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ABSTRACT

Amphibians naturally occur in metapopulations characterized by spatially separated breeding habitats connected
by dispersing individuals. The rate at which individuals grow to maturity, size of the metapopulation, and
movement behavior varies widely across amphibian species, and their compounding interactions play a large
role in population dynamics and viability. When populations in a connected network exhibit cyclic behavior the
level of synchrony between populations is important for assessing extinction risk. In addition, the qualitative
behavior of fluctuations provides insight into the patterns of the population cycles and can be used to predict
forward trajectories in time. Chaotic oscillations, characterized by aperiodic cycles and sensitivity to initial
conditions, are known to amplify noise, thus lowering population synchrony; however, other oscillation types
(invariant cycles, k-cycles) have not been explicitly explored in relation to synchrony. In this paper, we inves-
tigate the relationship between synchrony and oscillation type for a two-patch system of a species with 1, 2, and
3 life-history stages. Using dynamical systems analysis, we determine the mechanisms that induce the different
oscillation types and relate them with dispersal rates and synchrony. We find that dispersal has a greater effect on
population dynamics of a species with 1 life-history stage compared to the subtle changes in dynamics found for
species with 2 and 3 life-history stages. For low levels of dispersal, oscillating populations are driven to equi-
librium as synchrony increases. Under medium to high levels of dispersal, oscillations may be created from
equilibrium with low levels of synchrony. In general, chaos does not have noticeably lower synchrony than other
oscillation types but has synchrony levels comparable to the oscillation types surrounding chaos. In this study,
we cover a broad range of dispersal probabilities and life histories intended for general amphibian systems. The
variety of results found in our analysis emphasizes the importance of determining model parameters and life
history assumptions when studying specific amphibian species to ensure that the resulting dynamics accurately
reflect the system.

1. Introduction

metapopulation, including qualitative shifts in population dynamics (e.
g., oscillating versus non-oscillating populations), and synchrony

Many species live in isolated habitats as part of a spatially structured
population, or metapopulation. In these systems, organisms within the
habitats, or patches, experience demographic processes (fecundity,
growth, etc.) independent of proximal patches while dispersal allows for
interpatch interactions. The consequences of these interactions vary and
can range from inducing rescue effects in low quality patches to
increasing global extinction risk through hyper-synchronization
(Abbott 2011; Hudson and Cattadori 1999; Ylikarjula et al. 2000).
Additionally, dispersal may induce changes to the global
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(Abbott 2011; Doebeli 1995; Gyllenberg et al. 1992; Hastings 2004; Ives
et al. 2003; Wang and Loreau 2014; Ylikarjula et al. 2000). The rela-
tionship between dispersal, population dynamics, and synchrony play
an important role in assessing population viability for both local and
global populations.

The degree to which populations fluctuate in the same direction, i.e.,
synchrony, has important implications for population persistence.
Highly synchronous populations pose a greater risk for global extinction,
whereas asynchronous populations are more robust to negative
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environmental effects (Allen et al. 1993; Heino et al. 1997). Two
well-known drivers of population synchrony are dispersal and envi-
ronmental variability (Abbott 2011; Hudson and Cattadori 1999). In
other words, subpopulations within a connected network may fluctuate
in the same direction when the connection between them is strong, or,
for less connected systems, fluctuations may be driven by changes in the
environment, i.e., the Moran effect (Moran 1953). It is generally
assumed that dispersal is the main cause for synchrony on a local scale,
but the Moran effect has a greater impact on synchrony when patches
are far apart and dispersal between them is limited (Hudson and Cat-
tadori 1999).

Many studies have focused on the relationship between dispersal,
synchrony, and oscillating populations defined by their variance
(Abbott 2011; Allen et al. 1993; Jansen 1999; Wang et al. 2015).
Generally, low levels of dispersal may initially synchronize populations
while reducing variance, whereas moderate to high levels of dispersal
may desynchronize populations while increasing variance (Abbott 2011;
Bjornstad et al. 1999; Dey et al. 2014; Jansen 1999; Kendall and Fox
1998). In these studies, variance is used to measure population dy-
namics; however, the qualitative behavior of oscillations are largely
ignored. Oscillation types reveal patterns in the population that can be
used to predict expected dynamics and the mechanisms driving that
behavior. Where many oscillation types have smooth curves and pre-
dictable trajectories, chaotic oscillations are of particular interest due to
their seemingly random dynamics and robustness to negative environ-
mental impacts (Allen et al. 1993; Heino et al. 1997; Ranta et al. 1998).
Chaos is generally associated with low synchrony populations under
minimal dispersal (Allen et al. 1993; Heino et al. 1997; Ranta et al.
1998); however, other studies have observed high synchrony chaos
under intermediate levels of dispersal (Udwadia and Raju 1998; Yli-
karjula et al. 2000). Understanding synchrony in relation to chaos and
other oscillation types can elucidate some of the mechanisms that affect
synchrony, and subsequently persistence, in fluctuating populations.

Pond-breeding amphibians are excellent for studying meta-
population dynamics. They begin their lives as fully aquatic larvae with
waterbody-specific survival. Larvae quickly develop into juveniles
within the first year and may reach sexual maturity anywhere from one
to six years of age (Bull 2005; Halley et al. 1996; McCaffery et al. 2012;
Patla and Keinath 2005; Reaser 2000; Vonesh and De la Cruz 2002). In
post-larval stages, individuals are capable of dispersing between patches
for breeding, seeking favorable habitats, or escaping predation (Boualit
et al. 2019; Buxton and Sperry 2017; Cayuela et al. 2018; Gamble et al.
2007; Tournier et al. 2017). Due to the difficulty in reliably tracking
individuals, movement behavior is largely unknown, but could be driven
by factors such as landscape type, social behavior, and proximity to
other breeding sites (Bowler and Benton 2005; Bull 2005; Cayuela et al.
2020; Ross et al. 1999; Semlitsch 2010). Amphibians are not known to
be long-distance dispersers, but evidence shows that they may travel
multiple kilometers to seek new habitat (Cayuela et al. 2020; Funk et al.
2005). The consequences of amphibian dispersal vary, and include
population rescue through colonization, increased genetic variation,
and complex dynamics induced by eco-evolutionary feedback loops
(Cayuela et al. 2020).

