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1. Introduction

The phase field method has been widely exploited in various fields, investigating interface dynamics, new
material preparation, polymers and others. Generally, the phase field models are proposed following energy
variation laws by introducing a phase variable ¢, a free energy functional E(¢), and a semi-positive definite
mobility operator ¢, such that the phase field models can be written as
oFE
36
with % the variational derivative of E with respect to ¢. Given a specific free energy E and a mobility
operator ¢, a phase field model will be derived by following (1.1). The generic phase field model in (1.1)
is also known as a gradient flow system. Considering the regular domain {2, we introduce notations of the
inner product and the L? norm over 2 as (f,g) = [, fgdx, and ||f|| = \/(f, f), for all f,g € L*(£2). One of
its intrinsic properties is the so-called energy dissipation law
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where we have assumed all the boundary integrals vanish. Such assumptions can be justified given proper
Neumann or periodic boundary conditions.

Because the gradient flow system in (1.1) is usually highly nonlinear, the analytical solutions are not
accessible in general, making numerical approximation a better option. Developing effective, accurate, and
stable schemes for the phase field models has been an active topic for decades. In the past few years, some
noticeable achievements have been made, including the invariant energy quadratization (IEQ) method [1-4],
the scalar auxiliary variable (SAV) method [4,5] and relaxation approaches [6,7]. The first step of the IEQ-
type and SAV-type methods is to introduce one or several auxiliary variables. Then the original system is
translated to one equivalent PDE system. Based on the equivalent system, people can construct high-order
structure-preserving numerical schemes by discretizing the time derivative of the auxiliary variable equations.

Inspired by the scheme for nonlinear schrédinger equation [8], we propose a novel linear relaxation scheme
for phase field models or gradient flow systems. Unlike the IEQ-type and SAV-type methods, we do not need
to take the time derivative of the auxiliary variables, making the schemes more consistent with the original
PDE problem. To better explain our idea, we focus on the broadly used Allen—Cahn (AC) equation and
the Cahn—Hilliard (CH) equation with the double-well bulk potentials in this letter. However, we emphasize
that our idea can be easily applied to several other phase field models with minor adjustments.

The rest of this letter is organized as follows. We first introduce the linear relaxation schemes for the
AC and CH equations in Section 2, followed by the proofs to show the schemes’ energy stability properties.
Then, we present several numerical tests to illustrate the schemes’ effectiveness in Section 3. In the end, we
draw a brief conclusion.

2. Linear relaxation schemes
2.1. Linear relaxzation schemes for the AC equation

Consider the Allen—Cahn equation

Ohp = e*Ap — (¢° - 9), (2.1)
2
1
with its free energy F(¢) = / {%|V¢|2 + Z((/ﬁQ — 1)2] dx. We introduce the relaxation variable
Q
g=¢*—1—~, (2.2)

where «y is a stabilization parameter [9]. Unlike the IEQ or SAV methods that take the time derivatives
for (2.2), we try to discretize (2.2) on a staggered time meshes. The linear relaxation numerical scheme is
proposed as
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The scheme above is second-order in time. Now, we will show its energy stability property.
Theorem 2.1. The scheme (2.3)—(2.4) is energy stable, with the following energy law
B(¢",q"2) = B(6".q" %) = ~t|u" 2|, n >0,
with the chemical potential u”"'% defined as
n+1 n n+1 n n+1 n
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and the free energy E($,q) defined as

_é 2, Vg2 L 9 L, 2y +7°
B(¢.q) = SIV6l* + ZlI6l* + (Fa(6* — 1 =) = 3¢%1) - L. (2.6)

Proof. Multiplying (2.4) with ¢"*% — ¢"~% leads us to
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Multiplying (2.3) with Stun+a, we get
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Applying (2.7) to (2.8) and multlplymg = on both sides, we arrive at
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This indicates
1

