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Chaos does not drive lower synchrony for intrinsically-induced 
population fluctuations 
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A B S T R A C T   

Amphibians naturally occur in metapopulations characterized by spatially separated breeding habitats connected 
by dispersing individuals. The rate at which individuals grow to maturity, size of the metapopulation, and 
movement behavior varies widely across amphibian species, and their compounding interactions play a large 
role in population dynamics and viability. When populations in a connected network exhibit cyclic behavior the 
level of synchrony between populations is important for assessing extinction risk. In addition, the qualitative 
behavior of fluctuations provides insight into the patterns of the population cycles and can be used to predict 
forward trajectories in time. Chaotic oscillations, characterized by aperiodic cycles and sensitivity to initial 
conditions, are known to amplify noise, thus lowering population synchrony; however, other oscillation types 
(invariant cycles, k-cycles) have not been explicitly explored in relation to synchrony. In this paper, we inves
tigate the relationship between synchrony and oscillation type for a two-patch system of a species with 1, 2, and 
3 life-history stages. Using dynamical systems analysis, we determine the mechanisms that induce the different 
oscillation types and relate them with dispersal rates and synchrony. We find that dispersal has a greater effect on 
population dynamics of a species with 1 life-history stage compared to the subtle changes in dynamics found for 
species with 2 and 3 life-history stages. For low levels of dispersal, oscillating populations are driven to equi
librium as synchrony increases. Under medium to high levels of dispersal, oscillations may be created from 
equilibrium with low levels of synchrony. In general, chaos does not have noticeably lower synchrony than other 
oscillation types but has synchrony levels comparable to the oscillation types surrounding chaos. In this study, 
we cover a broad range of dispersal probabilities and life histories intended for general amphibian systems. The 
variety of results found in our analysis emphasizes the importance of determining model parameters and life 
history assumptions when studying specific amphibian species to ensure that the resulting dynamics accurately 
reflect the system.   

1. Introduction 

Many species live in isolated habitats as part of a spatially structured 
population, or metapopulation. In these systems, organisms within the 
habitats, or patches, experience demographic processes (fecundity, 
growth, etc.) independent of proximal patches while dispersal allows for 
interpatch interactions. The consequences of these interactions vary and 
can range from inducing rescue effects in low quality patches to 
increasing global extinction risk through hyper-synchronization 
(Abbott 2011; Hudson and Cattadori 1999; Ylikarjula et al. 2000). 
Additionally, dispersal may induce changes to the global 

metapopulation, including qualitative shifts in population dynamics (e. 
g., oscillating versus non-oscillating populations), and synchrony 
(Abbott 2011; Doebeli 1995; Gyllenberg et al. 1992; Hastings 2004; Ives 
et al. 2003; Wang and Loreau 2014; Ylikarjula et al. 2000). The rela
tionship between dispersal, population dynamics, and synchrony play 
an important role in assessing population viability for both local and 
global populations. 

The degree to which populations fluctuate in the same direction, i.e., 
synchrony, has important implications for population persistence. 
Highly synchronous populations pose a greater risk for global extinction, 
whereas asynchronous populations are more robust to negative 
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environmental effects (Allen et al. 1993; Heino et al. 1997). Two 
well-known drivers of population synchrony are dispersal and envi
ronmental variability (Abbott 2011; Hudson and Cattadori 1999). In 
other words, subpopulations within a connected network may fluctuate 
in the same direction when the connection between them is strong, or, 
for less connected systems, fluctuations may be driven by changes in the 
environment, i.e., the Moran effect (Moran 1953). It is generally 
assumed that dispersal is the main cause for synchrony on a local scale, 
but the Moran effect has a greater impact on synchrony when patches 
are far apart and dispersal between them is limited (Hudson and Cat
tadori 1999). 

Many studies have focused on the relationship between dispersal, 
synchrony, and oscillating populations defined by their variance 
(Abbott 2011; Allen et al. 1993; Jansen 1999; Wang et al. 2015). 
Generally, low levels of dispersal may initially synchronize populations 
while reducing variance, whereas moderate to high levels of dispersal 
may desynchronize populations while increasing variance (Abbott 2011; 
Bjørnstad et al. 1999; Dey et al. 2014; Jansen 1999; Kendall and Fox 
1998). In these studies, variance is used to measure population dy
namics; however, the qualitative behavior of oscillations are largely 
ignored. Oscillation types reveal patterns in the population that can be 
used to predict expected dynamics and the mechanisms driving that 
behavior. Where many oscillation types have smooth curves and pre
dictable trajectories, chaotic oscillations are of particular interest due to 
their seemingly random dynamics and robustness to negative environ
mental impacts (Allen et al. 1993; Heino et al. 1997; Ranta et al. 1998). 
Chaos is generally associated with low synchrony populations under 
minimal dispersal (Allen et al. 1993; Heino et al. 1997; Ranta et al. 
1998); however, other studies have observed high synchrony chaos 
under intermediate levels of dispersal (Udwadia and Raju 1998; Yli
karjula et al. 2000). Understanding synchrony in relation to chaos and 
other oscillation types can elucidate some of the mechanisms that affect 
synchrony, and subsequently persistence, in fluctuating populations. 

Pond-breeding amphibians are excellent for studying meta
population dynamics. They begin their lives as fully aquatic larvae with 
waterbody-specific survival. Larvae quickly develop into juveniles 
within the first year and may reach sexual maturity anywhere from one 
to six years of age (Bull 2005; Halley et al. 1996; McCaffery et al. 2012; 
Patla and Keinath 2005; Reaser 2000; Vonesh and De la Cruz 2002). In 
post-larval stages, individuals are capable of dispersing between patches 
for breeding, seeking favorable habitats, or escaping predation (Boualit 
et al. 2019; Buxton and Sperry 2017; Cayuela et al. 2018; Gamble et al. 
2007; Tournier et al. 2017). Due to the difficulty in reliably tracking 
individuals, movement behavior is largely unknown, but could be driven 
by factors such as landscape type, social behavior, and proximity to 
other breeding sites (Bowler and Benton 2005; Bull 2005; Cayuela et al. 
2020; Ross et al. 1999; Semlitsch 2010). Amphibians are not known to 
be long-distance dispersers, but evidence shows that they may travel 
multiple kilometers to seek new habitat (Cayuela et al. 2020; Funk et al. 
2005). The consequences of amphibian dispersal vary, and include 
population rescue through colonization, increased genetic variation, 
and complex dynamics induced by eco-evolutionary feedback loops 
(Cayuela et al. 2020). 

Mathematical models are used to understand amphibian life his
tories, growth rates, dispersal, and processes driving population dy
namics. Because of the discrete nature of amphibian life cycles, matrix 
models are used with body sizes discretized into multiple life-history 
stages (Biek et al. 2002; Halley et al. 1996; Hellriegel 2000; McCaff
ery and Maxell 2010; McCaffery et al. 2012; 2014; Vonesh and De la 
Cruz 2002). The number of life-history stages used differ between spe
cies, and describe the time required for newborns to reach sexual 
maturity. Individuals may develop into breeding adults after the first 
year of survival, or undergo intermediate life-history changes as 
terrestrial, yet non-breeding individuals (Halley et al. 1996; Hellriegel 
2000; McCaffery et al. 2012; 2014; Vonesh and De la Cruz 2002; Willson 
et al. 2012; Willson and Hopkins 2013). Breeding waterbodies are 

discretely defined to describe site-specific larval survival with resource 
regulation that allows for complex dynamics in the system (Halley et al. 
1996; Hellriegel 2000; Vonesh and De la Cruz 2002; Willson et al. 2012). 

