
Symbolic Router Execution

Peng Zhang
Xi’an Jiaotong University

Dan Wang
Xi’an Jiaotong University

Aaron Gember-Jacobson
Colgate University

Abstract

Network veri!cation often requires analyzing properties across
di"erent spaces (header space, failure space, or their product) under
di"erent failure models (deterministic and/or probabilistic). Exist-
ing veri!ers e#ciently cover the header or failure space, but not
both, and e#ciently reason about deterministic or probabilistic fail-
ures, but not both. Consequently, no single veri!er can support all
analyses that require di"erent space coverage and failure models.
This paper introduces Symbolic Router Execution (SRE), a general
and scalable veri!cation engine that supports various analyses. SRE
symbolically executes the network model to discover what we call
packet failure equivalence classes (PFECs), each of which charac-
terises a unique forwarding behavior across the product space of
headers and failures. SRE enables various optimizations during the
symbolic execution, while remaining agnostic of the failure model,
so it scales to the product space in a general way. By using BDDs
to encode symbolic headers and failures, various analyses reduce
to graph algorithms (e.g., shortest-path) on the BDDs. Our evalua-
tion using real and synthetic topologies show SRE achieves better
or comparable performance when checking reachability, mining
speci!cations, etc. compared to state-of-the-art methods.

CCS Concepts

• Computer systems organization→ Reliability.

Keywords

network veri!cation, equivalence classes, symbolic execution

ACM Reference Format:
Peng Zhang, Dan Wang, and Aaron Gember-Jacobson. 2022. Symbolic
Router Execution. In ACM SIGCOMM 2022 Conference (SIGCOMM ’22),
August 22–26, 2022, Amsterdam, Netherlands. ACM, New York, NY, USA,
14 pages. https://doi.org/10.1145/3544216.3544264

1 Introduction

Network veri!ers enable operators to proactively reason about a
network’s forwarding behaviors to avoid potential problems. For
example, veri!ers can compute all-pairs reachability for a speci!c
failure scenario to verify a planned router outage will not compro-
mise reachability [1]; analyze a speci!c pre!x under probabilistic
link failures to verify a proposed con!guration change directs the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro!t or commercial advantage and that copies bear this notice and the full citation
on the !rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci!c permission and/or a
fee. Request permissions from permissions@acm.org.
SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9420-8/22/08. . . $15.00
https://doi.org/10.1145/3544216.3544264

tra#c through a waypoint 99.9% of the time [21]; or examine all pre-
!xes under a bounded number of link failures to verify a proposed
con!guration refactoring will not jeopardize security [22].

Such veri!cation tasks require network veri!ers to:
(1) Reason about a network’s behavior across a large header space
and/or failure space. For example, the header space can be as large
as 2104 when considering 5-tuples, and the failure space can be
as large as 2! when considering all possible combinations of link
failures in a network with ! links.
(2) Reason about a network’s behavior under di!erent failure models.
For example, verifying a property holds under a bounded number
of failures (") requires a deterministic failure model where each
node or link can either be up or down but the total number of
failures is bounded by " ; whereas verifying a property holds with
high probability (e.g., 99.9%) requires a probabilistic failure model
where nodes or links can fail according to some distribution.

To meet the !rst requirement, existing veri!ers exploit similarity
across packet headers and failure scenarios. Some veri!ers [6, 10, 11,
20, 27] divide the header space into packet equivalence classes (PECs),
such that headers belonging to the same PEC traverse the same
forwarding path under a speci!c failure scenario. Other veri!ers [3,
5, 12–15, 21, 24, 26] divide the failure space into failure equivalence
classes (FECs), such that failure scenarios belonging to the same FEC
result in the same forwarding path for a speci!c source-destination
pair. Analyzing one packet from each PEC or one failure from each
FEC is su#cient to characterize the network’s behavior across the
entire header or failure space, respectively.

However, due to the dual in$uence of headers and failures on
forwarding path selection, PECs may not be the same across failure
scenarios and FECs may not be the same across headers. Con-
sequently, veri!ers leveraging PECs must independently analyze
every failure scenario of interest, and veri!ers leveraging FECs
must independently analyze every pre!x of interest. This causes
the veri!ers to scale poorly to the product space of headers and
failures (§8).

To meet the second requirement, di"erent veri!ers target dif-
ferent failure models and use di"erent optimizations to e#ciently
explore the failure space. For example, checking a property under
a deterministic failure model only requires exploring the boundary
of failure scenarios—e.g., the minimum number of failures (") that
violate the property; veri!ers do not need to consider scenarios
with more than " failures, even if the property is satis!ed in these
scenarios, and many veri!ers are optimized to identify the bound-
ary without evaluating every scenario with fewer than " failures
[3, 5, 12–14, 24, 26]. On the other hand, checking a property under a
probabilistic failure model requires exploring every failure scenario,
and summing the probabilities of scenarios that satisfy the property;
veri!ers are optimized to explore the most likely failure scenarios
!rst, and stop exploring when an acceptable con!dence threshold is
reached [15, 21]. Consequently, veri!ers designed for deterministic

336

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Peng Zhang, Dan Wang, and Aaron Gember-Jacobson

failure models are not amenable to probabilistic failures, and veri-
!ers designed for probabilistic failure models are ine#cient when
applied to deterministic failures.

In summary, existing veri!ers lack scalability to reason about the
product space of headers and failures, and generality to e#ciently
handle both deterministic and probabilistic failure models. The lack
of scalability is due to veri!ers not jointly reasoning about headers
and failures to explore their dual impact on forwarding behaviors.
The lack of generality stems from veri!ers binding to the failure
model too early (i.e., when the network model is created).

This paper introduces Symbolic Router Execution (SRE), a general
and scalable veri!cation engine that can explore the product space
of headers and failures while remaining agnostic of the failure
model. In a nutshell, SRE applies a variant of symbolic execution
tailored to con!guration veri!cation, by viewing the network as a
program (model) consisting of a control plane and a data plane, and
making headers and failures symbolic when executing the model.

WhySRE is scalable. First, SRE symbolically executes the network
control and data planes to account for the correlation among head-
ers and failures and uncover Packet Failure Equivalence Classes
(PFECs)—header and failure combinations for which a speci!c for-
warding path is used. SRE executes a control plane model with
symbolic failures (i.e., link states) to derive the FEC for each route,
and SRE executes a data plane model where forwarding rules in-
clude FECs as another matching !eld (in addition to IP pre!x) so
FECs “carry over” to the data plane. In this way, failures and headers
jointly determine a set of forwarding paths, each of which corre-
sponds to an equivalence class in the product space (i.e., PFECs).
Second, SRE signi!cantly reduces computations by: (#) using Bi-
nary Decision Diagrams (BDDs) [4] to represent symbolic headers
and failures, and (##) applying three optimizations—route pruning,
pre!x pruning, and abstract interpretation.

Why SRE is general. First, PFECs capture all possible forward-
ing paths of all packets under all possible failures, such that any
property related to packets and their forwarding paths—e.g., reach-
ability, waypointing, isolation, or load balancing—can be analyzed.
Second, SRE is agnostic of the failure model when symbolically
executing the network model. The failure model is only speci!ed
when analyzing properties. Delaying the binding to failure model
allows SRE to e#ciently support deterministic and probabilistic
failure models in a general way. Interestingly, using BDDs also
makes SRE more general: we can analyze properties through graph
algorithms. For example, analyzing a property’s failure tolerance
reduces to computing the shortest path on a BDD, and analyzing the
probability of a property holding reduces to computing a weighted
sum on a BDD.

In summary, this paper makes the following contributions:
• We introduce symbolic router execution (SRE), a con!gu-
ration veri!cation engine that scales to the product space
of headers and failures, and generalizes to di"erent failure
models.

• We design and implement SRE and apply various optimiza-
tions to make it scalable and fast. We implement three types
of analyses on top of SRE to demonstrate its generality in
supporting di"erent types of analyses.

Equivalence classes
PECs FECs

F
ai
lu
re

m
o
d
el

D
et
er
m
.

Bat!sh [11], Plankton [20],
ERA [10], ShapeShifter [6],
DNA [27], Con!g2Spec [8]

Con!g2Spec [8], ARC [12],
Tiramisu [3], Hoyan [26],

Minesweeper [5], Origami [13],
Bagpipe [24], NV [14]

P
ro
b
.

NetDice [21], ProbNV [15]

Table 1: Equivalence classes and failure models supported
by existing network con!guration veri!ers

• We use real and synthetic topologies to show SRE achieves
better or comparable performance to state-of-the-art meth-
ods when checking properties, mining speci!cations, com-
puting probabilities, etc.

2 Motivation

In this section, we discuss common network management tasks
(§2.1), and the scalability and generality limitations of existing
network veri!ers with respect to these tasks (§2.2).

2.1 Tasks

Some common network management tasks require reasoning about
a network’s behavior across a large product space of headers and
failures under both deterministic and probabilistic failure models.
For example:

Verifying changes. Verifying a con!guration change has the de-
sired e"ect (e.g., restricting access to a pre!x) only requires analyz-
ing the targeted header space(s). However, checking for unintended
side-e"ects is harder, because changes may impact seemingly un-
related header spaces: e.g., augmenting a route !lter with a high
priority rule that blocks routes with certain community tags may
overshadow a rule that permits routes for certain pre!xes. Conse-
quently, verifying a change is side-e"ect free requires checking all
(manually-speci!ed or mined) requirements, which often span a
large portion of the header and failure spaces [7, 8] and include both
deterministic and probabilistic failure tolerances [21].

