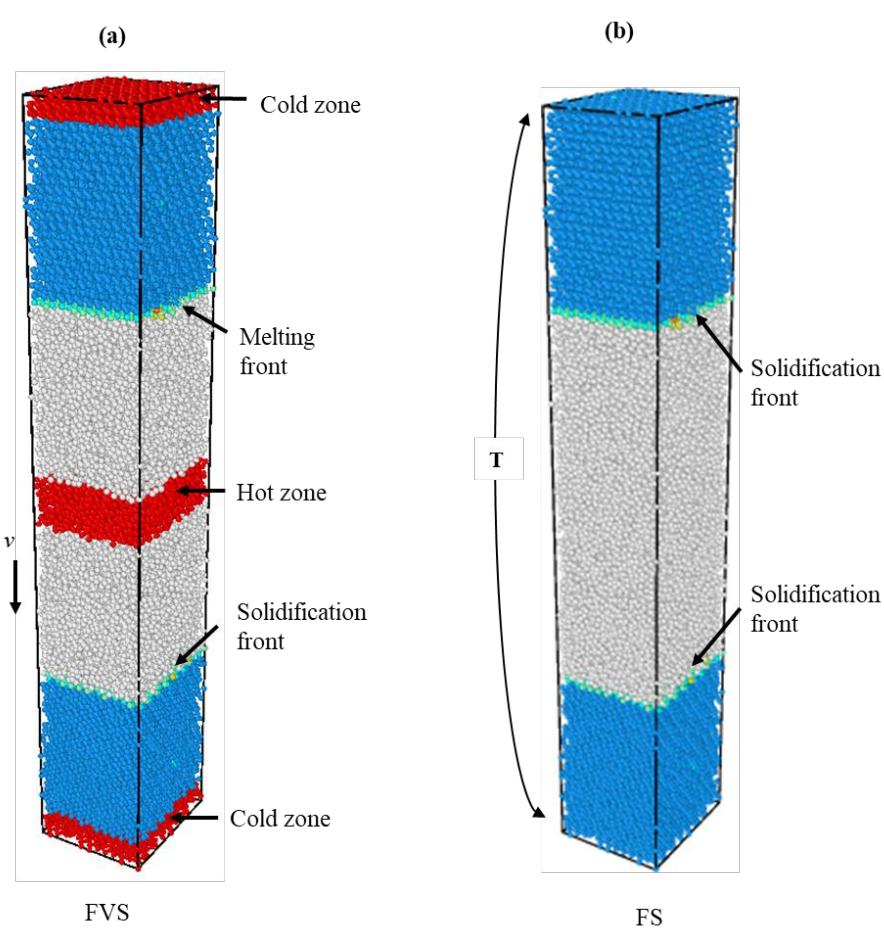
635

636

637

638

639


640

641

642

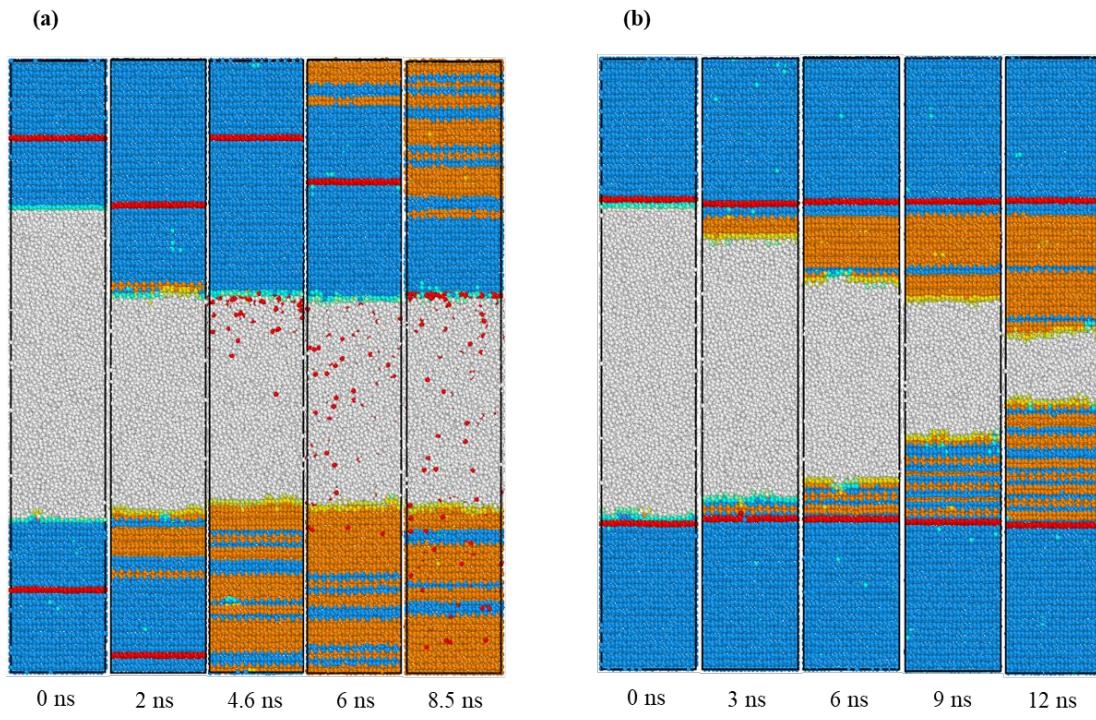
643

644



645

646


647 Figure 1: Periodic simulation domain measuring  $46.33 \times 53.50 \times 300.69 \text{ \AA}^3$  and comprising of  
 648 36,644 atoms. The blue, grey and light-green balls represent crystal, melt and interfacial atoms,  
 649 respectively. (a) forced-velocity solidification (FVS) model showing the thermostatted regions  
 650 colored in red (hot and cold zones kept at 2125 K and 1525 K, respectively) and direction of  
 651 pulling,  $v$  (downward arrow) (b) Free-solidification (FS) model equilibrated at a uniform  
 652 temperature ( $T$ ) below melting point 1677 K.

653

654

655

656



657

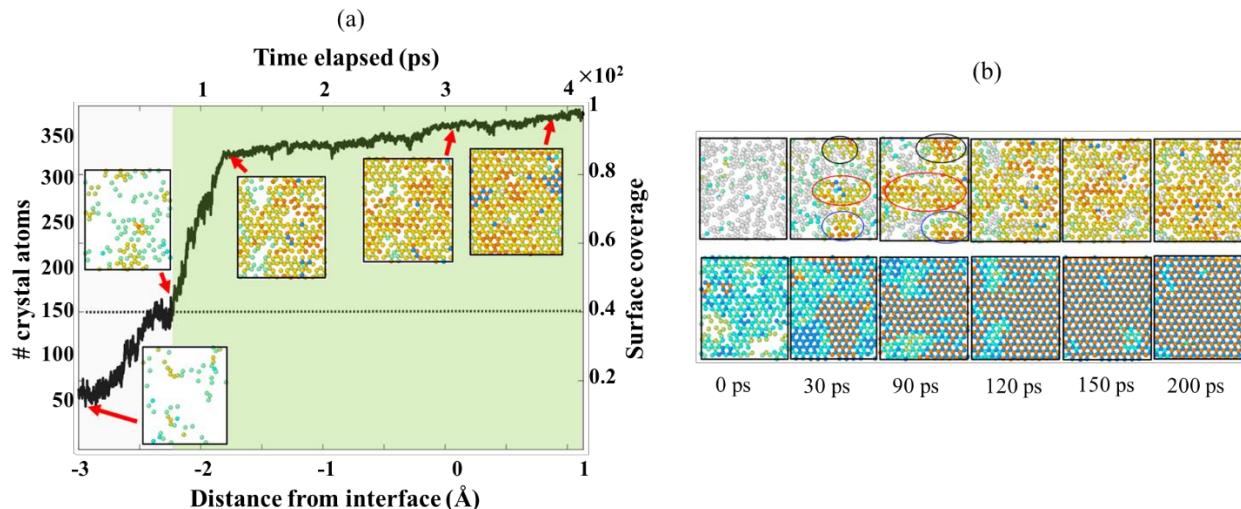
658

659 Figure 2: OVITO visualization of crystal growth in the (a) FVS model at approximately  $\sim 0.02$   
 660  $\text{\AA}/\text{ps}$  with the red atoms showing the movement of atoms (in the crystal and liquid phases) within

661 reference frame during cyclic melting and solidification. Based on the extended CNA, grey balls  
662 are liquids while the blue, green, orange and yellow balls signify cubic, cubic-first neighbor,  
663 hexagonal, hexagonal-first neighbor diamond crystal structures (b) FS model at an undercooling  
664 of 24 K with red reference layers showing the symmetry between both crystal-melt interfaces

665

666


667

668

669

670

671



672

673 Figure 3: Evolution of a single layer from FVS model at a constant pulling of  $\sim 0.01 \text{ \AA}/\text{ps}$  (a)  
674 illustrates the nucleation-mediated growth of crystallites inside a thin slice of one atomic layer  
675 thickness as it approaches the crystal-melt interface from undercooled melt with insets showing  
676 two-dimensional expansion of Si (111) clusters (b) formation, merger and growth of smaller  
677 crystal clusters (top panels) on a completely crystal Si(111) substrate layer (bottom panels)  
678 illustrates the mechanism of layer-by-layer growth. The reference time is the point when the

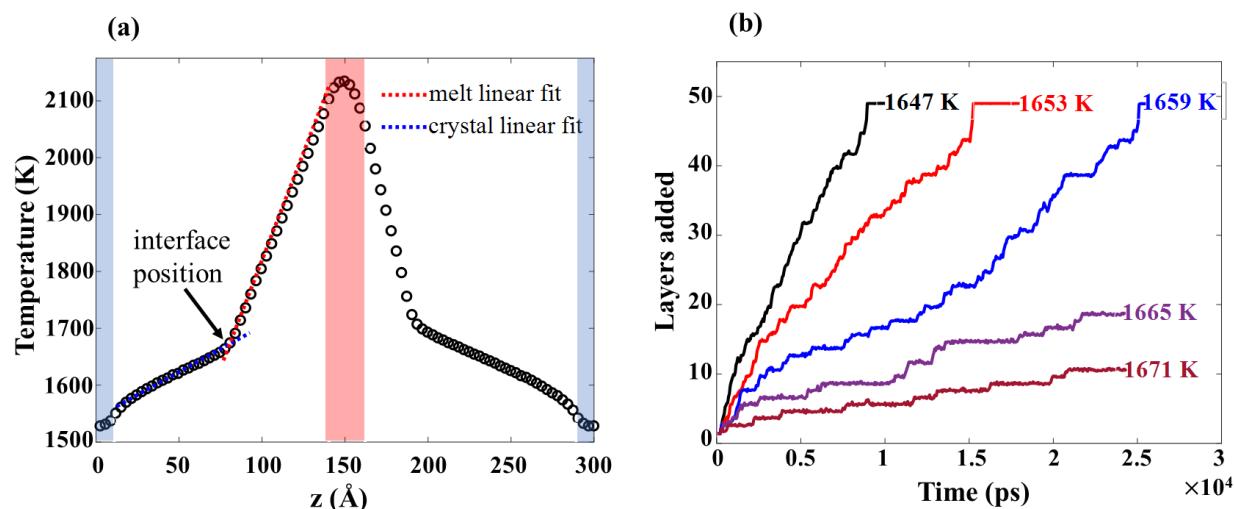
679 substrate layer is about 90% filled with crystal atoms that had previously evolved from the melt  
680 phase.