In this paper, we explore the effects of dispersal on the dynamics of a 
two-patch model of a species with 1, 2, or 3 life-history stages. We 
investigate the relationship between oscillation type, synchrony, and 
dispersal while identifying the mechanisms driving oscillations. Our 
models are parameterized using amphibian literature characterized by 
discrete life-history stage development, high fecundity, and low larval 
survival (McCaffery et al. 2014; Vonesh and De la Cruz 2002; Willson 
and Hopkins 2013). This work offers a new perspective on the rela
tionship between synchrony and population fluctuations by explicitly 
identifying the different oscillation types induced by dispersal under a 
broad range of dispersal probabilites and life history demographics. 
Although posed as a general model for amphibian systems, the methods 
used in this paper can be used to motivate model development and 
analysis for specific amphibian systems. 

2. Methods 

2.1. The one-patch model 

Local patches without dispersal are used to understand how pop
ulations behave independent of all other patches. We define models of a 
species with 1, 2, and 3 life-history stages. Models with one life-history 
stage assume that individuals develop into breeding adults within the 
first year (Halley et al. 1996). Models with two life-history stages assume 
that individuals develop into non-breeding juveniles before reaching 
maturation (Hellriegel 2000; Vonesh and De la Cruz 2002). Models with 
three life-history stages assume an intermediate subadult stage where 
individuals are non-breeding but have demographies similar to breeding 
adults (McCaffery et al. 2012; 2014). For a species with n life-history 
stages, population vectors are defined as 

u1 = [a], when n = 1, (1a)  

u2 =

[
j

ma

]

, when n = 2, (1b)  

u3 =

⎡

⎣
j
s
a

⎤

⎦, when n = 3, (1c)  

where j, s, and a are the juvenile, subadult, and adult densities. 
Local patch demographics are defined using n × n matrices that 

describe interactions between individuals. For a single-stage population, 
new recruits mature into breeding adults (a) after surviving their first 
year. The demographic matrix is defined as 

B1 = [Sa + FHa], (2)  

with corresponding population vector u1 defined in (1a), Sa is the sur
vival probability of adults, F is the fecundity rate, and Ha is the density- 
dependent first-year survival (see Section 2.1.1). The fecundity term 
includes adult breeding probability, clutch size, and egg survival. 

For a 2-stage population, new recruits grow into juveniles (j) in their 
first year then have some probability of transitioning to breeding adults 
in subsequent years. The demographic matrix is defined as 

B2 =

[
Sj

(
1 − Pja

)
FHa

SjPja Sa

]

, (3)  

with corresponding population vector u2 defined in (1b), Pja is the 
probability of transitioning from the juvenile to adult stage, and Sj is the 
survival probability of juveniles. 

Finally, a 3-stage population assumes an intermediate non-breeding 
stage (subadults; s) with survival probabilities similar to adults. We as
sume that individuals may only transition to latter stages in single-stage 
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increments. The demographic matrix is defined as 

B3 =

⎡

⎣
Sj

(
1 − Pjs

)
0 FHa

SjPjs Ss(1 − Psa) 0
0 SsPsa Sa

⎤

⎦, (4)  

with corresponding population vector u3 defined in (1c), Pjs and Psa are 
transition probabilities from juvenile to subadult and subadult to adult, 
and Ss is the survival probability of subadults. 

Local populations are projected forward in time by multiplying the 
demographic matrix with the population vector, 

un(t + 1) = Bnun(t). (5)  

2.1.1. Nonlinear larval survival 
In each patch, we assume negative density-dependent survival in 

first-year individuals to represent larval competition. We use the Hassell 
competition model to define first-year survival based on the number of 
breeding adults in the same year (Halley et al. 1996; Vonesh and De la 
Cruz 2002; Willson et al. 2012; Willson and Hopkins 2013), 

Ha =
L

(
1 + Fa

K

)γ , (6)  

where L is the maximum first-year survival, K is the carrying capacity, 
and γ is the densitydependent exponent. Other forms of density- 
dependent survival have been used in amphibian models including the 
Ricker model (Hellriegel 2000) and Gompertz model (Băncilă et al. 
2016; Bendik and Dries 2018). We choose the Hassell competition model 
because of its realism and use in multiple amphibian studies (Halley 
et al. 1996; Vonesh and De la Cruz 2002; Willson et al. 2012; Willson and 
Hopkins 2013). 

Competition in the Hassell equation depends on the density- 
dependent exponent, γ, where γ is inversely proportional to patch size 
(Anazawa 2019). For smaller values of γ, individuals undergo ‘contest’ 
competition while for large values of γ, individuals undergo ‘scramble’ 
competition (Hassell 1975). In contest competition, some proportion of 
the individuals receive sufficient resources for survival while the rest do 
not survive. In scramble competition, all resources are ‘shared’ such that 
individuals either all die out or all survive. For extreme cases, ideal 
contest competition (γ = 1) defines the Ricker model while ideal 
scramble competition (γ → ∞), defines the Beverton-Holt model (Ana
zawa 2019). 

2.2. The two-patch model 

Given a metapopulation with two patches and n life-history stages, 
we define a patch-based population vector un(t) ∈ R2n as 

un(t) =

[
u1n(t)
u2n(t)

]

, (7)  

where uxn(t) ∈ Rn, x = 1,2, is a subvector of length n and represents 
population distributions for n life-history stages in patch x at time t. 

We define a two-patch, n-stage model where each patch experiences 
demographic processes independent of the other patch and interactions 
between them occur through a dispersal mechanism. The projection 
matrix An ∈ R2n,2n is defined as 

An =

[
(1 − σ1n)B1n σ2nB2n

σ1nB1n (1 − σ2n)B2n

]

, (8)  

where σxn ∈ Rn,n is a diagonal matrix with entries that represent dispersal 
probabilities for n life-history stages from patch x = 1,2, and Bxn ∈ Rn,n is 
the demographic matrix for patch x = 1,2. The diagonal submatrices in 
An, (1 − σxn)Bxn, represent demographic processes of individuals who 
remain in patch x while the off-diagonal submatrices, σxnBxn, represent 
demographic and dispersal processes of individuals dispersing from 

patch x. 
With the notations above, the two-patch model with multiple life- 

history stages is expressed as 

un(t + 1) = Anun(t). (9)  

2.3. Eigenvalue analysis and population stability 

We use linearization techniques evaluated at equilibrium to deter
mine local stability of fixed points and identify oscillation types using 
Lyapunov exponents. Fixed points are found by setting j(t + 1) = j(t) =
j*, s(t + 1) = s(t) = s*, and a(t + 1) = a(t) = a* for the appropriate model 
and stability is determined by analyzing the dominant eigenvalue, λ, of 
the Jacobian matrix evaluated at the fixed point. The magnitude of the 
dominant eigenvalue determines whether the fixed point is stable (|λ| < 
1) or unstable (|λ| > 1). For stable fixed points (|λ| < 1), asymptotic 
behavior of populations that start near the fixed point will converge to 
the fixed point. Additionally, convergence to an equilibrium may occur 
monotically when the dominant eigenvalue is real (node), or non- 
monotically when the dominant eigenvalue contains a nonzero imagi
nary part (spiral). For unstable fixed points (|λ| > 1), nearby trajectories 
are repelled from the fixed point and will converge to the nearest 
attractor. Oscillations occur when the dominant eigenvalue does not 
have an imaginary part and is less than −1, or the imaginary part of the 
dominant eigenvalue is nonzero and |λ| > 1. We classify oscillations into 
three attractor types (invariant cycles, k-cycles, and chaos) based on the 
calculated Lyapunov exponent (see Section 2.5). 

