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a b s t r a c t

This letter introduces novel linear relaxation schemes for solving the phase field
models, particularly the Allen–Cahn (AC) type and Cahn–Hilliard (CH) type
equations. The proposed schemes differ from existing schemes for the phase
field models in the literature. The resulting semi-discrete schemes are linear by
discretizing the AC and CH models on staggered time meshes. Only a linear
algebra problem needs to be solved at each time marching step after the spatial
discretization. Furthermore, our proposed schemes are shown to be unconditionally
energy stable, i.e., the numerical solutions respect energy dissipation laws without
restriction on the time steps. Several numerical examples are provided to illustrate
the power of the proposed linear relaxation schemes for solving phase field models.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

The phase field method has been widely exploited in various fields, investigating interface dynamics, new
material preparation, polymers and others. Generally, the phase field models are proposed following energy
variation laws by introducing a phase variable ϕ, a free energy functional E(ϕ), and a semi-positive definite

obility operator G , such that the phase field models can be written as

∂tϕ = −G
δE

δϕ
, (1.1)

ith δE
δϕ the variational derivative of E with respect to ϕ. Given a specific free energy E and a mobility

perator G , a phase field model will be derived by following (1.1). The generic phase field model in (1.1)
s also known as a gradient flow system. Considering the regular domain Ω , we introduce notations of the
nner product and the L2 norm over Ω as (f, g) =

∫
Ω

fgdx, and ∥f∥ =
√

(f, f), for all f, g ∈ L2(Ω). One of
ts intrinsic properties is the so-called energy dissipation law

dE

dt
=

(δE

δϕ
,

∂ϕ

∂t

)
= −

(δE

δϕ
, G

δE

δϕ

)
≤ 0,
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here we have assumed all the boundary integrals vanish. Such assumptions can be justified given proper
eumann or periodic boundary conditions.
Because the gradient flow system in (1.1) is usually highly nonlinear, the analytical solutions are not

ccessible in general, making numerical approximation a better option. Developing effective, accurate, and
table schemes for the phase field models has been an active topic for decades. In the past few years, some
oticeable achievements have been made, including the invariant energy quadratization (IEQ) method [1–4],
he scalar auxiliary variable (SAV) method [4,5] and relaxation approaches [6,7]. The first step of the IEQ-
ype and SAV-type methods is to introduce one or several auxiliary variables. Then the original system is
ranslated to one equivalent PDE system. Based on the equivalent system, people can construct high-order
tructure-preserving numerical schemes by discretizing the time derivative of the auxiliary variable equations.

Inspired by the scheme for nonlinear schrödinger equation [8], we propose a novel linear relaxation scheme
or phase field models or gradient flow systems. Unlike the IEQ-type and SAV-type methods, we do not need
o take the time derivative of the auxiliary variables, making the schemes more consistent with the original
DE problem. To better explain our idea, we focus on the broadly used Allen–Cahn (AC) equation and

he Cahn–Hilliard (CH) equation with the double-well bulk potentials in this letter. However, we emphasize
hat our idea can be easily applied to several other phase field models with minor adjustments.

The rest of this letter is organized as follows. We first introduce the linear relaxation schemes for the
C and CH equations in Section 2, followed by the proofs to show the schemes’ energy stability properties.
hen, we present several numerical tests to illustrate the schemes’ effectiveness in Section 3. In the end, we
raw a brief conclusion.

. Linear relaxation schemes

.1. Linear relaxation schemes for the AC equation

Consider the Allen–Cahn equation

∂tϕ = ε2∆ϕ − (ϕ3 − ϕ), (2.1)

ith its free energy E(ϕ) =
∫
Ω

[ε2

2 |∇ϕ|2 + 1
4(ϕ2 − 1)2

]
dx. We introduce the relaxation variable

q = ϕ2 − 1 − γ, (2.2)

where γ is a stabilization parameter [9]. Unlike the IEQ or SAV methods that take the time derivatives
for (2.2), we try to discretize (2.2) on a staggered time meshes. The linear relaxation numerical scheme is
roposed as

ϕn+1 − ϕn

δt
= ε2∆

ϕn+1 + ϕn

2 − qn+ 1
2

ϕn+1 + ϕn

2 − γ
ϕn+1 + ϕn

2 , (2.3)

qn+ 1
2 + qn− 1

2

2 = (ϕn)2 − 1 − γ. (2.4)

The scheme above is second-order in time. Now, we will show its energy stability property.