Mining network requirements.Many con!guration veri!ers as-
sume operators can clearly specify what to verify—e.g., a router
should (not) be able to reach a certain pre!x. However, network
requirements are rarely explicitly documented. Consequently, re-
searchers have developed network speci!cation miners [7, 8, 17],
which check several types of forwarding properties (e.g., reachabil-
ity, isolation, and waypoint traversals) for the entire header space
under a large range of failure scenarios (e.g. all single- and dual-link
failures), to mine speci!c requirements implied by router con!gura-
tions. It is also desirable to generalize these requirements to groups
of pre!xes [17] and soft failure tolerance levels (e.g., “four 9s” avail-
ability) [21], which requires reasoning about both deterministic and
probabilistic failures.

Some common management tasks may not require reasoning
about the product space of headers and failures or multiple failure
models, but it is desirable to construct a "one-size-!ts-all" veri!er
that accommodates these tasks as well.

2.2 Related Work

Existing veri!ers lack the scalability and generality required to
conduct that aforementioned tasks which reason about a network’s
behavior across a large product space of headers and failures under

337

Symbolic Router Execution SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

both deterministic and probabilistic failure models. As summarized
in Table 1, existing veri!ers compute either packet equivalence
classes (PECs) or failure equivalence classes (FECs)—which do not
extend to the product space—and accommodate either deterministic
or probabilistic failure models—which require di"erent explorations
of the failure space and di"erent optimizations.

PECs or FECs. PECs and FECs allow veri!ers to exploit similarity
in network forwarding behaviors across packet headers or failure
scenarios, respectively. Bat!sh [11] and ERA [10] implicitly com-
pute PECs, whereas Plankton [20] and DNA [27] explicitly compute
PECs. Conversely, FECs are implicitly computed by: NetDice [21],
which identi!es “cold” links whose failure does not impact for-
warding paths for a speci!c source-destination pair; Hoyan [26]
and ProbNV [15], which identify link conditions that in$uence the
existence/selection of a speci!c route; ARC [12] and Tiramisu [3],
which compute path characteristics that are invariant across fail-
ures for speci!c source-destination pairs; and Minesweeper [5] and
Bagpipe [24], which rely on an SMT solver’s ability to learn equiv-
alences in a domain-agnostic manner. Analyzing one packet from
each PEC or one failure from each FEC is su#cient to characterize
the network’s behavior across the entire header or failure space,
respectively.

However, since PECs and FECs may di"er across failure sce-
narios and headers, respectively, veri!ers leveraging PECs must
independently analyze every failure scenario, and veri!ers leverag-
ing FECs must independently analyze every pre!x. Thus, existing
veri!ers scale poorly to the product space of headers and failures
(§8). The trade-o" is illustrated by Con!g2Spec [8], which dynami-
cally switches between a veri!er that uses PECs [11] and a veri!er
that uses FECs [5] to reduce the work required to cover the product
space.

Deterministic or probabilistic.Veri!ers designed to reason about
a bounded number of failures (") are not directly amenable to
probabilistic failures, and vice versa. For example, ARC [12] and
Tiramisu [3] model a network’s control plane as a graph and com-
pute the min-cut to determine the minimum number of simulta-
neous link failures (") under which a property (e.g., reachability)
does not hold. However, they cannot compute the probability of
properties because they do not consider link failures that exceed "
but also preserve the property. On the other hand, NetDice [21] ex-
plores all failure scenarios by iteratively failing links and checking
whether the property holds (until reaching a certain level of con!-
dence in the probability a property holds), and applies a customized
optimization to reduce the search space. However, exploring all
failure scenarios is expensive and unnecessary when considering a
bounded number of deterministic failures.

3 Overview

SRE is a general and scalable network veri!cation engine which
supports various analyses that require reasoning about a network’s
forwarding behavior across a large space of headers and failures
and various failure models. In the following, we present the basic
idea of SRE and show the work$ow of SRE with an example.

3.1 Basic Idea

SRE is inspired by symbolic execution and its application in network
veri!cation.

Symbolic execution of programs. Symbolic execution [18] is a
way to abstractly execute a program by making the inputs symbolic.
When the symbolic executor encounters a conditional branch (e.g.,
if-else statement), it executes each branch and updates the path
condition, which is a set of constraints encoding the branching deci-
sions during the execution. As a result, symbolic execution explores
each execution path at most once, and can discover equivalence
classes of inputs (encoded by the path conditions). Generally, sym-
bolic execution su"ers from path explosion, and leverages many
optimizations to mitigate it.

Symbolic execution of network control plane or data plane.
Several network veri!ers apply symbolic execution. HSA [16] can
be viewed as symbolic execution over the data plane: it forwards
packets with symbolic headers to discover PECs. Hoyan [26] can be
viewed as symbolic execution over the control plane: it simulates the
control plane with symbolic link states to discover FECs. However,
as discussed earlier (§2.2), PECs and FECs do not extend to the
product space of headers and failures.

Symbolic execution of network control plane and data plane.
SRE symbolically executes the network control and data planes to
exploit the correlation in forwarding behaviors among headers and
failures. First, SRE executes a control plane model, where failures
(i.e., link states) are symbolic, to derive the FEC for each route. Then
SRE executes a data plane model, where both headers and failures
are symbolic. When symbolically executing the data plane, SRE
makes FECs another matching !eld (in addition to IP pre!x) in
forwarding rules, so that the FECs discovered during control plane
execution “carry over” to the data plane. In other words, during
data plane execution, failure scenarios and packet headers jointly
determine a set of forwarding paths, each of which corresponds
to an equivalence class in the product space, which we call packet
failure equivalence classes (PFECs).

3.2 Work"ow of SRE

Anexample network. Figure 1(a) shows an example networkwith
three routers ($, %, and &) running BGP. Router & is connected to
the network 128.0.0.0/1, and announces this pre!x, as well as a
longer pre!x 192.0.0.0/2. The operator has a policy that all tra#c to
192.0.0.0/2 should go through router %. Consequently, the operator
con!gures port 2 on router& with: (1) an outbound route-map that
prevents 192.0.0.0/2 from being advertised to$, and (2) an inbound
ACL that blocks packets for 192.0.0.0/2 arriving from $.

At a high level, SRE consists of two steps: (1) symbolic route
computation, and (2) symbolic packet forwarding. We use the above
example to walk through these two steps.

(1) Symbolic route computation (SRC) takes con!gurations and
topology as input, and computes symbolic RIBs, one for each router.
Unlike a concrete RIB which maintains the current best routes, a
symbolic RIB maintains all routes that may become the best route
when links and/or nodes fail. SRC represents the state of each link
with a boolean variable (1=up, 0=down),1 and associates a topology

1Node failures are modeled as a combination of link failures.

338

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Peng Zhang, Dan Wang, and Aaron Gember-Jacobson

Symbolic
Route

Computation

Symbolic
Packet

Forwarding

The SRE System

Symbolic RIBs Packet Failure
Equivalence Classes

(PFECs)

(b) The workflow of SRE

A

B

Networks
192.0.0.0/2
128.0.0.0/1

C

outbound route-map
filter 192.0.0.0/2

inbound ACL
deny 192.0.0.0/2

12

3

2

3

2

3

1

1

(a) A walkthrough example

RIB@A
192/2, lBClAB, B
128/1, lAC, C
128/1, ¬lAClBClAB, B

PFECs@C
(p1¬p2lAC), [A,C]
(p1p2lBClAB)@
(p1¬p2¬lAClBClAB), [A,B,C]

lAB

lBC

lAC

10

lAC

lAB

lBC

lAC

10

lAC

Prob=0.981

MaxFailure=1

1 0

0.1 0.9

Topology BDD
for 128/2

(c) Analyzing reachability from A to C

Figure 1: The walkthrough example, the work"ow of SRE, and property analysis with SRE.

condition—a boolean formula consisting of these variables—with
each route in the symbolic RIB to encode the failure scenarios under
which the route becomes the best route.

Figure 1(b) shows the symbolic RIB at router $. For pre!x 128/1,
there are two best routes (second and third entries). The route with
next hop & and topology condition !"# becomes the best route if
!"# is up, while the route with next hop % and topology condition
¬!"#!$#!"$ becomes the best route if !"# is down but both !"$ and
!$# are up.

To generate symbolic RIBs, SRE initializes the topology con-
dition of originated routes to symbolic value True (representing
any combination of link failures). Then, SRE simulates the control
plane, and during the simulation constrains the topology condition
of each route. Unlike Hoyan [26] which encodes the topology con-
dition using SAT constraints, SRE uses Binary Decision Diagrams
(BDDs) [4], thus avoiding topology condition explosion for large
networks (§8).

BinaryDecisionDiagram (BDD).As shown in Figure 1(c), a BDD
is a rooted, directed acyclic graph (DAG) with two terminal nodes
0 and 1, and several (non-terminal) decision nodes. Each decision
node corresponds to a boolean variable (!"$, !$# , etc.), and has two
outgoing edges: a dashed edge and a solid edge, representing the
boolean variable being assigned False and True, respectively. For
example, in this BDD, the root node represents variable !"$; if !"$ =

False, we follow the dashed edge to another node representing
variable !"# , and if !"# = True, we follow the solid edge to terminal
node 1. A path from the root to the terminal 1 represents a truth
assignment, e.g., !"$ = False, !"# = True in this example.

(2) Symbolic packet forwarding (SPF) takes the symbolic RIBs
as input, forwards symbolic packets through the network, and
generates a set of PFECs. Each PFEC consists of all packet-failure
tuples for which a forwarding path is used. Figure 1(b) shows the
two PFECs whose forwarding paths are from$ to& . The !rst PFEC
('1¬'2!"# , [$,&]) represents packets 128/2 and failure scenarios
where !"# is up (other links can be up or down) for which the path
$→& is used. Similarly, the second PFEC represents packets and
failures for which the path $→%→& is used.