2.4. The Jacobian matrix 

We define Jacobians for any time t to allow for temporal analyses. 
Because the only density-dependent term is in the larval stage, all Ja
cobians have the following density dependent larval survival term, 

Ĥ(t) =
RH

(
1 +

Fa(t)
K

)γ −
γFRH

K
(

1 +
Fa(t)

K

)γ+1 a(t), (10)  

where RH = FL represents yearly recruitment rate. 
The Jacobians are then defined as for the 1-stage model, 

J1(t) = Sa + Ĥ(t), (11)  

for the 2-stage model, 

J2(t) =

[
Sj

(
1 − Pja

)
Ĥ(t)

SjPja Sa

]

, (12)  

and for the 3-stage model, 

J3(t) =

⎡

⎣
Sj

(
1 − Pjs

)
0 Ĥ(t)

SjPs Ss(1 − Psa) 0
0 SsPsa Sa

⎤

⎦. (13) 

When evaluated at equilibrium, these Jacobians are used for local 
stability analysis; otherwise, long-term temporal averages over the Ja
cobian are used for attractor identification (see section 2.5). 

The Jacobian for the two-patch model is defined by 

Jn(t) =

[
(1 − σ1n)J1n(t) σ2nJ2n(t)

σ1nJ1n(t) (1 − σ2n)J2n(t)

]

, (14)  

where Jxn is the n−stage Jacobian for patch x with corresponding two- 
patch population vector uxn. 

2.5. Attractor types 

We classify oscillating populations into three attractor types: 
invariant cycles; k-cycles; and chaos. Invariant cycles have quasi- 
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periodic dynamics, characterized by iterative cycles around a smooth 
curve with slightly shifting rotations around a closed loop. K-cycles are 
classified by the number of points that occur in each period. Chaos is 
deterministic but has seemingly random dynamics that are sensitive to 
initial conditions. Attractor types are quantified using the Lyapunov 
exponent defined for matrix population models Caswell (2001), 

λe = lim
T→∞

1
T

ln|Jn(T − 1)⋯ Jn(0) un(0)|. (15) 

Here, Jn(t) is the n-stage Jacobian matrix at time t, un(0) is the initial 
population vector, and |⋅| is the vector magnitude. Note that λe depends 
on un(0) but results remain the same with vectors in the same basin of 
attraction (Caswell 2001; Gyllenberg et al. 1992; Strogatz 2015). See the 
appendix for a demonstration of systems with fractal basins of 
attraction. 

Oscillations are classified based on the Lyapunov exponent value 
where λe < 0 are k-cycles, λe = 0 are invariant cycles, and λe > 0, are 
chaos (Caswell 2001). Examples of each attractor type are summarized 
in Fig. 1. Because numerical simulations introduce calculation error, we 
identify invariant cycles if λe is sufficiently close to 0 (i.e., |λe| < 0.01). 
Identifying unstable dynamics without closed form eigenvalue analyses 
is a nontrivial task and even graphical representations of different os
cillations may be ambiguous. We visually inspect selected results and 
find that the tolerance above sufficiently distinguishes invariant cycles 
from chaos and k-cycles. 

Intuitively, the Lyapunov exponent measures the averaged progres
sion of two nearby trajectories in time. If the two trajectories approach 
an equilibrium, the difference between them approaches 0. For oscil
lating populations, the difference between the two trajectories ap
proaches 0 for in-phase k-cycles (λe < 0) or reaches some constant value 
for invariant cycles (λe = 0). With chaos (λe > 0), the trajectories never 
converge so the difference between them increases as time moves for
ward. The Jacobian matrix represents the dynamics of the deviation 
vector; hence, the product of all temporal Jacobian matrices describes 
total deviation in time. 

2.6. Dispersal symmetry 

We measure dispersal symmetry in two ways: (1) compare the pro
portion of dispersing individuals in one patch to the total proportion of 
dispersing individuals, and (2) partition the dispersal probability plane 
into zones. We use populations averaged over the final time steps ûxn =

1
500

∑500
τ=1uxn(τ) to define the asymmetry in per capita dispersal from each 

patch, 

α =

Nσ1
N1

Nσ1
N1

+ Nσ2
N2

, (16) 

where Nσx =
∑

nσxn ûxn is the number of individuals dispersing from 
patch x = 1,2, and N1 =

∑
n û1n is the total population size of patch 1. 

Dispersal is symmetric when α ≈ 0.5, and asymmetric when α ≈

0 (mostly dispersing from patch 2) and α ≈ 1 (mostly dispersing from 
patch 1). 

We group the dispersal plane into 5 zones that represent different 
dispersal probabilities and symmetries, as shown in Fig. 2. They are: low 
symmetric dispersal (zone 1), intermediate symmetric dispersal (zone 
2), high symmetric dispersal (zone 3), low asymmetric dispersal (zone 
4), and high asymmetric dispersal (zone 5). Partitioning dispersal re
gions into different zones provides insight into expected system dy
namics based on dispersal symmetry and degree. Note that the number 
of simulations in each zone differs based on cover area: zones 1 and 3 
have 210 simulations, zone 2 has 3260 simulations, and zones 4 and 5 
have 3160 simulations. 

2.7. Patch synchrony 

We measure population synchrony between the two patches using 
patch population sizes in the final 500 time steps. This method sums 
over all entries in the temporal covariance matrix and divides by the 
square of the sum over the standard deviations (Loreau and Mazancourt 
2008), 

β =

∑
i,kcov(Û i, Ûk)

(∑
i

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

cov(Ûi, Ûi)

√
)2

, (17) 

Fig. 1. Phase planes for juvenile and adult populations in the one-patch, 2- 
stage model with calculated Lyapunov exponent for an invariant cycle (A; λe 
= 0), low-point k-cycle (B; λe < 0), high-point k-cycle (C; λe < 0), and chaos (D; 
λe > 0). The k-cycles are formed by the phase-locked invariant cycles while 
retaining the shape of the closed loop. Chaos is developed as a wrinkle forms in 
the invariant cycle, creating sensitivity to initial conditions. Simulations are 
created by plotting the final 9000 juvenile and adult densities for RH = 167.333, 
and Sa = 0.366(A), 0.228(B), 0.139(C), and 0.099(D). 

0.2 0.4 0.6 0.8 10

1

0

0.2

0.4

0.6

0.8

1

Zone 1

Zone 5

Zone 4

Zone 5

Zone 3

Zone 2

Zone 4

Fig. 2. The 5 zones for the dispersal plane that represent different dispersal 
probabilities and symmetries. Zone 1 represents low symmetric dispersal, zone 
2 represents intermediate symmetric dispersal, zone 3 represents high sym
metric dispersal, zone 4 represents low asymmetric dispersal, and zone 5 rep
resents high asymmetric dispersal. 
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for i = 1, 2 and k = 1, 2. The vector, Ûi, is defined by 

Ûi =

⎡

⎢
⎢
⎣

Ui(T − 499)

Ui(T − 498)

⋮
Ui(T)

⎤

⎥
⎥
⎦, (18)  

where Ui(t) =
∑

nuin(t) are patch i population sizes, and cov(Ûi, Ûk)are 
the temporal covariance measures between Ûi and Ûk. This method 
measures the variance of population sizes across all patches and is 
standardized between 0 and 1. β ≈ 1 indicates that the populations are 
strongly positively correlated (high synchrony) while β ≈ 0 indicates 
that the populations are strongly negatively correlated (low synchrony). 
Systems with at least one stable population have perfect synchrony (only 
found with zero dispersal); hence even small dispersal probabilities 
produce cycles across all populations. Additionally, this method is 
robust to population magnitudes (i.e., vertical shifts in population 
abundances), and measures near-perfect synchrony for populations with 
large amplitude differences. 