Theorem 2.1. The scheme (2.3)–(2.4) is energy stable, with the following energy law

E(ϕn+1, qn+ 1
2 ) − E(ϕn, qn− 1

2 ) = −δt∥µn+ 1
2 ∥2, n ≥ 0.

ith the chemical potential µn+ 1
2 defined as

µn+ 1
2 := −ε2∆

ϕn+1 + ϕn

+ qn+ 1
2

ϕn+1 + ϕn

+ γ
ϕn+1 + ϕn

, (2.5)
2 2 2
2
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nd the free energy E(ϕ, q) defined as

E(ϕ, q) = ε2

2 ∥∇ϕ∥2 + γ

2 ∥ϕ∥2 +
(1

2q(ϕ2 − 1 − γ) − 1
4q2, 1

)
− 2γ + γ2

4 |Ω |. (2.6)

roof. Multiplying (2.4) with qn+ 1
2 − qn− 1

2 leads us to
1
2

(
qn+ 1

2
)2

− 1
2

(
qn− 1

2
)2

=
(

(ϕn)2 − 1 − γ
)(

qn+ 1
2 − qn− 1

2
)

. (2.7)

Multiplying (2.3) with δtµn+ 1
2 , we get(

ϕn+1 − ϕn, −ε2∆
ϕn+1 + ϕn

2 + qn+ 1
2

ϕn+1 + ϕn

2 + γ
ϕn+1 + ϕn

2

)
= −δt∥µn+ 1

2 ∥2.

.e.
ε2

2 (∥∇ϕn+1∥2 − ∥∇ϕn∥2) + γ

2

(
∥ϕn+1∥2 − ∥ϕn∥2

)
+ 1

2

(
qn+ 1

2 (ϕn+1)2, 1
)

− 1
2

(
qn+ 1

2 (ϕn)2, 1
)

= −δt∥µn+ 1
2 ∥2.

Notice the fact

qn+ 1
2
[
(ϕn+1)2 − (ϕn)2

]
= qn+ 1

2
[
(ϕn+1)2 − (ϕn)2

]
+ qn− 1

2
[
(ϕn)2 − (ϕn)2

]
= qn+ 1

2
(

(ϕn+1)2 − 1 − γ
)

− qn− 1
2
(

(ϕn)2 − 1 − γ
)

− (qn+ 1
2 − qn− 1

2 )
(

(ϕn)2 − 1 − γ
)

. (2.8)

Applying (2.7) to (2.8) and multiplying 1
2 on both sides, we arrive at

1
2qn+ 1

2
[
(ϕn+1)2 − (ϕn)2

]
= 1

2qn+ 1
2
(

(ϕn+1)2 − 1 − γ
)

− 1
2qn− 1

2
(

(ϕn)2 − 1 − γ
)

− 1
4

(
qn+ 1

2
)2

+ 1
4

(
qn− 1

2
)2

.

Finally, we have

ε2

2 (∥∇ϕn+1∥2 − ∥∇ϕn∥2) + γ

2

(
∥ϕn+1∥2 − ∥ϕn∥2

)
+ 1

2

(
qn+ 1

2 ((ϕn+1)2 − 1 − γ), 1
)

− 1
2

(
qn− 1

2 ((ϕn)2 − 1 − γ), 1
)

− 1
4∥qn+ 1

2 ∥2 + 1
4∥qn− 1

2 ∥2 = −δt∥µn+ 1
2 ∥2.