681

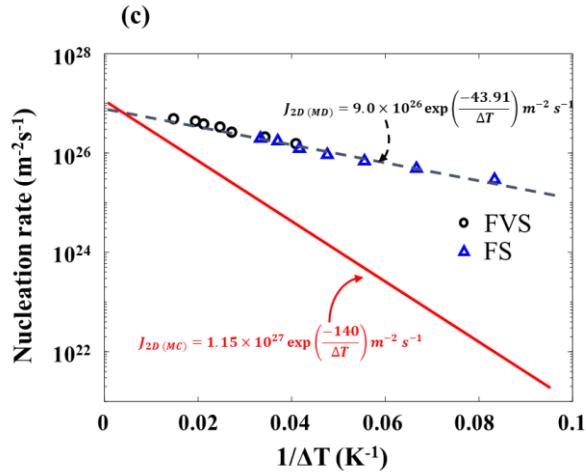
682

683

684


685

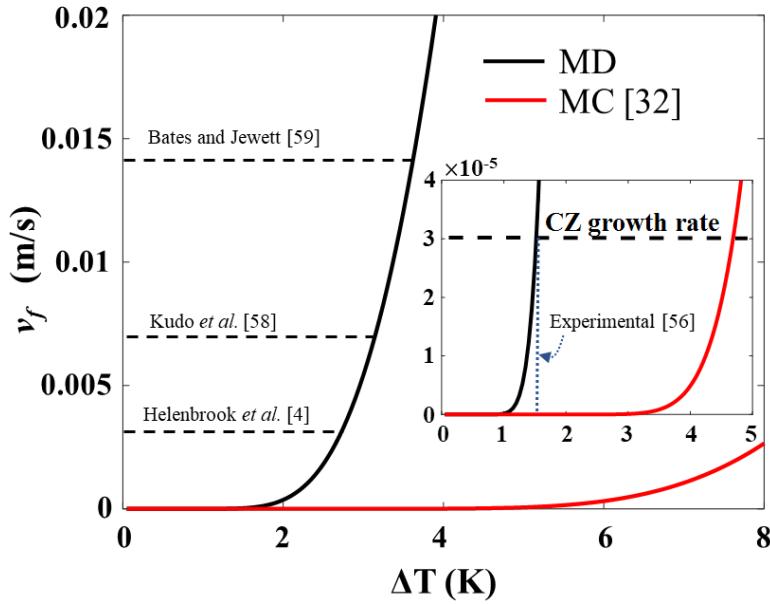
686


687

688

689




690



691

692 Figure 4: (a) Axial temperature profile (bin size is 3.13 Å) of FVS simulation domain at a pull  
 693 speed of ~0.01 Å/ps showing the determination of interface position and temperature from  
 694 intersection of linear fits of the solid and liquid parts of the solidification front. The light blue and  
 695 red column shows the positions of the cold and hot thermostats kept at 1525 K and 2125 K,  
 696 respectively. (b) Growth by addition of crystal layers as a function of solidification temperature in  
 697 the FS model. (c) Molecular dynamics nucleation rates (units in m-2s-1) as a function of the  
 698 reciprocal of undercooling. The black dotted line represents the nucleation rate equation fitted for  
 699 FVS and FS MD data. The red solid line represents nucleation rate model from Monte Carlo  
 700 simulations determined by ref [32].

701



702

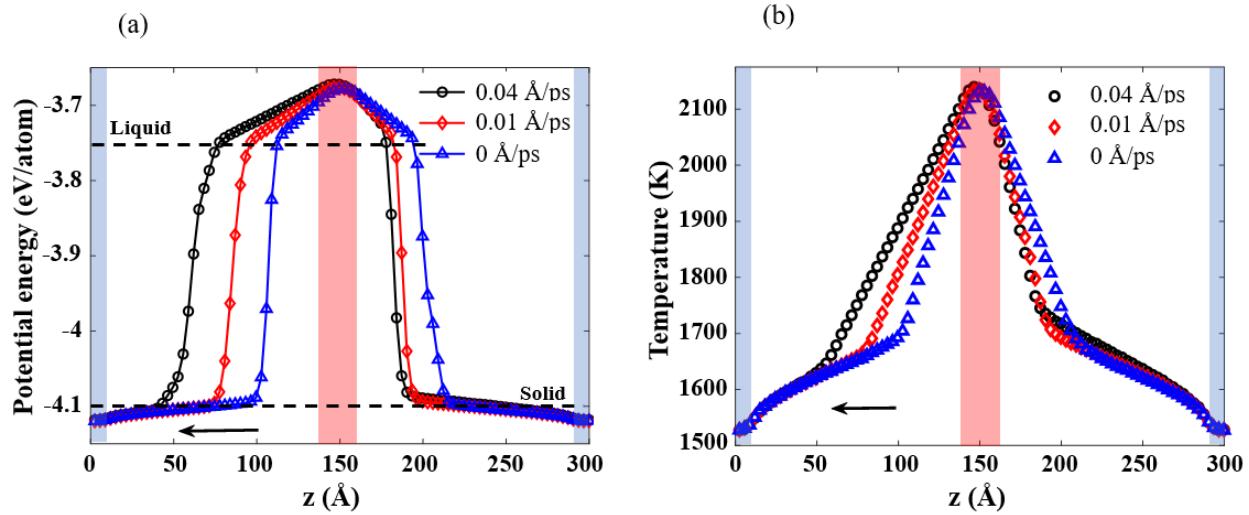
703 Figure 5: Si (111) facet velocity as a function of undercooling. Black curve is extrapolated from  
 704 MD-derived 2D kinetic coefficient while the red curve is the prediction from MC-derived kinetic  
 705 coefficient [32]. The black dotted horizontal lines represent growth rates reported from horizontal  
 706 ribbon growth experiments. The inset shows the Czochralski growth rate with the blue dotted  
 707 vertical line representing the experimentally reported [56] undercooling.

708

709

710

711


712

713

714

715

716



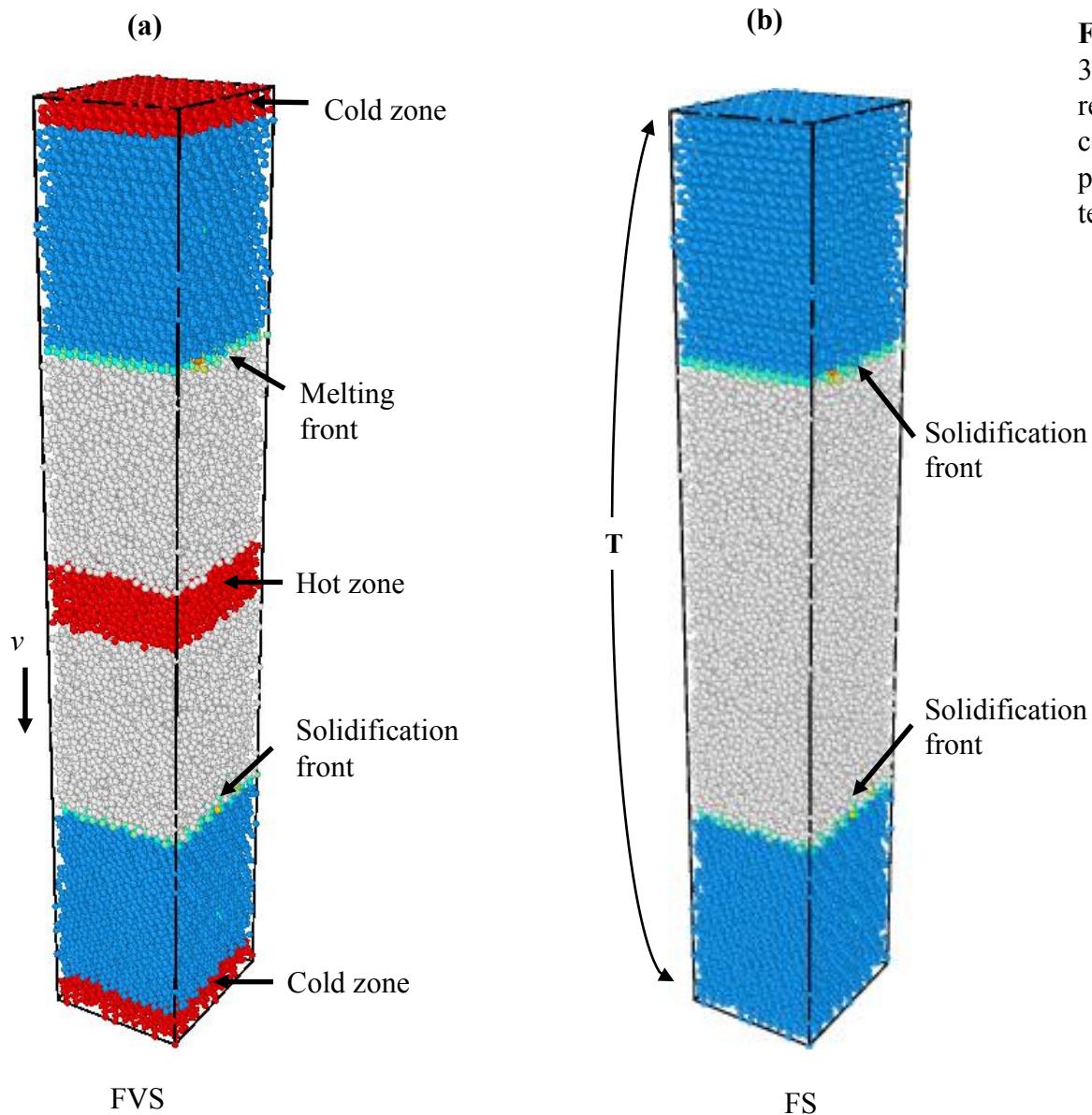
717

718 Figure 6: Description of crystal-melt interface movement and thermal profile during growth of  
 719 the changes in (a) potential energy and (b) temperature profiles with increasing pull  
 720 speed from the FVS model. The axial profiles are plotted using a bin size of  $3.13 \text{ \AA}$  with dotted  
 721 lines aiding the visualization of transition from liquid to solid energy potential, and the arrows  
 722 show the direction of interface movement. The light blue and red column show the positions of  
 723 the cold and hot thermostats kept at  $1525 \text{ K}$  and  $2125 \text{ K}$ , respectively.