B(6",q"2) — B(¢6".q" %) = ~3t|u" 2%, n >0,
The proof is complete. [
Remark 2.1. Here we briefly explain that the modified free energy in (2.6) is consistent with the original
energy. Intuitively, we shall have
E(¢" ")
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2.2. Linear relaxation schemes for the CH equation

Consider the Cahn—Hilliard equation

p=—Ap+(¢* - 9), (2.10)

2 1
with its free energy E = / {%\V(]ﬁﬁ + 1((/52 - 1)2} dx. Similarly as (2.2), we introduce the same relaxation
Q
variable

= —1—n, (2.11)

where ~ is a stabilization parameter [9]. We use the same strategy in the AC model to discretize ¢ as
represented in (2.11) on staggered time grids. The linear relaxation numerical scheme is proposed as

n+l _ in n+1 n
¢ O At (2.12)
ot 2
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2 2 2 2
qn—i-% +qn—§ 9
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The scheme above is second-order in time. Next, we present its energy stability property.
Theorem 2.2. The scheme (2.12)—(2.14) is energy stable with the following energy law
n+l n+i n n—=iy n+l)2
E(¢"",q"T2) = E(¢",¢"72) = —at|[Vp" T 2|5, n =0,
where the chemical potential is defined as
n+1 n n+1 n n+1 n
2 2 2
and the free energy is defined as
g2 v 1 1 2y 4+ 2
B(g,0) = SIVOI? + 216l + (5a6* — 1= 7) - 7%1) - gl (216)

The proof of Theorem 2.2 is similar to Theorem 2.1. We have omitted it due to space limitations.

3. Numerical results

In the rest of this section, we use v = 2.0 for numerical tests. Detailed discussions on the choices of ~
are skipped due to space limitations. Interested readers are encouraged to refer to our earlier work [9]. We
use the finite element method for spatial discretization and choose piecewise linear polynomial bases for
simplicity. And the homogeneous Neumann boundary conditions are considered for all cases below.

Firstly, we test the convergence order of the proposed relaxation schemes. Consider the domain {2 =
[0,1] x [0,1]. For an easy convergence test, we manufacture the exact solution ¢(z,y,t) = cos(wx) cos(my)
exp(—t) by adding forcing terms on the right hand sides of (2.1) and (2.9)—(2.10). Therefore the initial
condition is given as ¢(z,y,0) = cos(mz)cos(my). Assume the parameter ¢ = 1 for the AC model, and
e =1, M =1 for the CH model. For different mesh size h and 6t = h, we calculate the errors at ¢t = 1,
as summarized in Tables 3.1 and 3.2. We could easily observe that the proposed relaxation schemes reach
second-order time and second-order spatial accuracy in both the L?-norm and the L*-norm.

4



M. Jiang and J. Zhao Applied Mathematics Letters 137 (2023) 108477

Table 3.1
Convergence test results for ¢ for the AC equation.
h Convergence rates in space Convergence rates in time
L= rate L? Rate L= rate L? rate
1/8 1.33e—01 - 1.10e—01 - 1.33e—01 - 1.10e—01 -
1/16 3.38¢—02 2.0 2.70e—02 2.0 3.38¢—02 2.0 2.70e—02 2.0
1/32 8.70e—03 2.0 6.72e—03 2.0 8.70e—03 2.0 6.72e—03 2.0
1/64 2.25e—03 2.0 1.68e—03 2.0 2.25e—03 2.0 1.68e—03 2.0
1/128 5.87e—04 2.0 4.19e—04 2.0 5.87e—04 2.0 4.19e—04 2.0
Table 3.2
Convergence test results for ¢ for the CH equation.
h Convergence rates in space Convergence rates in time
L= rate L? Rate L= rate L? rate
1/16 3.50e—01 - 3.30e—01 - 3.50e—01 - 3.30e—01 -
1/32 8.59e—02 2.0 8.24e—02 2.0 8.59e—02 2.0 8.24e—02 2.0
1/64 2.14e—02 2.0 2.06e—02 2.0 2.14e—02 2.0 2.06e—02 2.0
1/128 5.36e—03 2.0 5.15e—03 2.0 5.36e—03 2.0 5.15e—03 2.0
1/256 1.35e—03 2.0 1.29e¢—03 2.0 1.35e—03 2.0 1.29e¢—03 2.0
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Fig. 3.1. Coarsening dynamics in a L-shape domain. In (a), the dynamics is driven by the AC model. We set §t = 0.01, and the
profiles of ¢ at t = 0,14, 80,120 are shown; In (b), the dynamics is driven by the CH model. We set 6t = 0.001, and the profiles of
@ at t = 0,0.4, 3,20 are shown.