To generate PFECs, SRE converts the symbolic RIBs into symbolic
FIBs, where each FIB entry matches both the pre!x and the topology
condition of the corresponding route. Then, SPF augments packet
headers with a topology condition, initializes the augmented header
with a symbolic value of True (encoding all possible packet-failure
tuples), and injects it at each router in the network.When a symbolic
packet matches a FIB entry, SRE constrains the topology condition

and destination IP of the packet with the topology condition and
pre!x, respectively, of the FIB entry.

Through SRC and SPF, SRE jointly explores the header space and
failure space, in a way that is agnostic of the speci!c veri!cation
tasks (e.g., checking failure tolerance). This allows SRE to e#ciently
support a variety of analyses.

3.3 Property Analysis with SRE

SRE enables three types of analyses over various properties (e.g.,
reachability, waypointing, isolation, load balancing):

(1) failure tolerance: compute the maximum number of failures
that a property can tolerate;

(2) probabilistic: estimate the probability that a property holds
under probabilistic failures;

(3) di!erential: check for di"erences in failure tolerance/proba-
bility of a property after a con!guration change.

While existing veri!ers are targeted at one type of analysis, SRE
enables all of these analyses based on the abstraction of PFECs. The
reason is that SRE is agnostic of the analyses and outputs PFECs
which collectively represent all possible forwarding behaviors (i.e.,
end-to-end forwarding paths), as well as the packets and failures for
each behavior. Moreover, since each PFEC is encoded with a BDD
(a graph), SRE allows operators to perform the analyses directly on
top of BDDs with graph algorithms, agnostic of complex network
semantics (e.g., routing protocols).

We use reachability as an example to show how computing fail-
ure tolerance and probabilities reduce to standard graph problems
on top of BDDs. §6 discusses more analyses.

Example 1: Computing failure tolerance. Suppose operators
need to know the failure tolerance for reachability of packets 128/2
from $ to & . There are two PFECs at & satisfying the property,
one traversing $→& , and the other traversing $→%→& . We can
compute a disjunction of these two PFECs, and extract the sub-BDD
encoding the failures—which we call a topology BDD—as shown in
Figure 1(c). In this topology BDD, the minimum number of dashed
edges to the terminal node 0 is two, which corresponds to the
minimum number of failures that violate the reachability property.
That is, the maximum number of failures the reachability of packets
128/2 from$ to& can tolerate is one less than the minimum number
(2 − 1 = 1). Therefore, the problem of computing failure tolerance
reduces to the problem of "nding the shortest path: assign weight 1 to
dashed edges and weight 0 to solid edges; compute the shortest path
length " from the root node to terminal node 0; the failure tolerance
is " − 1.

339

Symbolic Router Execution SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

Example 2: Computing probabilities. Suppose operators instead
need to know the probability for reachability of packets 128/2 from
$ to & . Di"erent from computing failure tolerance, which only
cares about a failure scenario where the property does not hold
with the minimum number of link failures, computing probability
requires !nding all failure scenarios where the property holds, and
summing up their probabilities. In the topology BDD, each truth
assignment (a path from the root to the terminal node 1) represents
a set of failure scenarios where the property holds. Therefore, the
problem of computing probability reduces to the problem of "nding
all paths to a node on a graph, and computing a weighted sum of
these paths. For illustration purpose, assume each link fails inde-
pendently with probability ' (see §6 for details on dependent link
failures or node failures), and assign weight ' to dashed edges,
weight (1− ') to solid edges, weights 0 and 1 to the terminal nodes
0 and 1, respectively. Then, the probability is the weight of the root
node, which can be computed recursively from the terminal node
1, according to: the weight of each node is the weighted sum of its
two child nodes. In this example, we can easily see the probability
is 0.9 ∗ (0.9 + 0.1 ∗ 0.9) + 0.1 ∗ 0.9 = 0.981.

4 Symbolic Route Computation

This step symbolically simulates the control plane to generate a
symbolic RIB for each router. Each symbolic RIB consists of all pos-
sible routes that can materialize (i.e., become the best route) when
links and/or nodes fail, and the corresponding failure scenarios.

4.1 De!ning Symbolic Route

Before introducing symbolic routes, we !rst de!ne link variables.
For each link (in the network, its link variable is de!ned as boolean
variable !% , such that !% = 1(True)/0(False) means the link (is
up/down, respectively. A symbolic route is a 2-tuple ()*+,-, ,.),
where:)*+,- is a concrete route for a speci!c protocol (e.g., OSPF
and BGP) specifying the pre!x, the next hop, and other protocol-
speci!c attributes (e.g., AS Path); and ,. , which stands for topology
condition, is a predicate over link variables specifying the failure
scenarios when)*+,- becomes the best route.

Taking Figure 2(b) as an example,$will receive a route for pre!x
128.0.0.0/1 from& , if link$& is up. Thus, SRE updates the topology
condition of this route at router $ to !"# , where !"# is a boolean
variable denoting the state of link $& , i.e., !"# = 1 or 0 if link $& is
up or down, respectively.

SRE uses Binary Decision Diagrams (BDDs [9]) to encode topol-
ogy conditions. Compared to SAT constraints, BDDs concisely en-
code boolean formulas and e#ciently support conjunctions, dis-
junctions, and negations. Moreover, using BDDs allows SRE to
support various analyses using graph algorithms (§6).

4.2 Computing Symbolic Routes

SRE computes symbolic routes by executing a control plane model,
where each router repeatedly executes three steps: (1) import routes
from neighboring routers; (2) rank all imported routes with existing
routes and install the best routes into its RIB; and (3) export the
best routes to neighboring routers. The execution terminates when
the RIBs of routers do not change (i.e., a !xed point is reached).

Importing Routes. Initially, each router imports all routes de-
clared in the con!gurations. Each such route has a ,. = True. Dur-
ing recursive route computation, each router imports the routes
exported (advertised) by neighboring routers, and !lters or modi-
!es routes according to routing policies. During this process, the
topology condition is unchanged.

Ranking Routes.When a router receives multiple routes for the
same pre!x, it ranks these routes according to their priorities,
and updates their topology conditions. Suppose there are / routes
)1,)2, · · · ,)& with decreasing priority. The topology condition of
)' , denoted as)' .,. , is updated by negating the topology conditions
of all higher-priority routes, i.e.,)' .,. = (

∧

(<' (¬)(.,.)) ∧)' .,. .
For example, in Figure 2(c), router $ receives another route)
for 128.0.0.0/1 from router %, which has a topology condition of
) .,. = !$#!"$. Assuming router $ prefers routes with the shortest
path, $ will rank) lower than the one directly received from & ,
whose topology condition is !"# . $ updates) .,. = ¬!"#!$#!"$.

Exporting Routes. Each router exports to its neighbors the routes
whose topology conditions are not False. The routes will !rst be
!ltered/modi!ed according to the routing polices. For example, in
Figure 2(b), router & !lters the route 192.0.0.0/2 to be exported to
router $ according to the route map. For each route) exported by
router 0 to its neighboring router 1 ,) .,. is updated to) .,. ∧ !)* ,
where !)* is the link between 0 and 1 .

Supporting multiple protocols. When there are multiple proto-
cols (BGP, OSPF, static), SRE ranks routes !rst according to the
administrative distance of their protocols, and then considers the
protocol-speci!c priorities. When there are route dependencies—
e.g., iBGP relies on OSPF to establish neighbor relationships—SRE
will !rst compute the topology conditions for data plane reachabil-
ity among iBGP peers (see §5), and then use the conditions as the
link conditions among iBGP peers. That is, SRE views the connec-
tions among iBGP as virtual links whose conditions are computed
based on data plane reachability analysis of OSPF.

Supporting route aggregation. For BGP, a router can use route
aggregation to aggregate multiple routes of speci!c pre!xes into a
single route of summarizing pre!x. When at least one route with a
speci!c pre!x is received, the aggregated route will be generated
and advertised instead of the received route. This can introduce
correlations among routes of di"erent pre!xes. It is easy to see that
the link condition for the aggregated route is the disjunction of link
conditions of all received routes whose pre!xes are more speci!c.

Supporting multi-path routing.When multi-path routing (e.g.,
ECMP) is enabled, multiple routes for the same pre!x may have the
same priority, and these routes should all be selected as the best
route. SRE realizes this by storing all routes for the same pre!x in
a two-dimensional list: each entry of the two-dimensional list is a
list of routes with the same priority. When updating the topology
condition of a route, SRE only negates the topology conditions of
routes belonging to lists whose priorities are higher than the route.

Handling new higher-priority routes. A critical issue is dealing
with new higher-priority routes. Speci!cally, when 0 imports a
route whose priority is higher than some existing routes in its
RIB, the topology conditions of these lower-priority routes become
obsolete, and 0 should withdraw and re-advertise these routes.

340

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Peng Zhang, Dan Wang, and Aaron Gember-Jacobson

A

B

Networks
192.0.0.0/2
128.0.0.0/1

C

outbound route-map
filter 192.0.0.0/2

inbound ACL
deny 192.0.0.0/2

12

3

2

3

2

3

1

1

(a) A walkthrough example

A

B

C 12

3

2

3

2

3

1

1

128/1
192/2
128/1
192/2

192.0.0.0/2, lAC, C
128.0.0.0/1, lAC, C

192.0.0.0/2, lBC, C
128.0.0.0/1, lBC, C

A

B

C 12

3

2

3

2

3

1

1

192.0.0.0/2, lBC, C
128.0.0.0/1, lBC, C
128.0.0.0/1, ¬lBClAClAB, A

192.0.0.0/2, lBClAB, B
128.0.0.0/1, lAC, C
128.0.0.0/1, ¬lAClBClAB, B

(b) Route propagation #1 (c) Router propagation #2

128/1
192/2
128/1
192/2

Figure 2: The process of symbolic route computation.

