Symbolic Router Execution

Peng Zhang

Xi’an Jiaotong University

Abstract

Network verification often requires analyzing properties across
different spaces (header space, failure space, or their product) under
different failure models (deterministic and/or probabilistic). Exist-
ing verifiers efficiently cover the header or failure space, but not
both, and efficiently reason about deterministic or probabilistic fail-
ures, but not both. Consequently, no single verifier can support all
analyses that require different space coverage and failure models.
This paper introduces Symbolic Router Execution (SRE), a general
and scalable verification engine that supports various analyses. SRE
symbolically executes the network model to discover what we call
packet failure equivalence classes (PFECs), each of which charac-
terises a unique forwarding behavior across the product space of
headers and failures. SRE enables various optimizations during the
symbolic execution, while remaining agnostic of the failure model,
so it scales to the product space in a general way. By using BDDs
to encode symbolic headers and failures, various analyses reduce
to graph algorithms (e.g., shortest-path) on the BDDs. Our evalua-
tion using real and synthetic topologies show SRE achieves better
or comparable performance when checking reachability, mining
specifications, etc. compared to state-of-the-art methods.

CCS Concepts

» Computer systems organization — Reliability.

Keywords

network verification, equivalence classes, symbolic execution

ACM Reference Format:

Peng Zhang, Dan Wang, and Aaron Gember-Jacobson. 2022. Symbolic
Router Execution. In ACM SIGCOMM 2022 Conference (SIGCOMM °22),
August 22-26, 2022, Amsterdam, Netherlands. ACM, New York, NY, USA,
14 pages. https://doi.org/10.1145/3544216.3544264

1 Introduction

Network verifiers enable operators to proactively reason about a
network’s forwarding behaviors to avoid potential problems. For
example, verifiers can compute all-pairs reachability for a specific
failure scenario to verify a planned router outage will not compro-
mise reachability [1]; analyze a specific prefix under probabilistic
link failures to verify a proposed configuration change directs the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGCOMM °22, August 22-26, 2022, Amsterdam, Netherlands

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9420-8/22/08....$15.00
https://doi.org/10.1145/3544216.3544264

Dan Wang

Xi’an Jiaotong University

336

Aaron Gember-Jacobson
Colgate University

traffic through a waypoint 99.9% of the time [21]; or examine all pre-
fixes under a bounded number of link failures to verify a proposed
configuration refactoring will not jeopardize security [22].

Such verification tasks require network verifiers to:

(1) Reason about a network’s behavior across a large header space
and/or failure space. For example, the header space can be as large
as 219 when considering 5-tuples, and the failure space can be
as large as 2! when considering all possible combinations of link
failures in a network with [links.

(2) Reason about a network’s behavior under different failure models.
For example, verifying a property holds under a bounded number
of failures (k) requires a deterministic failure model where each
node or link can either be up or down but the total number of
failures is bounded by k; whereas verifying a property holds with
high probability (e.g., 99.9%) requires a probabilistic failure model
where nodes or links can fail according to some distribution.

To meet the first requirement, existing verifiers exploit similarity
across packet headers and failure scenarios. Some verifiers [6, 10, 11,
20, 27] divide the header space into packet equivalence classes (PECs),
such that headers belonging to the same PEC traverse the same
forwarding path under a specific failure scenario. Other verifiers [3,
5, 12-15, 21, 24, 26] divide the failure space into failure equivalence
classes (FECs), such that failure scenarios belonging to the same FEC
result in the same forwarding path for a specific source-destination
pair. Analyzing one packet from each PEC or one failure from each
FEC is sufficient to characterize the network’s behavior across the
entire header or failure space, respectively.

However, due to the dual influence of headers and failures on
forwarding path selection, PECs may not be the same across failure
scenarios and FECs may not be the same across headers. Con-
sequently, verifiers leveraging PECs must independently analyze
every failure scenario of interest, and verifiers leveraging FECs
must independently analyze every prefix of interest. This causes
the verifiers to scale poorly to the product space of headers and
failures (§8).

To meet the second requirement, different verifiers target dif-
ferent failure models and use different optimizations to efficiently
explore the failure space. For example, checking a property under
a deterministic failure model only requires exploring the boundary
of failure scenarios—e.g., the minimum number of failures (k) that
violate the property; verifiers do not need to consider scenarios
with more than k failures, even if the property is satisfied in these
scenarios, and many verifiers are optimized to identify the bound-
ary without evaluating every scenario with fewer than k failures
[3,5,12-14, 24, 26]. On the other hand, checking a property under a
probabilistic failure model requires exploring every failure scenario,
and summing the probabilities of scenarios that satisfy the property;
verifiers are optimized to explore the most likely failure scenarios
first, and stop exploring when an acceptable confidence threshold is
reached [15, 21]. Consequently, verifiers designed for deterministic

SIGCOMM ’22, August 22-26, 2022, Amsterdam, Netherlands

failure models are not amenable to probabilistic failures, and veri-
fiers designed for probabilistic failure models are inefficient when
applied to deterministic failures.

In summary, existing verifiers lack scalability to reason about the
product space of headers and failures, and generality to efficiently
handle both deterministic and probabilistic failure models. The lack
of scalability is due to verifiers not jointly reasoning about headers
and failures to explore their dual impact on forwarding behaviors.
The lack of generality stems from verifiers binding to the failure
model too early (i.e., when the network model is created).

This paper introduces Symbolic Router Execution (SRE), a general
and scalable verification engine that can explore the product space
of headers and failures while remaining agnostic of the failure
model. In a nutshell, SRE applies a variant of symbolic execution
tailored to configuration verification, by viewing the network as a
program (model) consisting of a control plane and a data plane, and
making headers and failures symbolic when executing the model.

Why SRE is scalable. First, SRE symbolically executes the network
control and data planes to account for the correlation among head-
ers and failures and uncover Packet Failure Equivalence Classes
(PFECs)—header and failure combinations for which a specific for-
warding path is used. SRE executes a control plane model with
symbolic failures (i.e., link states) to derive the FEC for each route,
and SRE executes a data plane model where forwarding rules in-
clude FECs as another matching field (in addition to IP prefix) so
FECs “carry over” to the data plane. In this way, failures and headers
jointly determine a set of forwarding paths, each of which corre-
sponds to an equivalence class in the product space (i.e., PFECs).
Second, SRE significantly reduces computations by: (i) using Bi-
nary Decision Diagrams (BDDs) [4] to represent symbolic headers
and failures, and (ii) applying three optimizations—route pruning,
prefix pruning, and abstract interpretation.

Why SRE is general. First, PFECs capture all possible forward-
ing paths of all packets under all possible failures, such that any
property related to packets and their forwarding paths—e.g., reach-
ability, waypointing, isolation, or load balancing—can be analyzed.
Second, SRE is agnostic of the failure model when symbolically
executing the network model. The failure model is only specified
when analyzing properties. Delaying the binding to failure model
allows SRE to efficiently support deterministic and probabilistic
failure models in a general way. Interestingly, using BDDs also
makes SRE more general: we can analyze properties through graph
algorithms. For example, analyzing a property’s failure tolerance
reduces to computing the shortest path on a BDD, and analyzing the
probability of a property holding reduces to computing a weighted
sum on a BDD.
In summary, this paper makes the following contributions:

e We introduce symbolic router execution (SRE), a configu-
ration verification engine that scales to the product space
of headers and failures, and generalizes to different failure
models.

e We design and implement SRE and apply various optimiza-
tions to make it scalable and fast. We implement three types
of analyses on top of SRE to demonstrate its generality in
supporting different types of analyses.

337

Peng Zhang, Dan Wang, and Aaron Gember-Jacobson

Equivalence classes
FECs
Config2Spec [8], ARC [12],
Tiramisu [3], Hoyan [26],
Minesweeper [5], Origami [13],
Bagpipe [24], NV [14]

PECs

Batfish [11], Plankton [20],
ERA [10], ShapeShifter [6],
DNA [27], Config2Spec [8]

NetDice [21], ProbNV [15]

Failure model
Prob. Determ.

Table 1: Equivalence classes and failure models supported
by existing network configuration verifiers

e We use real and synthetic topologies to show SRE achieves
better or comparable performance to state-of-the-art meth-
ods when checking properties, mining specifications, com-
puting probabilities, etc.

2 Motivation

In this section, we discuss common network management tasks
(§2.1), and the scalability and generality limitations of existing
network verifiers with respect to these tasks (§2.2).

2.1 Tasks

Some common network management tasks require reasoning about
a network’s behavior across a large product space of headers and
failures under both deterministic and probabilistic failure models.
For example:

Verifying changes. Verifying a configuration change has the de-
sired effect (e.g., restricting access to a prefix) only requires analyz-
ing the targeted header space(s). However, checking for unintended
side-effects is harder, because changes may impact seemingly un-
related header spaces: e.g., augmenting a route filter with a high
priority rule that blocks routes with certain community tags may
overshadow a rule that permits routes for certain prefixes. Conse-
quently, verifying a change is side-effect free requires checking all
(manually-specified or mined) requirements, which often span a
large portion of the header and failure spaces [7, 8] and include both
deterministic and probabilistic failure tolerances [21].