Secondly, we consider problems in the L-shape domain, with the maximum border length as one. Similarly
with the benchmark problem in [10], we set up four disks in the 2D domain as an initial condition shown in
the first column of Fig. 3.1(a) and (b). The parameters are € = 0.01 in the AC model and e = 0.01, M = 0.1
in CH model, respectively. It is known that the disks will eventually disappear in the dynamics process
driven by the AC equation as the total volume is not conserved, which is observed as shown in Fig. 3.1(a).
For the dynamics driven by the CH model, it is known that the total volume is conserved, so a large disk
will eventually form. These dynamics are observed in Fig. 3.1(b). This numerical example illustrates the
effectiveness and accuracy of the proposed relaxation schemes.

Next, we consider the circular domain with one square hole inside. We use the same initial condition as
the example above. Specifically, we set up four disks in the 2D domain as an initial condition, as shown in
Fig. 3.2(a) and (b). The parameters are ¢ = 0.04 for the AC model and ¢ = 0.04, M = 0.1 for the CH
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Fig. 3.2. Coarsening dynamics in a circular domain. In (a), the dynamics is driven by the AC equation. We set §t = 0.1, and the

(b) ¢ at t=0,10,50,100
profiles of ¢ at t = 0, 10, 50, 100 are shown; In (b), the dynamics is driven by the CH equation. We set 6t = 0.01, and the profiles of
¢ at t = 0,10, 50,100 are shown.

o

S
o

model, respectively. Similarly, we observe the shrinking of disks in the dynamics driven by the AC model, as
shown in Fig. 3.2(a), and the formation of a large disk in the dynamics driven by the CH model, as shown
in Fig. 3.2(b).

4. Conclusion

In this letter, we propose novel linear relaxation schemes for the Allen-Cahn-type and Cahn-Hilliard-type
phase-field models. The relaxation schemes differ from existing numerical schemes for phase field models.
The main idea is to introduce one proper auxiliary variable and discretize the transformed PDEs on a
staggered time mesh. We present rigorous proofs to show the unconditional energy stable property of the
novel relaxation scheme for solving the AC and CH equations. Numerical examples further illustrate the
effectiveness and accuracy of the proposed linear relaxation scheme. The proposed idea could be readily
applied to some other phase field models or gradient flow PDEs, which will be further investigated in our
later research.

Data availability
No data was used for the research described in the article.
Acknowledgments

M. Jiang’s work was supported partially by the Natural Science Foundation of Shandong Province (Grant
number ZR2021QA018) and National Natural Science Foundation of China (Grant No. 12071046). J. Zhao
would like to acknowledge the support from the USA’s National Science Foundation (NSF) with grant
DMS-2111479.