724

725

726


727

728

729

# **Molecular Dynamics Study of Two-dimensional Nucleation Kinetic Coefficient for Modeling the Faceted Growth of Si (111) from an Undercooled Melt**

# Computational details



**Figure 1:** Periodic simulation domain measuring  $46.33 \times 53.50 \times 300.69 \text{ \AA}^3$  and comprising of 36,644 atoms. The blue, grey and light-green balls represent crystal, melt and interfacial atoms, respectively. (a) forced-velocity solidification (FVS) model showing the thermostatted regions colored in red (hot and cold zones kept at 2125 K and 1525 K, respectively) and direction of pulling,  $v$  (downward arrow) (b) Free-solidification (FS) model equilibrated at a uniform temperature ( $T$ ) below melting point 1677 K.

# The solidification process

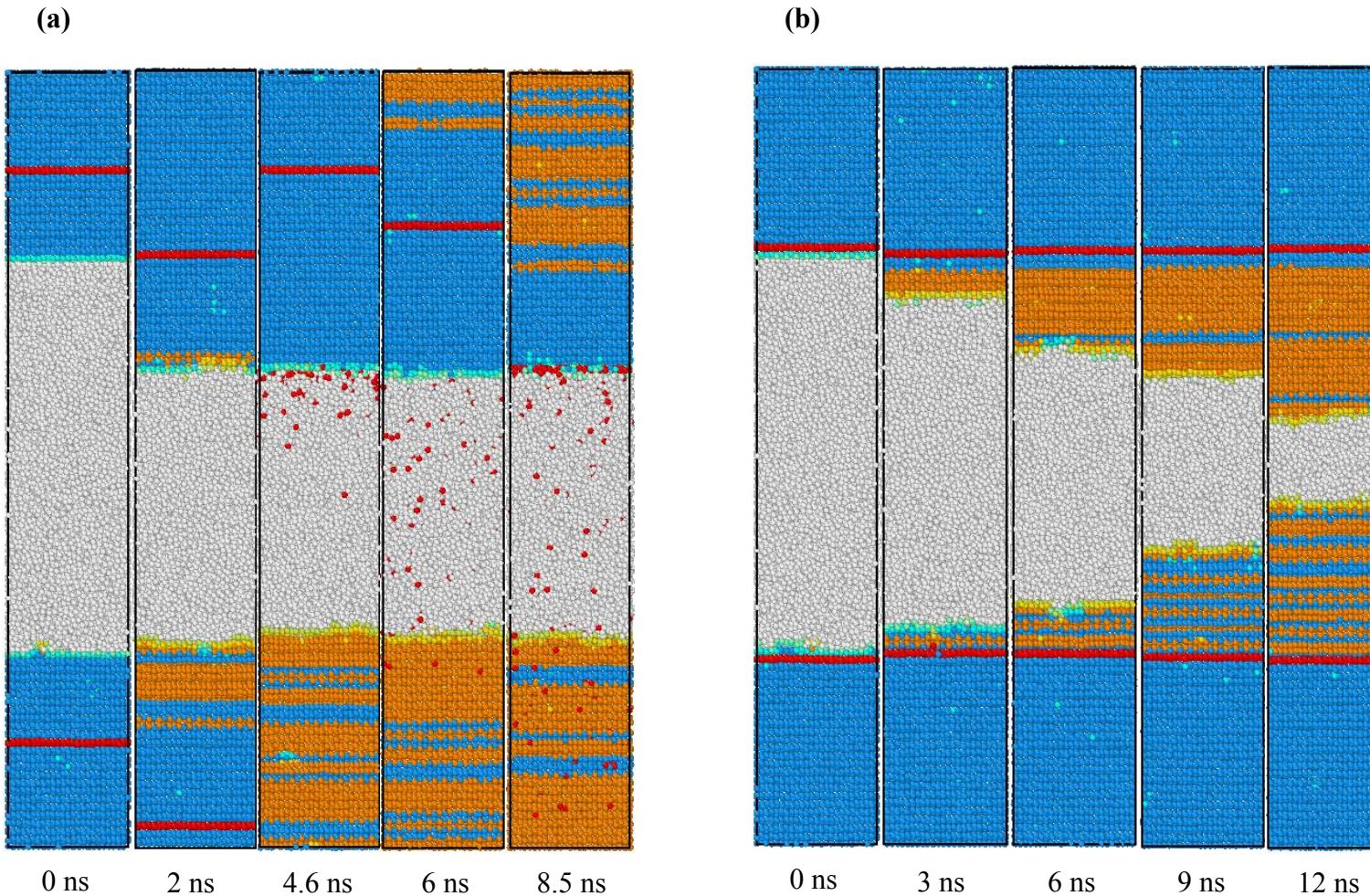



Figure 2: OVITO visualization of crystal growth in the (a) FVS model at approximately  $\sim 0.02 \text{ \AA}/\text{ps}$  with the red atoms showing the movement of atoms (in the crystal and liquid phases) within reference frame during cyclic melting and solidification. Based on the extended CNA, grey balls are liquids while the blue, green, orange and yellow balls signify cubic, cubic-first neighbor, hexagonal, hexagonal-first neighbor diamond crystal structures (b) FS model at an undercooling of 24 K with red reference layers showing the symmetry between both crystal-melt interfaces

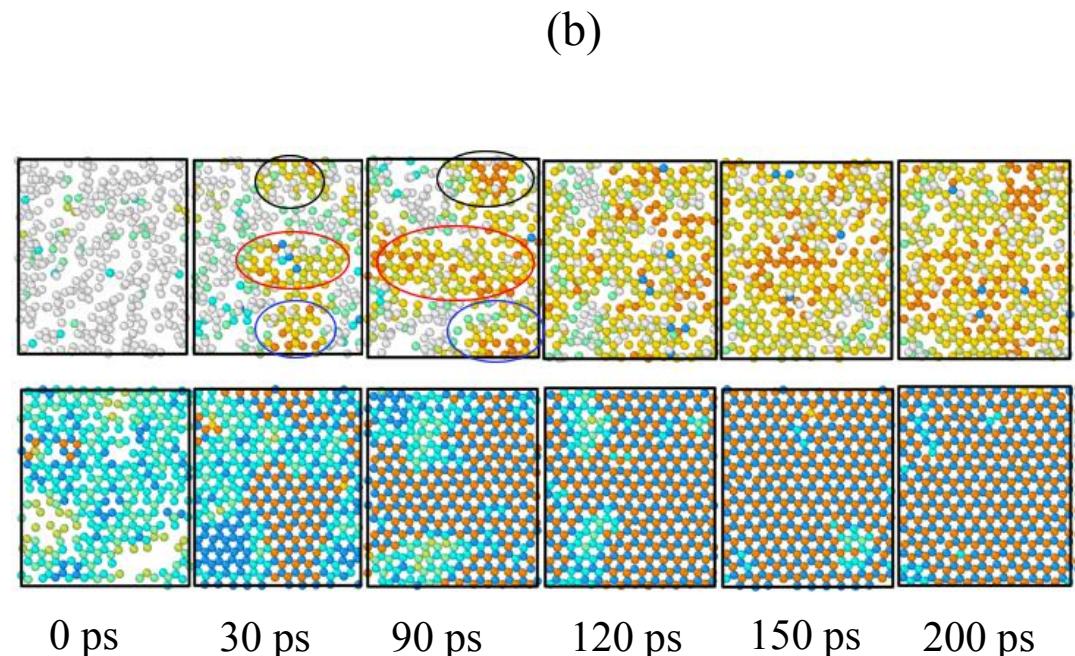
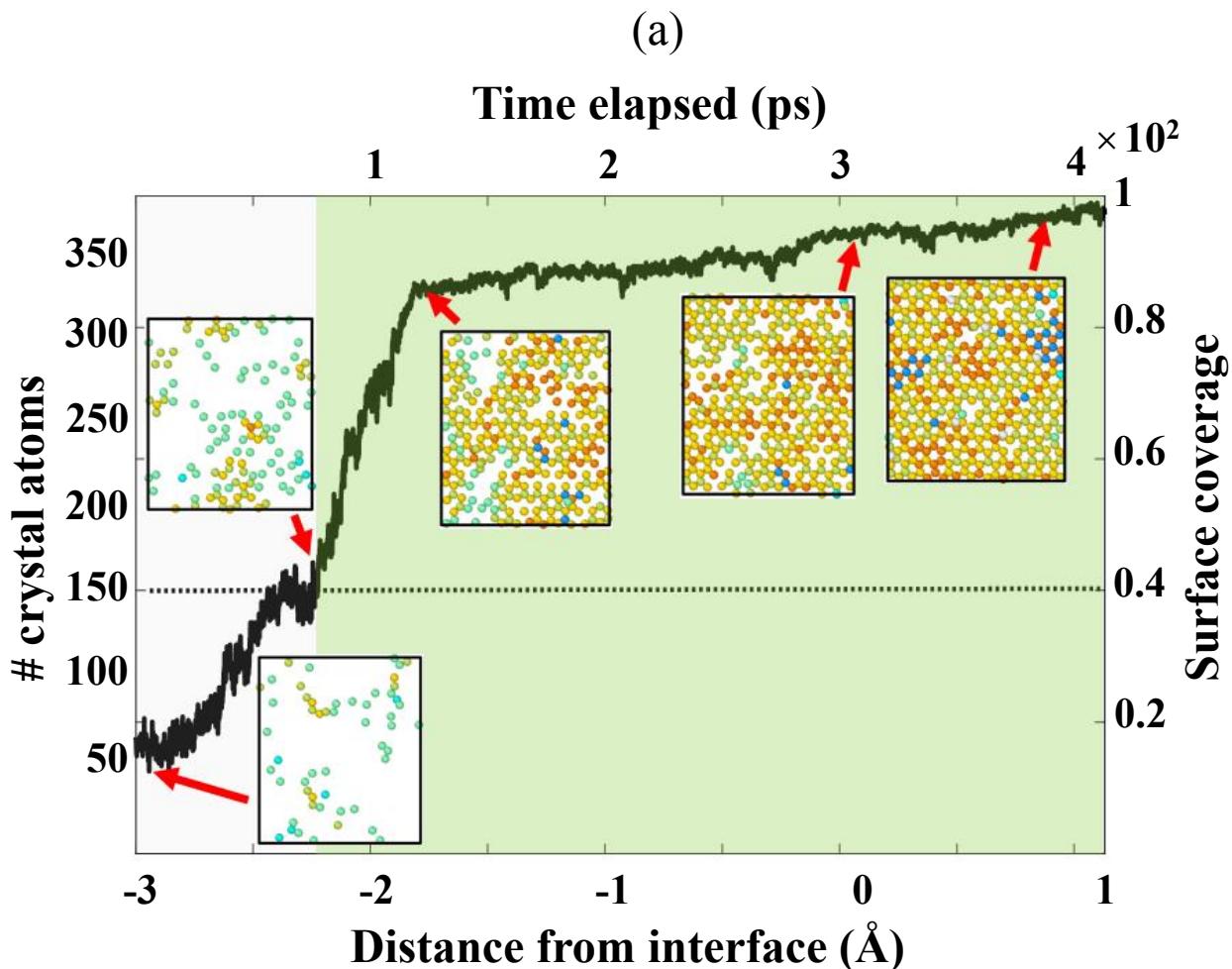