This can trigger cascaded updates at all routers importing those
lower-priority routes [26]. To be more e#cient when handling
new higher-priority routes, SRE only re-advertises lower-priority
routes whose topology conditions change, without withdrawing
any routes. To achieve this, SRE uses two topology conditions for
each route: ,.(& which represents the topology condition when
the route is imported, and ,.+(, which represents the topology
condition when the route is inserted in to the RIB. When a set
of routes are imported by a router, SRE will re-compute ,.+(, for
each route)' whose priorities are equal or lower than any newly
inserted routes, according to:

)' .,.
+(,

= (
∧

1≤(≤'−1

(¬)(.,.
(&)) ∧)' .,.

(& (1)

If)' .,.
+(, is changed, we advertise it to all neighbors of 0. Each

advertised route) ′
'
will have) ′

'
.,.+(, = False, and) ′

'
.,.(& =

)' .,.
+(, ∧ ! , where ! is the variable of the link connected to the

neighbor. The algorithm for computing the symbolic RIBs can be
found in Appendix A.

5 Symbolic Packet Forwarding

5.1 De!ning Symbolic Packets

SRE augments packet headers with a topology condition, which
captures the failure scenarios under which the packet is forwarded.
Suppose the original packet header has / bits (e.g., / = 104 for 5
tuple), and the network has2 links; SRE uses a bit vector of length
(/ +2) for the packet header. SRE symbolically executes the data
plane by making the packet header symbolic and forwarding it
through the network.

5.2 Generating symbolic FIBs

For each router, SRE generates a symbolic FIB, which is an or-
dered list of forwarding rules. Each forwarding rule is a 2-tuple
(23,.ℎ, '*),), where23,.ℎ is a predicate (boolean formula) over
packet headers and failure scenarios. For example, for symbolic
route (192/2, !$#!"$,%) at router $ (Figure 3(a)), we will generate
a forwarding rule ('1'2!$#!"$, '*),3), where '1, '2, . . . , '32 are
boolean variables for IP addresses (from the highest bit to the low-
est bit), !"$ is a boolean variable for link $%, and port 3 is the
port (interface) connected to router % (Figure 3(b)). Without loss
of generality, we assume forwarding rules are ordered by pre!x
length (longest pre!x has highest priority). For rules with the same
pre!x length, the priority is determined by the priority of their
corresponding routes.

5.3 Computing predicates

After generating symbolic FIBs, we can forward symbolic packets
through the network by matching forwarding rules in the FIBs.
Each rule can be seen as a branch statement (e.g., if-then-else) in
computer programs. However, each router often has a large number
of rules, making the matching very ine#cient. Therefore, we adopt
the approach of pre-computing port predicates [25]. A port predicate
is a boolean formula encoding the set of packets forwarded to a
speci!c port (forwarding predicates), or allowed by a speci!c port
(ACL predicates). Since there are a relatively small number of ports
at each router (compared to the number of rules), matching based
on port predicates will be more e#cient.

Forwarding predicates. The forwarding predicate of a port is
computed as a disjunction of the “e"ective” match !elds of all rules
which forward to that port. Here, “e"ective” means the match !elds
that are not overridden by higher-priority rules. For example, the ef-
fective match !elds for the second rule '1!"# in the symbolic FIB of
router$ are '1!"#¬('1'2!$#!"$) = '1'2!"#¬(!$#!"$)∨'1¬'2!"# ,
as shown in Figure 3(b). Here, the !rst term is for 192/2, which will
match both the !rst and second rule. According to the priorities,
the second rule will be matched only when the !rst rule is not
matched, i.e., when either !$# or !"$ is down. Since only the second
rule forwards to port 2, then the forwarding predicate of port 2 is
the e"ective match !elds of the second rule. For another example,
the port predicate for port 3 can be computed as a disjunction of
the “e"ective” match !elds of the !rst and third rules.

ACL predicates. Each port may have ACLs !ltering inbound or
outbound tra#c. Therefore, we compute inbound and outbound
ACL predicates for each port. The computation is similar to for-
warding predicates. Returning to our example in Figure 3(b), router
& has an ACL at port 2 !ltering inbound packets for pre!x 192/2.
The inbound ACL predicate of port 2 is computed as ¬('1'2).

5.4 Forwarding packets

After computing predicates, we construct a symbolic packet match-
ing all packet headers and failure scenarios (a logical True over
header and link variables), and inject it at each router of the net-
work. For each port of the router, we replicate the symbolic packet,
and let it traverse the port. Suppose a port has a forwarding pred-

icate 5
- ./
1 , an outbound ACL predicate 50121 , and is connected

to another port with an inbound ACL predicate 5(&2 , through a
link ! , then we constrain the symbolic packet '", by computing:

'", ← '", ∧ 5
- ./
1 ∧ 50121 ∧ ! ∧ 5(&2 . If '", ≠ False, then it arrives

341

Symbolic Router Execution SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

(a) Symbolic FIB

p1p2lBClAB, port 3
p1lAC, port 2
p1¬lAClBClAB, port 3

A

B

C 12

3

2

3

2

3

1

1

(c) Symbolic forwarding starting from Router A

(p1p2lAC¬(lBClAB))@
(p1¬p2lAC)A

B

C 12

3

2

3

2

3

1

1

(b) Port Predicates

(p1p2lAC¬(lBClAB))@
(p1¬p2lAC)

(p1p2lBClAB)@
(p1¬p2¬lAClBClAB) (p1p2lBClAB)@

(p1¬p2¬lAClBClAB)

(p1p2lBClAB)@
(p1¬p2¬lAClBClAB)

(p1p2lBClAB)@
(p1¬p2¬lAClBClAB), A:B:C

(p1¬p2lAC), A:C
A

B

C 12

3

2

3

2

3

1

1

p1lBC

p1¬lBClAClABp1p2lBC, port 2
p1lBC, port 2
p1¬lBClAClAB, port 3

In-ACL: ¬(p1p2)

Figure 3: The process of symbolic packet forwarding.

at the port of the next-hop router. This process continues until
'", = False, or '", reaches a port that is not connected to other
routers.

Figure 3(c) shows the above process for the running example,
where a symbolic packet is injected at router $, and reaches router
& (port 1) through $→& and $→%→& .

Packet Failure Equivalence Class. Each symbolic packet reach-
ing an edge port encodes the set of packet-failure tuples for a
speci!c path, and is termed a packet failure equivalence class (PFEC).
Formally, we have the following de!nition.

Definition 1. For a given router 0, a failure scenario 6 , and a

packet ' , let 7*)83)9
-
) (') be the forwarding path of packet ' starting

from router 0, under the failure scenario 6 . Two tuples ('1, 6 1) and
('2, 6 2) belong to the same packet failure equivalence class (PFEC)

with respect to 0, if and only if 7*)83)9
- 1
) ('1) = 7*)83)9

- 2
) ('2).

As shown in Figure 3(c), for router $, there are two PFECs,
one with forwarding path $→ & , and the other with forwarding
path $ → % → & . All packet-failure tuples where packets have
destination IP belonging to 128/1 and failure scenarios satisfy link
$& is up belong to the !rst PFEC.

6 Forwarding Property Analysis

This section shows how to analyze properties based on the PFECs.
We !rst de!ne the properties that we consider, then give the work-
$ow for analyzing these properties, and show how to perform three
types of analyses over the properties.

6.1 Properties

We consider the following properties.
• Reachability 0-3.ℎ(:,9, '): packets in ' sent from : can
reach 9 .

• Waypointing;3<'*#/, (:,9,8 , '): packets in ' sent from
: can reach 9 , traversing waypoint8 .

• Isolation =:*!3,#*/(:,9, '): packets in ' sent from : can
never reach 9 .

• Load Balancing >*39?3!3/.- (:,9, ',/): packets in ' sent
from : can reach 9 , load balanced among / routes.

6.2 Work"ow

Property analysis using SRE generally consists of three steps.

(1) Computing propertyBDD. First, given a property, an analyzer
uses SRE to compute a property BDD, which is a BDD encoding
all PFECs that satisfy the property (Lines 7-12 of Algorithm 2 in
Appendix C). As shown in Figure 3(c), there are two PFECs that

p1

p2

lAB lAB

lBC

lAC

10

lAC

lAB

lBC

10

lAB

lBC

lAC

10

lAC

Property BDD for Reach(A,C,*)

Topology BDD
for 128/2

Topology BDD
for 192/2

Figure 4: Analysis of reachability property.

satisfy 0-3.ℎ($,&, ∗): one following $→ & , and the other follow-
ing $→ % → & . The left of Figure 4 shows the property BDD for
0-3.ℎ($,&, ∗).

(2) Extracting topology BDDs and packet BDDs. A property
BDD can consist of multiple sets of packet headers each having a
di"erent topology condition. For example, as shown on the left of
Figure 4, the solid and dashed lines starting from '2 lead to di"er-
ent nodes for link variable !"$. This means packets '1'2 (192/2)
and packets '1¬'2 (128/2) have di"erent topology conditions. To
analyze packets with di"erent topology conditions, the analyzer
uses the Extract function (Lines 13-18 of Algorithm 2 in Appendix
C) to decouple the property BDD into a set of (,*'*(, '",() tuples,
where ,*'*((topology BDD) and '",((packet BDD) are sub-BDDs
of the property BDD, such that ∨((,*'*(∧'",() equals the property
BDD. The right of Figure 4 shows two topology BDDs for packet
BDDs of 192/2 and 128/2.