Mining network requirements. Many configuration verifiers as-
sume operators can clearly specify what to verify—e.g., a router
should (not) be able to reach a certain prefix. However, network
requirements are rarely explicitly documented. Consequently, re-
searchers have developed network specification miners [7, 8, 17],
which check several types of forwarding properties (e.g., reachabil-
ity, isolation, and waypoint traversals) for the entire header space
under a large range of failure scenarios (e.g. all single- and dual-link
failures), to mine specific requirements implied by router configura-
tions. It is also desirable to generalize these requirements to groups
of prefixes [17] and soft failure tolerance levels (e.g., “four 9s” avail-
ability) [21], which requires reasoning about both deterministic and
probabilistic failures.

Some common management tasks may not require reasoning
about the product space of headers and failures or multiple failure
models, but it is desirable to construct a "one-size-fits-all" verifier
that accommodates these tasks as well.

2.2 Related Work

Existing verifiers lack the scalability and generality required to
conduct that aforementioned tasks which reason about a network’s
behavior across a large product space of headers and failures under

Symbolic Router Execution

both deterministic and probabilistic failure models. As summarized
in Table 1, existing verifiers compute either packet equivalence
classes (PECs) or failure equivalence classes (FECs)—which do not
extend to the product space—and accommodate either deterministic
or probabilistic failure models—which require different explorations
of the failure space and different optimizations.

PECs or FECs. PECs and FECs allow verifiers to exploit similarity
in network forwarding behaviors across packet headers or failure
scenarios, respectively. Batfish [11] and ERA [10] implicitly com-
pute PECs, whereas Plankton [20] and DNA [27] explicitly compute
PECs. Conversely, FECs are implicitly computed by: NetDice [21],
which identifies “cold” links whose failure does not impact for-
warding paths for a specific source-destination pair; Hoyan [26]
and ProbNV [15], which identify link conditions that influence the
existence/selection of a specific route; ARC [12] and Tiramisu [3],
which compute path characteristics that are invariant across fail-
ures for specific source-destination pairs; and Minesweeper [5] and
Bagpipe [24], which rely on an SMT solver’s ability to learn equiv-
alences in a domain-agnostic manner. Analyzing one packet from
each PEC or one failure from each FEC is sufficient to characterize
the network’s behavior across the entire header or failure space,
respectively.

However, since PECs and FECs may differ across failure sce-
narios and headers, respectively, verifiers leveraging PECs must
independently analyze every failure scenario, and verifiers leverag-
ing FECs must independently analyze every prefix. Thus, existing
verifiers scale poorly to the product space of headers and failures
(§8). The trade-off is illustrated by Config2Spec [8], which dynami-
cally switches between a verifier that uses PECs [11] and a verifier
that uses FECs [5] to reduce the work required to cover the product
space.

Deterministic or probabilistic. Verifiers designed to reason about
a bounded number of failures (k) are not directly amenable to
probabilistic failures, and vice versa. For example, ARC [12] and
Tiramisu [3] model a network’s control plane as a graph and com-
pute the min-cut to determine the minimum number of simulta-
neous link failures (k) under which a property (e.g., reachability)
does not hold. However, they cannot compute the probability of
properties because they do not consider link failures that exceed k
but also preserve the property. On the other hand, NetDice [21] ex-
plores all failure scenarios by iteratively failing links and checking
whether the property holds (until reaching a certain level of confi-
dence in the probability a property holds), and applies a customized
optimization to reduce the search space. However, exploring all
failure scenarios is expensive and unnecessary when considering a
bounded number of deterministic failures.

3 Overview

SRE is a general and scalable network verification engine which
supports various analyses that require reasoning about a network’s
forwarding behavior across a large space of headers and failures
and various failure models. In the following, we present the basic
idea of SRE and show the workflow of SRE with an example.

338

SIGCOMM °22, August 22-26, 2022, Amsterdam, Netherlands

3.1 BasicIdea

SRE is inspired by symbolic execution and its application in network
verification.

Symbolic execution of programs. Symbolic execution [18] is a
way to abstractly execute a program by making the inputs symbolic.
When the symbolic executor encounters a conditional branch (e.g.,
if-else statement), it executes each branch and updates the path
condition, which is a set of constraints encoding the branching deci-
sions during the execution. As a result, symbolic execution explores
each execution path at most once, and can discover equivalence
classes of inputs (encoded by the path conditions). Generally, sym-
bolic execution suffers from path explosion, and leverages many
optimizations to mitigate it.

Symbolic execution of network control plane or data plane.
Several network verifiers apply symbolic execution. HSA [16] can
be viewed as symbolic execution over the data plane: it forwards
packets with symbolic headers to discover PECs. Hoyan [26] can be
viewed as symbolic execution over the control plane: it simulates the
control plane with symbolic link states to discover FECs. However,
as discussed earlier (§2.2), PECs and FECs do not extend to the
product space of headers and failures.

Symbolic execution of network control plane and data plane.
SRE symbolically executes the network control and data planes to
exploit the correlation in forwarding behaviors among headers and
failures. First, SRE executes a control plane model, where failures
(i.e., link states) are symbolic, to derive the FEC for each route. Then
SRE executes a data plane model, where both headers and failures
are symbolic. When symbolically executing the data plane, SRE
makes FECs another matching field (in addition to IP prefix) in
forwarding rules, so that the FECs discovered during control plane
execution “carry over” to the data plane. In other words, during
data plane execution, failure scenarios and packet headers jointly
determine a set of forwarding paths, each of which corresponds
to an equivalence class in the product space, which we call packet
failure equivalence classes (PFECs).

3.2 Workflow of SRE

An example network. Figure 1(a) shows an example network with
three routers (A, B, and C) running BGP. Router C is connected to
the network 128.0.0.0/1, and announces this prefix, as well as a
longer prefix 192.0.0.0/2. The operator has a policy that all traffic to
192.0.0.0/2 should go through router B. Consequently, the operator
configures port 2 on router C with: (1) an outbound route-map that
prevents 192.0.0.0/2 from being advertised to A, and (2) an inbound
ACL that blocks packets for 192.0.0.0/2 arriving from A.

At a high level, SRE consists of two steps: (1) symbolic route
computation, and (2) symbolic packet forwarding. We use the above
example to walk through these two steps.

(1) Symbolic route computation (SRC) takes configurations and
topology as input, and computes symbolic RIBs, one for each router.
Unlike a concrete RIB which maintains the current best routes, a
symbolic RIB maintains all routes that may become the best route
when links and/or nodes fail. SRC represents the state of each link
with a boolean variable (1=up, 0=down),! and associates a topology

INode failures are modeled as a combination of link failures.

SIGCOMM ’22, August 22-26, 2022, Amsterdam, Netherlands

inbound ACL outbound route-map The SRE System
deny 192.0.0.0/2 filter 192.0.0.0/2 RIB@A
Y YRR 192/2, lpclas, B
e Networks 128/1, Irc, C
3 Tl Symbolic 128/1 41 Ldis B
192.0.0.0/2 /1, Slaclpclas
3 128.0.0.0/1 » o)
. 3 Computation Symbolic RIBs

2

(a) Awalkthrough example

(b) The workflow of SRE

Peng Zhang, Dan Wang, and Aaron Gember-Jacobson

PFECs@C Topology BDD
for128/2
P1palac), [ACl b
(pipalsclap)V A, oy
Symbolic @1palaclpclas), [A,B,C] MaxFailure=1
Packet i o1 oo
Forwarding Packet Failure i
Equivalence Classes Prob=0.981

(PFECs)
(c) Analyzing reachability from A to C

Figure 1: The walkthrough example, the workflow of SRE, and property analysis with SRE.

condition—a boolean formula consisting of these variables—with
each route in the symbolic RIB to encode the failure scenarios under
which the route becomes the best route.

Figure 1(b) shows the symbolic RIB at router A. For prefix 128/1,
there are two best routes (second and third entries). The route with
next hop C and topology condition [4¢c becomes the best route if
lac is up, while the route with next hop B and topology condition
=laclpclap becomes the best route if [4¢ is down but both [45 and
Ipc are up.

To generate symbolic RIBs, SRE initializes the topology con-
dition of originated routes to symbolic value True (representing
any combination of link failures). Then, SRE simulates the control
plane, and during the simulation constrains the topology condition
of each route. Unlike Hoyan [26] which encodes the topology con-
dition using SAT constraints, SRE uses Binary Decision Diagrams
(BDDs) [4], thus avoiding topology condition explosion for large
networks (§8).

Binary Decision Diagram (BDD). As shown in Figure 1(c),a BDD
is a rooted, directed acyclic graph (DAG) with two terminal nodes
0 and 1, and several (non-terminal) decision nodes. Each decision
node corresponds to a boolean variable (I4p, Ipc, etc.), and has two
outgoing edges: a dashed edge and a solid edge, representing the
boolean variable being assigned False and True, respectively. For
example, in this BDD, the root node represents variable I4p; if [4p =
False, we follow the dashed edge to another node representing
variable 4, and if [4c = True, we follow the solid edge to terminal
node 1. A path from the root to the terminal 1 represents a truth
assignment, e.g., [4g = False, l4¢ = True in this example.