Figure 3: Evolution of a single layer from FVS model at a constant pulling of  $\sim 0.01 \text{ \AA}/\text{ps}$  (a) illustrates the nucleation-mediated growth of crystallites inside a thin slice of one atomic layer thickness as it approaches the crystal-melt interface from undercooled melt with insets showing two-dimensional expansion of Si (111) clusters (b) formation, merger and growth of smaller crystal clusters (top panels) on a completely crystal Si(111) substrate layer (bottom panels) illustrates the mechanism of layer-by-layer growth. The reference time is the point when the substrate layer is about 90% filled with crystal atoms that had previously evolved from the melt phase.

# Determination of velocity and interface temperature

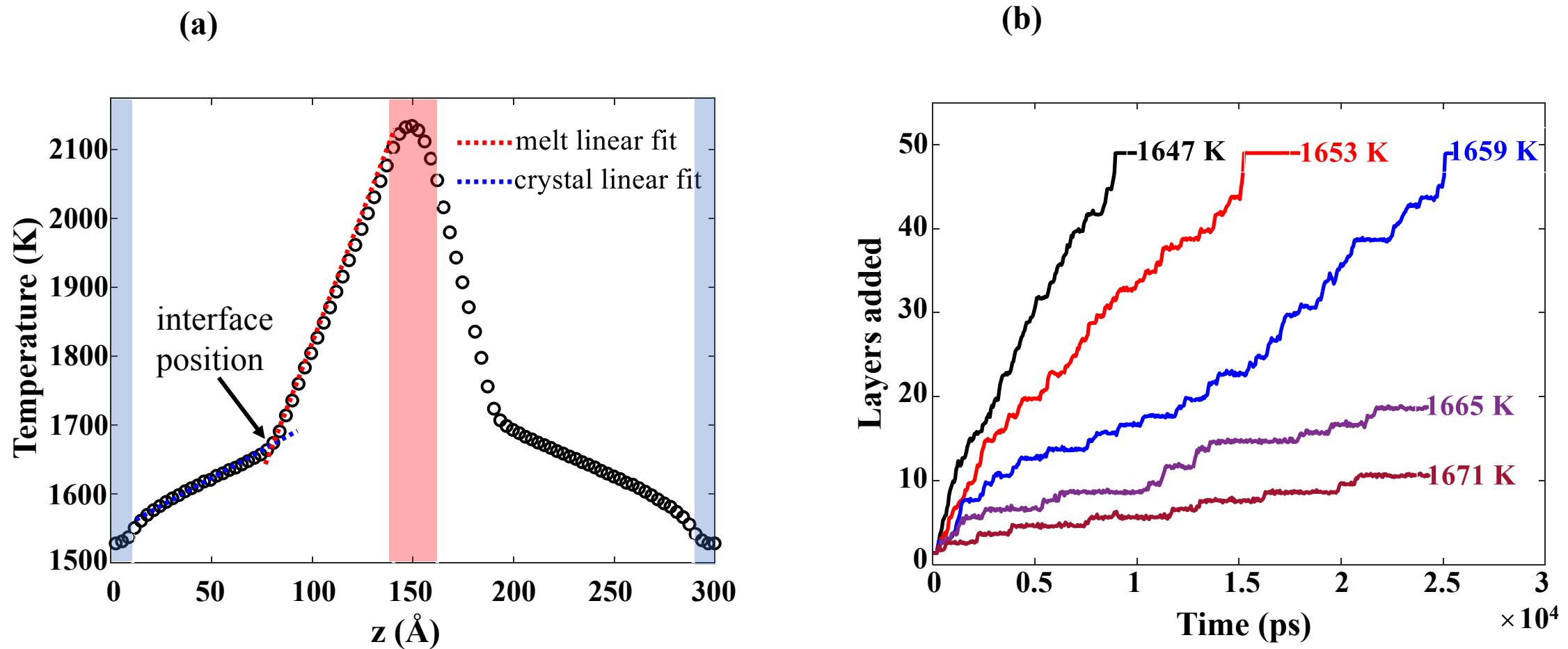



Figure 4: (a) Axial temperature profile (bin size is 3.13 Å) of FVS simulation domain at a pull speed of  $\sim 0.01$  Å/ps showing the determination of interface position and temperature from intersection of linear fits of the solid and liquid parts of the solidification front. The light blue and red column shows the positions of the cold and hot thermostats kept at 1525 K and 2125 K, respectively. (b) Growth by addition of crystal layers as a function of solidification temperature in the FS model.

# Nucleation rates

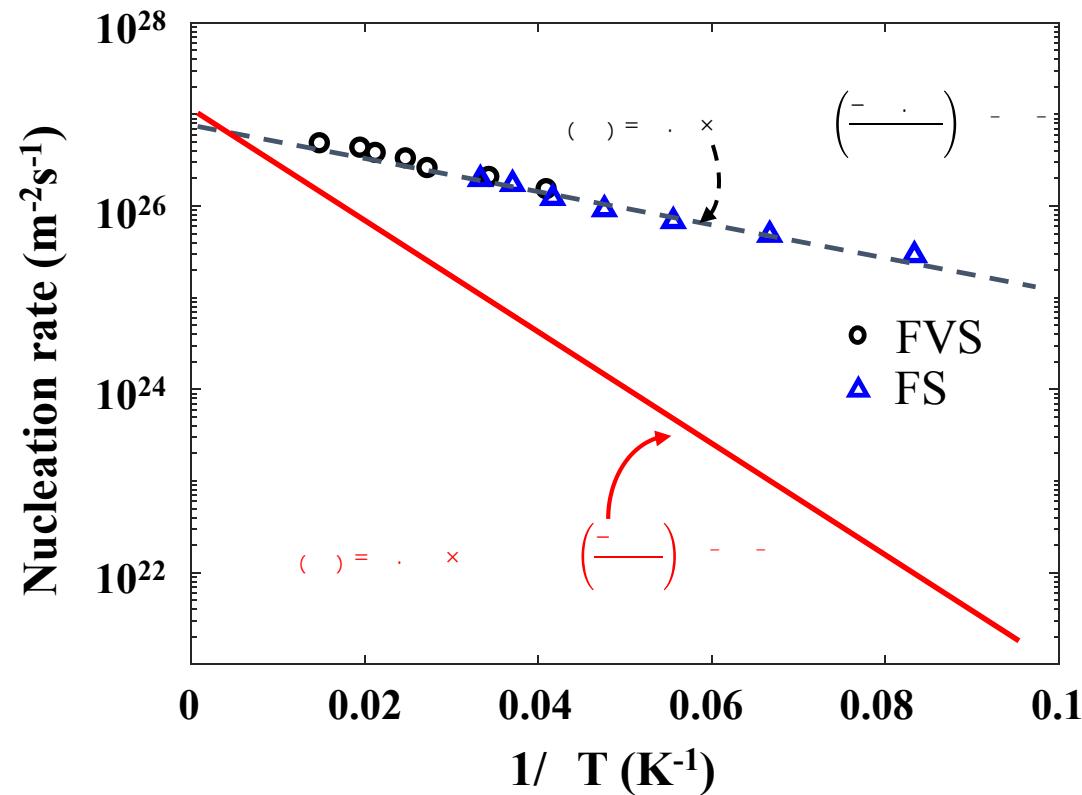



Figure 4c: Molecular dynamics nucleation rates (units in  $\text{m}^{-2}\text{s}^{-1}$ ) as a function of the reciprocal of undercooling. The black dotted line represents the nucleation rate equation fitted for FVS and FS MD data. The red solid line represents nucleation rate model from Monte Carlo simulations determined by ref [32].