2.8. One-patch simulations 

We investigate dynamics in the one-patch model of species with 1, 2, 
and 3 life-history stages by varying the range of pairwise parameter sets 
with all other parameters fixed. Parameters are based on estimates used 
in amphibian literature and we try to maintain consistent total pop
ulations across the different life-history stage models (Table 1). For each 
parameter combination, we first determine stability using eigenvalue 
analysis of the Jacobian matrix at the nontrivial fixed points. When 
oscillations occur, we classify the oscillation type using the Lyapunov 
exponent by initializing each life-history stage with 20 individuals and 
run simulations for T = 10000 time steps to ensure convergence to 
asymptotic behavior. The Lyapunov exponent is calculated using the 
final 9000 time steps to identify attractor type. Note that the carrying 
capacity ranges from 40000 to 80000 but time series simulations typi
cally have populations with less than 200 individuals. Although carrying 
capacities seem high, the ratio between fecundity and carrying capacity 
(F/K) is similar to equivalent coefficients estimated in other studies 
(Vonesh and De la Cruz 2002; Willson et al. 2012). 

2.9. Two-patch simulations 

We analyze local stability of numerically solved fixed points in the 

two-patch model using eigenvalue analysis, and steady state behavior 
using Lyapunov exponents and population synchrony. Because of mul
tiple fixed points that occur in the two-patch model, we analyze 
asymptotic behavior of only one trajectory using initial conditions 
defined in the following paragraph. Note that this does not find all 
alternate steady states as that requires extensive analysis of localized 
parameters. To account for this, we analyze a select few scenarios using 
bifurcation and eigenvalue analysis under multiple initial conditions to 
understand some of the different dynamics found in our results. 

To analyze the effects of dispersal on the two-patch model, we select 
pairwise Sa values that initialize the model with a variety of dynamics 
without dispersal (see Table 2). Attractor and synchrony planes allow us 
to understand general system behavior while bifurcation and stability 
plots of fixed points for select parameter ranges provide additional in
formation on some of the bifurcation types and alternate steady states 
that exist. Each simulation is initialized with steady states from the 
corresponding one-patch simulation. For example, in the 1-stage model, 
if adult survival in patch 1 is 0.1 (Sa1 = 0.1) and adult survival in patch 2 
is 0.7 (Sa2 = 0.7) then patch 1 is initialized with one of the points on the 
local k-cycle while patch 2 is initialized with approximately 50 in
dividuals corresponding to the stable equilibrium. We identify oscilla
tions by running our models for T = 10000 time steps and analyzing the 
range of the final 50 time steps. A steady state is classified as an oscil
lation if the range of any population is greater than 0.01; otherwise, the 
steady state is an equilibrium. Attractor type is determined by calcu
lating the Lyapunov exponent (λe in Eq. (15)) using the final 9000 time 
steps and the two-patch Jacobian defined by Eq. (14). Finally, we 
calculate population synchrony using patch population sizes in the final 
500 time steps (see Section 2.7). 

For each pair of adult survival values, we test 100 dispersal proba
bilities ranging from 0 to 1 for each life-history stage. With 15 pairwise 
adult survival probabilities and 10000 pairwise dispersal probabilities 
for each life-history stage, we have a total of 150,000 simulations for the 
1-stage model, 300,000 simulations for the 2-stage model, and 450,000 
simulations for the 3-stage model (all attractor, synchrony, and eigen
value simulations are in the appendix). 

3. Results 

3.1. Stability analysis of the one-patch model 

We vary the yearly recruitment rate, RH, the density-dependent 
exponent, γ, and adult survival, Sa to understand how small parameter 
changes affect system dynamics. Fig. 3 shows contour plots of the 
calculated dominant eigenvalues for each model. The bold lines denote 
where bifurcations of the nontrivial steady state occur (|λ| = 1). The 1- 
stage model experiences flip bifurcations, causing the birth of k-cycles 
while the 2- and 3-stage models experience Hopf bifurcations, creating 
invariant cycles. Additionally, in the 3-stage model, a transcritical 
bifurcation occurs for low adult survival and yearly recruitment where 
the population experiences global extinction. This is the only region in 
the one-patch model where the trivial fixed point is stable. 

Fig. 4 shows where different attractor types occur under the different 
parameter ranges. Equilibrium regions are white while oscillating re
gions are colored based on attractor type and k-cycle period. The 

Table 1 
Default vital rates and values used in the model. Vital rates are based on ranges 
used in different amphibian systems.  

Vital rate Symbol 1- 
stage 

2- 
stage 

3- 
stage 

Sources 

Fecundity F 500 500 500 (36) 
Maximum first-year 

survival 
L 0.2 0.2 0.2 (51; 55) 

Carrying capacity K 80000 50000 40000 (55) 
Density-dependent 

exponent 
γ 30 30 30 (51) 

Juvenile survival Sj - 0.4 0.45 (36; 51; 
55) 

Subadult survival Ss - - 0.7 (36) 
Adult survival Sa 0.6 0.6 0.6 (36; 51; 

55) 
Transition from juvenile to 

adult 
Pja - 0.5 - (51) 

Transition from juvenile to 
subadult 

Pjs - - 0.3 (36) 

Transition from subadult 
to adult 

Psa - - 0.6 (36) 

Citations are as follows: 36-McCaffery and Maxell (2010); 51-Vonesh and De la 
Cruz (2002); 55-Willson et al. (2012) 

Table 2 
Adult survival used in the two-patch systems with local stability dynamics and 
Lyapunov exponent (λe).  

Sa 1-stage Dynamics (λe) 2-stage Dynamics (λe) 3-stage Dynamics (λe) 

0.1 K-cycle (-0.369) Invariant cycle (0.000) Equilibrium (-0.003) 
0.3 Chaos (0.286) Invariant cycle (0.000) Invariant cycle (0.000) 
0.5 K-cycle (-0.356) Invariant cycle (0.000) Invariant cycle (0.000) 
0.7 Equilibrium (-0.083) Equilibrium (-0.060) Equilibrium (-0.0061) 
0.9 Equilibrium (-0.954) Equilibrium (-0.083) Equilibrium (- 0.083)  
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number of points in a k-cycle are numerically estimated by finding the 
last point in the cycle within 0.001 of the final point. We identify all 2, 4, 
8, and 16 point k-cycles as well as k-cycles with periods greater than 16 
(16+) and less than 16 that were not already identified (other cycles). In 
general, increasing the number of stages ‘simplifies’ the dynamics, i.e., 
chaos is most prevalent in the 1-stage model (A, D), a mix of dynamics 
are found in the 2-stage model (B, E), and invariant cycles are most 
prevalent in the 3-stage model (C, F). In the 1-stage model, k-cycles 
occur through flip bifurcations that undergo period-doubling routes to 
chaos. Among the chaos regions, periodic windows appear as lowpoint 
k-cycles. In the 2- and 3-stage models, Hopf bifurcations create invariant 
cycles that become phase-locked to varying degrees. Specifically, the 2- 
stage model has large windows of low-point cycles, high-point cycles, 
and chaos while the 3-stage model has fewer phase-locked regions of 
low-point k-cycles. 