(3) Analyzing topologyBDDswith graph algorithms.After de-
coupling the property BDD into packet BDDs and topology BDDs,
analyses can be performed by running graph algorithms on the
topology BDDs. The analyses that SRE support include: failure tol-
erance analysis (§6.3), probabilistic analysis (§6.4), and di"erential
analysis (§6.5).

6.3 Failure tolerance analysis

Definition 2. The link failure tolerance for a property ')*'
is de"ned as the maximum value of " satisfying that ')*' always
holds when no more than " links fail simultaneously.

342

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Peng Zhang, Dan Wang, and Aaron Gember-Jacobson

We use >7@ (')*') to denote the link failure tolerance of ')*' .
>7@ (')*') = 0 means ')*' holds when all links are up, but is
violated if some single link fails; >7@ (')*') = −1 means ')*' does
not hold even all links are up.

We show how to compute link failure tolerance for three types
of properties: reachability, waypointing, and isolation.

Reachability property0-3.ℎ(:,9, ∗). Regarding reachability prop-
erty, we have the following theorem.

Theorem 1. Let (,*'*, '",) be a topology BDD and packet BDD
tuple extracted from the property BDD of0-3.ℎ(:,9, ∗). Assign weight
0/1 to solid/dashed edges of ,*'* . Then, we have:>7@ (0-3.ℎ(:,9, '",)) =
ShortestPath(,*'*, 0)−1, where ShortestPath(/, 0) is the length
of the shortest path from node / to terminal node 0.

The proof of Theorem 1 can be found in Appendix B.
Returning to our example, the top right of Figure 4 shows that

for packets in 192/2, the shortest path length from root to terminal
node 0 is 1. This means that to violate the reachability, at least one
link should be failed, i.e., the link failure tolerance of the reachability
property is 0. On the other hand, the bottom right of Figure 4 shows
that for packets in 128/2, the shortest path length is 2, meaning that
the link failure tolerance of the reachability property is 1. Algorithm
2 in Appendix C summarizes the process to compute link failure
tolerance for reachability properties.

Other properties. The process of computing LFT for other prop-
erties, including waypointing, isolation, etc., is almost the same.
The only di"erence is the computation of property BDD (Line 10
of Algorithm 2 in Appendix C). For example, the property BDD for
waypointing property should be the disjunction of all PFECs whose
forwarding path traverse8 , in addition to being sent from : to 9 .

6.4 Probabilistic analysis

SRE supports probabilistic analysis: given a property ')*' , comput-
ing the probability that ')*' holds, denoted as 5)*? (')*'). In the
following, we show how to compute probability for the reachability
property 0-3.ℎ(:,9, ∗); for other properties, the probability can be
computed in a similar way.

Theorem 2. Let (,*'*, '",) be a topology BDD and packet BDD
tuple extracted from the property BDD of0-3.ℎ(:,9, ∗). Then, we have
5)*? (0-3.ℎ(:,9, '",)) =

∑

% ∈Truth(2030) 5) ((), where Truth(/) is
the set of all truth assignments, and 5) (() is the probability of the
truth assignment (.

Figure 4 shows that for 128/2 there are three truth assignments:
(1 = (!"$ = 0, !"# = 1), (2 = (!"$ = 1, !"# = 1), (3 = (!"$ =

1, !"# = 0, !$# = 1). Then, 5)*? (0-3.ℎ($,&, 128/2)) =
∑3
(=1 5) ((().

In the following, we show how to compute 5) ((() for link failures
and node failures.

Link failures. Assume each link fails independently with proba-
bility of '/0.& = 0.1 (correspondingly, '13 = 0.9), then the reacha-
bility probability is 5)*? (0-3.ℎ($,&, 128/2)) = 0.1∗0.9+0.9∗0.9+
0.9 ∗ 0.9 ∗ 0.1 = 0.981. Actually, for such a failure model, we can
assignweights '/0.& and '13 to dashed lines and solid lines, respec-
tively in the topology BDD, and e#ciently compute the probabil-
ity with dynamic programming: 5)*? (0-3.ℎ(:,9, '",)) = 5 (,*'*),
5 (/) = '/0.& ∗ 5 (/.9) + '13 ∗ 5 (/.:), 5 (1) = 1, and 5 (0) = 0. Here,

/.9 and /.: are the two children of node / corresponding to the
dashed and solid line, respectively.

Node failures (dependent link failures). When a node fails, all
the links of this node will fail. This introduces dependency among
link failures, and the above dynamic programming method cannot
be used. Similar to [21], we use Bayesian Network (BN) to model
the dependency. For this example, suppose nodes $ and % fail
with probability 0.01, BN will declare: 5 (1" = 0) = 0.01, 5 (1$ =

0) = 0.01, 5 (!"$ = 0|1" = 0 ∨ 1$ = 0) = 1, 5 (!"$ = 0|1" ≠

0 ∧ 1$ ≠ 0) = 0.1, etc. Then, we can query the BN model for 5 ((().
Similarly, nodes or links that share the same risk can be modeled
by introducing more dependency into BN, e.g., 5 (1" |1$) = 1.

6.5 Di#erential analysis

Operators are constantly changing con!gurations and need to know
how the changes a"ect properties: e.g., what properties become
satis!ed or unsatis!ed. DNA [27] can be used for such di"erential
analyses. However, without considering link or node failures, DNA
only returns “shallow di"erences”, which may overlook undesirable
di"erences. In the running example, suppose the operator deletes
the ACL which drops packets destined for 192/2 at & . Due to the
outbound route policy at& ,$ still chooses to route packets for pre!x
192/2 towards %, and no reachability or waypointing properties
are a"ected when all links are up. However, when links !"$ or !$#
fail, packets for pre!x 192/2 will be dropped before the change but
will be forwarded to & after the change. The waypointing property
will be violated since packets for 192/2 will not traverse % under
some link failures. In addition, the link failure tolerance changes:
packets belonging to 192/2 sent by $ will not reach & if !"$ or !$#
fails, before the change, while can reach& even these two links fail,
after the change.

Computing di#erences under failures. SRE can be used to iden-
tify the above failure-triggered di"erences in three steps: (1) for
each property, extract the topology BDD and packet BDD tuples
by running steps 1 and 2 for the changed con!guration. (2) for
each tuple ('",, ,*'*), where ,*'* changes from ,*'* ′, compute
the di!erential BDD: (,*'* ∧ ¬,*'* ′) ∨ (¬,*'* ∧ ,*'* ′). (3) com-
pute a truth assignment of the di"erential BDD. In addition, we can
also compute the di"erence of failure tolerance and probability by
computing the failure tolerance and probability for the changed
con!guration, and comparing to those of the original con!guration.

In the running example, consider the reachability from$ to& , the
topology BDD of 192/2 changes, and the di"erential BDD encodes
!"#¬(!"$!$#). One truth assignment to the di"erential BDD is
!"$ = 0, !$# = 1, and !"# = 1, meaning that when link $% fails,
packets 192/2 is unreachable from $ to & before the change, while
is reachable after the change. In addition, the tolerance increases
to one after the change.

7 Optimizations

The number of possible routes under all node/link failures can
explode for large networks (similar to path explosion for symbolic
execution of programs). Therefore, optimizations are necessary to
prune routes and make the symbolic execution tractable. Existing
veri!ers use di"erent optimizations targeted at di"erent analyses.
In the following, we consider three of these optimizations, and

343

Symbolic Router Execution SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

show how SRE can leverage them to prune a signi!cant number of
routes.

7.1 Route Pruning

Hoyan [26] observes that when considering a small number of
link failures, e.g., " ≤ 3, a lot of routes will become impossible
(the topology conditions contain >3 link failures) during route
computation and can be pruned. The tricky part here is that the
topology condition of a route can be partially impossible. Suppose
another router A is connected to $ and % in Figure 1(a). A will
receive 4 routes for pre!x 128/1:

A→$→& : !"4!"# A→$→%→& : !"4¬!"#!"$!$#

A→%→& : !$4!$# A→%→$→& : !$4¬!$#!"$!"#
SupposeA prefers routes received from$. Then, the routeA→%→&
will have a topology condition:

¬(!"4!"#) ∧ ¬(!"4¬!"#!"$!$#) ∧ !$4!$#

=(!$4!$#¬!"4) ∨ (!$4!$#¬!"$¬!"#)

If we restrict to" ≤ 1 link failures, then only the second conjunction
should be pruned. To enable the above partial pruning with SAT
encoding (e.g., Hoyan), one has to represent the topology condition
as a disjunction of conjunctions of link variables, in order to prune
only those conjunctions with more than " negated link variables.
However, due to the negations and conjunctions, the topology
condition can grow very quickly, leading to what we call topology
condition explosion, which will make the simulation time out (§8.6).

SRE realizes route pruning without topology condition explosion:
since each topology condition is concisely encoded with a BDD, SRE
can !lter partially impossible routes by conjuncting the topology
condition with a "ltering BDD ! 6 ' , which is a BDD representing
all possible ≤ " link failures. For the running example with 3 links,
! 6 1 is constructed as:

! 6 1 = (!"$!"#!$#)∨ (¬!"$!"#!$#)∨ (!"$¬!"#!$#)∨ (!"$!"#¬!$#)

Then, for each route with topology condition ,. , SRE updates it as
,. ← ,. ∧ ! 6 ' . The route will be pruned if ,. = 73!:- .

Note that route pruning may under-estimate the probability that
a property holds, due to ignoring all the >" failure scenarios. How-
ever, when the probabilities of failures are quite small (e.g., 0.001),
which is often the case [21], the probability of >" failures decreases
quickly with " . Therefore, if allowing for some #2')-.#:#*/ (e.g.,
10−4), it su#ces to consider only a bounded number (") of failures
and safely dropping routes with >" failures. Speci!cally, SRE pre-
computes the minimum " which guarantees that the probability of
> " link failures is smaller than the imprecision (e.g., 10−4) speci!ed
by operators, that is:

'
∑

5=0

(

/

2

)

'5/0.& (1 − '/0.&)
&−5

> 1 − #2')-.#:#*/,

where / is the number of links, and '/0.& is the probability that a
link fails.