Mathematical models are used to understand amphibian life his-
tories, growth rates, dispersal, and processes driving population dy-
namics. Because of the discrete nature of amphibian life cycles, matrix
models are used with body sizes discretized into multiple life-history
stages (Biek et al. 2002; Halley et al. 1996; Hellriegel 2000; McCaff-
ery and Maxell 2010; McCaffery et al. 2012; 2014; Vonesh and De la
Cruz 2002). The number of life-history stages used differ between spe-
cies, and describe the time required for newborns to reach sexual
maturity. Individuals may develop into breeding adults after the first
year of survival, or undergo intermediate life-history changes as
terrestrial, yet non-breeding individuals (Halley et al. 1996; Hellriegel
2000; McCaffery et al. 2012; 2014; Vonesh and De la Cruz 2002; Willson
et al. 2012; Willson and Hopkins 2013). Breeding waterbodies are
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discretely defined to describe site-specific larval survival with resource
regulation that allows for complex dynamics in the system (Halley et al.
1996; Hellriegel 2000; Vonesh and De la Cruz 2002; Willson et al. 2012).

In this paper, we explore the effects of dispersal on the dynamics of a
two-patch model of a species with 1, 2, or 3 life-history stages. We
investigate the relationship between oscillation type, synchrony, and
dispersal while identifying the mechanisms driving oscillations. Our
models are parameterized using amphibian literature characterized by
discrete life-history stage development, high fecundity, and low larval
survival (McCaffery et al. 2014; Vonesh and De la Cruz 2002; Willson
and Hopkins 2013). This work offers a new perspective on the rela-
tionship between synchrony and population fluctuations by explicitly
identifying the different oscillation types induced by dispersal under a
broad range of dispersal probabilites and life history demographics.
Although posed as a general model for amphibian systems, the methods
used in this paper can be used to motivate model development and
analysis for specific amphibian systems.

2. Methods
2.1. The one-patch model

Local patches without dispersal are used to understand how pop-
ulations behave independent of all other patches. We define models of a
species with 1, 2, and 3 life-history stages. Models with one life-history
stage assume that individuals develop into breeding adults within the
first year (Halley et al. 1996). Models with two life-history stages assume
that individuals develop into non-breeding juveniles before reaching
maturation (Hellriegel 2000; Vonesh and De la Cruz 2002). Models with
three life-history stages assume an intermediate subadult stage where
individuals are non-breeding but have demographies similar to breeding
adults (McCaffery et al. 2012; 2014). For a species with n life-history
stages, population vectors are defined as

u; = [a], whenn = 1, (1a)

uzz{ j},whennzl (1b)
ma

us;=|s |, whenn=3, (1c)
a

where j, s, and a are the juvenile, subadult, and adult densities.

Local patch demographics are defined using n x n matrices that
describe interactions between individuals. For a single-stage population,
new recruits mature into breeding adults (a) after surviving their first
year. The demographic matrix is defined as

Bl = [Sa +FHHL (2)

with corresponding population vector u; defined in (1a), S, is the sur-
vival probability of adults, F is the fecundity rate, and H, is the density-
dependent first-year survival (see Section 2.1.1). The fecundity term
includes adult breeding probability, clutch size, and egg survival.

For a 2-stage population, new recruits grow into juveniles (j) in their
first year then have some probability of transitioning to breeding adults
in subsequent years. The demographic matrix is defined as

S;(1—Pu) FH,

it ja a

B, = , 3)

with corresponding population vector uy defined in (1b), Pj, is the
probability of transitioning from the juvenile to adult stage, and S; is the
survival probability of juveniles.

Finally, a 3-stage population assumes an intermediate non-breeding
stage (subadults; s) with survival probabilities similar to adults. We as-
sume that individuals may only transition to latter stages in single-stage
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increments. The demographic matrix is defined as

sa-r) o FH
B; = S;Pjs S(I—Py) 0 |, @
0 SSPS{I Sﬂ

with corresponding population vector ugz defined in (1c), Pjs and Py, are
transition probabilities from juvenile to subadult and subadult to adult,
and S; is the survival probability of subadults.

Local populations are projected forward in time by multiplying the
demographic matrix with the population vector,

u,(t+1) =B,u,(r). 5)

2.1.1. Nonlinear larval survival
In each patch, we assume negative density-dependent survival in
first-year individuals to represent larval competition. We use the Hassell
competition model to define first-year survival based on the number of
breeding adults in the same year (Halley et al. 1996; Vonesh and De la
Cruz 2002; Willson et al. 2012; Willson and Hopkins 2013),
L

H= —7-, 6
(t+ %) ©

where L is the maximum first-year survival, K is the carrying capacity,
and y is the densitydependent exponent. Other forms of density-
dependent survival have been used in amphibian models including the
Ricker model (Hellriegel 2000) and Gompertz model (Bancila et al.
2016; Bendik and Dries 2018). We choose the Hassell competition model
because of its realism and use in multiple amphibian studies (Halley
et al. 1996; Vonesh and De la Cruz 2002; Willson et al. 2012; Willson and
Hopkins 2013).

Competition in the Hassell equation depends on the density-
dependent exponent, y, where y is inversely proportional to patch size
(Anazawa 2019). For smaller values of y, individuals undergo ‘contest’
competition while for large values of y, individuals undergo ‘scramble’
competition (Hassell 1975). In contest competition, some proportion of
the individuals receive sufficient resources for survival while the rest do
not survive. In scramble competition, all resources are ‘shared’ such that
individuals either all die out or all survive. For extreme cases, ideal
contest competition (y = 1) defines the Ricker model while ideal
scramble competition (y — ), defines the Beverton-Holt model (Ana-
zawa 2019).