3.2. Bifurcation analysis of the one-patch model 

Close inspection of bifurcation diagrams with calculated Lyapunov 
exponents allow us to verify results found in the eigenvalue and attractor 
plots. Bifurcation plots (Fig. 5A-C) are created by plotting patch 1 adults 
in the final 50 time steps vertically for each Sa value, and the Lyapunov 
exponents (Fig. 5D-F) are calculated using the final 9000 time steps. We 
analyze a range of adult survival values and find that a flip bifurcation 
occurs at Sa ≈ 0.58 in the 1-stage model, creating k-cycles that lead to 
chaos through a period-doubling route. The 2- and 3-stage models 
experience Hopf bifurcations at Sa ≈ 0.2 in the 3-stage model and Sa ≈

0.6 in the 2- and 3-stage models. Additionally, low-point phase-locked k- 
cycles form for a few small regions in the 2-stage model, marked by 
negative λe. 

3.3. Stability and synchrony results of the two-patch model 

We find that dynamics are preserved under small vital rate pertur
bations and dispersal may induce oscillations even if both local pop
ulations are at equilibrium. For example, the homogeneous systems in 
the 1-stage model (Sa1 = Sa2) contain oscillating regions in the scenarios 
where both patches are at equilibrium in the absence of dispersal (B, C) 
and appear in similar dispersal regions as the scenario with slightly 
lower adult survival (A) (Fig. 6). We also find evidence of dispersal- 
induced oscillations for one heterogeneous scenario in the 1-stage 
model, Sa1 = 0.7, Sa2 = 0.9, three scenarios in the 2-stage model (Sa1 
= Sa2 = 0.7; Sa1 = 0.7, Sa2 = 0.9; Sa1 = Sa2 = 0.9), and two scenarios in 
the 3-stage model (Sa1 = 0.1, Sa2 = 0.7; Sa1 = 0.1, Sa2 = 0.9) (see ap
pendix). Note that dispersal-induced oscillations have only been 
observed under adult dispersal, presumably because of the direct effects 
of adults on larval-stage survival. 

Fig. 7A-C shows the relative frequency of per capita symmetric 
dispersal (α) for each attractor type for the 1-, 2-, and 3-stage models, 
and Fig. 7D shows the proportion that each attractor type appears in 
each zone. In the 1-stage model, chaotic results (red) occur most 
frequently under symmetric dispersal (zones 1, 2, and 3), k-cycles 
(black) occur almost uniformly across different symmetries and zones, 
and invariant cycles (blue) occur under high dispersal (zones 3 and 5). In 
the 2-stage model, oscillations mostly occur under symmetric dispersal 
with the majority of k-cycles appearing under highly symmetric 
dispersal (zone 3). In the 3-stage model, invariant cycles occur under 
symmetric dispersal while the few instances of chaos are found in the 
extremes, i.e., full dispersal from one patch to the other. equilibria 
(purple) generally have a more uniform distribution in all three models, 
showing little correlation with dispersal symmetry. Note that the num
ber of chaos events in the 2and 3-stage models are sparse compared to 

Fig. 3. Dominant eigenvalues (λ) for a range of adult survival (Sa), yearly recruitment rate (RH), and density-dependent exponent (γ) for the one-patch model. The 
solid black lines represent bifurcations in the nontrivial fixed points. The 1-stage model undergoes flip bifurcations, creating k-cycles whereas the 2- and 3-stage 
models undergo Hopf bifurcations, inducing invariant cycles. Additionally, under low adult survival and fecundity in the 3-stage model (C), the nontrivial fixed 
point experiences a transcritical bifurcation where it switches stability with the trivial fixed point. 
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Fig. 4. Attractor planes for a range of adult survival (Sa), yearly recruitment rate (RH), and densitydependent exponent (γ) for the one-patch model. Attractor type is 
determined with the Lyapunov exponent with subclassification of k-cycles into 2, 4, 8, 16, 16+ period cycles, and all other k-cycles with less than 16 points (other 
cycles). Flip bifurcations create k-cycles in the 1-stage model where chaos arises under period-doubling routes with periodic windows of low-point k-cycles. For the 2- 
and 3-stage models, invariant cycles are created through a Hopf bifurcation with phase-locked regions generating low-point k-cycles in the 3-stage model and a mix of 
low-point cycles, high-point cycles, and chaos in the 2-stage model. 

Fig. 5. One-patch bifurcation diagrams (A, B, C) with calculated Lyapunov exponents (D, E, F) and dominant eigenvalues (G, H, I) allow us to analyze bifurcations 
under a range of adult survival probabilities. In the 1-stage model, k-cycles occur through a flip bifurcation, creating chaos through a period-doubling route. In the 2- 
stage model, Hopf bifurcations create invariant cycles with phase-locked k-cycles whereas invariant cycles persist in the 3-stage model. Bifurcations and attractor 
types are verified with respective Lyapunov exponents (2nd row) and dominant eigenvalues (3rd row). 
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the number of invariant and k-cycles. 
To summarize population synchrony (β), we plot synchrony histo

grams for each attractor type in each zone (Fig. 8). For example, of the 
2498 1-stage simulations with low symmetric dispersal (top left panel in 
Fig. 8), 20 exhibited invariant cycles with ~ 80% being perfectly syn
chronized (blue), 1824 exhibited k-cycles with ~ 70% being perfectly 
synchronized (black), and 654 exhibited chaos with synchrony being 
mostly between 0.8 and 1 (red). Across all three life-history stage 
models, zone 1 has the most mixed results due to low dispersal 

probabilities from local populations (first row). As dispersal increases, 
we find more consistency within each zone. For the 1-stage model, 
higher dispersal regions (zones 2, 3, and 5) have consistently lower 
synchrony than lower dispersal zones (zones 1 and 4). For the 2-stage 
model, invariant cycles maintain near-perfect synchrony across all 
zones. The few instances of chaos either have perfect or intermediate 
synchrony (β ≈ 0.5), and k-cycles occur with very low synchrony in zone 
3 and high synchrony in all other zones. For the 3-stage model, we find 
consistently high synchrony for all unstable points including a few 

Fig. 6. Attractor planes for homogeneous metapopulations (Sa1 = Sa2) in the one stage model show that dispersal regions containing oscillations are similar under 
small vital rate perturbations. Attractor type is classified as equilibria (white), invariant cycles (blue), k-cycles (black), and chaos (red). K-cycles are further classified 
based on their periodicity. Dispersal-induced oscillations occur for high adult survival (B, C) in similar unstable regions as intermediate adult survival (A). 

Fig. 7. The relative frequency of per capita symmetric dispersal (α) for each attractor type for the 1-stage (A), 2-stage (B), and 3-stage (C) models, and the fraction 
that each dispersal type appears in each zone (D). Unstable occurrences are classified as invariant cycles (blue), k-cycles (black), chaos (red), and stable equilibria 
(purple). The number of occurrences for each attractor type are noted in parentheses. Chaos is most prevalent under symmetric dispersal in the 1-stage model, 
invariant cycles occur under asymmetric dispersal in the 1-stage model and symmetric dispersal in the 2- and 3-stage models, and k-cycles occur for all dispersal 
symmetries in the 1-stage model, under high symmetric dispersal in the 2-stage model, and rarely in the 3-stage model. Stable equilibria are present for all sym
metries across all models. 
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instances of chaos. 
Overall, low and high symmetric dispersal (zones 1 and 3) produce 

the most variety in synchrony and attractor type, especially for the 1- 
and 2-stage models. The variety in zone 1 can be expected since they are 
reflective of local population dynamics without dispersal. However, 
high symmetric dispersal (zone 3) may cause rapid shifts to oscillations, 
producing a relatively high number of chaos events in the 1-stage model 
and low-synchrony k-cycles in the 2-stage model. The latter result is 
especially interesting since these are the only instances that we see such 
low synchrony. 