(2) Symbolic packet forwarding (SPF) takes the symbolic RIBs
as input, forwards symbolic packets through the network, and
generates a set of PFECs. Each PFEC consists of all packet-failure
tuples for which a forwarding path is used. Figure 1(b) shows the
two PFECs whose forwarding paths are from A to C . The first PFEC
(p1—p2lac, [A, C]) represents packets 128/2 and failure scenarios
where L4 is up (other links can be up or down) for which the path
A—C is used. Similarly, the second PFEC represents packets and
failures for which the path A—B—C is used.

To generate PFECs, SRE converts the symbolic RIBs into symbolic
FIBs, where each FIB entry matches both the prefix and the topology
condition of the corresponding route. Then, SPF augments packet
headers with a topology condition, initializes the augmented header
with a symbolic value of True (encoding all possible packet-failure
tuples), and injects it at each router in the network. When a symbolic
packet matches a FIB entry, SRE constrains the topology condition

339

and destination IP of the packet with the topology condition and
prefix, respectively, of the FIB entry.

Through SRC and SPF, SRE jointly explores the header space and
failure space, in a way that is agnostic of the specific verification
tasks (e.g., checking failure tolerance). This allows SRE to efficiently
support a variety of analyses.

3.3 Property Analysis with SRE

SRE enables three types of analyses over various properties (e.g.,
reachability, waypointing, isolation, load balancing):

(1) failure tolerance: compute the maximum number of failures

that a property can tolerate;

(2) probabilistic: estimate the probability that a property holds

under probabilistic failures;

(3) differential: check for differences in failure tolerance/proba-

bility of a property after a configuration change.

While existing verifiers are targeted at one type of analysis, SRE
enables all of these analyses based on the abstraction of PFECs. The
reason is that SRE is agnostic of the analyses and outputs PFECs
which collectively represent all possible forwarding behaviors (i.e.,
end-to-end forwarding paths), as well as the packets and failures for
each behavior. Moreover, since each PFEC is encoded with a BDD
(a graph), SRE allows operators to perform the analyses directly on
top of BDDs with graph algorithms, agnostic of complex network
semantics (e.g., routing protocols).

We use reachability as an example to show how computing fail-
ure tolerance and probabilities reduce to standard graph problems
on top of BDDs. §6 discusses more analyses.

Example 1: Computing failure tolerance. Suppose operators
need to know the failure tolerance for reachability of packets 128/2
from A to C. There are two PFECs at C satisfying the property,
one traversing A—C, and the other traversing A—B—C. We can
compute a disjunction of these two PFECs, and extract the sub-BDD
encoding the failures—which we call a topology BDD—as shown in
Figure 1(c). In this topology BDD, the minimum number of dashed
edges to the terminal node 0 is two, which corresponds to the
minimum number of failures that violate the reachability property.
That is, the maximum number of failures the reachability of packets
128/2 from A to C can tolerate is one less than the minimum number
(2 — 1 = 1). Therefore, the problem of computing failure tolerance
reduces to the problem of finding the shortest path: assign weight 1 to
dashed edges and weight 0 to solid edges; compute the shortest path
length k from the root node to terminal node 0; the failure tolerance
isk —1.

Symbolic Router Execution

Example 2: Computing probabilities. Suppose operators instead
need to know the probability for reachability of packets 128/2 from
A to C. Different from computing failure tolerance, which only
cares about a failure scenario where the property does not hold
with the minimum number of link failures, computing probability
requires finding all failure scenarios where the property holds, and
summing up their probabilities. In the topology BDD, each truth
assignment (a path from the root to the terminal node 1) represents
a set of failure scenarios where the property holds. Therefore, the
problem of computing probability reduces to the problem of finding
all paths to a node on a graph, and computing a weighted sum of
these paths. For illustration purpose, assume each link fails inde-
pendently with probability p (see §6 for details on dependent link
failures or node failures), and assign weight p to dashed edges,
weight (1 — p) to solid edges, weights 0 and 1 to the terminal nodes
0 and 1, respectively. Then, the probability is the weight of the root
node, which can be computed recursively from the terminal node
1, according to: the weight of each node is the weighted sum of its
two child nodes. In this example, we can easily see the probability
is 0.9 % (0.9 + 0.1 0.9) + 0.1 % 0.9 = 0.981.

4 Symbolic Route Computation

This step symbolically simulates the control plane to generate a
symbolic RIB for each router. Each symbolic RIB consists of all pos-
sible routes that can materialize (i.e., become the best route) when
links and/or nodes fail, and the corresponding failure scenarios.

4.1 Defining Symbolic Route

Before introducing symbolic routes, we first define link variables.
For each link x in the network, its link variable is defined as boolean
variable Iy, such that I, = 1(True)/0(False) means the link x is
up/down, respectively. A symbolic route is a 2-tuple (route, tc),
where: route is a concrete route for a specific protocol (e.g., OSPF
and BGP) specifying the prefix, the next hop, and other protocol-
specific attributes (e.g., AS Path); and tc, which stands for topology
condition, is a predicate over link variables specifying the failure
scenarios when route becomes the best route.

Taking Figure 2(b) as an example, A will receive a route for prefix
128.0.0.0/1 from C, if link AC is up. Thus, SRE updates the topology
condition of this route at router A to [4¢, where l4¢ is a boolean
variable denoting the state of link AC, i.e., [qc = 1 or 0 if link AC is
up or down, respectively.

SRE uses Binary Decision Diagrams (BDDs [9]) to encode topol-
ogy conditions. Compared to SAT constraints, BDDs concisely en-
code boolean formulas and efficiently support conjunctions, dis-
junctions, and negations. Moreover, using BDDs allows SRE to
support various analyses using graph algorithms (§6).

4.2 Computing Symbolic Routes

SRE computes symbolic routes by executing a control plane model,
where each router repeatedly executes three steps: (1) import routes
from neighboring routers; (2) rank all imported routes with existing
routes and install the best routes into its RIB; and (3) export the
best routes to neighboring routers. The execution terminates when
the RIBs of routers do not change (i.e., a fixed point is reached).

340

SIGCOMM °22, August 22-26, 2022, Amsterdam, Netherlands

Importing Routes. Initially, each router imports all routes de-
clared in the configurations. Each such route has a tc = True. Dur-
ing recursive route computation, each router imports the routes
exported (advertised) by neighboring routers, and filters or modi-
fies routes according to routing policies. During this process, the
topology condition is unchanged.

Ranking Routes. When a router receives multiple routes for the
same prefix, it ranks these routes according to their priorities,
and updates their topology conditions. Suppose there are n routes
ri,ra, - -+, rp with decreasing priority. The topology condition of
rg, denoted as r.tc, is updated by negating the topology conditions
of all higher-priority routes, i.e., r.tc = (N;j<i(mri.tc)) A ry.te.
For example, in Figure 2(c), router A receives another route r
for 128.0.0.0/1 from router B, which has a topology condition of
r.tc = Ipclap. Assuming router A prefers routes with the shortest
path, A will rank r lower than the one directly received from C,
whose topology condition is l4c. A updates r.tc = =laclpclap.

Exporting Routes. Each router exports to its neighbors the routes
whose topology conditions are not False. The routes will first be
filtered/modified according to the routing polices. For example, in
Figure 2(b), router C filters the route 192.0.0.0/2 to be exported to
router A according to the route map. For each route r exported by
router R to its neighboring router N, r.tc is updated to r.tc A Ign,
where [gn is the link between R and N.

Supporting multiple protocols. When there are multiple proto-
cols (BGP, OSPF, static), SRE ranks routes first according to the
administrative distance of their protocols, and then considers the
protocol-specific priorities. When there are route dependencies—
e.g., iBGP relies on OSPF to establish neighbor relationships—SRE
will first compute the topology conditions for data plane reachabil-
ity among iBGP peers (see §5), and then use the conditions as the
link conditions among iBGP peers. That is, SRE views the connec-
tions among iBGP as virtual links whose conditions are computed
based on data plane reachability analysis of OSPF.

Supporting route aggregation. For BGP, a router can use route
aggregation to aggregate multiple routes of specific prefixes into a
single route of summarizing prefix. When at least one route with a
specific prefix is received, the aggregated route will be generated
and advertised instead of the received route. This can introduce
correlations among routes of different prefixes. It is easy to see that
the link condition for the aggregated route is the disjunction of link
conditions of all received routes whose prefixes are more specific.

Supporting multi-path routing. When multi-path routing (e.g.,
ECMP) is enabled, multiple routes for the same prefix may have the
same priority, and these routes should all be selected as the best
route. SRE realizes this by storing all routes for the same prefix in
a two-dimensional list: each entry of the two-dimensional list is a
list of routes with the same priority. When updating the topology
condition of a route, SRE only negates the topology conditions of
routes belonging to lists whose priorities are higher than the route.

Handling new higher-priority routes. A critical issue is dealing
with new higher-priority routes. Specifically, when R imports a
route whose priority is higher than some existing routes in its
RIB, the topology conditions of these lower-priority routes become
obsolete, and R should withdraw and re-advertise these routes.