2.2. The two-patch model

Given a metapopulation with two patches and n life-history stages,
we define a patch-based population vector u,(t) € R?" as

(1) = {um(t)} 7 7

(1)

where uy,() € R", x = 1,2, is a subvector of length n and represents
population distributions for n life-history stages in patch x at time t.

We define a two-patch, n-stage model where each patch experiences
demographic processes independent of the other patch and interactions
between them occur through a dispersal mechanism. The projection
matrix A, € R¥*?" is defined as

(1 - 0'1n)B|n
61.B1,

62,B3,

A, = ,
(1 = 624)B2,

®

where 6,, € R*"is a diagonal matrix with entries that represent dispersal
probabilities for n life-history stages from patch x = 1,2, and By, € R™" is
the demographic matrix for patch x = 1,2. The diagonal submatrices in
An, (1 — 0xn)Byn, represent demographic processes of individuals who
remain in patch x while the off-diagonal submatrices, 6,,Bxn, represent
demographic and dispersal processes of individuals dispersing from

Ecological Modelling 475 (2023) 110203

patch x.
With the notations above, the two-patch model with multiple life-
history stages is expressed as

u,(t+1) = Au,(1). (C)]

2.3. Eigenvalue analysis and population stability

We use linearization techniques evaluated at equilibrium to deter-
mine local stability of fixed points and identify oscillation types using
Lyapunov exponents. Fixed points are found by setting j(t + 1) = j(t) =
j¥, s(t+ 1) =s(t) = s*, and a(t + 1) = a(t) = a* for the appropriate model
and stability is determined by analyzing the dominant eigenvalue, 4, of
the Jacobian matrix evaluated at the fixed point. The magnitude of the
dominant eigenvalue determines whether the fixed point is stable (|1| <
1) or unstable (|4| > 1). For stable fixed points (]1| < 1), asymptotic
behavior of populations that start near the fixed point will converge to
the fixed point. Additionally, convergence to an equilibrium may occur
monotically when the dominant eigenvalue is real (node), or non-
monotically when the dominant eigenvalue contains a nonzero imagi-
nary part (spiral). For unstable fixed points (|| > 1), nearby trajectories
are repelled from the fixed point and will converge to the nearest
attractor. Oscillations occur when the dominant eigenvalue does not
have an imaginary part and is less than —1, or the imaginary part of the
dominant eigenvalue is nonzero and || > 1. We classify oscillations into
three attractor types (invariant cycles, k-cycles, and chaos) based on the
calculated Lyapunov exponent (see Section 2.5).

2.4. The Jacobian matrix

We define Jacobians for any time t to allow for temporal analyses.
Because the only density-dependent term is in the larval stage, all Ja-
cobians have the following density dependent larval survival term,
~ R FR
H() = 27— v, 10

(1+ ) k(1 + %)

where Ry = FL represents yearly recruitment rate.
The Jacobians are then defined as for the 1-stage model,

Ji(t) = Su + H(1), an
for the 2-stage model,

() = 8;(1 = Pu) H(r) 7 12)

it ja a

and for the 3-stage model,

5(1-py) 0 H()
Js3(1) = S;P, S(1-Py,) 0 |- 13)
0 SPyq Sa

When evaluated at equilibrium, these Jacobians are used for local
stability analysis; otherwise, long-term temporal averages over the Ja-
cobian are used for attractor identification (see section 2.5).

The Jacobian for the two-patch model is defined by

(1 - 6ln)~]1n(t) 0'2,,J2n(t)

j"(l‘) = Ganln([) (1 — O'Zn)JZn([) ’

14)

where J,, is the n—stage Jacobian for patch x with corresponding two-
patch population vector uy,.

2.5. Attractor types

We classify oscillating populations into three attractor types:
invariant cycles; k-cycles; and chaos. Invariant cycles have quasi-
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periodic dynamics, characterized by iterative cycles around a smooth
curve with slightly shifting rotations around a closed loop. K-cycles are
classified by the number of points that occur in each period. Chaos is
deterministic but has seemingly random dynamics that are sensitive to
initial conditions. Attractor types are quantified using the Lyapunov
exponent defined for matrix population models Caswell (2001),

de= }im%anH(T— 1)ees J,(0) (0)]. as)

Here, Ju(t) is the n-stage Jacobian matrix at time t, u,(0) is the initial
population vector, and || is the vector magnitude. Note that 1, depends
on u,(0) but results remain the same with vectors in the same basin of
attraction (Caswell 2001; Gyllenberg et al. 1992; Strogatz 2015). See the
appendix for a demonstration of systems with fractal basins of
attraction.

Oscillations are classified based on the Lyapunov exponent value
where 1, < 0 are k-cycles, 4, = 0 are invariant cycles, and 4, > 0, are
chaos (Caswell 2001). Examples of each attractor type are summarized
in Fig. 1. Because numerical simulations introduce calculation error, we
identify invariant cycles if A, is sufficiently close to 0 (i.e., |4| < 0.01).
Identifying unstable dynamics without closed form eigenvalue analyses
is a nontrivial task and even graphical representations of different os-
cillations may be ambiguous. We visually inspect selected results and
find that the tolerance above sufficiently distinguishes invariant cycles
from chaos and k-cycles.

Intuitively, the Lyapunov exponent measures the averaged progres-
sion of two nearby trajectories in time. If the two trajectories approach
an equilibrium, the difference between them approaches 0. For oscil-
lating populations, the difference between the two trajectories ap-
proaches O for in-phase k-cycles (4, < 0) or reaches some constant value
for invariant cycles (4, = 0). With chaos (4, > 0), the trajectories never
converge so the difference between them increases as time moves for-
ward. The Jacobian matrix represents the dynamics of the deviation
vector; hence, the product of all temporal Jacobian matrices describes
total deviation in time.