3.4. Bifurcation analysis of the two-patch model 

The results in the previous section only capture trajectories of one 
steady state even though multiple steady states may exist. We use 
bifurcation and eigenvalue plots of select dispersal probabilities to 
analyze some of the alternate attractors and fixed points that appear in 
the two-patch model (Figs. 9 and 10). For each σa1 value, we find all 
nontrivial fixed points by numerically solving for u∗

n = A∗
nu∗

n using trust- 

region root-finding techniques with 200 randomly selected start condi
tions (Coleman and Li 1996). See the appendix for details. We use these 
fixed points to numerically compute eigenvalues for local stability 
analysis. To identify all attractors for each σa1 value, we initialize sim
ulations with 100 random initial conditions and run the two-patch 
model for 1000 time steps. This ensures that populations start within 
the basins of attraction for each unique attractor. 

In plots A-C, we represent attractors at chosen σa1 values by plotting 
the population size of adults in patch 1 for the final 50 time steps (black 
dots). Additionally, we plot all numerically solved fixed points for each 
σa1 (red circles). For each fixed point, we plot the real part (black circles) 
and magnitude (blue dots) of the dominant eigenvalue in plots D-F. 
Trajectories near unstable fixed points (|λ| > 1) will converge to one of 
the attractors, and we identify local bifurcations and alternate steady 
states by closely inspecting the bifurcation and eigenvalue plots. Note 
that we do not attempt to identify unstable limit cycles as it requires 
systematic analysis of global dynamics and bifurcations. We select 3 
scenarios in the two-patch, 1-stage model, 2 scenarios in the 2-stage 
model, and 1 scenario in the 3stage model to show some of the 

Fig. 8. The relative frequencies for synchrony levels for each attractor type summarize the relationships between synchrony and attractor type in the different 
dispersal zones. The number of occurrences that an attractor type appears in each zone is in parentheses and β is the proportion of synchrony occurrences within each 
attractor type. In the 1-stage model, intermediate to high dispersal probabilities (zones 2, 3, and 5) produce lower synchrony (β ≈ 0.8) for all attractor types whereas 
low dispersal probabilities (zones 1 and 4) have more results with near-perfect synchrony. In the 2-stage model, most results have near-perfect synchrony under 
sufficient dispersal (zones 2, 3, and 5) with the unique finding of near-perfect asynchronous k-cycles under very high symmetric dispersal (zone 3). In the 3-stage 
model, highly synchronous invariant cycles are consistently high across all zones. 
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different bifurcations that occur in our simulations. All parameters are 
fixed except for σa2 which may either be fixed or equal to σa1. 

In Fig. 9A, D, a 2-cycle begins for low σa1 that experiences a period- 
doubling route to chaos at σa1 ≈ 0.25. This persists until it undergoes a 
crisis at σa1 ≈ 0.8, creating a sudden shift to a stable equilibrium. The 
stable fixed point undergoes a Hopf bifurcation creating an invariant 
cycle at σa1 ≈ 0.9. In plots B, E, a stable equilibrium persists throughout 
the σa1 range and coexists with a k-cycle that is produced through a 2- 
cycle saddle-node bifurcation at σa1 ≈ 0.7. The k-cycle experiences a 
period-doubling route to chaos that is suddenly destroyed at σa1 ≈ 0.87 
via a crisis. Here, a new fixed point is created that quickly experiences a 

flip bifurcation, creating a stable equilibrium. The fixed point then un
dergoes a Hopf bifurcation, causing the birth of an invariant cycle that 
appears for a small window. Finally, in plots C, F, chaos induced by 
period-doubling routes persist for 0.15 < σa1 < 0.9. An unstable fixed 
point appears at σa1 ≈ 0.6 (|λ| > 5), and a pitchfork bifurcation occurs at 
σa1 ≈ 0.75 creating two unstable fixed points. As σa1 increases, the un
stable fixed points gain stability for a brief window before Hopf bi
furcations cause the two stable equilibria to lose stability, creating 
invariant cycles that quickly become chaotic attractors. The qualitative 
behavior of the attractors in columns 2 and 3 are verified with phase 
planes and iteration maps for select σa1 in the appendix. 

Fig. 9. Bifurcation and eigenvalue plots of all global attractors (black dots), fixed points (red circles), and dominant eigenvalues of fixed points for the two-patch, 1- 
stage model. As σa1 increases in plots A, D, k-cycles undergo a period-doubling route to chaos (σa1 ≈ 0.45) which then experiences a crisis at σa1 ≈ 0.8, creating a brief 
window of stability as it collides with an unstable orbit. At σa1 ≈ 0.9, the stable equilibrium undergoes a Hopf bifurcation, creating an invariant cycle. In plots B, E, a 
k-cycle appears at σa1 ≈ 0.7 and undergoes a period-doubling route to chaos. This persists until a new fixed point is created at σa1 ≈ 0.87. The new fixed point quickly 
undergoes a flip bifurcation to Hopf bifurcation, causing the alternate attractor to shift from a k-cycle to equilibrium to invariant cycle. In plots C, F, chaos persists 
under phase-locked k-cycles for 0.15 < σa1 < 0.9 with a period doubling route occurring at σa1 ≈ 0.1. Two unstable fixed points are created at σa1 ≈ 0.75 via a 
pitchfork bifurcation where only the chaotic attractor exists. The fixed points gain stability for a brief window before once again losing stability via Hopf bifurcations 
where invariant cycles are created that quickly phase-lock to chaos (see appendix). Parameters used are Sa1 = 0.1, Sa2 = 0.3, σa2 = 0.6 for plots A, D, Sa1 = 0.1, Sa2 =

0.3, σa2 = 0.96 for plots B, E, and Sa1 = Sa2 = 0.3, σa2 = σa1 for plots C, F. 

Fig. 10. Bifurcation and eigenvalue plots of all global attractors (black dots), fixed points (red circles), and dominant eigenvalues of fixed points for the two-patch, 2- 
stage model (columns 1 and 2), and 3-stage model (column 3). In plots A, D, an invariant cycle persists until the loss of the imaginary component in the dominant 
eigenvalue shifts the invariant cycle to a 2-point k-cycle. In plots B, E, a Hopf bifurcation marks the creation of an invariant cycle for a brief window at 0.3 < σj1 < 
0.4 with a stable equilibrium occurring elsewhere. In plots C, F, a saddle-node bifurcation creates two fixed points at σs1 ≈ 0.8, one of which is stable, resulting in two 
stable nontrivial fixed points. Parameters used are Sa1 = Sa2 = 0.5, σa2 = σa1 for plots A, D, Sa1 = 0.5, Sa2 = 0.9, σj2 = 0.8 for plots B, E, and Sa1 = Sa2 = 0.9, σs2 = 0.9 
for plots C, F. 
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Fig. 10 shows bifurcation plots and dominant eigenvalues for the 2- 
stage model (columns 1 and 2) and the 3-stage model (column 3). In 
plots A, D, we find that an invariant cycle with constant amplitude 
persists until σa1 ≈ 0.9 where the dominant eigenvalue loses its imagi
nary component while the real component is less than −1. This creates a 
sudden shift from invariant cycles to 2-point k-cycles with increasing 
amplitude as σa1 increases. Plots B, E show a small window of invariant 
cycles occurring for 0.3 < σj1 < 0.4, and another destruction of the 
imaginary component of the dominant eigenvalue occurring at σj1 ≈

0.65, shifting the fixed point from a stable spiral to a stable node. 
Finally, in plots C, F, a stable equilibrium persists for all σs1 while a 
saddle-node bifurcation occurs at σs1 ≈ 0.8, creating asymptotically 
stable and unstable fixed points. 

