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Abstract—The ever-growing demands on wireless connectivity,
especially with the emergence of various data-intensive low-
latency applications, require novel multiplexing solutions capable
of reliably supporting high rates at low latency. Non-orthogonal
time division duplex (TDD) coupled with multiuser detection can
meet these emerging needs, provided that accurate channel state
information is available. This paper proposes a new pilot-free
TDD frame structure that allows designing highly effective mul-
tiuser decoders and precoders for uplink and downlink multicell
systems, in an unsupervised manner. The key idea is that each
user repeats and permutes its uplink data using a pre-assigned
permutation code. Invoking canonical correlation analysis (CCA)
at the serving BS on the two deinterleaved uplink blocks yields
high quality CCA-based beamformers capable of both recovering
the uplink and precoding the downlink user signals in a way that
effectively mitigates interference. The paper includes a pilotless
synchronization framework that leverages CCA to recover the
timing and frequency offsets in an asynchronous multiuser
MIMO setup, without using pilots. Simulations are used to
study the performance of the proposed approach on a large-
scale network with multiple users and cells, while laboratory
experiments with a small-scale network of software radios are
used to demonstrate that the approach works well in practice
under common hardware imperfections.

Index Terms—Time division duplex (TDD), downlink, uplink,
multiuser detection, multiple-input-multiple-output (MIMO),
canonical correlation analysis (CCA), blind detection, repetition
coding, identifiability, software defined radio (SDR), synchroniza-
tion.

I. INTRODUCTION

Supporting higher end-user data rates under the stringent
requirements associated with the newly defined use cases
in 5G/NR, namely ultra reliable low latency communication
(URLLC) and enhanced mobile broadband (eMBB), represents
a critical challenge for the next generation of cellular systems
[1], [2]. The situation is further complicated by the emergence
of new and diverse services, such as mobile virtual reality,
and vehicle to everything (V2X) [3] services, which result in
unprecedented strain on the available bandwidth [4].
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Such challenges have underscored the need to develop new
technologies which are capable of providing higher system
throughput and extremely low latency [5]. Multiple access is a
key critical component of these technologies [6]. For instance,
orthogonal multiple access techniques provide interference-
free communication where different user transmissions happen
in different time/frequency or use orthogonal codes, enabling
the use of low complexity receivers. While orthogonal multiple
access guarantees high end-user data rates as there is no inter-
user interference, this comes at the expense of latency due to
the limited number of communication resources.

Spatial multiplexing and multiuser detection (MUD) enable
simultaneous co-channel transmission and decoding of multi-
ple user signals [7], [8], exploiting multiple antennas at the re-
ceiver to spatially separate the desired user signals. MUD tech-
niques play a vital role in enhancing current communication
systems performance [9]. MUD using maximum-likelihood
(MLD) [7], the sphere decoder (SD) [10], or semi-definite
relaxation (SDR) [11] can offer excellent detection perfor-
mance but at very high computational complexity, thereby
limiting the use of MUD in current cellular systems. Linear
multiuser detectors, such as zero-forcing (ZF) and minimum
mean square error (MMSE) [12], are more appropriate for
adoption in practical systems [13] because of their lower
complexity compared to MLD, SD, and SDR. Such a reduction
in complexity, however, comes at the expense of performance,
especially at low signal-to-noise ratios (SNR) and/or under
near-far effects.

The common issue with all MUD techniques is that their
performance is dependent on how accurate the channel es-
timates of the users are. In the context of cellular systems,
the base station (BS) in each cell estimates the channels
of the users that it serves using orthogonal pilot sequences
transmitted by those users as well as users in neighbouring
cells. The performance of channel estimation is also affected
by the number of neighbouring cells considered in generat-
ing orthogonal pilot sequences – a problem referred to as
pilot contamination [13], [14]. While estimating the served
user channels allows ZF/MMSE based detectors/precoders to
eliminate intra-cell interference, the inter-cell interference still
remains and represents a major obstacle that impacts the
performance of such methods.

This naturally raises the following question. Is it possible
to bypass the channel estimation stage and directly design an
unsupervised, low-complexity precoder capable of providing
reliable communication in a multicell multiuser system?