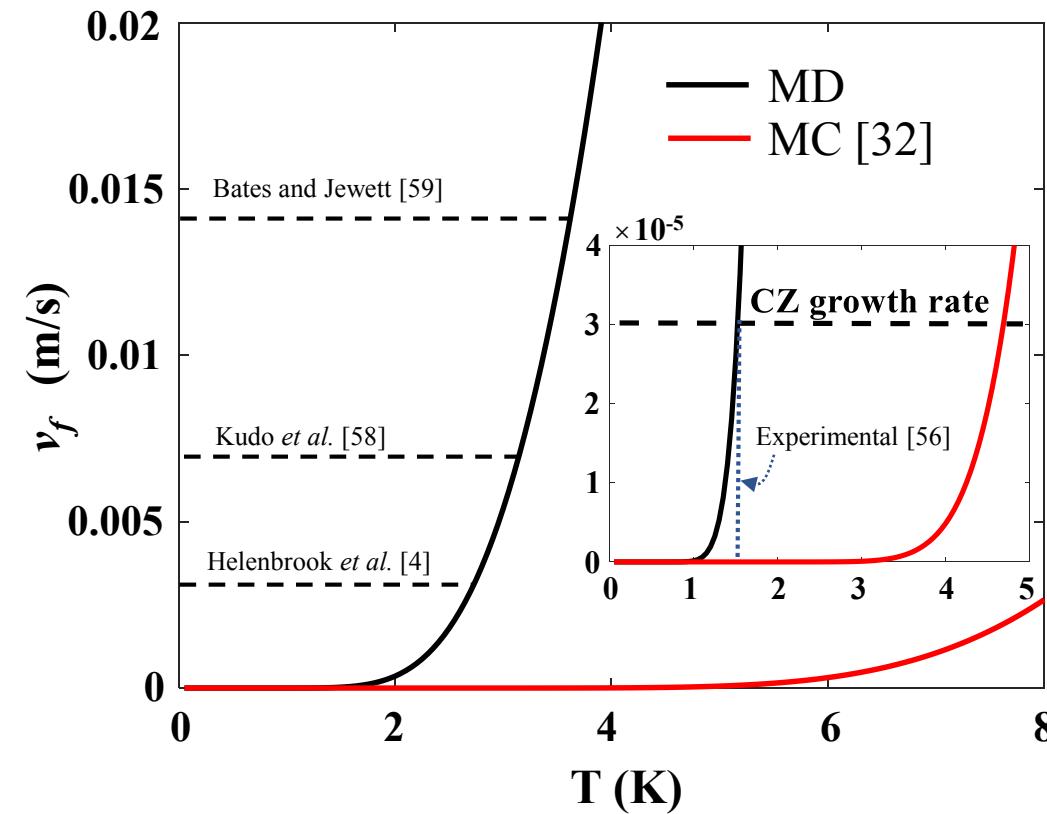



Figure 5: Si (111) facet velocity as a function of undercooling. Black curve is extrapolated from MD-derived 2D kinetic coefficient while the red curve is the prediction from MC-derived kinetic coefficient [32]. The black dotted horizontal lines represent growth rates reported from horizontal ribbon growth experiments. The inset shows the Czochralski growth rate with the blue dotted vertical line representing the experimentally reported [56] undercooling.

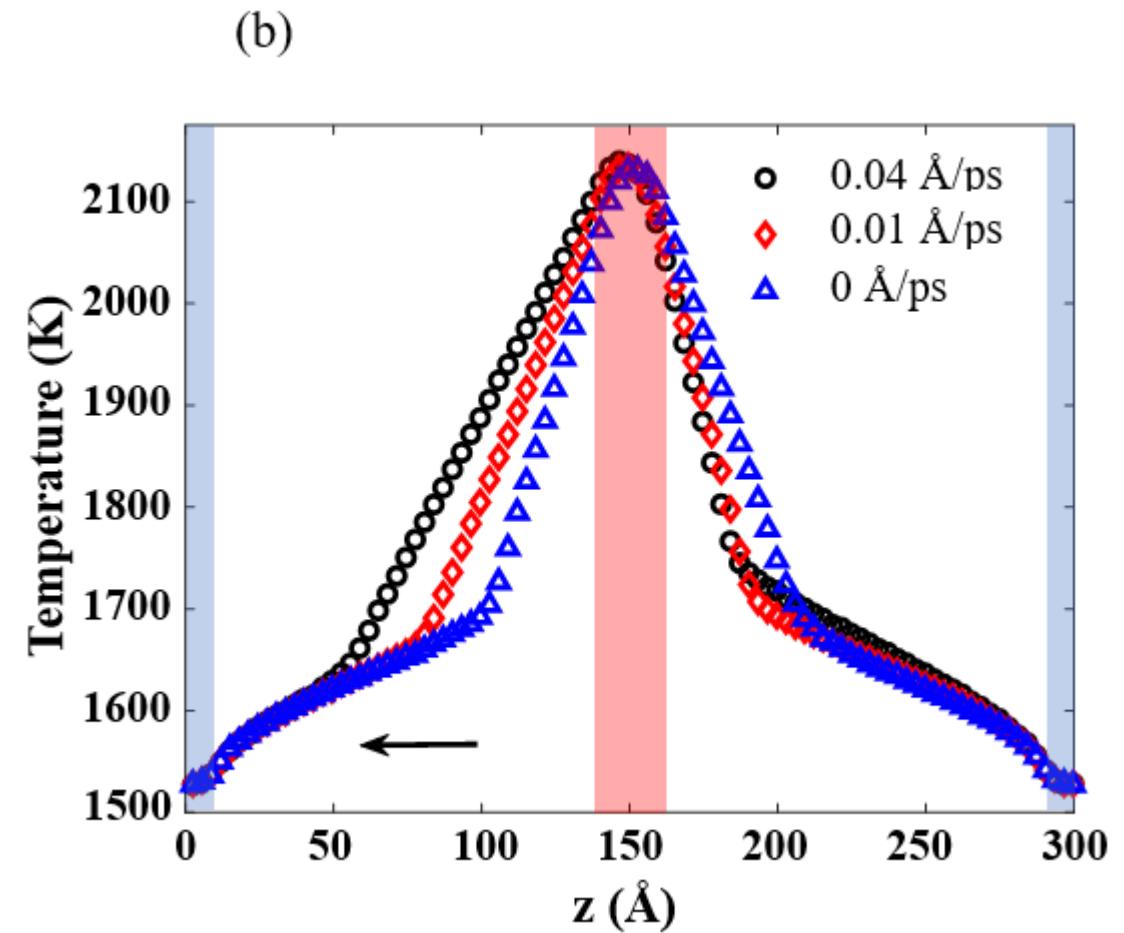
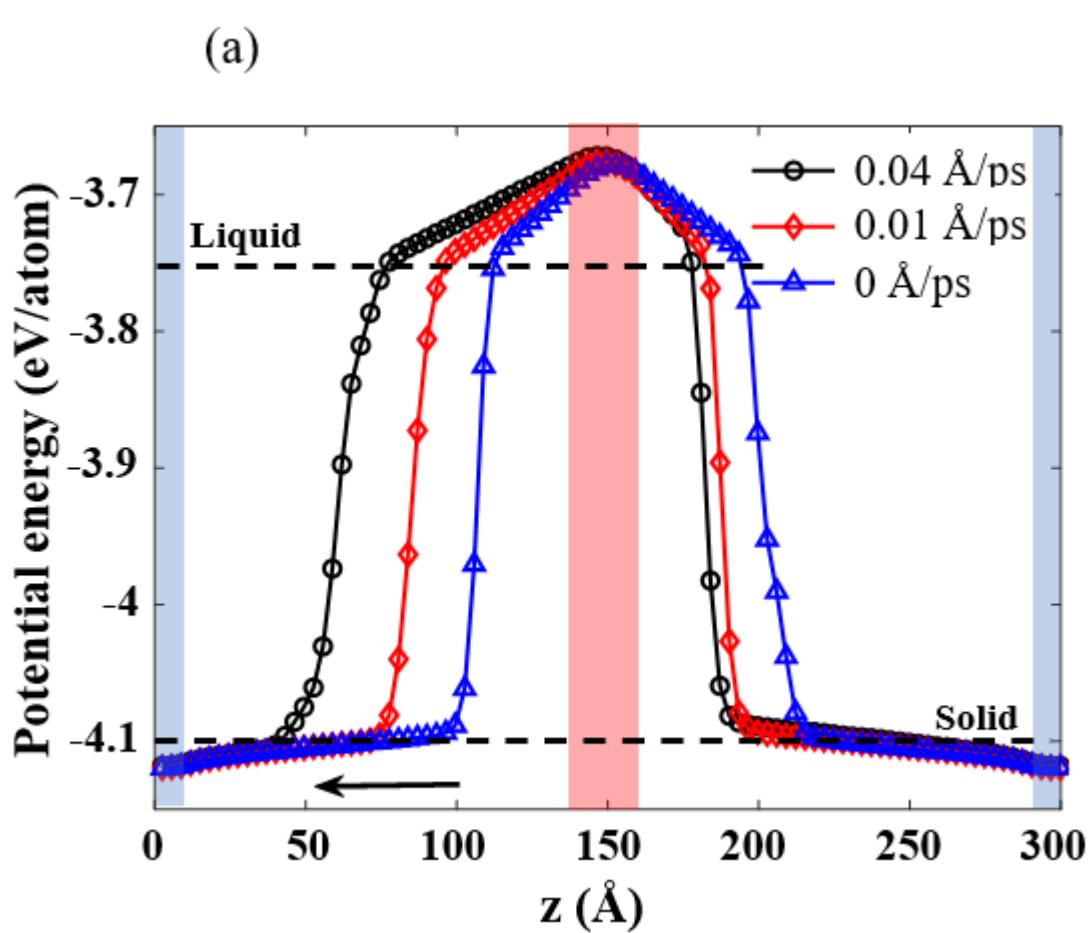




Figure 6: Description of crystal-melt interface movement and thermal profile during growth of silicon from the changes in (a) potential energy and (b) temperature profiles with increasing pull speed from the FVS model. The axial profiles are plotted using a bin size of 3.13 Å with dotted lines aiding the visualization of transition from liquid to solid energy potential, and the arrows show the direction of interface movement. The light blue and red column show the positions of the cold and hot thermostats kept at 1525 K and 2125 K, respectively.