60 . ] 60 .
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e e
50 1 50
40 | 40
@30} I ®©30 :

20 | 20"
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ol . . J ol . . I
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,\‘J =-0.02 C /\D =0.06 D
500 g 50
4t * ! 40
©30} , N ®© 30
20 1 20+
: .

10f; P 10

ol e e | ol : _ |

0 100 200 300 0 100 200 300

i i

Fig. 1. Phase planes for juvenile and adult populations in the one-patch, 2-
stage model with calculated Lyapunov exponent for an invariant cycle (A; 2,
= 0), low-point k-cycle (B; 4. < 0), high-point k-cycle (C; 2. < 0), and chaos (D;
Ae > 0). The k-cycles are formed by the phase-locked invariant cycles while
retaining the shape of the closed loop. Chaos is developed as a wrinkle forms in
the invariant cycle, creating sensitivity to initial conditions. Simulations are
created by plotting the final 9000 juvenile and adult densities for Ry = 167.333,
and S, = 0.366(A), 0.228(B), 0.139(C), and 0.099(D).
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2.6. Dispersal symmetry

We measure dispersal symmetry in two ways: (1) compare the pro-
portion of dispersing individuals in one patch to the total proportion of
dispersing individuals, and (2) partition the dispersal probability plane
into zones. We use populations averaged over the final time steps t,, =

ﬁziﬂ? un (7) to define the asymmetry in per capita dispersal from each

patch,
No1
M
= (16)
AR

where N, = " ,0x Uy, is the number of individuals dispersing from
patch x = 1,2, and N; = )", u1, is the total population size of patch 1.
Dispersal is symmetric when a ~ 0.5, and asymmetric when a ~
0 (mostly dispersing from patch 2) and @ ~ 1 (mostly dispersing from
patch 1).

We group the dispersal plane into 5 zones that represent different
dispersal probabilities and symmetries, as shown in Fig. 2. They are: low
symmetric dispersal (zone 1), intermediate symmetric dispersal (zone
2), high symmetric dispersal (zone 3), low asymmetric dispersal (zone
4), and high asymmetric dispersal (zone 5). Partitioning dispersal re-
gions into different zones provides insight into expected system dy-
namics based on dispersal symmetry and degree. Note that the number
of simulations in each zone differs based on cover area: zones 1 and 3
have 210 simulations, zone 2 has 3260 simulations, and zones 4 and 5
have 3160 simulations.

2.7. Patch synchrony

We measure population synchrony between the two patches using
patch population sizes in the final 500 time steps. This method sums
over all entries in the temporal covariance matrix and divides by the
square of the sum over the standard deviations (Loreau and Mazancourt
2008),

g _Zueor0:0) a”

(Zi COV(Giv ﬁ,-))

Zone 3

Zone 5

0.6 Zone 4 1
o Zone 2

047 Zone 5 1

Zone 4

Zone 1

0 0.2 0.4 0.6 0.8 1

a
1

Fig. 2. The 5 zones for the dispersal plane that represent different dispersal
probabilities and symmetries. Zone 1 represents low symmetric dispersal, zone
2 represents intermediate symmetric dispersal, zone 3 represents high sym-
metric dispersal, zone 4 represents low asymmetric dispersal, and zone 5 rep-
resents high asymmetric dispersal.
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fori=1, 2 and k = 1, 2. The vector, fJi, is defined by

Ui(T — 499)
0= | VT -9®) | a8)
Ui(T)

where U;(t) = ) uin(t) are patch i population sizes, and cov(U;, Uy)are
the temporal covariance measures between U; and ﬁk. This method
measures the variance of population sizes across all patches and is
standardized between 0 and 1. § ~ 1 indicates that the populations are
strongly positively correlated (high synchrony) while g =~ 0 indicates
that the populations are strongly negatively correlated (low synchrony).
Systems with at least one stable population have perfect synchrony (only
found with zero dispersal); hence even small dispersal probabilities
produce cycles across all populations. Additionally, this method is
robust to population magnitudes (i.e., vertical shifts in population
abundances), and measures near-perfect synchrony for populations with
large amplitude differences.

2.8. One-patch simulations

We investigate dynamics in the one-patch model of species with 1, 2,
and 3 life-history stages by varying the range of pairwise parameter sets
with all other parameters fixed. Parameters are based on estimates used
in amphibian literature and we try to maintain consistent total pop-
ulations across the different life-history stage models (Table 1). For each
parameter combination, we first determine stability using eigenvalue
analysis of the Jacobian matrix at the nontrivial fixed points. When
oscillations occur, we classify the oscillation type using the Lyapunov
exponent by initializing each life-history stage with 20 individuals and
run simulations for T = 10000 time steps to ensure convergence to
asymptotic behavior. The Lyapunov exponent is calculated using the
final 9000 time steps to identify attractor type. Note that the carrying
capacity ranges from 40000 to 80000 but time series simulations typi-
cally have populations with less than 200 individuals. Although carrying
capacities seem high, the ratio between fecundity and carrying capacity
(F/K) is similar to equivalent coefficients estimated in other studies
(Vonesh and De la Cruz 2002; Willson et al. 2012).

2.9. Two-patch simulations
We analyze local stability of numerically solved fixed points in the

Table 1
Default vital rates and values used in the model. Vital rates are based on ranges
used in different amphibian systems.