In this paper we shall answer the above question in the
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affirmative, by proposing a new pilot-free time division duplex
(TDD) frame structure that involves a simple transmission
strategy from the different users, which in turn allows the
BS to efficiently design effective precoders for the users it
serves. The key idea is that each user in the network forms two
identical blocks of uplink data and then randomly interleaves
the constructed blocks using a unique random permutation.
By exploiting this line code structure, each multi-antenna BS
first de-interleaves the received signal using the permutation
associated with one of its assigned users. Then, the BS
creates a pair of signal views that only share one common
signal corresponding to the user whose permutation code
was used – all other signals will still be randomly permuted
since the permutation codes are unique. Applying canonical
correlation analysis (CCA) to these two views, high-quality
CCA-based precoders (also known as CCA canonical vectors)
can be obtained to recover the uplink signal of the desired
user even under strong inter- and intra-cell interference. The
obtained CCA precoders are then used to beamform downlink
user signals. More efficient TDD frame structures that can
potentially improve the uplink data rates are also considered
in this work.

CCA is a widely-used machine learning tool that aims at
finding two linear combinations of two random vectors such
that the resulting random variable is maximally correlated [15],
[16]. Recently, we discovered a purely algebraic interpretation
of CCA as a tool that identifies a shared ”common” subspace
between two signal views, under relatively mild conditions,
even if the ”uncommon” (not shared) components of each view
are orders of magnitude stronger than the shared ones [17].
The application considered herein adds to the growing list of
CCA applications including, but not limited to, equalization
[18], radar [19], [20], blind source separation [21], [22], cell-
edge user detection [17], [23], and multi-view learning [24],
[25], to list a few.

Our contributions in this paper can be summarized as
follows:
• We introduce a new pilotless TDD frame structure in a

multicell multiuser network. The frame structure involves
uplink packet repetition with interleaving followed by
downlink data. Utilizing the uplink repetition together
with the assigned unique UE permutation codes, each
BS applies CCA multiple times to design high-quality
precoders that can both recover the uplink signals in the
phase of strong interference and be reused to beamform
the downlink signals to the UEs served by the given BS.

• The proposed approach is entirely unsupervised in that it
designs the different users precoders only by exploiting
the repeated and interleaved uplink data. There is no
need to estimate any user channel state information, and
hence, it is by definition immune to channel estimation
errors caused by near-far effects and pilot contamination.
Further, the method works even if the user-transmitted
signals are analog.

• Computationally, this paper shows that each BS is only
required to perform two matrix inversions regardless of
the number of users it serves; followed by one principal
eigenvector computation (power iteration) for each user

it serves. Hence, the proposed approach is attractive for
practical implementation.

• The proposed approach can deal with practical commu-
nication system issues such as time and frequency syn-
chronization. This paper proposes a lightweight algorithm
that allows each BS to blindly identify the timing and
carrier frequency offsets of the different users it serves,
without using any pilots. Via exploiting the repetition
structure, unique permutation codes and CCA, each BS
performs a double-scan over time and frequency and
tracks the resulting correlation coefficient of CCA. The
method is shown to be effective in identifying the time
and frequency offsets even for very weak users.

• Judicious simulations and laboratory experiments are
carried out in order to convincingly demonstrate how
well the proposed method works in practice. Simulations
are first used to show the effectiveness of the proposed
method in reliably recovering the uplink and downlink
signals, assuming perfect channel reciprocity in a setup
with seven hexagonal interfering cells. A realistic path-
loss model from the 3GPP 38.901 specification is adopted
to test the proposed method. Under different simulation
settings, results show the superior performance of the
pilot-free proposed method compared to ZF, MMSE and
maximum ratio combining (MRC) baselines using fully
orthogonal pilot sequences across all users in all cells –
thus incurring significant overhead and cell coordination,
which our method does not use and does not need.
In order to demonstrate the practical feasibility of our
approach, we built and tested a prototype using software
defined radios for a 2x2 MIMO network, where all the
users are not synchronized. All users together with the
multiple antenna BS were realized using USRP-2920
radios. We conducted multiple experiments including a
scenario with near-far effects to assess the performance of
the proposed CCA framework under realistic conditions.
To maintain channel reciprocity, we used a well known
algorithm to perform antenna calibration. Our laboratory
experiments reveal that the proposed approach can, i)
accurately estimate the timing and frequency offsets of
the different users at the BS, ii) reliably recover the
uplink user signals under power imbalance scenarios with
order of magnitude lower BER compared to ZF, and
iii) reliably decode the different users’ downlink signals,
despite imperfect reciprocity owing to the presence of
small calibration errors.