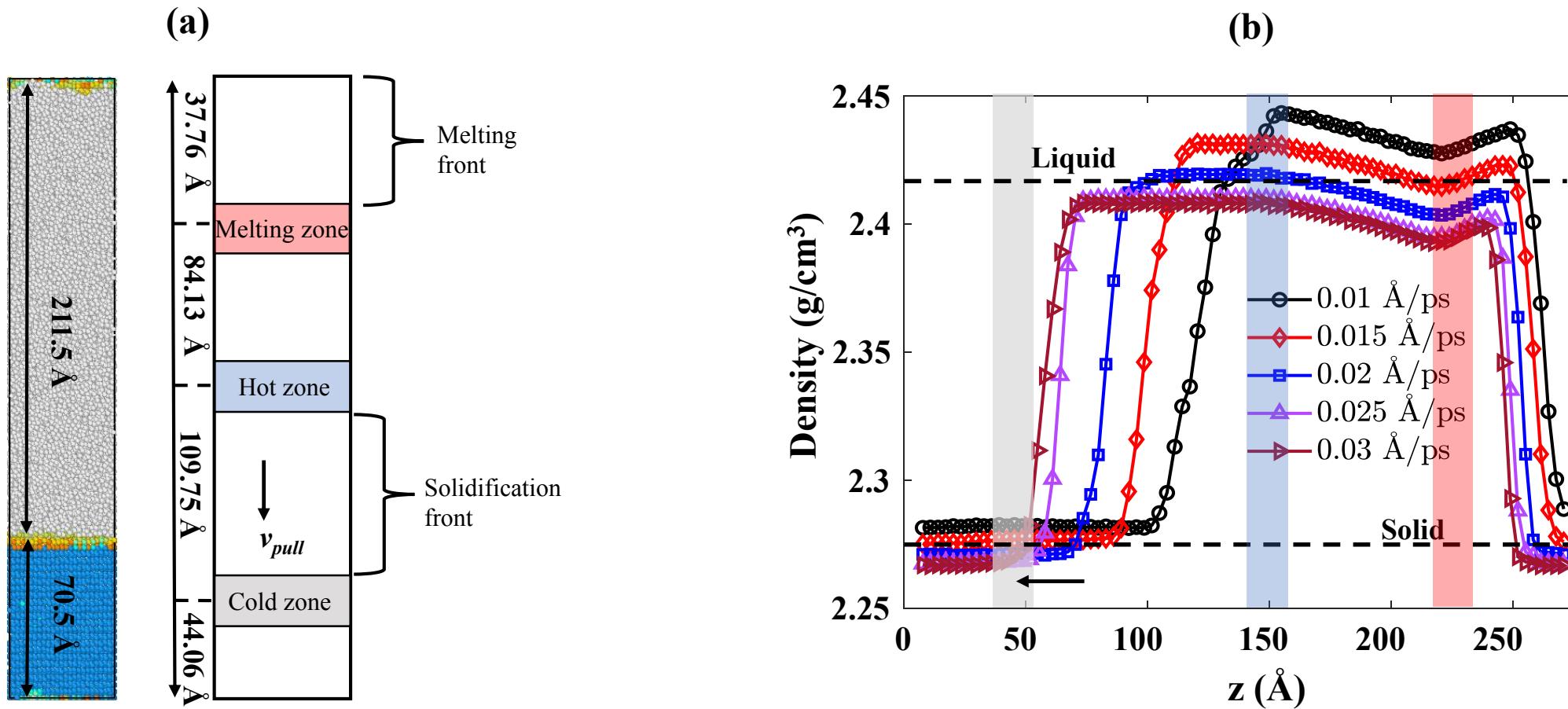



Figure S1: Summary of FVS model with a small thermal gradient of 0.36 K/Å across the solidification front and pulling ( $v_{pull}$ ) applied in the downward direction. (a) The initial solid-liquid cell with larger liquid (grey atoms) region compared solid region (blue atoms) and the uneven thermal gradient across the axial direction. (b) The density profiles (bin size of 3.13 Å) with arrow showing the leftward movement of the point of transition from bulk liquid (upper dotted line) to bulk solid (lower dotted line) densities with increasing pull speed. The grey, blue and red blocks represent the positions of the cold, hot and melting zones are kept at 1670 K, 1710 K and 2000 K, respectively.