Vital rate Symbol  1- 2- 3- Sources
stage stage stage
Fecundity F 500 500 500 (36)
Maximum first-year L 0.2 0.2 0.2 (51; 55)
survival
Carrying capacity K 80000 50000 40000 (55)
Density-dependent 7 30 30 30 (51)
exponent
Juvenile survival S; - 0.4 0.45 (36; 51;
55)
Subadult survival Ss - - 0.7 (36)
Adult survival Sa 0.6 0.6 0.6 (36; 51;
55)
Transition from juvenileto  Pj, - 0.5 - (51)
adult
Transition from juvenile to Pjs - - 0.3 (36)
subadult
Transition from subadult Py, - - 0.6 (36)
to adult

Citations are as follows: 36-McCaffery and Maxell (2010); 51-Vonesh and De la
Cruz (2002); 55-Willson et al. (2012)
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two-patch model using eigenvalue analysis, and steady state behavior
using Lyapunov exponents and population synchrony. Because of mul-
tiple fixed points that occur in the two-patch model, we analyze
asymptotic behavior of only one trajectory using initial conditions
defined in the following paragraph. Note that this does not find all
alternate steady states as that requires extensive analysis of localized
parameters. To account for this, we analyze a select few scenarios using
bifurcation and eigenvalue analysis under multiple initial conditions to
understand some of the different dynamics found in our results.

To analyze the effects of dispersal on the two-patch model, we select
pairwise S, values that initialize the model with a variety of dynamics
without dispersal (see Table 2). Attractor and synchrony planes allow us
to understand general system behavior while bifurcation and stability
plots of fixed points for select parameter ranges provide additional in-
formation on some of the bifurcation types and alternate steady states
that exist. Each simulation is initialized with steady states from the
corresponding one-patch simulation. For example, in the 1-stage model,
if adult survival in patch 1 is 0.1 (Sg; = 0.1) and adult survival in patch 2
is 0.7 (Sq2 = 0.7) then patch 1 is initialized with one of the points on the
local k-cycle while patch 2 is initialized with approximately 50 in-
dividuals corresponding to the stable equilibrium. We identify oscilla-
tions by running our models for T = 10000 time steps and analyzing the
range of the final 50 time steps. A steady state is classified as an oscil-
lation if the range of any population is greater than 0.01; otherwise, the
steady state is an equilibrium. Attractor type is determined by calcu-
lating the Lyapunov exponent (4, in Eq. (15)) using the final 9000 time
steps and the two-patch Jacobian defined by Eq. (14). Finally, we
calculate population synchrony using patch population sizes in the final
500 time steps (see Section 2.7).

For each pair of adult survival values, we test 100 dispersal proba-
bilities ranging from 0 to 1 for each life-history stage. With 15 pairwise
adult survival probabilities and 10000 pairwise dispersal probabilities
for each life-history stage, we have a total of 150,000 simulations for the
1-stage model, 300,000 simulations for the 2-stage model, and 450,000
simulations for the 3-stage model (all attractor, synchrony, and eigen-
value simulations are in the appendix).

3. Results
3.1. Stability analysis of the one-patch model

We vary the yearly recruitment rate, Ry, the density-dependent
exponent, y, and adult survival, S, to understand how small parameter
changes affect system dynamics. Fig. 3 shows contour plots of the
calculated dominant eigenvalues for each model. The bold lines denote
where bifurcations of the nontrivial steady state occur (|4| = 1). The 1-
stage model experiences flip bifurcations, causing the birth of k-cycles
while the 2- and 3-stage models experience Hopf bifurcations, creating
invariant cycles. Additionally, in the 3-stage model, a transcritical
bifurcation occurs for low adult survival and yearly recruitment where
the population experiences global extinction. This is the only region in
the one-patch model where the trivial fixed point is stable.

Fig. 4 shows where different attractor types occur under the different
parameter ranges. Equilibrium regions are white while oscillating re-
gions are colored based on attractor type and k-cycle period. The

Table 2
Adult survival used in the two-patch systems with local stability dynamics and
Lyapunov exponent (4,).

Sa 1-stage Dynamics (4,) 2-stage Dynamics (4,) 3-stage Dynamics (4,)

0.1 K-cycle (-0.369)

0.3 Chaos (0.286)

0.5 K-cycle (-0.356)

0.7 Equilibrium (-0.083)
0.9 Equilibrium (-0.954)

Invariant cycle (0.000)
Invariant cycle (0.000)
Invariant cycle (0.000)
Equilibrium (-0.060)
Equilibrium (-0.083)

Equilibrium (-0.003)
Invariant cycle (0.000)
Invariant cycle (0.000)
Equilibrium (-0.0061)
Equilibrium (- 0.083)
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Fig. 3. Dominant eigenvalues (1) for a range of adult survival (S,), yearly recruitment rate (Rg), and density-dependent exponent (y) for the one-patch model. The
solid black lines represent bifurcations in the nontrivial fixed points. The 1-stage model undergoes flip bifurcations, creating k-cycles whereas the 2- and 3-stage
models undergo Hopf bifurcations, inducing invariant cycles. Additionally, under low adult survival and fecundity in the 3-stage model (C), the nontrivial fixed
point experiences a transcritical bifurcation where it switches stability with the trivial fixed point.

number of points in a k-cycle are numerically estimated by finding the
last point in the cycle within 0.001 of the final point. We identify all 2, 4,
8, and 16 point k-cycles as well as k-cycles with periods greater than 16
(16+) and less than 16 that were not already identified (other cycles). In
general, increasing the number of stages ‘simplifies’ the dynamics, i.e.,
chaos is most prevalent in the 1-stage model (A, D), a mix of dynamics
are found in the 2-stage model (B, E), and invariant cycles are most
prevalent in the 3-stage model (C, F). In the 1-stage model, k-cycles
occur through flip bifurcations that undergo period-doubling routes to
chaos. Among the chaos regions, periodic windows appear as lowpoint
k-cycles. In the 2- and 3-stage models, Hopf bifurcations create invariant
cycles that become phase-locked to varying degrees. Specifically, the 2-
stage model has large windows of low-point cycles, high-point cycles,
and chaos while the 3-stage model has fewer phase-locked regions of
low-point k-cycles.