7.2 Pre!x Pruning

Con!g2Spec [8] observes that some properties (e.g., reachability)
cannot hold under " failures due to the lack of topological con-
nectivity. Based on this observation, Con!g2Spec computes (k+1)-
edge-connected components (ECCs) on the topology: two nodes

are in the same (" + 1)-ECC if they remain connected when any "
edges are removed. Con!g2Spec prunes policies (e.g., reachability)
between nodes which are not in the same (" + 1)-ECC from the set
of candidate policies.

SRE leverages the observation to enable another optimization
termed pre"x pruning. Unlike Con!g2Spec which prunes policies to
verify, SRE prunes pre!xes to compute—i.e., SRE does not perform
symbolic route computation for the pre!xes. Before enabling this
optimization, SRE !rst divides forwarding property analysis into
several strata: for the (" + 1)th stratum, SRE only considers those
properties whose failure tolerance is " , thereby pruning pre!xes re-
lated to those properties whose failure tolerance is < " . By iterating
over all strata, SRE can compute failure tolerance for all properties.
For the (" + 1)th stratum, if a (" + 1)-ECC contains only one router
0, then properties related to all pre!xes originated by 0 have failure
tolerance < " , and those pre!xes can be pruned. Moreover, since
the (" + 1)th stratum does not need to consider > " link failures,
SRE can apply route pruning (§7.1) to reduce the number of routes
for unpruned pre!xes.

Compared to route pruning which prunes routes during route
computation, pre!x pruning prunes routes before route computa-
tion. The joint e"ect of pre!x pruning and route pruning is remark-
able: for stratum with a smaller " , more routes will be pruned by
route pruning; for stratum with a larger " , more routes will be
pruned by pre!x pruning. Therefore, the overall number of routes
will be relatively small with the above two optimizations. As we
show in our experiments, the strati!ed approach is faster than the
one-shot approach which considers all < " failures and hence does
not permit pre!x pruning (§8.4).

Note that pre!x pruning does not a"ect the accuracy of failure
tolerance analysis, but may under-estimate the probabilities of
properties. The reason is that even the property does not hold under
arbitrary " link failures, there may exist some " link failures under
which the property holds, whose probabilities are not counted when
pre!x pruning is enabled.

7.3 Abstract Interpretation

ShapeShifter [6] applies abstract interpretation to reduce the num-
ber of routes during control plane simulation (under no failures).
ShapeShifter shows that for data center networks with many redun-
dant links and great symmetry, abstract interpretation signi!cantly
speeds up the simulation process.

SRE can apply abstract interpretation to speed up the process of
SRC (§4). For example, if we only care whether there is a route to a
pre!x at each router, we do not need to keep the AS path and can
abstract it using path length for best route selection. Then, many
routes with di"erent AS paths, but the same path length can be
merged into a single route, whose topology condition is a disjunc-
tion of the topology conditions of those routes. For an 80-node fat
tree with three link failures, the speedup due to this optimization is
around 5× (§8.4). Unlike ShapeShifter, which concentrates on route
reachability and may lose precision when there are static routes
or ACLs, SRE considers packet reachability and therefore needs to
preserve the next hop of each route.

344

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Peng Zhang, Dan Wang, and Aaron Gember-Jacobson

10-1
100
101
102
103
104
105

k=0k=1k=2k=3 k=0k=1k=2k=3 k=0k=1k=2k=3 k=0k=1k=2k=3 k=0k=1k=2k=3
Bics Columbus US Carrier Fattree

(20 nodes)
Fattree

(80 nodes)

Ti
m

e
(s

)

Bat!sh Minesweeper Tiramisu SRE

Figure 5: Time to check all-pair reachability under di#erent
number of link failures.

10-3
10-1
101
103
105

k=0
k=1

k=2
k=3

k=0
k=1

k=2
k=3

k=0
k=1

k=2
k=3

k=0
k=1

k=2
k=3

k=0
k=1

k=2
k=3

Bics Columbus US Carrier Fattree
(20 nodes)

Fattree
(80 nodes)

Ti
m

e
(s

)

Bat!sh Minesweeper Tiramisu SRE

Figure 6: Time to check single-pair reachability under di#er-
ent number of link failures.

8 Experiments

Implementation. We implemented SRE with Java. SRE uses the
JDD library [23] for BDD operations, and Bat!sh [1] to parse con-
!guration !les into a vendor-neutral representation. Currently, SRE
supports OSPF, BGP, and static route.

Setup. All experiments run on a Linux server with two 12-core
Intel Xeon CPUs @ 2.3GHz and 256G memory.

Datasets. We use three synthetic datasets and one real dataset.
(1) WAN topologies running BGP or OSPF, from Con!g2Spec [8].

The dataset consists of three WAN topologies (small, median,
and large), consisting of 33 (48), 70 (85), and 158 (189) routers
(links), respectively.

(2) WAN topologies running BGP and OSPF, from NetDice [21].
The dataset consists of 90 WAN topologies, each of which has
>50 links.

(3) Fat trees running BGP or OSPF. The dataset consists of di"erent
sizes of fat trees, from 20 nodes to 245 nodes.

(4) Campus network running OSPF. The dataset consists of 67 con-
!guration snapshots from the backbone network at a large
university [19]. The network has 28 routers, 50 links, ∼1K pre-
!xes, and an average of ∼75K total lines of con!guration, which
generate ∼26K total forwarding rules. There are ∼1K ACL rules.

8.1 Failure tolerance analysis

Checking reachability under failures. Figure 5 shows the run-
ning time of SRE and three other con!guration veri!ers to check
all-pair reachability on the three WAN topologies and the fat tree
topologies (20 nodes and 80 nodes). For the WAN topologies, SRE
is generally >10× faster than the other veri!ers. For the fat tree
topologies, SRE is >100× faster than Bat!sh and Minesweeper, and
faster than Tiramisu.We also include the results for checking single-
pair reachability, shown in Figure 6. We can see that SRE is faster

100

101

102

103

104

105

k=1k=2k=3 k=1k=2k=3 k=1k=2k=3 k=1k=2k=3 k=1k=2k=3 k=1k=2k=3
Bics

(BGP)
Bics

(OSPF)
Columbus

(BGP)
Columbus

(OSPF)
US Carrier

(BGP)
US Carrier

(OSPF)

Ti
m

e
(s

)

Con!g2Spec
SRE

Figure 7: Running time to mine speci!cations.

 0
 0.25

 0.5
 0.75

 1

100 101 102 103 104

CD
F

Time (s)
Link Failures

NetDice (single) NetDice

100 101 102 103 104

Time (s)
Node Failures

SRE (single) SRE

Figure 8: Running time to compute probabilities for reacha-
bility under link failures and node failures.

than or comparable to Bat!sh and Minesweeper, but slower than
Tiramisu. This indicates that SRE is a better choice for reasoning
about a large header space and failure space, but not optimized for
reasoning about a speci!c pre!x or failure.

Speci!cation mining. We use SRE to mine policies from con!gu-
rations. To compare with Con!g2Spec [8], we use the three WAN
topologies, and consider four types of policies—reachability, way-
point, isolation, and load balancing. Figure 7 shows SRE mostly
takes <100 seconds to mine all the policies, 1-2 orders of magnitude
faster than Con!g2Spec.

8.2 Probabilistic analysis

We run SRE on the 90 WAN topologies [2] to compute probabilities
for reachability and waypointing properties with both link and
node failures. For each pre!x, we consider the reachability from
each router to the pre!x, and select a random waypoint. We set
the probabilities of node failure and link failure to 0.0001 and 0.001,
respectively (the same as NetDice). Both SRE and NetDice return
the same probabilities for reachability and waypointing properties,
within an imprecision of 10−4 on all topologies. As shown in Fig-
ure 8, for link failures, NetDice is faster than SRE when computing
the probability of a single reachability, but SRE is 1-2 orders of
magnitude faster than NetDice when computing the probabilities
of all reachabilities, except some large topologies (up to 2320 edges)
for which both SRE and NetDice time out after 1 hour. For node
failures, NetDice can compute probabilities of some reachabilities
that SRE cannot compute, while SRE is >2 orders of magnitude
faster than NetDice when computing probabilities of all reachabili-
ties, except the large topologies. This shows the advantage of SRE
in reasoning about the product space of packets and failures. The
results for waypointing probability (Appendix D) are similar.

8.3 Di#erential Analysis

We use SRE to compute the di"erences after a con!guration change.
We consider the 10 atomic changes synthesized by DNA [27] and

345

Symbolic Router Execution SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

Dataset No. Routes
Reduction Ratio

RoutePrune +Pre!xPrune +Abstract

Bics 3,819,240 98.32% 91.80% 61.42%
Columbus 25,382,778 98.81% 95.76% 59.09%
US Carrier 280,624,242 98.55% 99.20% 74.55%
Fattree(20) 146,040 97.55% 100.00% 0.00%
Fattree(80) BDD limit (379,552) 0.00% 93.82%
Fattree(125) BDD limit (2,389,050) 0.00% 96.97%

Table 2: The reduction in routes when applying di#erent op-
timizations (" = 3, BGP). When the BDD node count limit is
reached, the corresponding number in the third column is
the number of routes.