SIGCOMM ’22, August 22-26, 2022, Amsterdam, Netherlands

inbound ACL outbound route-map
deny 192.0.0.0/2 filter 192.0.0.0/2

\ 1 Networks

2
/ 192.0.0.0/2

128.0.0.0/1
(a) A walkthrough example

2 128.0.0.0/1, l4¢, C

192.0.0.0/2, Iy, C
.0.0/1, Igc, C

128.0.

(b) Route propagation #1

Peng Zhang, Dan Wang, and Aaron Gember-Jacobson

192.0.0.0/2, Ipclap, B
128.0.0.0/1, I4¢, C
2 128.0.0.0/1, =laclpclas B

/3
192.0.0.0/2, Iy, C

2
128.0.0.0/1, Igc, C

128.0.0.0/1, ~lgclaclag A

(c) Router propagation #2

Figure 2: The process of symbolic route computation.

This can trigger cascaded updates at all routers importing those
lower-priority routes [26]. To be more efficient when handling
new higher-priority routes, SRE only re-advertises lower-priority
routes whose topology conditions change, without withdrawing
any routes. To achieve this, SRE uses two topology conditions for
each route: t¢' which represents the topology condition when
the route is imported, and tc"? which represents the topology
condition when the route is inserted in to the RIB. When a set
of routes are imported by a router, SRE will re-compute tc" for
each route ry whose priorities are equal or lower than any newly
inserted routes, according to:

re.te™® = (/\ (=ritc™)) A r.tc® 1)

1<i<k-1
If ri..tc"? is changed, we advertise it to all neighbors of R. Each
advertised route r]’c will have r;.tc”b = False, and r]’c.tc”’ =

re.-tc” ib A], where [is the variable of the link connected to the
neighbor. The algorithm for computing the symbolic RIBs can be
found in Appendix A.

5 Symbolic Packet Forwarding
5.1 Defining Symbolic Packets

SRE augments packet headers with a topology condition, which
captures the failure scenarios under which the packet is forwarded.
Suppose the original packet header has n bits (e.g., n = 104 for 5
tuple), and the network has m links; SRE uses a bit vector of length
(n + m) for the packet header. SRE symbolically executes the data
plane by making the packet header symbolic and forwarding it
through the network.

5.2 Generating symbolic FIBs

For each router, SRE generates a symbolic FIB, which is an or-
dered list of forwarding rules. Each forwarding rule is a 2-tuple
(match, port), where match is a predicate (boolean formula) over
packet headers and failure scenarios. For example, for symbolic
route (192/2, Igclap, B) at router A (Figure 3(a)), we will generate
a forwarding rule (p1p2lpclap, port3), where p1,pa,...,p32 are
boolean variables for IP addresses (from the highest bit to the low-
est bit), [4p is a boolean variable for link AB, and port 3 is the
port (interface) connected to router B (Figure 3(b)). Without loss
of generality, we assume forwarding rules are ordered by prefix
length (longest prefix has highest priority). For rules with the same
prefix length, the priority is determined by the priority of their
corresponding routes.

341

5.3 Computing predicates

After generating symbolic FIBs, we can forward symbolic packets
through the network by matching forwarding rules in the FIBs.
Each rule can be seen as a branch statement (e.g., if-then-else) in
computer programs. However, each router often has a large number
of rules, making the matching very inefficient. Therefore, we adopt
the approach of pre-computing port predicates [25]. A port predicate
is a boolean formula encoding the set of packets forwarded to a
specific port (forwarding predicates), or allowed by a specific port
(ACL predicates). Since there are a relatively small number of ports
at each router (compared to the number of rules), matching based
on port predicates will be more efficient.

Forwarding predicates. The forwarding predicate of a port is
computed as a disjunction of the “effective” match fields of all rules
which forward to that port. Here, “effective” means the match fields
that are not overridden by higher-priority rules. For example, the ef-
fective match fields for the second rule p1l4¢ in the symbolic FIB of
router A are p1lac—=(p1p2lpclap) = pip2lac—(IsclaB) Vp1—p2lac,
as shown in Figure 3(b). Here, the first term is for 192/2, which will
match both the first and second rule. According to the priorities,
the second rule will be matched only when the first rule is not
matched, i.e., when either Igc or I4p is down. Since only the second
rule forwards to port 2, then the forwarding predicate of port 2 is
the effective match fields of the second rule. For another example,
the port predicate for port 3 can be computed as a disjunction of
the “effective” match fields of the first and third rules.

ACL predicates. Each port may have ACLs filtering inbound or
outbound traffic. Therefore, we compute inbound and outbound
ACL predicates for each port. The computation is similar to for-
warding predicates. Returning to our example in Figure 3(b), router
C has an ACL at port 2 filtering inbound packets for prefix 192/2.
The inbound ACL predicate of port 2 is computed as —(p1p2).

5.4 Forwarding packets

After computing predicates, we construct a symbolic packet match-
ing all packet headers and failure scenarios (a logical True over
header and link variables), and inject it at each router of the net-
work. For each port of the router, we replicate the symbolic packet,
and let it traverse the port. Suppose a port has a forwarding pred-
icate P{ Wd, an outbound ACL predicate Pf”t , and is connected
to another port with an inbound ACL predicate Pé”, through a
link [, then we constrain the symbolic packet pkt by computing:
pkt — pkt A P{Wd A PO AL AP If pkt # False, then it arrives

Symbolic Router Execution

Ppip2lscla, port3
Pilac, port2

(Prpalac)
) Prlaclsclap, port 3 ;

(Pipasclap)V ...
(P1p2laclpclan)

5 Pipalsc port2 Piolsclaclas 52
Pilgc, port 2
Prlpclaclag, port 3

(a) Symbolic FIB (b) Port Predicates

(Pp2lacUscla))V

SIGCOMM °22, August 22-26, 2022, Amsterdam, Netherlands

LprprbreatisebaV
2 (P1p2lac)

\fel_
3

2" (Pipalsclan)V

Prprlaclsclas)

(Pimpalac), A-C

(P1palsclap)V
Prp2laclsclas), A-B—C

(Pipadclan)V
(Prprlaclpclan)

1

3

(c) Symbolic forwarding starting from Router A

Figure 3: The process of symbolic packet forwarding.

at the port of the next-hop router. This process continues until
pkt = False, or pkt reaches a port that is not connected to other
routers.

Figure 3(c) shows the above process for the running example,
where a symbolic packet is injected at router A, and reaches router
C (port 1) through A—C and A—»B—C.
Packet Failure Equivalence Class. Each symbolic packet reach-
ing an edge port encodes the set of packet-failure tuples for a
specific path, and is termed a packet failure equivalence class (PFEC).
Formally, we have the following definition.

DEFINITION 1. For a given router R, a failure scenario f, and a

packet p, letForward£ (p) be the forwarding path of packet p starting
from router R, under the failure scenario f. Two tuples (p1, f1) and
(p2, f2) belong to the same packet failure equivalence class (PFEC)
with respect to R, if and only ifForwardj;1 (p1) = Forward};2 (p2).

As shown in Figure 3(c), for router A, there are two PFECs,
one with forwarding path A — C, and the other with forwarding
path A — B — C. All packet-failure tuples where packets have
destination IP belonging to 128/1 and failure scenarios satisfy link
AC is up belong to the first PFEC.

6 Forwarding Property Analysis

This section shows how to analyze properties based on the PFECs.
We first define the properties that we consider, then give the work-
flow for analyzing these properties, and show how to perform three
types of analyses over the properties.

6.1 Properties

We consider the following properties.

e Reachability Reach(s,d, p): packets in p sent from s can
reach d.

e Waypointing Waypoint(s,d, w, p): packets in p sent from
s can reach d, traversing waypoint w.

e Isolation Isolation(s,d, p): packets in p sent from s can
never reach d.

e Load Balancing Loadbalance(s,d, p, n): packets in p sent
from s can reach d, load balanced among n routes.

6.2 Workflow

Property analysis using SRE generally consists of three steps.

(1) Computing property BDD. First, given a property, an analyzer
uses SRE to compute a property BDD, which is a BDD encoding
all PFECs that satisfy the property (Lines 7-12 of Algorithm 2 in
Appendix C). As shown in Figure 3(c), there are two PFECs that

342

Topology BDD
for192/2

Topology BDD
. for128/2

Property BDD for Reach(A,C,*) @ -

Figure 4: Analysis of reachability property.

satisfy Reach(A, C,): one following A — C, and the other follow-
ing A — B — C. The left of Figure 4 shows the property BDD for
Reach(A, C, *).

(2) Extracting topology BDDs and packet BDDs. A property
BDD can consist of multiple sets of packet headers each having a
different topology condition. For example, as shown on the left of
Figure 4, the solid and dashed lines starting from py lead to differ-
ent nodes for link variable I4p. This means packets p1p2 (192/2)
and packets p1—p2 (128/2) have different topology conditions. To
analyze packets with different topology conditions, the analyzer
uses the Extract function (Lines 13-18 of Algorithm 2 in Appendix
C) to decouple the property BDD into a set of (topo;, pkt;) tuples,
where topo; (topology BDD) and pkt; (packet BDD) are sub-BDDs
of the property BDD, such that V;(topo; A pkt;) equals the property
BDD. The right of Figure 4 shows two topology BDDs for packet
BDDs of 192/2 and 128/2.