This indicates
E(ϕn+1, qn+ 1

2 ) − E(ϕn, qn− 1
2 ) = −δt∥µn+ 1

2 ∥2, n ≥ 0.

he proof is complete. □

emark 2.1. Here we briefly explain that the modified free energy in (2.6) is consistent with the original
nergy. Intuitively, we shall have

E(ϕn+1, qn+ 1
2 )

= ε2

2 ∥∇ϕn+1∥2 + γ

2 ∥ϕn+1∥2 +
(1

2qn+ 1
2 ((ϕn+1)2 − 1 − γ) − 1

4(qn+ 1
2 )2, 1

)
≈ ε2

2 ∥∇ϕn+1∥2 + γ

2 ∥ϕn+1∥2 +
(1

2
(ϕn+1)2 − 1 − γ + (ϕn)2 − 1 − γ

2 ((ϕn+1)2 − 1 − γ)

− 1
4

( (ϕn+1)2 − 1 − γ + (ϕn)2 − 1 − γ

2

)2
, 1

)
= ε2

2 ∥∇ϕn+1∥2 + γ

2 ∥ϕn+1∥2 + 1
4∥(ϕn+1)2 − 1 − γ∥2 − 2γ + γ2

4 |Ω |

= ε2

2 ∥∇ϕn+1∥2 + 1
4∥(ϕn+1)2 − 1∥2

= E(ϕn+1).

3
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.2. Linear relaxation schemes for the CH equation

Consider the Cahn–Hilliard equation

∂tϕ = M∆µ, (2.9)
µ = −ε2∆ϕ + (ϕ3 − ϕ), (2.10)

with its free energy E =
∫
Ω

[ε2

2 |∇ϕ|2 + 1
4(ϕ2 − 1)2

]
dx. Similarly as (2.2), we introduce the same relaxation

variable
q = ϕ2 − 1 − γ, (2.11)

where γ is a stabilization parameter [9]. We use the same strategy in the AC model to discretize q as
represented in (2.11) on staggered time grids. The linear relaxation numerical scheme is proposed as

ϕn+1 − ϕn

δt
= M∆

µn+1 + µn

2 , (2.12)

µn+1 + µn

2 = −ε2∆
ϕn+1 + ϕn

2 + qn+ 1
2

ϕn+1 + ϕn

2 + γ
ϕn+1 + ϕn

2 , (2.13)

qn+ 1
2 + qn− 1

2

2 = (ϕn)2 − 1 − γ. (2.14)

The scheme above is second-order in time. Next, we present its energy stability property.

Theorem 2.2. The scheme (2.12)–(2.14) is energy stable with the following energy law

E(ϕn+1, qn+ 1
2 ) − E(ϕn, qn− 1

2 ) = −δt∥∇µn+ 1
2 ∥2, n ≥ 0,

here the chemical potential is defined as

µn+ 1
2 := −ε2∆

ϕn+1 + ϕn

2 + qn+ 1
2

ϕn+1 + ϕn

2 + γ
ϕn+1 + ϕn

2 , (2.15)

nd the free energy is defined as

E(ϕ, q) = ε2

2 ∥∇ϕ∥2 + γ

2 ∥ϕ∥2 +
(1

2q(ϕ2 − 1 − γ) − 1
4q2, 1

)
− 2γ + γ2

4 |Ω |. (2.16)

The proof of Theorem 2.2 is similar to Theorem 2.1. We have omitted it due to space limitations.

. Numerical results

In the rest of this section, we use γ = 2.0 for numerical tests. Detailed discussions on the choices of γ

re skipped due to space limitations. Interested readers are encouraged to refer to our earlier work [9]. We
se the finite element method for spatial discretization and choose piecewise linear polynomial bases for
implicity. And the homogeneous Neumann boundary conditions are considered for all cases below.

Firstly, we test the convergence order of the proposed relaxation schemes. Consider the domain Ω =
0, 1] × [0, 1]. For an easy convergence test, we manufacture the exact solution ϕ(x, y, t) = cos(πx) cos(πy)
xp(−t) by adding forcing terms on the right hand sides of (2.1) and (2.9)–(2.10). Therefore the initial
ondition is given as ϕ(x, y, 0) = cos(πx) cos(πy). Assume the parameter ϵ = 1 for the AC model, and
= 1, M = 1 for the CH model. For different mesh size h and δt = h, we calculate the errors at t = 1,

s summarized in Tables 3.1 and 3.2. We could easily observe that the proposed relaxation schemes reach
second-order time and second-order spatial accuracy in both the L2-norm and the L∞-norm.
4
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Table 3.1
Convergence test results for ϕ for the AC equation.