10-1
100
101
102
103
104

k=0 k=1 k=2 k=3

Ti
m

e
(s

)

Bics

NoOptimization RoutePrune

100
101
102
103
104
105

k=0 k=1 k=2 k=3
Columbus

Pre!xPrune

100
101
102
103
104

k=0 k=1 k=2 k=3
US Carrier

RoutePrune+Pre!xPrune

Figure 9: Time to compute link failure tolerance of reacha-
bility, with and without route/pre!x pruning.

apply these changes on the Bics WAN topology. For each change,
we run SRE with " = 0 to compute the di"erences DNA will !nd,
and we run SRE with " = 3 to get the di"erences under failures.
DNA can detect di"erences for 5/10 of the updates, while SRE can
detect di"erences in failure tolerance and probability for 7/10 and
10/10 of the updates, respectively. This means SRE can be used to
!nd di"erences that only manifest under speci!c failures.

8.4 The e#ectiveness of optimizations

We now quantify the e"ectiveness of the three optimizations (§7).

WAN topologies. Figure 9 shows the running time of SRE when
computing failure tolerance with and without route pruning and
pre!x pruning (abstract interpretation is not quite e"ective, and is
not shown here). We can see that:
(1) optimizations are quite necessary for SRE to scale. For US Carrier,
without route pruning, the number of required BDD nodes exceeds
the limit supported by the JDD library [23] (see §8.5 for details),
while with route pruning and pre!x pruning, the running time
is within 100 seconds. The scalability comes from the signi!cant
reduction of routes (Table 2).
(2) di!erent optimizations have di!erent e!ectiveness for di!erent
number of failures ("). Route pruning is more e"ective for smaller
" , when a lot of routes have > " failures, while pre!x pruning is
more e"ective for larger " , when a lot of pre!xes whose related
properties cannot tolerate ≥ " failures.
(3) strati"cation approach performs better than one-shot approach,
i.e., computing failure tolerance in a single round considering all
1, 2, . . . ," failures, and cannot enable pre"x "ltering. For example,
for US Carrier " = 3, the one-shot approach uses 5500 seconds
(the RoutePrune time for " = 3), while the strati!cation approach
uses 120 seconds (sum of the RoutePrune+Pre!xPrune time for
" = 0, 1, 2, 3).

10-1

100

101

102

k=0 k=1 k=2 k=3

Ti
m

e
(s

)

Fattree
(20 nodes)

NoOptimization Abstract

100

101

102

103

k=0 k=1 k=2 k=3
Fattree

(80 nodes)

RoutePrune

100

101

102

103

k=0 k=1 k=2 k=3
Fattree

(125 nodes)

RoutePrune+Abstract

Figure 10: Time to compute link failure tolerance of reacha-
bility, with and without abstract interpretation.

10-1
100
101
102
103
104

 0 100 200 300 400 500

Ru
nt

im
e

(s
)

Fattree Size (Number of Nodes)

k=0 k=1 k=2 k=3

10-1

100

101

102

 0 100 200 300 400 500M
em

or
y

U
sa

ge
 (

G
B)

Fattree Size (Number of Nodes)

Figure 11: Running time and memory usage when checking
all-pair reachability for di#erent sizes of fat trees.

Fat trees. Figure 10 shows the running time of SRE when comput-
ing link failure tolerance with and without abstract interpretation
and route pruning (pre!x pruning is not e"ective, except 20 nodes
and " = 3, and thus not shown here). As can be seen, abstract
interpretation becomes more e"ective for larger fat trees with more
redundant links, when more routes with equal path length can be
merged. Without abstract interpretation, the number of BDD nodes
required for the 125-node fat tree for " = 2, 3 exceeds JDD’s limit.
Similar to the WAN topologies, route pruning is quite e"ective.

8.5 Scalability

To evaluate whether SRE can scale to even larger networks with
>1000 links, we use SRE to analyze the failure tolerance of all-pair
reachability on di"erent sizes of fat trees. Figure 11 shows the
running time and peak memory usage of SRE for di"erent number
of link failures. As shown in Figure 11(a), for fat tree with 320 nodes
(2048 links), SRE !nishes when there are at most one link failure,
while for fat trees with 500 nodes and 4000 links, SRE !nishes only
when there are no failures.

This is due to the limitation of node table size in JDD, which uses
an array of integers to store all BDD nodes. Since each BDD node
uses three integers, the maximum (theoretical) number of nodes is
(231−1)/3, which is roughly 7.16×108. Since JDD uses 22 Bytes for
each node, it consumes approximately 16GB for maintaining BDD
nodes. To con!rm this, we allocate 100GB to Java Virtual Machine,
and observe that the peak memory usage is bounded by around
20GB, which is comparable to 16GB. Therefore, we expect SRE can
scale to larger fat trees with another BDD library that can hold
more nodes.

8.6 SAT or BDD?

In this experiment, we replace the encoding of topology condition
with SAT formula, similar to Hoyan [26], and show how it compares
to SRE which uses BDDs. We randomly select 10 pre!xes from

346

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Peng Zhang, Dan Wang, and Aaron Gember-Jacobson

Dataset k=0 k=1 k=2 k=3

Bics
TC Length 480 2,116 8,195 28,651
Time (s) 0.96 1.23 2.48 13.13
Timeout 0/10 0/10 0/10 0/10

Columbus
TC Length 1470 16,726 147,009 813,122
Time (s) 1.37 3.25 91.27 1435.49
Timeout 0/10 0/10 0/10 3/10

US Carrier
TC Length 4,930 79,030 809,318 -
Time (s) 2.80 15.96 712.38 -
Timeout 0/10 0/10 1/10 10/10

Table 3: Length of topology condition and running timewith
SAT encoding.

C2 C1

A2 A1

D1D2

10.0.7.0/2410.0.8.0/24

1

500

250 10

1

1

1

To A3 ! A8

VLAN 7VLAN 8

Figure 12: The topology of the campus network and the
three packet forwarding paths (in di#erent colors) from a
core router&1 to 10.0.7.0/24. The number along each link de-
notes the OSPF cost of that link.

 0
 0.25

 0.5
 0.75

 1

10-1 100 101

CD
F

(1) SRC

k=0 k=1 k=2 k=3

100 101 102
Time (s)
(2) SPF

100 101 102 103

(3) FPA

Figure 13: Running time of SRE on campus network.

the three WAN topologies, and run symbolic route computation.
Table 3 shows that with increasing network size and value of " ,
more pre!xes will time out, e.g., for US Carrier " = 3, all the 10
pre!xes time out. The reason is topology condition explosion: the
formula length encodedwith SAT grows quite fast when" increases,
making the updating of the topology condition extremely slow.

8.7 Real Network

We use SRE to check reachability in the campus backbone network.
As shown in Figure 12, the campus backbone network has a hier-
archical structure, with 2 core routers (&1 and &2), 8 aggregation
routers ($1–$8), and 18 distribution routers (A1–A18). The aggrega-
tion and distribution routers are deployed in primary-backup pairs
(e.g., $1 and $2). Each access VLAN (e.g., VLAN 7 associated with
subnet 10.0.7.0/24) is connected to a pair of distribution routers.

First, we check all-pair reachability between all access VLANs.
Figure 13 shows the running time for the two stages of SRE (SRC
and SPF) and property analysis (FPA). The distribution is over the
67 con!guration snapshots. SRE generates the same FIBs as Bat!sh
when there are no failures (" = 0). We can see that for this campus
network, SRE takes around 1000 seconds. We also run Minesweeper
and Tiramisu, both of which cannot run to completion. This is due
to the existence of ∼1K ACL rules, ∼1K pre!xes, >1K VLANs, and
multiple VRFs.

Second, we compute the failure tolerance for reachability from
each core router to each access VLAN: e.g., Reach(&1, 10.0.7.0/24),
Reach(&2, 10.0.7.0/24), etc. The failure tolerance computed by SRE
and Minesweeper are both 1—i.e., an access VLAN is always reach-
able from &1 or &2 if there are ≤ 1 link failures, but unreachable
if there are ≥ 2 link failures such as when !"141 and !"242 fail
simultaneously.

9 Limitations

No performance gains when analyzing a single point in the
header or failures space. SRE is aimed at scaling to the product
space of packets and failures, and therefore not optimized for check-
ing a single pre!x under failures. As shown in §8, SRE is slower
than Tiramisu for checking single-pair reachability, and comparable
with Bat!sh and Minesweeper when there are no failures (Figure 6).

No support for cross-path/cross-"owproperties. SRE currently
does not support properties that require reasoning about multiple
forwarding paths of the same $ow [11] or the forwarding behaviors
of multiple $ows [21].

No incremental computation. SRE currently does not support
incremental computation [27]. When con!gurations change, SRE
needs to re-run symbolic route computation and symbolic packet
forwarding, and re-check the properties.

10 Conclusion

Symbolic Router Execution (SRE) is a general and scalable network
veri!cation engine that supports various types of analyses. SRE
symbolically executes the network model to discover packet failure
equivalence classes (PFECs) to scale to the product space of head-
ers and failures. By encoding symbolic headers and failures with
BDDs, SRE enables operators to analyze properties with graph algo-
rithms on BDDs, agnostic of failure models or network semantics.
Our future work includes overcoming the limitations of SRE, and
experimenting with other BDD libraries.

Acknowledgement. We thank our Shepherd Ennan Zhai, and all
the anonymous SIGCOMM reviewers for their valuable comments
and suggestions. This work is partially supported by the United
States National Science Foundation (No. 1763512).

Ethical issues. This work does not raise any ethical issues.

References
[1] [n. d.]. Bat!sh. https://github.com/bat!sh/bat!sh.
[2] [n. d.]. NetDice. https://github.com/nsg-ethz/netdice.
[3] Anubhavnidhi Abhashkumar, Aaron Gember-Jacobson, and Aditya Akella. 2020.