(3) Analyzing topology BDDs with graph algorithms. After de-
coupling the property BDD into packet BDDs and topology BDDs,
analyses can be performed by running graph algorithms on the
topology BDDs. The analyses that SRE support include: failure tol-
erance analysis (§6.3), probabilistic analysis (§6.4), and differential
analysis (§6.5).

6.3 Failure tolerance analysis

DEFINITION 2. The link failure tolerance for a property prop
is defined as the maximum value of k satisfying that prop always
holds when no more than k links fail simultaneously.

SIGCOMM ’22, August 22-26, 2022, Amsterdam, Netherlands

We use LFT (prop) to denote the link failure tolerance of prop.
LFT(prop) = 0 means prop holds when all links are up, but is
violated if some single link fails; LFT (prop) = —1 means prop does
not hold even all links are up.

We show how to compute link failure tolerance for three types
of properties: reachability, waypointing, and isolation.
Reachability property Reach(s, d,). Regarding reachability prop-
erty, we have the following theorem.

THEOREM 1. Let (topo, pkt) be a topology BDD and packet BDD
tuple extracted from the property BDD of Reach(s, d,). Assign weight
0/1to solid/dashed edges of topo. Then, we have: LFT (Reach(s, d, pkt))
ShortestPath(topo, 0) — 1, where ShortestPath(n, 0) is the length
of the shortest path from node n to terminal node 0.

The proof of Theorem 1 can be found in Appendix B.

Returning to our example, the top right of Figure 4 shows that
for packets in 192/2, the shortest path length from root to terminal
node 0 is 1. This means that to violate the reachability, at least one
link should be failed, i.e., the link failure tolerance of the reachability
property is 0. On the other hand, the bottom right of Figure 4 shows
that for packets in 128/2, the shortest path length is 2, meaning that
the link failure tolerance of the reachability property is 1. Algorithm
2 in Appendix C summarizes the process to compute link failure
tolerance for reachability properties.

Other properties. The process of computing LFT for other prop-
erties, including waypointing, isolation, etc., is almost the same.
The only difference is the computation of property BDD (Line 10
of Algorithm 2 in Appendix C). For example, the property BDD for
waypointing property should be the disjunction of all PFECs whose
forwarding path traverse w, in addition to being sent from s to d.

6.4 Probabilistic analysis

SRE supports probabilistic analysis: given a property prop, comput-
ing the probability that prop holds, denoted as Prob(prop). In the
following, we show how to compute probability for the reachability
property Reach(s, d, *); for other properties, the probability can be
computed in a similar way.

THEOREM 2. Let (topo, pkt) be a topology BDD and packet BDD
tuple extracted from the property BDD of Reach(s, d, *). Then, we have
Prob(Reach(s,d, pkt)) = XxeTruth(topo) Pr(x), where Truth(n) is
the set of all truth assignments, and Pr(x) is the probability of the
truth assignment x.

Figure 4 shows that for 128/2 there are three truth assignments:
x1 = (ap = 0,lac = 1), x2 = (lap = Llac = 1), x3 = (la =
1,lac = 0,1gc = 1). Then, Prob(Reach(A, C,128/2)) = Z?:l Pr(x;).
In the following, we show how to compute Pr(x;) for link failures
and node failures.

Link failures. Assume each link fails independently with proba-
bility of pgoywn = 0.1 (correspondingly, p,p = 0.9), then the reacha-
bility probability is Prob(Reach(A, C, 128/2)) = 0.1%0.9+0.9%0.9+
0.9 % 0.9 % 0.1 = 0.981. Actually, for such a failure model, we can
assign weights pg4,, and pyp to dashed lines and solid lines, respec-
tively in the topology BDD, and efficiently compute the probabil-
ity with dynamic programming: Prob(Reach(s, d, pkt)) = P(topo),
P(n) = paown * P(n.d) + pyp * P(n.s), P(1) = 1, and P(0) = 0. Here,

343

Peng Zhang, Dan Wang, and Aaron Gember-Jacobson

n.d and n.s are the two children of node n corresponding to the
dashed and solid line, respectively.

Node failures (dependent link failures). When a node fails, all
the links of this node will fail. This introduces dependency among
link failures, and the above dynamic programming method cannot
be used. Similar to [21], we use Bayesian Network (BN) to model
the dependency. For this example, suppose nodes A and B fail
with probability 0.01, BN will declare: P(N4 = 0) = 0.01, P(Ng =
0) = 0.01, P(lag = O|[Ng =0V Ng =0) = 1, P(lag = 0|N4x #
0 A Np # 0) = 0.1, etc. Then, we can query the BN model for P(x;).
Similarly, nodes or links that share the same risk can be modeled
by introducing more dependency into BN, e.g., P(N4|Np) = 1.

6.5 Differential analysis

Operators are constantly changing configurations and need to know
how the changes affect properties: e.g., what properties become
satisfied or unsatisfied. DNA [27] can be used for such differential
analyses. However, without considering link or node failures, DNA
only returns “shallow differences”, which may overlook undesirable
differences. In the running example, suppose the operator deletes
the ACL which drops packets destined for 192/2 at C. Due to the
outbound route policy at C, A still chooses to route packets for prefix
192/2 towards B, and no reachability or waypointing properties
are affected when all links are up. However, when links I4p or Igc
fail, packets for prefix 192/2 will be dropped before the change but
will be forwarded to C after the change. The waypointing property
will be violated since packets for 192/2 will not traverse B under
some link failures. In addition, the link failure tolerance changes:
packets belonging to 192/2 sent by A will not reach C if I4p or Ipc
fails, before the change, while can reach C even these two links fail,
after the change.

Computing differences under failures. SRE can be used to iden-
tify the above failure-triggered differences in three steps: (1) for
each property, extract the topology BDD and packet BDD tuples
by running steps 1 and 2 for the changed configuration. (2) for
each tuple (pkt, topo), where topo changes from topo’, compute
the differential BDD: (topo A —=topo’) V (=topo A topo’). (3) com-
pute a truth assignment of the differential BDD. In addition, we can
also compute the difference of failure tolerance and probability by
computing the failure tolerance and probability for the changed
configuration, and comparing to those of the original configuration.

In the running example, consider the reachability from A to C, the
topology BDD of 192/2 changes, and the differential BDD encodes
lac—(laglpc). One truth assignment to the differential BDD is
Iap = 0, Igc =1, and Iy = 1, meaning that when link AB fails,
packets 192/2 is unreachable from A to C before the change, while
is reachable after the change. In addition, the tolerance increases
to one after the change.

7 Optimizations

The number of possible routes under all node/link failures can
explode for large networks (similar to path explosion for symbolic
execution of programs). Therefore, optimizations are necessary to
prune routes and make the symbolic execution tractable. Existing
verifiers use different optimizations targeted at different analyses.
In the following, we consider three of these optimizations, and

Symbolic Router Execution

show how SRE can leverage them to prune a significant number of
routes.

7.1 Route Pruning

Hoyan [26] observes that when considering a small number of
link failures, e.g., k < 3, a lot of routes will become impossible
(the topology conditions contain >3 link failures) during route
computation and can be pruned. The tricky part here is that the
topology condition of a route can be partially impossible. Suppose
another router D is connected to A and B in Figure 1(a). D will
receive 4 routes for prefix 128/1:

D—A—C :laplac D—A—B—C : lxp-laclaplsc
D—B—C : lgplgc D—B—A—C : Igp-lpclaplac

Suppose D prefers routes received from A. Then, the route D—B—C
will have a topology condition:
=(laplac) A ~(lap=laclaslsc) A lgplec
=(Isplpc=lap) V (Ieplec=lap=lac)

If we restrict to k < 1link failures, then only the second conjunction
should be pruned. To enable the above partial pruning with SAT
encoding (e.g., Hoyan), one has to represent the topology condition
as a disjunction of conjunctions of link variables, in order to prune
only those conjunctions with more than k negated link variables.
However, due to the negations and conjunctions, the topology
condition can grow very quickly, leading to what we call topology
condition explosion, which will make the simulation time out (§8.6).

SRE realizes route pruning without topology condition explosion:
since each topology condition is concisely encoded with a BDD, SRE
can filter partially impossible routes by conjuncting the topology
condition with a filtering BDD If k which is a BDD representing
all possible < k link failures. For the running example with 3 links,
If1 is constructed as:

If' = (Lalaclse) V (<laslaclse) V (lap=laclse) V (laslaclsc)
Then, for each route with topology condition fc, SRE updates it as
tc « tc A lfk. The route will be pruned if tc = False.