The remainder of this paper is organized as follows: Section
II provides a brief review of CCA and its various formulations;
Section III presents the system, signal, and channel model;
Section IV introduces a new TDD frame structure and an
uplink transmission protocol; Section V presents a proposed
precoder design; Section VI proposes a new synchronization
method to handle the asynchronous setup; Section VII pro-
vides numerical results including simulations and real experi-
ments; and Section VIII draws conclusions.
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II. CANONICAL CORRELATION ANALYSIS

Canonical correlation analysis (CCA) is a dimensionality-
reducing technique that aims at finding linear relation-
ships between two multi-dimensional data sets Y1 :=

[y
(1)
` , · · · ,y(N)

` ] ∈ CM1×N and Y2 := [y
(1)
2 , · · · ,y(N)

` ] ∈
CM2×N using their second order statistics (cross-correlation
and auto-correlation). Both data sets are assumed to be cen-
tered without loss of generality, otherwise their corresponding
sample means are subtracted as a pre-processing step. Simply
put, CCA seeks to find two base vectors q1 ∈ CM1 and
q2 ∈ CM2 , known as canonical vectors, that aim at extract-
ing two maximally correlated random variables from linear
combinations of the entries of the random vectors y1 and y2.
From a mathematical point of view, the CCA problem can be
expressed as [15], [16]

max
q1,q2

Re
{
qH
1 Y1Y

H
2 q2

}
(1a)

s.t. qH
` Y`Y

H
` q` = 1, ` ∈ {1, 2} , (1b)

where the two scaling constraints in (1) are used to avoid any
trivial solutions. One appealing feature of CCA that makes it
a favorable tool in practice is that solving the optimization
problem (1) to find the canonical vectors q1 and q2 admits a
simple algebraic solution via eigendecomposition [16]. Upon
defining Σi = 1

N YiY
H
i as the sample auto-correlation of the

random vector yi and Σij := 1
N YiY

H
j as the sample cross-

correlation of the two random vectors yi and yj for i, j = 1, 2
and i 6= j, solving (1) is tantamount to solving the eigenvalue
problem

Σ12Σ
−1
2 Σ21q1 = λΣ1q1, (2)

where it can be easily verified that the eigenvalue λ? represents
the square of the correlation coefficient, ρ, between the two
vectors YH

2 q1 and YH
2 q2, where ρ is defined as

ρ(q?
1,q

?
2) = Re{q?H

1 Y1Y
H
2 q?

2}. (3)

Once the optimal q?
1 and λ? are obtained from solving (2),

the optimal q?
2 can be obtained via direct substitution using

q∗2 =
1√
λ∗

Σ−12 Σ21q
∗
1. (4)

An equivalent formulation of (1) is to minimize the Eu-
clidean distance between the low-dimensional representations
YH

1 q1 and YH
2 q2. That is [16], [26]

min
q1,q2

‖YH
1 q1 −YH

2 q2‖22 (5a)

s.t. qH
` Y`Y

H
` q` = 1, ` = 1, 2. (5b)

Expanding the cost of problem (5) and using the constraints,
the equivalence between (1) and (5) can be easily verified;
throughout this work, we will focus on the distance minimiza-
tion formulation of CCA. Note that (1) and (5) can be naturally
extended to find a multi-dimensional common subspace, e.g.,
see [17], but this is not needed herein, as we will only use
single-component CCA.

In what follows, we will see how the canonical vectors in
(5) can be used as high quality combiners/precoders that are
capable of reliably decoding multiuser signals in TDD cellular
networks, even under challenging scenarios, such as powerful
interference or a severe near-far effects.

Fig. 1. System model.

III. SYSTEM AND SIGNAL MODELS

A. Channel Model

Consider a narrowband TDD cellular network comprising
L cells, where each cell has radius R and is served by its
own base station (BS), as shown in Fig. 1. The `-th BS is
equipped with M` antennas, and serves K` single-antenna
user equipment (UE) devices, for ` ∈ [L] := {1, · · · , L}. The
uplink channel response from the k-th UE located in the `-th
cell to the j-th BS is denoted by h`kj ∈ CMj , and is modeled
as

h`kj =
√
β`kjg`kj , (6)

where g`kj ∈ CMj is the vector containing the small scale
fading coefficients, while β`kj ∈ R represents the large scale
fading factor, for k ∈ [K`] := {1, · · · ,K`} and `, j ∈ [L].
Note that for simplicity we assume that the large scale fading
factor β`kj describes the path-loss between the k-th UE located
in the `-th cell and the j-th BS, and accordingly the users
located in the j-th cell are served by the BS located in the same
cell. Similarly, by exploiting the channel reciprocity feature of
TDD systems, the downlink channel response between the BS
in cell j and the k-th UE in cell ` is denoted by hH

`kj , for
`, j ∈ [L] and k ∈ [K`]. The channel vectors of the users
located in the j-th cell and the `-th BS can be expressed in a
more compact form as

H`j = G`jD
1/2
`j , (7)

where H`j = [h`kj , · · · ,h`K`j ] ∈ CMj×K` ,
G`j = [g`kj , · · · ,g`K`j ] ∈ CMj×K` , and
D`j = Diag([β`kj , · · · , β`K`j ]) ∈ RK`×K` . Throughout
this work, we assume that the channels are not known a
priori, i.e. the receivers and transmitters have no knowledge
of any channel state information in the network. Furthermore,
we assume that the channels remain fixed within each
coherence block (to be specified soon).