Tiramisu: Fast and General Network Veri!cation. In USENIX NSDI.
[4] Henrik Reif Andersen. 1997. An introduction to binary decision diagrams. Lecture

notes, available online, IT University of Copenhagen (1997).
[5] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker. 2017. A general

approach to network con!guration veri!cation. In ACM SIGCOMM.

347

Symbolic Router Execution SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

[6] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker. 2020. Abstract
interpretation of distributed network control planes. In ACM POPL.

[7] Theophilus Benson, Aditya Akella, and David A. Maltz. 2009. Mining policies
from enterprise network con!guration. In ACM IMC.

[8] Rüdiger Birkner, Dana Drachsler-Cohen, Laurent Vanbever, and Martin Vechev.
2020. Con!g2Spec: Mining Network Speci!cations from Network Con!gurations.
In USENIX NSDI.

[9] Randal E Bryant. 1986. Graph-based algorithms for boolean function manipula-
tion. IEEE Trans. Comput. 100, 8 (1986), 677–691.

[10] Seyed K Fayaz, Tushar Sharma, Ari Fogel, Ratul Mahajan, Todd Millstein, Vyas
Sekar, and George Varghese. 2016. E#cient network reachability analysis using
a succinct control plane representation. In USENIX OSDI.

[11] Ari Fogel, Stanley Fung, Luis Pedrosa, Meg Walraed-Sullivan, Ramesh Govin-
dan, Ratul Mahajan, and Todd Millstein. 2015. A general approach to network
con!guration analysis. In USENIX NSDI.

[12] Aaron Gember-Jacobson, Raajay Viswanathan, Aditya Akella, and Ratul Mahajan.
2016. Fast control plane analysis using an abstract representation. In ACM
SIGCOMM.

[13] Nick Giannarakis, Ryan Beckett, Ratul Mahajan, and DavidWalker. 2019. E#cient
veri!cation of network fault tolerance via counterexample-guided re!nement. In
International Conference on Computer Aided Veri"cation.

[14] Nick Giannarakis, Devon Loehr, Ryan Beckett, and David Walker. 2020. NV: an
intermediate language for veri!cation of network control planes. In Proceedings
of the 41st ACM SIGPLAN International Conference on Programming Language
Design and Implementation (PLDI).

[15] Nick Giannarakis, Alexandra Silva, and DavidWalker. 2021. ProbNV: probabilistic
veri!cation of network control planes. Proc. ACM Program. Lang. 5, ICFP (2021).

[16] Peyman Kazemian, George Varghese, and Nick McKeown. 2012. Header space
analysis: Static checking for networks. In USENIX NSDI.

[17] Ali Kheradmand. 2020. Automatic Inference of High-Level Network Intents by
Mining Forwarding Patterns. In ACM Symposium on SDN Research.

[18] James C King. 1976. Symbolic execution and program testing. Commun. ACM
19, 7 (1976), 385–394.

[19] David Plonka and Andres Jaan Tack. 2009. An Analysis of Network Con!guration
Artifacts. In Proceedings of the 23rd Large Installation System Administration
Conference.

[20] Santhosh Prabhu, Kuan-Yen Chou, Ali Kheradmand, P Godfrey, and Matthew
Caesar. 2020. Plankton: Scalable network con!guration veri!cation through
model checking. In USENIX NSDI.

[21] Samuel Ste"en, TimonGehr, Petar Tsankov, Laurent Vanbever, andMartin Vechev.
2020. Probabilistic Veri!cation of Network Con!gurations. In ACM SIGCOMM.

[22] Bingchuan Tian, Xinyi Zhang, Ennan Zhai, Hongqiang Harry Liu, Qiaobo Ye,
Chunsheng Wang, Xin Wu, Zhiming Ji, Yihong Sang, Ming Zhang, et al. 2019.
Safely and automatically updating in-network ACL con!gurations with intent
language. In ACM SIGCOMM.

[23] Arash Vahidi. [n. d.]. JDD, a pure Java BDD and Z-BDD library. https://bitbucket.
org/vahidi/jdd/.

[24] Konstantin Weitz, Doug Woos, Emina Torlak, Michael D Ernst, Arvind Krish-
namurthy, and Zachary Tatlock. 2016. Scalable veri!cation of border gateway
protocol con!gurations with an SMT solver. In ACM OOPSLA.

[25] Hongkun Yang and Simon S Lam. 2013. Real-time veri!cation of network prop-
erties using Atomic Predicates. In IEEE ICNP.

[26] Fangdan Ye, Da Yu, Ennan Zhai, Hongqiang Harry Liu, Bingchuan Tian, Qiaobo
Ye, Chunsheng Wang, Xin Wu, Tianchen Guo, Cheng Jin, et al. 2020. Accuracy,
Scalability, Coverage: A Practical Con!guration Veri!er on a Global WAN. In
ACM SIGCOMM.

[27] Peng Zhang, Aaron Gember-Jacobson, Yueshang Zuo, Yuhao Huang, Xu Liu, and
Hao Li. 2022. Di"erential Network Analysis. In USENIX NSDI.

A Algorithms for Symbolic Route

Computation

Algorithm 1: UpdateRIB(0)

Input:): the router whose RIB is to be updated.
1 !(626 ← {};

2 +01276812 ← {};

3 Sort(+012769&);

4 foreach +0127 ∈ +012769& do
5 !(62 ← +(, .Get(+0127 .3+7 - (%);

6 if !(62 .:0&2;(&6 (+0127) then
7 + ← !(62 .<72)0127 (+0127) ;

8 + .2:!" ← +0127 .2:!" ;

9 else
10 !(62 .InsertRoute(+0127);

11 (&/7% ← !(62 .<729&/7% (+0127) ;

12 if (&/7% < !(62 .:ℎ;&<7>06 then
13 !(62 .:ℎ;&<7>06 ← (&/7% ;

14 !(626 ← !(626 ∪ {!(62 };

15 foreach !(62 ∈ !(626 do
16 5;2:ℎ7/ ← False;

17 foreach +0127 ∈ !(62 [0 : !(62 .:ℎ;&<7>06] do
18 5;2:ℎ7/ ←5;2:ℎ7/ ∨ +0127 .2:!" ;

19 foreach +0127 ∈ !(62 [!(62 .:ℎ;&<7>06 : !(62 .!7&] do
20 2: ← ¬5;2:ℎ7/ ∧ +0127 .2:!" ;

21 if 2: ≠ +0127 .2:#!$ then
22 +0127 .2:#!$ ← 2: ;

23 +01276812 ← +01276812 ∪ {+0127 }

24 5;2:ℎ7/ ←5;2:ℎ7/ ∨ +0127 .2:!" ;

25 foreach +0127 ∈ +01276812 do
26 foreach * ∈ *7(<ℎ,0+6 do
27 if >0!(:?"!!0. (),* , +0127) then
28 + ← +0127 ;

29 + .2:!" ← +0127 .2:#!$ ∧ @(&' (),*) ;

30 + .2:#!$ ← False;

31 "/A7+2(67 (* , +) ;

B Proof of Theorem 1

Proof. Let @ be the link failure tolerance, and > be the length
of shortest path. We will prove@ = > − 1 by showing (1)@ < >, and
(2) @ ≥ > − 1. First, since there is a path from root to False whose
length is >, then there exists a topology condition where > links are
down, such that the reachability does not hold. That is, we have the
failure tolerance @ < >. Second, suppose @ < > − 1, then we have
a topology condition where (> − 1) links are down and all other
(1 − > + 1) links are up, such that the reachability does not hold.
The condition corresponds to a path to False which has at most
(> − 1) dashed edges, since the (1 − > + 1) links either correspond
to solid edges, or do not appear on the path. This contradicts the
fact that the shortest path to False is >. !

348

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Peng Zhang, Dan Wang, and Aaron Gember-Jacobson

C Algorithms for Failure Tolerance

Computation

Algorithm 2: LFTReach(:). , 9:, , ℎ9) , P)

Input: 6+: : the source; /62 : the destination; ℎ/+ : the header speci!cation; P:
the set of all PFECs.

Output: @BC : a set of tuples (6+:,/62 ,3'2,') , meaning the link failure
tolerance for)7;:ℎ (6+:,/62 ,3'2) is ' .

1 @BC ← {};
2 +7;:ℎ ← GetPropertyBDDReach(src, dst, hdr);
3 7%2+;:27/ ← Extract(reach, wildcards);
4 foreach (2030,3'2) ∈ 7%2+;:27/ do
5 ' ← ShortestPath(2030, 0) − 1;
6 @BC ← @BC ∪ {(6+:,/62 ,3'2,') };

7 Function GetPropertyBDDReach(6+:,/62 ,ℎ/+):
8 +7;:ℎ ← False;
9 foreach 3 ∈ P do
10 if 3 .6+: = 6+: and 3 ./62 = /62 then
11 +7;:ℎ ← +7;:ℎ ∨ 3 ;

12 return +7;:ℎ ∧ ℎ/+ ;

13 Function Extract(&0/7,3'2):
14 if &0/7 ∈ {True, False} or A;+ (&0/7) ∈ @(&'6 then
15 return {&0/7,3'2 };

16 3% ← 3'2 , 3% [A;+ (&0/7)] ← 0;
17 3# ← 3'2 , 3# [A;+ (&0/7)] ← 1;
18 return Extract(&0/7 .!,3%) ∪ Extract(&0/7 .+ ,3#);

D Extra Experiment Results

Figure 14 shows running time to compute probabilities for way-
pointing property under link failures and node failures.

 0
 0.25

 0.5
 0.75

 1

100 101 102 103 104

CD
F

Time (s)
Link Failures

NetDice (single) NetDice

100 101 102 103 104

Time (s)
Node Failures

SRE (single) SRE

Figure 14: Running time to compute probabilities for way-
pointing property under link failures and node failures.

349