Note that route pruning may under-estimate the probability that
a property holds, due to ignoring all the >k failure scenarios. How-
ever, when the probabilities of failures are quite small (e.g., 0.001),
which is often the case [21], the probability of >k failures decreases
quickly with k. Therefore, if allowing for some imprecision (e.g.,
107%), it suffices to consider only a bounded number (k) of failures
and safely dropping routes with >k failures. Specifically, SRE pre-
computes the minimum k which guarantees that the probability of
> k link failures is smaller than the imprecision (e.g., 10~%) specified
by operators, that is:

k
,;) (;)p;’;wn(l = Pdown) ™ > 1 — imprecision,

where n is the number of links, and p g4, is the probability that a
link fails.

7.2 Prefix Pruning

Config2Spec [8] observes that some properties (e.g., reachability)
cannot hold under k failures due to the lack of topological con-
nectivity. Based on this observation, Config2Spec computes (k+1)-
edge-connected components (ECCs) on the topology: two nodes

344

SIGCOMM °22, August 22-26, 2022, Amsterdam, Netherlands

are in the same (k + 1)-ECC if they remain connected when any k
edges are removed. Config2Spec prunes policies (e.g., reachability)
between nodes which are not in the same (k + 1)-ECC from the set
of candidate policies.

SRE leverages the observation to enable another optimization
termed prefix pruning. Unlike Config2Spec which prunes policies to
verify, SRE prunes prefixes to compute—i.e., SRE does not perform
symbolic route computation for the prefixes. Before enabling this
optimization, SRE first divides forwarding property analysis into
several strata: for the (k + 1)th stratum, SRE only considers those
properties whose failure tolerance is k, thereby pruning prefixes re-
lated to those properties whose failure tolerance is < k. By iterating
over all strata, SRE can compute failure tolerance for all properties.
For the (k + 1)th stratum, if a (k + 1)-ECC contains only one router
R, then properties related to all prefixes originated by R have failure
tolerance < k, and those prefixes can be pruned. Moreover, since
the (k + 1)th stratum does not need to consider > k link failures,
SRE can apply route pruning (§7.1) to reduce the number of routes
for unpruned prefixes.

Compared to route pruning which prunes routes during route
computation, prefix pruning prunes routes before route computa-
tion. The joint effect of prefix pruning and route pruning is remark-
able: for stratum with a smaller k, more routes will be pruned by
route pruning; for stratum with a larger k, more routes will be
pruned by prefix pruning. Therefore, the overall number of routes
will be relatively small with the above two optimizations. As we
show in our experiments, the stratified approach is faster than the
one-shot approach which considers all < k failures and hence does
not permit prefix pruning (§8.4).

Note that prefix pruning does not affect the accuracy of failure
tolerance analysis, but may under-estimate the probabilities of
properties. The reason is that even the property does not hold under
arbitrary k link failures, there may exist some k link failures under
which the property holds, whose probabilities are not counted when
prefix pruning is enabled.

7.3 Abstract Interpretation

ShapeShifter [6] applies abstract interpretation to reduce the num-
ber of routes during control plane simulation (under no failures).
ShapeShifter shows that for data center networks with many redun-
dant links and great symmetry, abstract interpretation significantly
speeds up the simulation process.

SRE can apply abstract interpretation to speed up the process of
SRC (§4). For example, if we only care whether there is a route to a
prefix at each router, we do not need to keep the AS path and can
abstract it using path length for best route selection. Then, many
routes with different AS paths, but the same path length can be
merged into a single route, whose topology condition is a disjunc-
tion of the topology conditions of those routes. For an 80-node fat
tree with three link failures, the speedup due to this optimization is
around 5X (§8.4). Unlike ShapeShifter, which concentrates on route
reachability and may lose precision when there are static routes
or ACLs, SRE considers packet reachability and therefore needs to
preserve the next hop of each route.

SIGCOMM ’22, August 22-26, 2022, Amsterdam, Netherlands

B3 Batfish

Minesweeper B Tiramisu SRE

Time (s)

arrier Fattree Fattree
(20 nodes) (80 nodes)

C
(%2}
0O

Figure 5: Time to check all-pair reachability under different
number of link failures.

&2 Batfish m Tiramisu 3 SRE

10°
103
10!
10t
1073

Minesweeper

Time (s)

i |
%5’% 3 £ %5% 5’ X
Fattree Fattree

(20 nodes) (80 nodes)

AS
arrier

(]
=X
c
3
<3
c
a
C
)
(@]

Figure 6: Time to check single-pair reachability under differ-
ent number of link failures.

8 Experiments

Implementation. We implemented SRE with Java. SRE uses the
JDD library [23] for BDD operations, and Batfish [1] to parse con-
figuration files into a vendor-neutral representation. Currently, SRE
supports OSPF, BGP, and static route.

Setup. All experiments run on a Linux server with two 12-core
Intel Xeon CPUs @ 2.3GHz and 256G memory.

Datasets. We use three synthetic datasets and one real dataset.

(1) WAN topologies running BGP or OSPF, from Config2Spec [8].
The dataset consists of three WAN topologies (small, median,
and large), consisting of 33 (48), 70 (85), and 158 (189) routers
(links), respectively.

(2) WAN topologies running BGP and OSPF, from NetDice [21].
The dataset consists of 90 WAN topologies, each of which has
>50 links.

(3) Fat trees running BGP or OSPF. The dataset consists of different
sizes of fat trees, from 20 nodes to 245 nodes.

(4) Campus network running OSPF. The dataset consists of 67 con-
figuration snapshots from the backbone network at a large
university [19]. The network has 28 routers, 50 links, ~1K pre-
fixes, and an average of ~75K total lines of configuration, which
generate ~26K total forwarding rules. There are ~1K ACL rules.

8.1 Failure tolerance analysis

Checking reachability under failures. Figure 5 shows the run-
ning time of SRE and three other configuration verifiers to check
all-pair reachability on the three WAN topologies and the fat tree
topologies (20 nodes and 80 nodes). For the WAN topologies, SRE
is generally >10x faster than the other verifiers. For the fat tree
topologies, SRE is >100x faster than Batfish and Minesweeper, and
faster than Tiramisu. We also include the results for checking single-
pair reachability, shown in Figure 6. We can see that SRE is faster

345

Peng Zhang, Dan Wang, and Aaron Gember-Jacobson

ksghsoksy ksghesksz

US Carrier US Carrier
(BGP) (OSPF)

fl B I i K 4
ksghsoksy ksphsoksy ksphsoksy hsphsoksy

Columbus
(OSPF)

Columbus
(BGP)

Bics
(OSPF)

Bics
(BGP)

Figure 7: Running time to mine specifications.

-- NetDice (single) —--- NetDice --- SRE (single) -+- SRE

100 10! 102 103 104

Time (s)
Node Failures

Time (s)
Link Failures

Figure 8: Running time to compute probabilities for reacha-
bility under link failures and node failures.

than or comparable to Batfish and Minesweeper, but slower than
Tiramisu. This indicates that SRE is a better choice for reasoning
about a large header space and failure space, but not optimized for
reasoning about a specific prefix or failure.

Specification mining. We use SRE to mine policies from configu-
rations. To compare with Config2Spec [8], we use the three WAN
topologies, and consider four types of policies—reachability, way-
point, isolation, and load balancing. Figure 7 shows SRE mostly
takes <100 seconds to mine all the policies, 1-2 orders of magnitude
faster than Config2Spec.

8.2 Probabilistic analysis

We run SRE on the 90 WAN topologies [2] to compute probabilities
for reachability and waypointing properties with both link and
node failures. For each prefix, we consider the reachability from
each router to the prefix, and select a random waypoint. We set
the probabilities of node failure and link failure to 0.0001 and 0.001,
respectively (the same as NetDice). Both SRE and NetDice return
the same probabilities for reachability and waypointing properties,
within an imprecision of 107# on all topologies. As shown in Fig-
ure 8, for link failures, NetDice is faster than SRE when computing
the probability of a single reachability, but SRE is 1-2 orders of
magnitude faster than NetDice when computing the probabilities
of all reachabilities, except some large topologies (up to 2320 edges)
for which both SRE and NetDice time out after 1 hour. For node
failures, NetDice can compute probabilities of some reachabilities
that SRE cannot compute, while SRE is >2 orders of magnitude
faster than NetDice when computing probabilities of all reachabili-
ties, except the large topologies. This shows the advantage of SRE
in reasoning about the product space of packets and failures. The
results for waypointing probability (Appendix D) are similar.

8.3 Differential Analysis

We use SRE to compute the differences after a configuration change.
We consider the 10 atomic changes synthesized by DNA [27] and

Symbolic Router Execution

No. Routes ‘ Reduction Ratio

Dataset | RoutePrune | +PrefixPrune | +Abstract
Bics 3,819,240 98.32% 91.80% 61.42%
Columbus 25,382,778 98.81% 95.76% 59.09%
US Carrier 280,624,242 98.55% 99.20% 74.55%
Fattree(20) 146,040 97.55% 100.00% 0.00%
Fattree(80) | BDD limit | (379,552) 0.00% 93.82%
Fattree(125) | BDD limit | (2,389,050) | 0.00% 96.97%

Table 2: The reduction in routes when applying different op-
timizations (k = 3, BGP). When the BDD node count limit is
reached, the corresponding number in the third column is
the number of routes.