h Convergence rates in space Convergence rates in time

L∞ rate L2 Rate L∞ rate L2 rate

1/8 1.33e−01 – 1.10e−01 – 1.33e−01 – 1.10e−01 –
1/16 3.38e−02 2.0 2.70e−02 2.0 3.38e−02 2.0 2.70e−02 2.0
1/32 8.70e−03 2.0 6.72e−03 2.0 8.70e−03 2.0 6.72e−03 2.0
1/64 2.25e−03 2.0 1.68e−03 2.0 2.25e−03 2.0 1.68e−03 2.0
1/128 5.87e−04 2.0 4.19e−04 2.0 5.87e−04 2.0 4.19e−04 2.0

Table 3.2
Convergence test results for ϕ for the CH equation.

h Convergence rates in space Convergence rates in time

L∞ rate L2 Rate L∞ rate L2 rate

1/16 3.50e−01 – 3.30e−01 – 3.50e−01 – 3.30e−01 –
1/32 8.59e−02 2.0 8.24e−02 2.0 8.59e−02 2.0 8.24e−02 2.0
1/64 2.14e−02 2.0 2.06e−02 2.0 2.14e−02 2.0 2.06e−02 2.0
1/128 5.36e−03 2.0 5.15e−03 2.0 5.36e−03 2.0 5.15e−03 2.0
1/256 1.35e−03 2.0 1.29e−03 2.0 1.35e−03 2.0 1.29e−03 2.0

Fig. 3.1. Coarsening dynamics in a L-shape domain. In (a), the dynamics is driven by the AC model. We set δt = 0.01, and the
rofiles of ϕ at t = 0, 14, 80, 120 are shown; In (b), the dynamics is driven by the CH model. We set δt = 0.001, and the profiles of

at t = 0, 0.4, 3, 20 are shown.

Secondly, we consider problems in the L-shape domain, with the maximum border length as one. Similarly
ith the benchmark problem in [10], we set up four disks in the 2D domain as an initial condition shown in

he first column of Fig. 3.1(a) and (b). The parameters are ϵ = 0.01 in the AC model and ϵ = 0.01, M = 0.1
in CH model, respectively. It is known that the disks will eventually disappear in the dynamics process
driven by the AC equation as the total volume is not conserved, which is observed as shown in Fig. 3.1(a).
For the dynamics driven by the CH model, it is known that the total volume is conserved, so a large disk
will eventually form. These dynamics are observed in Fig. 3.1(b). This numerical example illustrates the
effectiveness and accuracy of the proposed relaxation schemes.

Next, we consider the circular domain with one square hole inside. We use the same initial condition as
the example above. Specifically, we set up four disks in the 2D domain as an initial condition, as shown in

Fig. 3.2(a) and (b). The parameters are ϵ = 0.04 for the AC model and ϵ = 0.04, M = 0.1 for the CH

5
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Fig. 3.2. Coarsening dynamics in a circular domain. In (a), the dynamics is driven by the AC equation. We set δt = 0.1, and the
rofiles of ϕ at t = 0, 10, 50, 100 are shown; In (b), the dynamics is driven by the CH equation. We set δt = 0.01, and the profiles of

at t = 0, 10, 50, 100 are shown.

odel, respectively. Similarly, we observe the shrinking of disks in the dynamics driven by the AC model, as
hown in Fig. 3.2(a), and the formation of a large disk in the dynamics driven by the CH model, as shown
n Fig. 3.2(b).

. Conclusion

In this letter, we propose novel linear relaxation schemes for the Allen–Cahn-type and Cahn–Hilliard-type
hase-field models. The relaxation schemes differ from existing numerical schemes for phase field models.
he main idea is to introduce one proper auxiliary variable and discretize the transformed PDEs on a

taggered time mesh. We present rigorous proofs to show the unconditional energy stable property of the
ovel relaxation scheme for solving the AC and CH equations. Numerical examples further illustrate the
ffectiveness and accuracy of the proposed linear relaxation scheme. The proposed idea could be readily
pplied to some other phase field models or gradient flow PDEs, which will be further investigated in our
ater research.
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