3.2. Bifurcation analysis of the one-patch model

Close inspection of bifurcation diagrams with calculated Lyapunov
exponents allow us to verify results found in the eigenvalue and attractor
plots. Bifurcation plots (Fig. 5A-C) are created by plotting patch 1 adults
in the final 50 time steps vertically for each S, value, and the Lyapunov
exponents (Fig. 5D-F) are calculated using the final 9000 time steps. We
analyze a range of adult survival values and find that a flip bifurcation
occurs at Sq ~ 0.58 in the 1-stage model, creating k-cycles that lead to
chaos through a period-doubling route. The 2- and 3-stage models
experience Hopf bifurcations at S, ~ 0.2 in the 3-stage model and S, ~
0.6 in the 2- and 3-stage models. Additionally, low-point phase-locked k-
cycles form for a few small regions in the 2-stage model, marked by
negative A,.

3.3. Stability and synchrony results of the two-patch model

We find that dynamics are preserved under small vital rate pertur-
bations and dispersal may induce oscillations even if both local pop-
ulations are at equilibrium. For example, the homogeneous systems in
the 1-stage model (S;; = Sg2) contain oscillating regions in the scenarios
where both patches are at equilibrium in the absence of dispersal (B, C)
and appear in similar dispersal regions as the scenario with slightly
lower adult survival (A) (Fig. 6). We also find evidence of dispersal-
induced oscillations for one heterogeneous scenario in the 1-stage
model, S;; = 0.7, Sgz = 0.9, three scenarios in the 2-stage model (Sg;
=842 =0.7;Sq1 = 0.7, Sgo = 0.9; Si1 = Sq2 = 0.9), and two scenarios in
the 3-stage model (Sg1 = 0.1, Sg2 = 0.7; Sq1 = 0.1, Sg2 = 0.9) (see ap-
pendix). Note that dispersal-induced oscillations have only been
observed under adult dispersal, presumably because of the direct effects
of adults on larval-stage survival.

Fig. 7A-C shows the relative frequency of per capita symmetric
dispersal (@) for each attractor type for the 1-, 2-, and 3-stage models,
and Fig. 7D shows the proportion that each attractor type appears in
each zone. In the 1-stage model, chaotic results (red) occur most
frequently under symmetric dispersal (zones 1, 2, and 3), k-cycles
(black) occur almost uniformly across different symmetries and zones,
and invariant cycles (blue) occur under high dispersal (zones 3 and 5). In
the 2-stage model, oscillations mostly occur under symmetric dispersal
with the majority of k-cycles appearing under highly symmetric
dispersal (zone 3). In the 3-stage model, invariant cycles occur under
symmetric dispersal while the few instances of chaos are found in the
extremes, i.e., full dispersal from one patch to the other. equilibria
(purple) generally have a more uniform distribution in all three models,
showing little correlation with dispersal symmetry. Note that the num-
ber of chaos events in the 2and 3-stage models are sparse compared to
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metries across all models.

the number of invariant and k-cycles.

To summarize population synchrony (4), we plot synchrony histo-
grams for each attractor type in each zone (Fig. 8). For example, of the
2498 1-stage simulations with low symmetric dispersal (top left panel in
Fig. 8), 20 exhibited invariant cycles with ~ 80% being perfectly syn-
chronized (blue), 1824 exhibited k-cycles with ~ 70% being perfectly
synchronized (black), and 654 exhibited chaos with synchrony being
mostly between 0.8 and 1 (red). Across all three life-history stage
models, zone 1 has the most mixed results due to low dispersal

probabilities from local populations (first row). As dispersal increases,
we find more consistency within each zone. For the 1-stage model,
higher dispersal regions (zones 2, 3, and 5) have consistently lower
synchrony than lower dispersal zones (zones 1 and 4). For the 2-stage
model, invariant cycles maintain near-perfect synchrony across all
zones. The few instances of chaos either have perfect or intermediate
synchrony (f ~ 0.5), and k-cycles occur with very low synchrony in zone
3 and high synchrony in all other zones. For the 3-stage model, we find
consistently high synchrony for all unstable points including a few
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Fig. 8. The relative frequencies for synchrony levels for each attractor type summarize the relationships between synchrony and attractor type in the different
dispersal zones. The number of occurrences that an attractor type appears in each zone is in parentheses and f is the proportion of synchrony occurrences within each
attractor type. In the 1-stage model, intermediate to high dispersal probabilities (zones 2, 3, and 5) produce lower synchrony (3 ~ 0.8) for all attractor types whereas
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sufficient dispersal (zones 2, 3, and 5) with the unique finding of near-perfect asynchronous k-cycles under very high symmetric dispersal (zone 3). In the 3-stage
model, highly synchronous invariant cycles are consistently high across all zones.

instances of chaos.

Overall, low and high symmetric dispersal (zones 1 and 3) produce
the most variety in synchrony and attractor type, especially for the 1-
and 2-stage models. The variety in zone 1 can be expected since they are
reflective of local population dynamics without dispersal. However,
high symmetric dispersal (zone 3) may cause rapid shifts to oscillations,
producing a relatively high number of chaos events in the 1-stage model
and low-synchrony k-cycles in the 2-stage model. The latter result is
especially interesting since these are the only instances that we see such
low synchrony.

3.4. Bifurcation analysis of the two-patch model

The results in the previous section only capture trajectories of one
steady state even though multiple steady states may exist. We use
bifurcation and eigenvalue plots of select dispersal probabilities to
analyze some of the alternate attractors and fixed points that appear in
the two-patch model (Figs. 9 and 10). For each o4 value, we find all
nontrivial fixed points by numerically solving for u;; = A u;, using trust-

region root-finding techniques with 200 randomly selected start condi-
tions (Coleman and Li 1996). See the appendix for details. We use these
fixed points to numerically compute eigenvalues for local stability
analysis. To identify all attractors for each o4; value, we initialize sim-
ulations with 100 random initial conditions and run the two-patch
model for 1000 time steps. This ensures that populations start within
the basins of attraction for each unique attractor.