4. Discussion 

In this paper, we used stage-structured matrix models with density- 
dependent first-year survival to analyze the effects of dispersal in a 
two-patch system of a species with 1, 2, and 3 life-history stages. We 
used eigenvalue, bifurcation, and Lyapunov exponent analyses to iden
tify qualitative shifts in dynamics and the bifurcations surrounding these 
shifts. We observed a variety of bifurcation types and routes to chaos, 
including period-doubling, phase-locking, and crisis. Where previous 
studies have investigated the relationship between synchrony and 
population variance (Abbott 2011; Allen et al. 1993; Jansen 1999; 
Wang et al. 2015), or the effects of dispersal on shifts in dynamics 
(Abbott 2011; Amarasekare 1998; Ives et al. 2003; Wang et al. 2015; 
Wang and Loreau 2014; Ylikarjula et al. 2000), analyzing the relation
ship between oscillation type and synchrony has not been done before. 
Our result that populations experiencing chaotic fluctuations are not 
necessarily less synchronized than other oscillation types challenges 
previous studies that assume chaos is associated with low population 
synchrony. 

We assumed constant dispersal probabilities though different dy
namics may result under different dispersal rules (Amarasekare 1998; 
Kendall and Fox 1998; Ruxton 1996; Ylikarjula et al. 2000). For 
example, Ylikarjula et al. (2000) found a variety of results when testing 
both density-dependent and density-independent dispersal; however, 
they did not find any general differences between the two dispersal types 
on population variance. On the other hand, Amarasekare (1998) found 
that strong density-dependent dispersal increased the tendency towards 
complex dynamics. The consequences of dispersal strategies are seem
ingly sensitive to model characteristics, including density-dependent 
dispersal type, dispersal mortality, demographic density-dependence 
type, and growth rates (Amarasekare 1998; Ripa 2000; Ylikarjula 
et al. 2000). Even with simple dispersal assumptions, we found 
complicated dynamics in our results, but these are expected to change 
under different dispersal behavior and rules. 

We found that constant dispersal had a nonlinear effect on popula
tion synchrony. Specifically, low dispersal probabilities initially syn
chronized populations while moderate to high dispersal may rapidly 
desynchronize populations. This was found for high asymmetric 
dispersal in the one-stage model and high symmetric dispersal in the 
two-stage model. Asymmetric dispersal has been shown to decrease 
synchrony in especially one-directional dispersal patterns (Doebeli 
1995). Dispersal type and the number of patches in a metapopulation 
seemingly play a large role on synchrony (Kendall and Fox 1998; Yli
karjula et al. 2000). Ylikarjula et al. (2000) found that different dispersal 
rules produce a variety of results in the two-patch model but have less of 
an effect on population synchrony when the number of patches is 
increased. Therefore, care should be taken when extrapolating our re
sults to metapopulations with a higher number of patches. 

We assumed that population fluctuations were driven by density- 
dependent demographic processes. However, fluctuations, and conse
quently synchrony, could be influenced by environmental processes 
(Ranta et al. 1997). In fact, Ripa (2000) argues that the Moran effect is 

ever-present and should not be discounted when analyzing the 
synchrony-dispersal relationship. The effects of dispersal on population 
synchrony then depend on the degree of correlated stochasticity and 
fluctuations induced by intrinsic dynamics (Ripa 2000). Because of the 
nature of cycles induced by demographic processes, it is much easier to 
maintain synchrony among populations with intrinsically-induced cy
cles than a system where population fluctuations are driven by uncor
related stochasticity (Ripa 2000). Therefore, we may expect different 
results under stochastically-driven fluctuations than fluctuations driven 
by demographic processes. 

Although we did not explicitly define landscape geography, dis
tances between patches can play an important role in metapopulation 
dynamics (Holland and Hastings 2008). Patches further from each other 
can create more complex dynamics while decreasing synchrony 
(Kaneko 1985; Kendall and Fox 1998; Ripa 2000; Bjørnstad et al. 1999). 
The negative relationship between synchrony and distance agrees with 
populations driven by environmental change as weather patterns are 
less correlated at greater distances (Ranta et al. 1999). Similarly, oscil
lations are more prevalent as distance increases since less dispersal is 
expected across greater distances. Although outside the scope of this 
study, it would be interesting to explore the effects of dispersal on 
different network structures and dispersal strategies. 

Chaotic oscillations are typically considered to enhance viability due 
to naturally noisy dynamics and low synchrony; however, this may only 
be true for chaos induced by environmental variation with low dispersal 
rates (Allen et al. 1993; Heino et al. 1997; Ylikarjula et al. 2000). We 
found that chaos was not necessarily less synchronous than other 
attractor types. Specifically, chaos was created through one of three 
mechanisms (period-doubling, phase-locking, and crisis), and synchrony 
did not experience any sudden shifts throughout these routes to chaos. 
This means that chaos did not have any desynchronizing effects on 
population synchrony in our models, and consequently, may not 
necessarily have the effects on population rescue as previously thought 
(Allen et al. 1993). That being said, it is not certain that all routes to 
chaos preserve synchrony, and it would be interesting to explore other 
routes to chaos to determine whether or not chaos has any desynchro
nizing effects in deterministic models. 

The purpose of this research was to investigate the dynamics of 
matrix population models relevant for amphibian research (Halley et al. 
1996; Vonesh and De la Cruz 2002; Willson et al. 2012; Willson and 
Hopkins 2013). Although we did not focus on any one species in 
particular, our results demonstrate that the interactions between 
dispersal and demography play key roles in determining population 
dynamics. Amphibian species with rapid maturation may experience 
more complicated dynamics at varying levels of dispersal as indicated by 
our models with one life-history stage. Conversely, the dynamics of 
species with slower development (two to three life-history stages) are 
less impacted by dispersal, resulting in a higher frequency of equilibrium 
states and less chaos. We present this information to encourage further 
research using these types of models on a particular species of interest, 
noting the importance of accurately identifying amphibian life histories 
and dispersal processes. This helps facilitate effective strategies that can 
be used for conservation management action. 
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Gyllenberg, M., Söderbacka, G., Ericsson, S., 1992. Does migration stabilize local 
population dynamics? analysis of a discrete metapopulation model. Math. Biosci. 
118, 25–49. 

Halley, J.M., Oldham, R., Arntzen, J., 1996. Predicting the persistence of amphibian 
populations with the help of a spatial model. J. Appl. Ecol. 33, 455–470. 

Hassell, M.P., 1975. Density-dependence in single-species populations. J. Anim. Ecol. 44, 
283–295. 

Hastings, A., 2004. Transients: the key to long-term ecological understanding? Trends 
Ecol. Evol. 19, 39–45. 