—+ NoOptimization - RoutePrune - PrefixPrune —+- RoutePrune+PrefixPrune

104 g 10° ¢ 104
L 4 L
[} E 2
£ 102 *0
= 10! L 10!
100 10°
k=0 k=1 k=2 k=3 k=0 k=1 k=2 k=3 k=0 k=1 k=2 k=3

Bics Columbus US Carrier

Figure 9: Time to compute link failure tolerance of reacha-
bility, with and without route/prefix pruning.

apply these changes on the Bics WAN topology. For each change,
we run SRE with k = 0 to compute the differences DNA will find,
and we run SRE with k = 3 to get the differences under failures.
DNA can detect differences for 5/10 of the updates, while SRE can
detect differences in failure tolerance and probability for 7/10 and
10/10 of the updates, respectively. This means SRE can be used to
find differences that only manifest under specific failures.

8.4 The effectiveness of optimizations

We now quantify the effectiveness of the three optimizations (§7).

WAN topologies. Figure 9 shows the running time of SRE when
computing failure tolerance with and without route pruning and
prefix pruning (abstract interpretation is not quite effective, and is
not shown here). We can see that:

(1) optimizations are quite necessary for SRE to scale. For US Carrier,
without route pruning, the number of required BDD nodes exceeds
the limit supported by the JDD library [23] (see §8.5 for details),
while with route pruning and prefix pruning, the running time
is within 100 seconds. The scalability comes from the significant
reduction of routes (Table 2).

(2) different optimizations have different effectiveness for different
number of failures (k). Route pruning is more effective for smaller
k, when a lot of routes have > k failures, while prefix pruning is
more effective for larger k, when a lot of prefixes whose related
properties cannot tolerate > k failures.

(3) stratification approach performs better than one-shot approach,
i.e., computing failure tolerance in a single round considering all
1,2,...,k failures, and cannot enable prefix filtering. For example,
for US Carrier k = 3, the one-shot approach uses 5500 seconds
(the RoutePrune time for k = 3), while the stratification approach
uses 120 seconds (sum of the RoutePrune+PrefixPrune time for
k=0,1,23).

346

SIGCOMM °22, August 22-26, 2022, Amsterdam, Netherlands

—+ NoOptimization =~ —= Abstract -e- RoutePrune —+ RoutePrune+Abstract

I —— 103 103
@ 10t L 102 102
()
£ 100 S S S B T 101

10! 100 100

k=0 k=1 k=2 k=3 k=0 k=1 k=2 k=3 k=0 k=1 k=2 k=3
Fattree Fattree Fattree
(20 nodes) (80 nodes) (125 nodes)

Figure 10: Time to compute link failure tolerance of reacha-
bility, with and without abstract interpretation.

—+ k=0 & k=1 » k=2 + k=3

o
104 o 107
v 103 o
v 102 g 10t
E n
S 10t 2 0
c > 10
2 100 S
101 £ 10t
0 100 200 300 400 500 = 0 100 200 300 400 500

Fattree Size (Number of Nodes) Fattree Size (Number of Nodes)

Figure 11: Running time and memory usage when checking
all-pair reachability for different sizes of fat trees.

Fat trees. Figure 10 shows the running time of SRE when comput-
ing link failure tolerance with and without abstract interpretation
and route pruning (prefix pruning is not effective, except 20 nodes
and k = 3, and thus not shown here). As can be seen, abstract
interpretation becomes more effective for larger fat trees with more
redundant links, when more routes with equal path length can be
merged. Without abstract interpretation, the number of BDD nodes
required for the 125-node fat tree for k = 2, 3 exceeds JDD’s limit.
Similar to the WAN topologies, route pruning is quite effective.

8.5 Scalability

To evaluate whether SRE can scale to even larger networks with
>1000 links, we use SRE to analyze the failure tolerance of all-pair
reachability on different sizes of fat trees. Figure 11 shows the
running time and peak memory usage of SRE for different number
of link failures. As shown in Figure 11(a), for fat tree with 320 nodes
(2048 links), SRE finishes when there are at most one link failure,
while for fat trees with 500 nodes and 4000 links, SRE finishes only
when there are no failures.

This is due to the limitation of node table size in JDD, which uses
an array of integers to store all BDD nodes. Since each BDD node
uses three integers, the maximum (theoretical) number of nodes is
(231 —1)/3, which is roughly 7.16 x 102. Since JDD uses 22 Bytes for
each node, it consumes approximately 16GB for maintaining BDD
nodes. To confirm this, we allocate 100GB to Java Virtual Machine,
and observe that the peak memory usage is bounded by around
20GB, which is comparable to 16GB. Therefore, we expect SRE can
scale to larger fat trees with another BDD library that can hold
more nodes.

8.6 SAT or BDD?

In this experiment, we replace the encoding of topology condition
with SAT formula, similar to Hoyan [26], and show how it compares
to SRE which uses BDDs. We randomly select 10 prefixes from

SIGCOMM ’22, August 22-26, 2022, Amsterdam, Netherlands

Dataset ‘ ‘ k=0 ‘ k=1 ‘ k=2 ‘ k=3
TC Length | 480 2,116 8,195 28,651

Bics Time (s) 0.96 1.23 2.48 13.13
Timeout 0/10 0/10 0/10 0/10
TC Length 1470 16,726 147,009 | 813,122

Columbus | Time (s) 1.37 3.25 91.27 1435.49
Timeout 0/10 0/10 0/10 3/10
TC Length | 4,930 79,030 809,318 | -

US Carrier | Time (s) 2.80 15.96 712.38 -
Timeout 0/10 0/10 1/10 10/10

Table 3: Length of topology condition and running time with
SAT encoding.

10.0.8.0/24 10.0.7.0/24

Figure 12: The topology of the campus network and the
three packet forwarding paths (in different colors) from a
core router C; to 10.0.7.0/24. The number along each link de-
notes the OSPF cost of that link.

1 ’
50072
O 025 ;
0
101 109 10! 100 101 102
Time (s)
(1) SRC (2) SPF (3) FPA

Figure 13: Running time of SRE on campus network.

the three WAN topologies, and run symbolic route computation.
Table 3 shows that with increasing network size and value of k,
more prefixes will time out, e.g., for US Carrier k = 3, all the 10
prefixes time out. The reason is topology condition explosion: the
formula length encoded with SAT grows quite fast when k increases,
making the updating of the topology condition extremely slow.

8.7 Real Network

We use SRE to check reachability in the campus backbone network.
As shown in Figure 12, the campus backbone network has a hier-
archical structure, with 2 core routers (C; and Cz), 8 aggregation
routers (A1—Ag), and 18 distribution routers (D1-D1g). The aggrega-
tion and distribution routers are deployed in primary-backup pairs
(e.g., A1 and Az). Each access VLAN (e.g., VLAN 7 associated with
subnet 10.0.7.0/24) is connected to a pair of distribution routers.

347

Peng Zhang, Dan Wang, and Aaron Gember-Jacobson

First, we check all-pair reachability between all access VLANS.
Figure 13 shows the running time for the two stages of SRE (SRC
and SPF) and property analysis (FPA). The distribution is over the
67 configuration snapshots. SRE generates the same FIBs as Batfish
when there are no failures (k = 0). We can see that for this campus
network, SRE takes around 1000 seconds. We also run Minesweeper
and Tiramisu, both of which cannot run to completion. This is due
to the existence of ~1K ACL rules, ~1K prefixes, >1K VLANS, and
multiple VRFs.

Second, we compute the failure tolerance for reachability from
each core router to each access VLAN: e.g., Reach(Cy, 10.0.7.0/24),
Reach(Cy,10.0.7.0/24), etc. The failure tolerance computed by SRE
and Minesweeper are both 1—i.e., an access VLAN is always reach-
able from C; or Cy if there are < 1 link failures, but unreachable
if there are > 2 link failures such as when l4,p, and I4,p, fail
simultaneously.

9 Limitations

No performance gains when analyzing a single point in the
header or failures space. SRE is aimed at scaling to the product
space of packets and failures, and therefore not optimized for check-
ing a single prefix under failures. As shown in §8, SRE is slower
than Tiramisu for checking single-pair reachability, and comparable
with Batfish and Minesweeper when there are no failures (Figure 6).

No support for cross-path/cross-flow properties. SRE currently
does not support properties that require reasoning about multiple

forwarding paths of the same flow [11] or the forwarding behaviors

of multiple flows [21].

No incremental computation. SRE currently does not support
incremental computation [27]. When configurations change, SRE
needs to re-run symbolic route computation and symbolic packet
forwarding, and re-check the properties.

10 Conclusion

Symbolic Router Execution (SRE) is a general and scalable network
verification engine that supports various types of analyses. SRE
symbolically executes the network model to discover packet failure
equivalence classes (PFECs) to scale to the product space of head-
ers and failures. By encoding symbolic headers and failures with
BDDs, SRE enables operators to analyze properties with graph algo-
rithms on BDDs, agnostic of failure models or network semantics.
Our future work includes overcoming the limitations of SRE, and
experimenting with other BDD libraries.