M. Jiang and J. Zhao Applied Mathematics Letters 137 (2023) 108477

References
[1] X. Yang, J. Zhao, Q. Wang, Numerical approximations for the molecular beam epitaxial growth model based on the
invariant energy quadratization method, J. Comput. Phys. 333 (2017) 102-127.
[2] Y. Gong, J. Zhao, Energy-stable Runge-Kutta schemes for gradient flow models using the energy quadratization
approach, Appl. Math. Lett. 94 (2019) 224-231.
[3] X. Yang, Linear, first and second-order, unconditionally energy stable numerical schemes for the phase field model of
homopolymer blends, J. Comput. Phys. 327 (2016) 294-316.
[4] J. Shen, X. Yang, The IEQ and SAV approaches and their extensions for a class of highly nonlinear gradient flow
systems, Contemp. Math. 754 (2020) 217-245.
[5] J. Shen, J. Xu, J. Yang, The scalar auxiliary variable (SAV) approach for gradient flows, J. Comput. Phys. 353 (2018)
407-416.
[6] J. Zhao, A revisit of the energy quadratization method with a relaxation technique, Appl. Math. Lett. 120 (2021) 107331.
[7] M. Jiang, Z. Zhang, J. Zhao, Improving the accuracy and consistency of the scalar auxiliary variable (SAV) method
with relaxatio, J. Comput. Phys. 456 (2022) 110954.
[8] C. Besse, A relaxation scheme for the nonlinear Schrédinger equation, SIAM J. Numer. Anal. 42 (3) (2004) 934-952.
[9] L. Chen, J. Zhao, X. Yang, Regularized linear schemes for the molecular beam epitaxy model with slope selection, Appl.
Numer. Math. 128 (2018) 1876-1892.
[10] J.M. Church, Z. Guo, P.K. Jimack, A. Madzvamuse, K. Promislow, B. Wetton, S. Wise, F. Yang, High accuracy

benchmark problems for Allen-Cahn and Cahn-Hilliard dynamics, Commun. Comput. Phys. 26 (2019) 947-972.


http://refhub.elsevier.com/S0893-9659(22)00340-8/sb1
http://refhub.elsevier.com/S0893-9659(22)00340-8/sb1
http://refhub.elsevier.com/S0893-9659(22)00340-8/sb1
http://refhub.elsevier.com/S0893-9659(22)00340-8/sb2
http://refhub.elsevier.com/S0893-9659(22)00340-8/sb2
http://refhub.elsevier.com/S0893-9659(22)00340-8/sb2
http://refhub.elsevier.com/S0893-9659(22)00340-8/sb3
http://refhub.elsevier.com/S0893-9659(22)00340-8/sb3
http://refhub.elsevier.com/S0893-9659(22)00340-8/sb3
http://refhub.elsevier.com/S0893-9659(22)00340-8/sb4
http://refhub.elsevier.com/S0893-9659(22)00340-8/sb4
http://refhub.elsevier.com/S0893-9659(22)00340-8/sb4
http://refhub.elsevier.com/S0893-9659(22)00340-8/sb5
http://refhub.elsevier.com/S0893-9659(22)00340-8/sb5
http://refhub.elsevier.com/S0893-9659(22)00340-8/sb5
http://refhub.elsevier.com/S0893-9659(22)00340-8/sb6
http://refhub.elsevier.com/S0893-9659(22)00340-8/sb7
http://refhub.elsevier.com/S0893-9659(22)00340-8/sb7
http://refhub.elsevier.com/S0893-9659(22)00340-8/sb7
http://refhub.elsevier.com/S0893-9659(22)00340-8/sb8
http://refhub.elsevier.com/S0893-9659(22)00340-8/sb9
http://refhub.elsevier.com/S0893-9659(22)00340-8/sb9
http://refhub.elsevier.com/S0893-9659(22)00340-8/sb9
http://refhub.elsevier.com/S0893-9659(22)00340-8/sb10
http://refhub.elsevier.com/S0893-9659(22)00340-8/sb10
http://refhub.elsevier.com/S0893-9659(22)00340-8/sb10

	Linear relaxation schemes for the Allen–Cahn-type and Cahn–Hilliard-type phase field models
	Introduction
	Linear relaxation schemes
	Linear relaxation schemes for the AC equation
	Linear relaxation schemes for the CH equation

	Numerical results
	Conclusion
	Data availability
	Acknowledgments
	References