Heino, M., Kaitala, V., Ranta, E., Lindstrom, J., 1997. Synchronous dynamics and rates of 
extinction in spatially structured populations. Proc. Biol. Sci. 264, 481–486. 

Hellriegel, B., 2000. Single- or multistage regulation in complex life cycles: does it make 
a difference? Oikos 88, 239–249. 

Holland, M.D., Hastings, A., 2008. Strong effect of dispersal network structure on 
ecological dynamics. Nature 456, 792–795. 

Hudson, P.J., Cattadori, I.M., 1999. The moran effect: a cause of population synchrony. 
TREE 14, 1–2. 

Ives, A.R., Dennis, B., Cottingham, K.L., Carpenter, S.R., 2003. Estimating community 
stability and ecological interactions from time-series data. Ecol. Monogr. 73, 
301–330. 

Jansen, V.A., 1999. Phase locking: another cause of synchronicity in predator-prey 
systems. TREE 14, 278–279. 

Kaneko, K., 1985. Spatial period-doubling in open flow. Phys. Lett. 111, 321–325. 
Kendall, B.E., Fox, G.A., 1998. Spatial structure, environmental heterogeneity, and 

population dynamics: analysis of the coupled logistic map. Theor. Popul. Biol. 54, 
11–37. 

Loreau, M., Mazancourt, C.d., 2008. Species synchrony and its drivers: Neutral and 
noneutral community dynamics in fluctuating environments. Am. Nat. 172, 48–66. 

McCaffery, R., Eby, L., Maxell, B., Corn, P., 2014. Breeding site heterogeneity reduces 
variability in frog recruitment and population dynamics. Biol. Conserv. 170, 
169–176. 

McCaffery, R., Maxell, B., 2010. Decreased winter severity increases viability of a 
montane frog population. Proc. Natl. Acad. Sci. U. S. A. 9, 8644–8649. 

McCaffery, R., Solonen, A., Crone, E., 2012. Frog population viability under present and 
future climate conditions: a bayesian state-space approach. J Anim. Ecol. 81, 
978–985. 

Moran, P.A.P., 1953. The statistical analysis of the canadian lynx cycle. II. 
synchronization and meteorology. Aust. J. Zool. 1, 291–298. 

Patla, D., and D. Keinath. 2005. Columbia spotted frog (Rana luteiventris formerly 
R. pretiosa): A technical conservation assessment. Tech. rep., USDA Forest Service, 
Rocky Mountain Region. 

Ranta, E., Kaitala, V., Lindstr̈om, J., 1997. The moran effect and synchrony in population 
dynamics. Oikos 78, 136–142. 

Ranta, E., Kaitala, V., Lindstr̈om, J., 1999. Spatially autocorrelated disturbances and 
patterns in population synchrony. Proc. R. Soc. B 266, 1851–1856. 

Ranta, E., Kaitala, V., Lundberg, P., 1998. Population variability in space and time: the 
dynamics of synchronous population fluctuations. Oikos 83 (2), 376–382. No.  

Reaser, J., 2000. Demographic analysis of the columbia spotted frog (Rana luteiventris): 
case study in spatiotemporal variation. Can. J. Zool. 78, 1158–1167. 

Ripa, J., 2000. Analysing the moran effect and dispersal: significance and interaction in 
synchronous population dynamics. Oikos 90, 175–187. 

Ross, D.A., Reaser, J.K., Kleeman, P., Drake, D.L., 1999. Rana luteiventris. (columbia 
spotted frog) mortality and site fidelity. Herpetol. Rev. 30, 163. 

Ruxton, G.D., 1996. Density-dependent migration and stability in a system of linked 
populations. Bull. Math. Biol. 58, 643–660. 

Semlitsch, R.D., 2010. Differentiating migration and dispersal processes for pond- 
breeding amphibians. J. Wildl. Manag. 72, 260–267. 

Strogatz, S.H., 2015. Nonlinear dynamics and chaos, 2nd ed. Westview Press, Boulder, 
Colorado.  

Tournier, E., Besnard, A., Tournier, V., Cayuela, H., 2017. Manipulating waterbody 
hydroperiod affects movement behaviour and occupancy dynamics in an amphibian. 
Freshw. Biol. 62, 1768–1782. 

Udwadia, F.E., Raju, N., 1998. Some global properties of a pair of coupled maps. Phys. D 
111, 16–26. 

Vonesh, J.R., De la Cruz, O., 2002. Complex life cycles and density dependence: assessing 
the contribution of egg mortality to amphibian declines. Oecologia 133, 325–333. 

Wang, S., Haegeman, B., Loreau, M., 2015. Dispersal and metapopulation stability. PeerJ 
3, 1–16. 

Wang, S., Loreau, M., 2014. Ecosystem stability in space: α, β, and γ variability. Ecol. 
Lett. 17, 891–901. 

Willson, J.D., Hopkins, W.A., 2013. Evaluating the effects of anthropogenic stressors on 
source-sink dynamics in pond-breeding amphibians. Conserv. Biol. 27, 595–604. 

Willson, J.D., Hopkins, W.A., Bergeron, C.M., Todd, B.D., 2012. Making leaps in 
amphibian ecotoxicology: translating individual-level effects of contaminants to 
population viability. Ecol. Appl. 22, 1791–1802. 

Ylikarjula, J., Alaja, S., Laakso, J., Tesar, D., 2000. Effects of patch number and dispersal 
patterns on population dynamics and synchronyl. J. Theor. Biol. 207, 377–387. 

G. Grosklos and J. Zhao                                                                                                                                                                                                                       

https://doi.org/10.1016/j.ecolmodel.2022.110203
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0001
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0001
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0002
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0002
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0003
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0003
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0004
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0004
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0005
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0005
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0006
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0006
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0007
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0007
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0008
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0008
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0008
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0009
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0009
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0009
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0010
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0010
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0012
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0012
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0014
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0014
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0014
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0016
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0016
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0017
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0017
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0017
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0018
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0019
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0019
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0020
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0020
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0020
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0021
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0021
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0021
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0022
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0022
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0023
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0023
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0025
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0025
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0026
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0026
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0027
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0027
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0028
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0028
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0029
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0029
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0030
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0030
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0030
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0031
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0031
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0032
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0033
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0033
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0033
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0034
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0034
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0035
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0035
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0035
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0036
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0036
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0037
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0037
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0037
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0038
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0038
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0040
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0040
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0041
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0041
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0042
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0042
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0043
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0043
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0044
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0044
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0045
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0045
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0046
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0046
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0047
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0047
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0048
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0048
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0049
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0049
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0049
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0050
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0050
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0051
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0051
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0052
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0052
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0053
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0053
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0054
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0054
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0055
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0055
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0055
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0056
http://refhub.elsevier.com/S0304-3800(22)00301-5/sbref0056

	Chaos does not drive lower synchrony for intrinsically-induced population fluctuations
	1 Introduction
	2 Methods
	2.1 The one-patch model
	2.1.1 Nonlinear larval survival

	2.2 The two-patch model
	2.3 Eigenvalue analysis and population stability
	2.4 The Jacobian matrix
	2.5 Attractor types
	2.6 Dispersal symmetry
	2.7 Patch synchrony
	2.8 One-patch simulations
	2.9 Two-patch simulations

	3 Results
	3.1 Stability analysis of the one-patch model
	3.2 Bifurcation analysis of the one-patch model
	3.3 Stability and synchrony results of the two-patch model
	3.4 Bifurcation analysis of the two-patch model

	4 Discussion
	CRediT authorship contribution statement
	Data accessibility
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	Supplementary materials
	References