Acknowledgement. We thank our Shepherd Ennan Zhai, and all
the anonymous SIGCOMM reviewers for their valuable comments
and suggestions. This work is partially supported by the United
States National Science Foundation (No. 1763512).

Ethical issues. This work does not raise any ethical issues.

References

i
[2
B3

[n.d.]. Batfish. https://github.com/batfish/batfish.

[n.d.]. NetDice. https://github.com/nsg-ethz/netdice.

Anubhavnidhi Abhashkumar, Aaron Gember-Jacobson, and Aditya Akella. 2020.
Tiramisu: Fast and General Network Verification. In USENIX NSDL

Henrik Reif Andersen. 1997. An introduction to binary decision diagrams. Lecture
notes, available online, IT University of Copenhagen (1997).

Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker. 2017. A general
approach to network configuration verification. In ACM SIGCOMM.

[4

[5]

Symbolic Router Execution

[12

[13

[14]

[15]

[16

(7

[18

[19

[20

[21

oo
ok

[23]

[24

[25

[26

[27

Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker. 2020. Abstract
interpretation of distributed network control planes. In ACM POPL.

Theophilus Benson, Aditya Akella, and David A. Maltz. 2009. Mining policies
from enterprise network configuration. In ACM IMC.

Riidiger Birkner, Dana Drachsler-Cohen, Laurent Vanbever, and Martin Vechev.
2020. Config2Spec: Mining Network Specifications from Network Configurations.
In USENIX NSDI

Randal E Bryant. 1986. Graph-based algorithms for boolean function manipula-
tion. IEEE Trans. Comput. 100, 8 (1986), 677-691.

Seyed K Fayaz, Tushar Sharma, Ari Fogel, Ratul Mahajan, Todd Millstein, Vyas
Sekar, and George Varghese. 2016. Efficient network reachability analysis using
a succinct control plane representation. In USENIX OSDIL

Ari Fogel, Stanley Fung, Luis Pedrosa, Meg Walraed-Sullivan, Ramesh Govin-
dan, Ratul Mahajan, and Todd Millstein. 2015. A general approach to network
configuration analysis. In USENIX NSDL

Aaron Gember-Jacobson, Raajay Viswanathan, Aditya Akella, and Ratul Mahajan.
2016. Fast control plane analysis using an abstract representation. In ACM
SIGCOMM.

Nick Giannarakis, Ryan Beckett, Ratul Mahajan, and David Walker. 2019. Efficient
verification of network fault tolerance via counterexample-guided refinement. In
International Conference on Computer Aided Verification.

Nick Giannarakis, Devon Loehr, Ryan Beckett, and David Walker. 2020. NV: an
intermediate language for verification of network control planes. In Proceedings
of the 41st ACM SIGPLAN International Conference on Programming Language
Design and Implementation (PLDI).

Nick Giannarakis, Alexandra Silva, and David Walker. 2021. ProbNV: probabilistic
verification of network control planes. Proc. ACM Program. Lang. 5, ICFP (2021).
Peyman Kazemian, George Varghese, and Nick McKeown. 2012. Header space
analysis: Static checking for networks. In USENIX NSDL

Ali Kheradmand. 2020. Automatic Inference of High-Level Network Intents by
Mining Forwarding Patterns. In ACM Symposium on SDN Research.

James C King. 1976. Symbolic execution and program testing. Commun. ACM
19, 7 (1976), 385-394.

David Plonka and Andres Jaan Tack. 2009. An Analysis of Network Configuration
Artifacts. In Proceedings of the 23rd Large Installation System Administration
Conference.

Santhosh Prabhu, Kuan-Yen Chou, Ali Kheradmand, P Godfrey, and Matthew
Caesar. 2020. Plankton: Scalable network configuration verification through
model checking. In USENIX NSDL

Samuel Steffen, Timon Gehr, Petar Tsankov, Laurent Vanbever, and Martin Vechev.
2020. Probabilistic Verification of Network Configurations. In ACM SIGCOMM.
Bingchuan Tian, Xinyi Zhang, Ennan Zhai, Hongqiang Harry Liu, Qiaobo Ye,
Chunsheng Wang, Xin Wu, Zhiming Ji, Yihong Sang, Ming Zhang, et al. 2019.
Safely and automatically updating in-network ACL configurations with intent
language. In ACM SIGCOMM.

Arash Vahidi. [n. d.]. JDD, a pure Java BDD and Z-BDD library. https://bitbucket.
org/vahidi/jdd/.

Konstantin Weitz, Doug Woos, Emina Torlak, Michael D Ernst, Arvind Krish-
namurthy, and Zachary Tatlock. 2016. Scalable verification of border gateway
protocol configurations with an SMT solver. In ACM OOPSLA.

Hongkun Yang and Simon S Lam. 2013. Real-time verification of network prop-
erties using Atomic Predicates. In IEEE ICNP.

Fangdan Ye, Da Yu, Ennan Zhai, Hongqiang Harry Liu, Bingchuan Tian, Qiaobo
Ye, Chunsheng Wang, Xin Wu, Tianchen Guo, Cheng Jin, et al. 2020. Accuracy,
Scalability, Coverage: A Practical Configuration Verifier on a Global WAN. In
ACM SIGCOMM.

Peng Zhang, Aaron Gember-Jacobson, Yueshang Zuo, Yuhao Huang, Xu Liu, and
Hao Li. 2022. Differential Network Analysis. In USENIX NSDIL

348

SIGCOMM °22, August 22-26, 2022, Amsterdam, Netherlands

A Algorithms for Symbolic Route
Computation

Algorithm 1: UpdateRIB(R)
Input: R: the router whose RIB is to be updated.
1 lists — {};
2 routesOut « {};
3 Sort(routesIn);

4 foreach route € routesin do

5 list « rib.Get(route.prefix);

6 if list.contains(route) then

7 r « list.getRoute(route);

8 r.tci™ «— route.tci™;

9 else

10 L list.InsertRoute(route);

1 index « list.getIndex(route);

12 if index < list.changePos then

13 L list.changePos « index;

14 lists « lists U {list};
15 foreach list € lists do

16 matched «— False;

17 foreach route € list[0 : list.changePos] do
18 L matched «— matched V route.tc'™;

19 foreach route € list[list.changePos : list.len] do
20 tc < —matched A route.tc'™;

21 if tc # route.tc”? then

22 route.tc’it — tc;

23 routesOut < routesOut U {route}
24 matched «— matched V route.tc’™;

25 foreach route € routesOut do
26 foreach N € Neighbors do

27 if PolicyAllow(R, N, route) then

28 r < route;

29 r.tci™ — route.tc™® A Link(R, N);
30 r.tc"? « False;

31 Advertise(N,r);

B Proof of Theorem 1

ProoF. Let T be the link failure tolerance, and L be the length
of shortest path. We will prove T = L — 1 by showing (1) T < L, and
(2) T = L — 1. First, since there is a path from root to False whose
length is L, then there exists a topology condition where L links are
down, such that the reachability does not hold. That is, we have the
failure tolerance T < L. Second, suppose T < L — 1, then we have
a topology condition where (L — 1) links are down and all other
(N — L +1) links are up, such that the reachability does not hold.
The condition corresponds to a path to False which has at most
(L — 1) dashed edges, since the (N — L + 1) links either correspond
to solid edges, or do not appear on the path. This contradicts the
fact that the shortest path to False is L. O

SIGCOMM ’22, August 22-26, 2022, Amsterdam, Netherlands

C Algorithms for Failure Tolerance
Computation

Algorithm 2: LFTReach(src, dst, hdr, P)

Input: src: the source; dst: the destination; hdr: the header specification; P:

the set of all PFECs.
Output: LFT: a set of tuples (src, dst, pkt, k), meaning the link failure
tolerance for Reach(src, dst, pkt) is k.

1 LFT « {};
2 reach « GetPropertyBDDReach(src, dst, hdr);
3 extracted « Extract(reach, wildcards);
4 foreach (topo, pkt) € extracted do
5 k « ShortestPath(topo,0) — 1;

L LFT « LFT U {(src,dst, pkt, k) };

7 Function GetPropertyBDDReach(src, dst, hdr):

8 reach « False;

9 foreach p € £ do

10 if p.src = src and p.dst = dst then

1 | reach < reachV p;

12 | return reach A hdr;

13 Function Extract(node, pkt):

14 if node € {True,False} orvar(node) € Links then
15 L return {node, pkt};

16 p1 «— pkt, pilvar(node)] « 0;
17 pr «— pkt, pylvar(node)] « 1;
18 | return Extract(node.l, p;) U Extract(node.r, p,);

349

Peng Zhang, Dan Wang, and Aaron Gember-Jacobson

D Extra Experiment Results

Figure 14 shows running time to compute probabilities for way-
pointing property under link failures and node failures.

-- NetDice (single) —--- NetDice --- SRE (single) -+ SRE

,-w.—:—:j
g 3

;) - .
100 10! 102 103 10% 109 10! 102 103 104

Time (s) Time (s)
Link Failures Node Failures

Figure 14: Running time to compute probabilities for way-
pointing property under link failures and node failures.