## Supporting Information 2

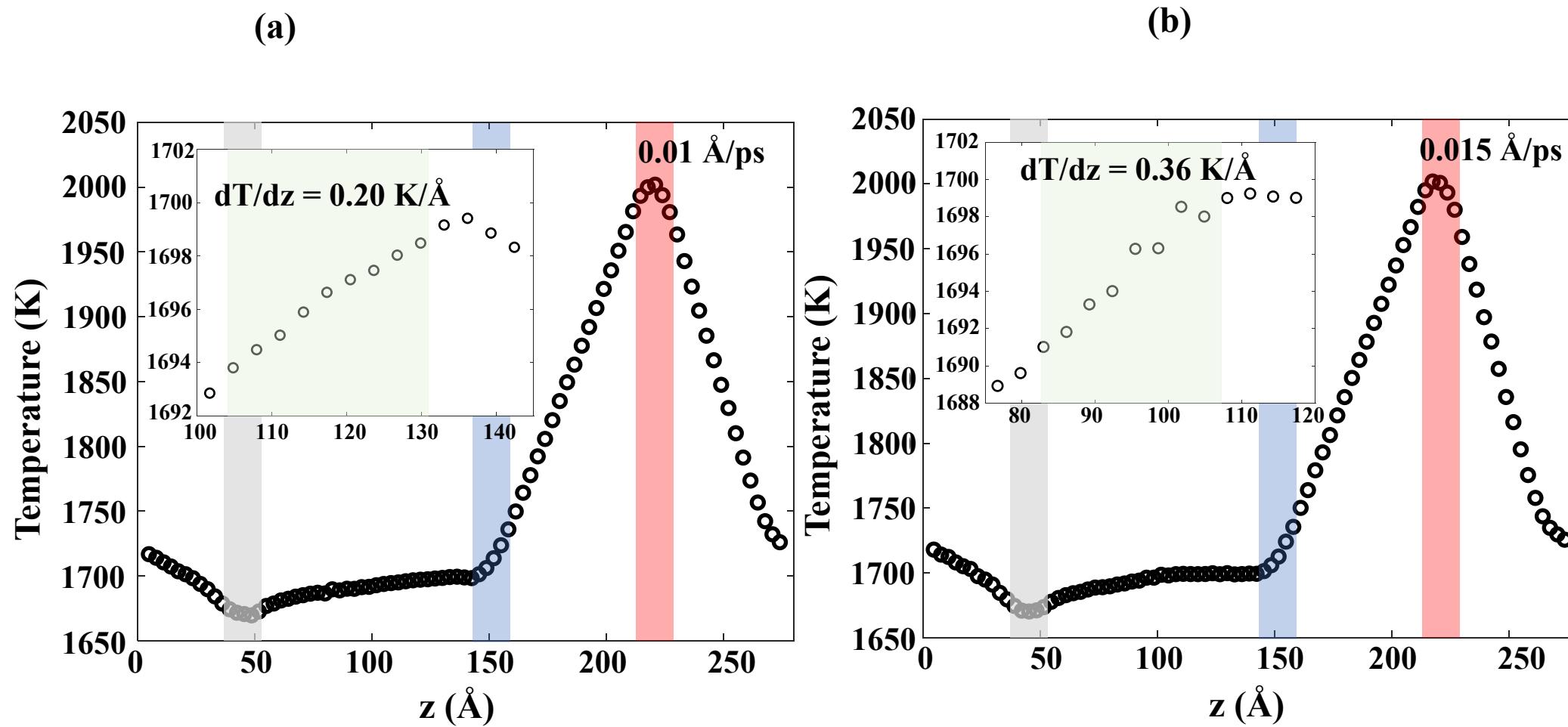
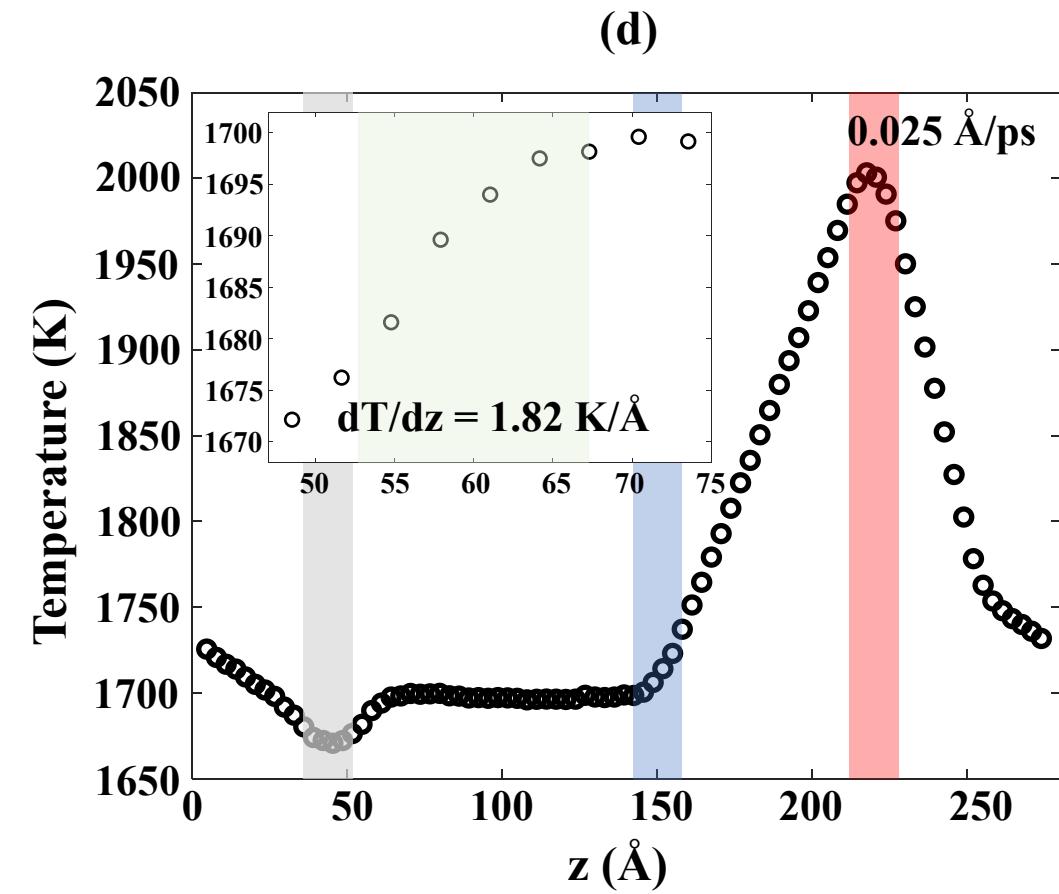
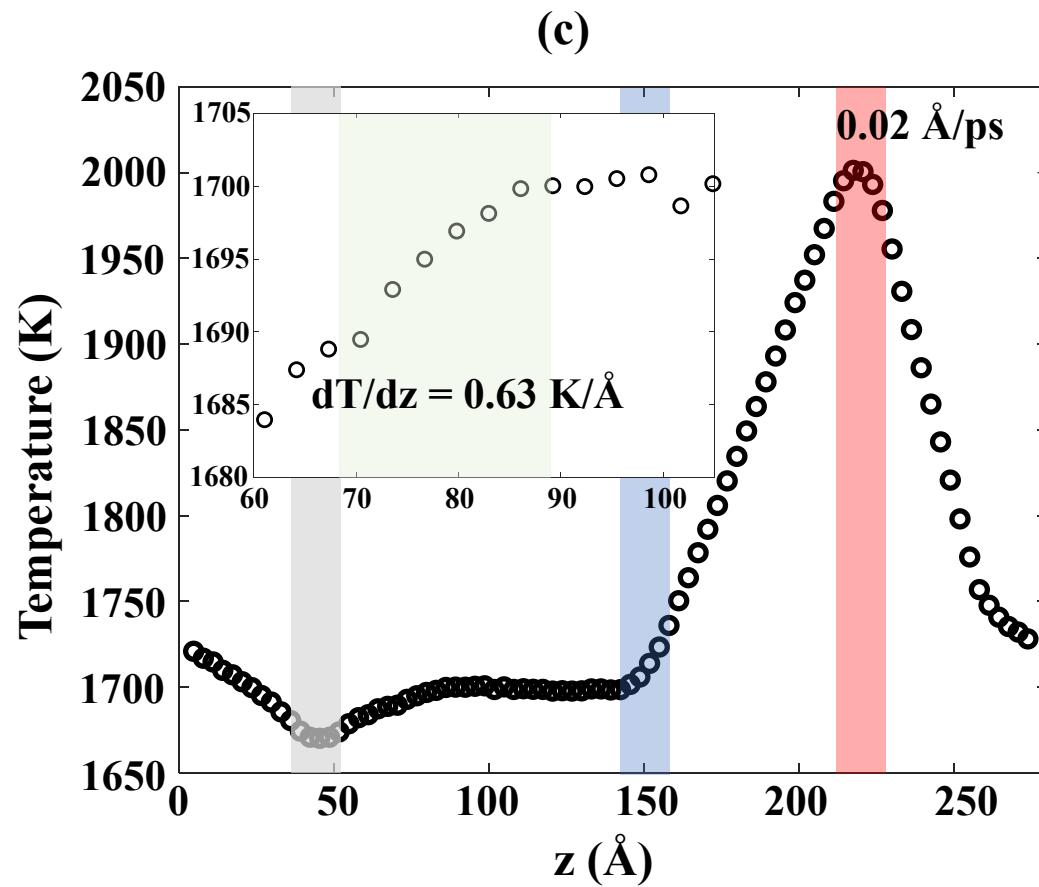
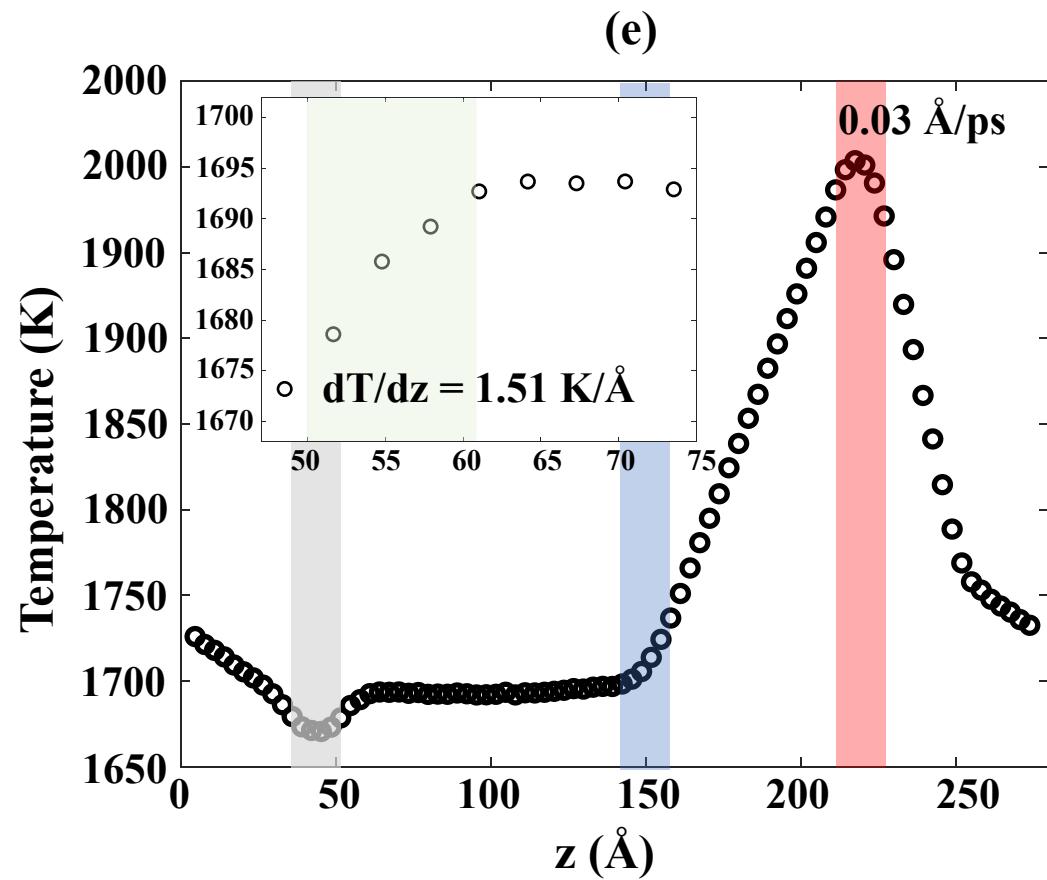






Figure S2: The axial temperature profiles (with bin size of 3.13 Å) at pulling speeds of (a)  $0.01 \text{ Å/ps}$  (b)  $0.015 \text{ Å/ps}$  (c)  $0.02 \text{ Å/ps}$ , (d)  $0.025 \text{ Å/ps}$  and (f)  $0.03 \text{ Å/ps}$ . The insets zooms in on the vicinity of the thermodynamic phase change with the region highlighted in green showing the thermal gradient across the transition region. The grey, blue and red blocks represent the positions of the cold, hot and melting zones are kept at 1670 K, 1710 K and 2000 K, respectively.





## Supporting Information 3

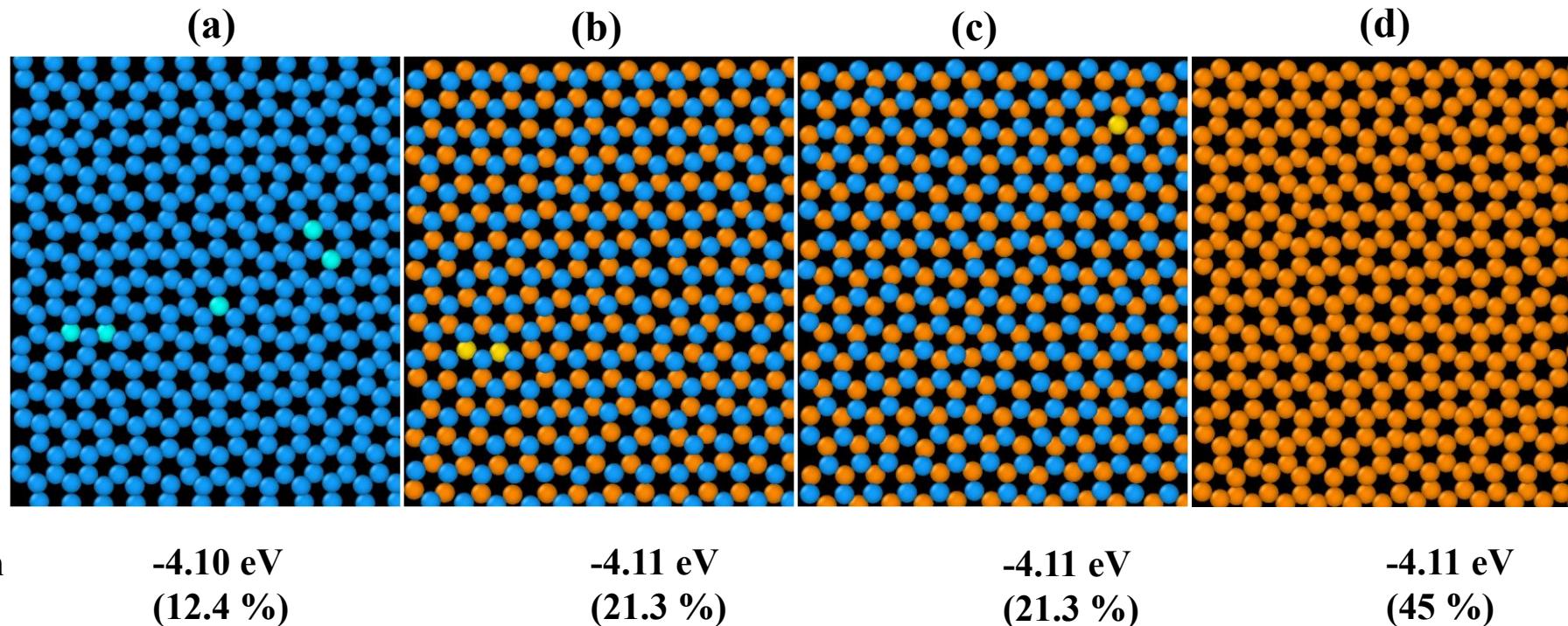



Figure S4: Possible crystalline atomic arrangements in a Si(111) monolayer using the extended CNA implemented in OVITO. (a) cubic (b) cubic-hexagonal (c) hexagonal-cubic and (d) hexagonal diamond structures. Samples taken from simulation FVS simulations with imposed pull speed of 0.035 Å/ps.