In plots A-C, we represent attractors at chosen o4 values by plotting
the population size of adults in patch 1 for the final 50 time steps (black
dots). Additionally, we plot all numerically solved fixed points for each
041 (red circles). For each fixed point, we plot the real part (black circles)
and magnitude (blue dots) of the dominant eigenvalue in plots D-F.
Trajectories near unstable fixed points (|4| > 1) will converge to one of
the attractors, and we identify local bifurcations and alternate steady
states by closely inspecting the bifurcation and eigenvalue plots. Note
that we do not attempt to identify unstable limit cycles as it requires
systematic analysis of global dynamics and bifurcations. We select 3
scenarios in the two-patch, 1-stage model, 2 scenarios in the 2-stage
model, and 1 scenario in the 3stage model to show some of the
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Fig. 9. Bifurcation and eigenvalue plots of all global attractors (black dots), fixed points (red circles), and dominant eigenvalues of fixed points for the two-patch, 1-
stage model. As 6,3 increases in plots A, D, k-cycles undergo a period-doubling route to chaos (64 ~ 0.45) which then experiences a crisis at 641 ~ 0.8, creating a brief
window of stability as it collides with an unstable orbit. At 6, ~ 0.9, the stable equilibrium undergoes a Hopf bifurcation, creating an invariant cycle. In plots B, E, a
k-cycle appears at 6,7 =~ 0.7 and undergoes a period-doubling route to chaos. This persists until a new fixed point is created at o,; =~ 0.87. The new fixed point quickly
undergoes a flip bifurcation to Hopf bifurcation, causing the alternate attractor to shift from a k-cycle to equilibrium to invariant cycle. In plots C, F, chaos persists
under phase-locked k-cycles for 0.15 < 6, < 0.9 with a period doubling route occurring at 6,1 = 0.1. Two unstable fixed points are created at o, ~ 0.75 via a
pitchfork bifurcation where only the chaotic attractor exists. The fixed points gain stability for a brief window before once again losing stability via Hopf bifurcations
where invariant cycles are created that quickly phase-lock to chaos (see appendix). Parameters used are Sg; = 0.1, Sg2 = 0.3, 642 = 0.6 for plots A, D, Sq1 = 0.1, Sgp =
0.3, 642 = 0.96 for plots B, E, and Sy = Sz = 0.3, 642 = 04 for plots C, F.
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Fig. 10. Bifurcation and eigenvalue plots of all global attractors (black dots), fixed points (red circles), and dominant eigenvalues of fixed points for the two-patch, 2-
stage model (columns 1 and 2), and 3-stage model (column 3). In plots A, D, an invariant cycle persists until the loss of the imaginary component in the dominant
eigenvalue shifts the invariant cycle to a 2-point k-cycle. In plots B, E, a Hopf bifurcation marks the creation of an invariant cycle for a brief window at 0.3 < ¢j;; <
0.4 with a stable equilibrium occurring elsewhere. In plots C, F, a saddle-node bifurcation creates two fixed points at o5; ~ 0.8, one of which is stable, resulting in two
stable nontrivial fixed points. Parameters used are Sq; = Sq2 = 0.5, 642 = 641 for plots A, D, S41 = 0.5, Sq2 = 0.9, 0jo = 0.8 for plots B, E, and Sy = Sg2 = 0.9, 650 = 0.9
for plots C, F.

different bifurcations that occur in our simulations. All parameters are flip bifurcation, creating a stable equilibrium. The fixed point then un-
fixed except for 642 which may either be fixed or equal to 64;. dergoes a Hopf bifurcation, causing the birth of an invariant cycle that

In Fig. 9A, D, a 2-cycle begins for low 6,41 that experiences a period- appears for a small window. Finally, in plots C, F, chaos induced by
doubling route to chaos at 647 ~ 0.25. This persists until it undergoes a period-doubling routes persist for 0.15 < 647 < 0.9. An unstable fixed
crisis at 641 = 0.8, creating a sudden shift to a stable equilibrium. The point appears at 641 ~ 0.6 (|4| > 5), and a pitchfork bifurcation occurs at
stable fixed point undergoes a Hopf bifurcation creating an invariant 041 = 0.75 creating two unstable fixed points. As 6, increases, the un-
cycle at 641 ~ 0.9. In plots B, E, a stable equilibrium persists throughout stable fixed points gain stability for a brief window before Hopf bi-
the 04 range and coexists with a k-cycle that is produced through a 2- furcations cause the two stable equilibria to lose stability, creating
cycle saddle-node bifurcation at 64; ~ 0.7. The k-cycle experiences a invariant cycles that quickly become chaotic attractors. The qualitative
period-doubling route to chaos that is suddenly destroyed at 64, =~ 0.87 behavior of the attractors in columns 2 and 3 are verified with phase
via a crisis. Here, a new fixed point is created that quickly experiences a planes and iteration maps for select 647 in the appendix.
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Fig. 10 shows bifurcation plots and dominant eigenvalues for the 2-
stage model (columns 1 and 2) and the 3-stage model (column 3). In
plots A, D, we find that an invariant cycle with constant amplitude
persists until 641 ~ 0.9 where the dominant eigenvalue loses its imagi-
nary component while the real component is less than —1. This creates a
sudden shift from invariant cycles to 2-point k-cycles with increasing
amplitude as 647 increases. Plots B, E show a small window of invariant
cycles occurring for 0.3 < ¢j; < 0.4, and another destruction of the
imaginary component of the dominant eigenvalue occurring at oj; =~
0.65, shifting the fixed point from a stable spiral to a stable node.
Finally, in plots C, F, a stable equilibrium persists for all 65; while a
saddle-node bifurcation occurs at o5; ~ 0.8, creating asymptotically
stable and unstable fixed points.