## Supporting Information 4

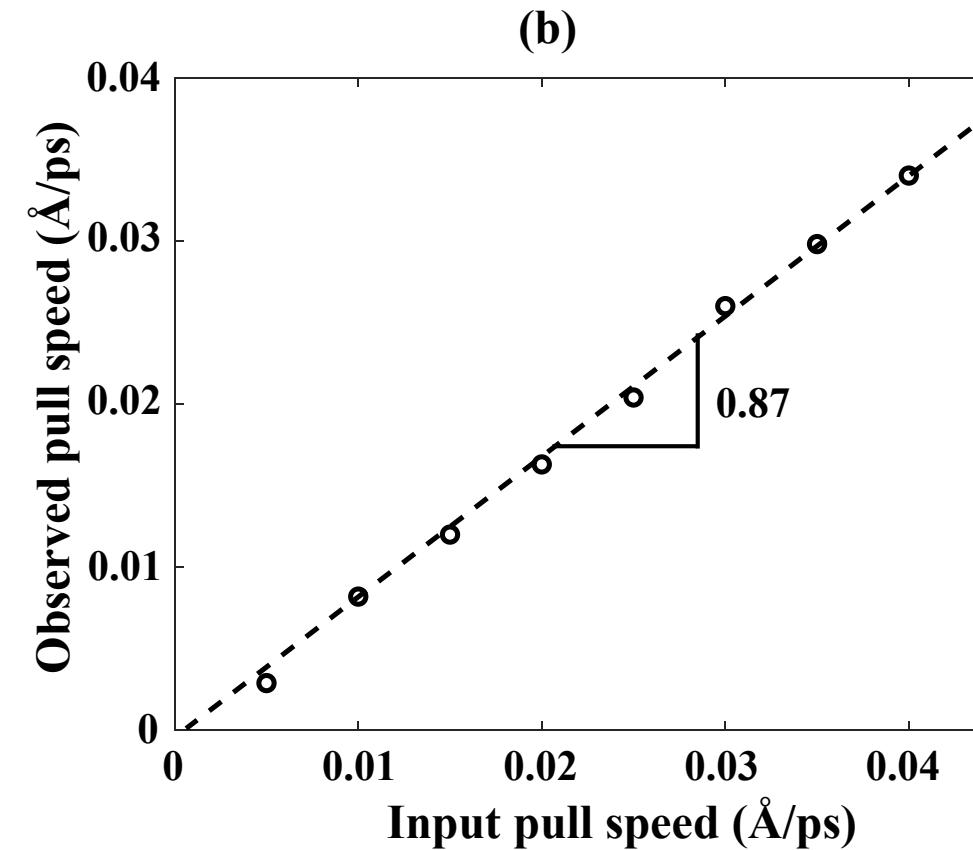
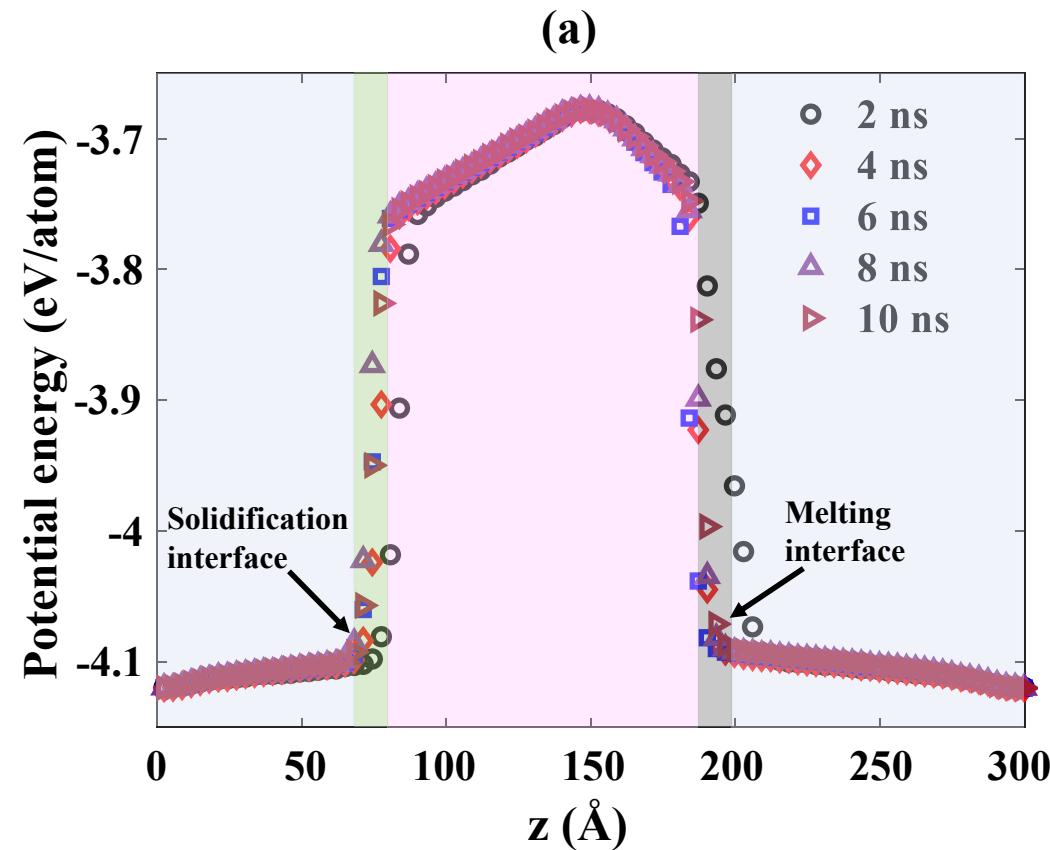




Figure S5: FVS model with 4.63 K/Å thermal gradient across the solidification and melting fronts. (a) Evolution of steady-state potential energy profile (with bin size of 3.13 Å) at pull speed of 0.02 Å/ps. (b) Comparison of input pull and observed pull speeds.

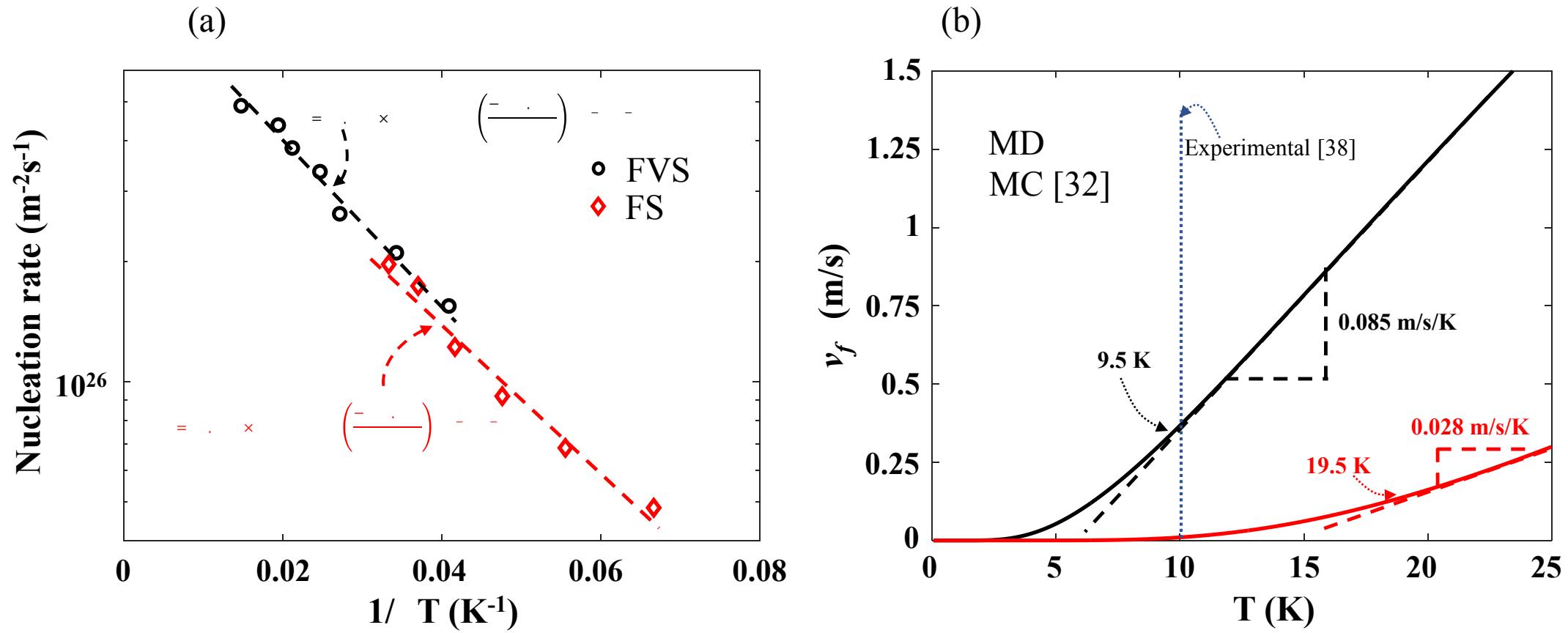



Figure S6: (a) Comparison of nucleation rates dependence on reciprocal of undercooling from the FVS and FS MD models. (b) Estimation of kinetic transition point at higher undercooling for MD and MC [32] kinetic models from the slopes of linear regime of their respective facet velocity versus undercooling curve. The black and red dotted lines represent the linear fits from MD and MC curves, respectively, and the blue dotted vertical line represents the onset of faceted-dendrite growth determined from experimental observation [38].