4. Discussion

In this paper, we used stage-structured matrix models with density-
dependent first-year survival to analyze the effects of dispersal in a
two-patch system of a species with 1, 2, and 3 life-history stages. We
used eigenvalue, bifurcation, and Lyapunov exponent analyses to iden-
tify qualitative shifts in dynamics and the bifurcations surrounding these
shifts. We observed a variety of bifurcation types and routes to chaos,
including period-doubling, phase-locking, and crisis. Where previous
studies have investigated the relationship between synchrony and
population variance (Abbott 2011; Allen et al. 1993; Jansen 1999;
Wang et al. 2015), or the effects of dispersal on shifts in dynamics
(Abbott 2011; Amarasekare 1998; Ives et al. 2003; Wang et al. 2015;
Wang and Loreau 2014; Ylikarjula et al. 2000), analyzing the relation-
ship between oscillation type and synchrony has not been done before.
Our result that populations experiencing chaotic fluctuations are not
necessarily less synchronized than other oscillation types challenges
previous studies that assume chaos is associated with low population
synchrony.

We assumed constant dispersal probabilities though different dy-
namics may result under different dispersal rules (Amarasekare 1998;
Kendall and Fox 1998; Ruxton 1996; Ylikarjula et al. 2000). For
example, Ylikarjula et al. (2000) found a variety of results when testing
both density-dependent and density-independent dispersal; however,
they did not find any general differences between the two dispersal types
on population variance. On the other hand, Amarasekare (1998) found
that strong density-dependent dispersal increased the tendency towards
complex dynamics. The consequences of dispersal strategies are seem-
ingly sensitive to model characteristics, including density-dependent
dispersal type, dispersal mortality, demographic density-dependence
type, and growth rates (Amarasekare 1998; Ripa 2000; Ylikarjula
et al. 2000). Even with simple dispersal assumptions, we found
complicated dynamics in our results, but these are expected to change
under different dispersal behavior and rules.

We found that constant dispersal had a nonlinear effect on popula-
tion synchrony. Specifically, low dispersal probabilities initially syn-
chronized populations while moderate to high dispersal may rapidly
desynchronize populations. This was found for high asymmetric
dispersal in the one-stage model and high symmetric dispersal in the
two-stage model. Asymmetric dispersal has been shown to decrease
synchrony in especially one-directional dispersal patterns (Doebeli
1995). Dispersal type and the number of patches in a metapopulation
seemingly play a large role on synchrony (Kendall and Fox 1998; Yli-
karjula et al. 2000). Ylikarjula et al. (2000) found that different dispersal
rules produce a variety of results in the two-patch model but have less of
an effect on population synchrony when the number of patches is
increased. Therefore, care should be taken when extrapolating our re-
sults to metapopulations with a higher number of patches.

We assumed that population fluctuations were driven by density-
dependent demographic processes. However, fluctuations, and conse-
quently synchrony, could be influenced by environmental processes
(Ranta et al. 1997). In fact, Ripa (2000) argues that the Moran effect is
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ever-present and should not be discounted when analyzing the
synchrony-dispersal relationship. The effects of dispersal on population
synchrony then depend on the degree of correlated stochasticity and
fluctuations induced by intrinsic dynamics (Ripa 2000). Because of the
nature of cycles induced by demographic processes, it is much easier to
maintain synchrony among populations with intrinsically-induced cy-
cles than a system where population fluctuations are driven by uncor-
related stochasticity (Ripa 2000). Therefore, we may expect different
results under stochastically-driven fluctuations than fluctuations driven
by demographic processes.

Although we did not explicitly define landscape geography, dis-
tances between patches can play an important role in metapopulation
dynamics (Holland and Hastings 2008). Patches further from each other
can create more complex dynamics while decreasing synchrony
(Kaneko 1985; Kendall and Fox 1998; Ripa 2000; Bjgrnstad et al. 1999).
The negative relationship between synchrony and distance agrees with
populations driven by environmental change as weather patterns are
less correlated at greater distances (Ranta et al. 1999). Similarly, oscil-
lations are more prevalent as distance increases since less dispersal is
expected across greater distances. Although outside the scope of this
study, it would be interesting to explore the effects of dispersal on
different network structures and dispersal strategies.

Chaotic oscillations are typically considered to enhance viability due
to naturally noisy dynamics and low synchrony; however, this may only
be true for chaos induced by environmental variation with low dispersal
rates (Allen et al. 1993; Heino et al. 1997; Ylikarjula et al. 2000). We
found that chaos was not necessarily less synchronous than other
attractor types. Specifically, chaos was created through one of three
mechanisms (period-doubling, phase-locking, and crisis), and synchrony
did not experience any sudden shifts throughout these routes to chaos.
This means that chaos did not have any desynchronizing effects on
population synchrony in our models, and consequently, may not
necessarily have the effects on population rescue as previously thought
(Allen et al. 1993). That being said, it is not certain that all routes to
chaos preserve synchrony, and it would be interesting to explore other
routes to chaos to determine whether or not chaos has any desynchro-
nizing effects in deterministic models.

The purpose of this research was to investigate the dynamics of
matrix population models relevant for amphibian research (Halley et al.
1996; Vonesh and De la Cruz 2002; Willson et al. 2012; Willson and
Hopkins 2013). Although we did not focus on any one species in
particular, our results demonstrate that the interactions between
dispersal and demography play key roles in determining population
dynamics. Amphibian species with rapid maturation may experience
more complicated dynamics at varying levels of dispersal as indicated by
our models with one life-history stage. Conversely, the dynamics of
species with slower development (two to three life-history stages) are
less impacted by dispersal, resulting in a higher frequency of equilibrium
states and less chaos. We present this information to encourage further
research using these types of models on a particular species of interest,
noting the importance of accurately identifying amphibian life histories
and dispersal processes. This helps facilitate effective strategies that can
be used for conservation management action.
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