B. Uplink and Downlink Signal Models

We assume that all cells are sharing the same frequency
band. In other words, all UEs are transmitting their data over
the same time-frequency physical resource block, i.e., non-
orthogonal multiple access. For ease of exposition, we will
begin with a synchronous setup where all user signals are
synchronized at the BSs; however, our approach can effectively
deal with the general asynchronous setup as we will see later.
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Towards this end, the discrete time baseband-equivalent model
of the received multiantenna uplink (UL) signal at the `-th BS,
Y` ∈ CM`×Tu , is given by

Y` =

K∑̀
k=1

√
p`kh`k`s

T
k` +

L∑
j 6=`

Kj∑
k=1

√
pjkhjk`s

T
kj + W`, (8)

where the first term in (8) represents the desired signals that
need to be decoded at the `-th BS, while the second term refers
to the interfering signal from the users in the neighbouring
cells (inter-cell interference). The vector ski ∈ CTu refers to
the uplink signal transmitted by the k-th user located in the i-th
cell, where, Tu is the numebr of uplink symbols. Without loss
of generality, we assume that E[|ski(n)|2] = 1, k ∈ [Ki] and
i ∈ [L]. Further, our approach does not impose any structure
on the transmitted waveforms of the users, and different users
can in fact have different waveforms (digital and/or analog).
The term W` represents additive noise with independent and
identically distributed (i.i.d) elements drawn from complex
Gaussian distribution with zero mean and variance σ2. Finally,
p`k represents the transmit power of the k-th UE in the `-th
cell.

In this work, we assume that all UEs in all cells are active
and are allocated the same power, i.e. p`k = pu, ∀k ∈
[K`] and ` ∈ [L]. In other words, power control and scheduling
techniques are not considered in this work; however, they
can be employed on top of the proposed method for service
differentiation and additional performance improvements.

Given the received signal Y` at the `-th BS, our first
objective is to unravel the uplink data for the users it serves,
i.e., {sk`}K`

k=1, ∀` ∈ [L]. In order to separate the UEs’
signals under strong inter- and intra-cell interference at their
serving BS, the `-th BS needs to design receive beamformers
{qk` ∈ CM`}K`

k=1 capable of recovering the signals of interest.
Conventional beamforming solutions require accurate knowl-
edge of the UEs’ channel responses at their serving BS, i.e.,
qk` = f(Ĥ``), where Ĥ`` holds in its columns the estimated
channel vectors of the served users.

In TDD systems, accurate channel estimation is done
through sending uplink pilot sequences of length Tp at the
beginning of the frame, as shown in Fig. 2(a), to obtain
Ĥ``. The pilot sequence length Tp is a design parameter that
needs to be carefully chosen to guarantee acceptable system
performance. On one hand, long Tp affects the overall spectral
efficiency, while short Tp degrades the UE channel estimates
and makes the pilot contamination problem more severe. Even
with perfect knowledge of the channel vectors for its own
users, classical beamforming can still suffer from inter-cell
interference, as the channels of users in other cells are much
harder to estimate; only in-cell channels are estimated in
practice.

Once the beamformers {qk`}K`

k=1 are designed, the `-th BS
estimates the k-th desired UE uplink signal as sk` = qH

k`Y`,
for ` ∈ [L]. Then, by exploiting the channel reciprocity
feature of the TDD-based protocol [27], the BS transmits
the downlink data to its desired UEs using {qk`}K`

k=1 – this
time as precoders (or, transmit beamformers). Following this

(a)

(b)

Fig. 2. (a) Traditional TDD frame structure. (b) Proposed TDD frame
structure.

approach, the received DL signal, yk` ∈ C1×Td , at the k-th
UE served by the `-th BS can be expressed as

yk` = hH
`k`

K∑̀
k=1

√
αk`qk`d

T
k` +

L∑
j 6=`

hH
jk`

Kj∑
k=1

√
αkjqkjd

T
kj

+ wk`, ∀k ∈ [K`], ` ∈ [L]. (9)

where dk` ∈ CTd contains the DL payload data from the `-th
BS to its k-th serving UE, and αk` stands for the corresponding
allocated power to each UE. The term wk` represents noise
with i.i.d entries drawn from a complex Gaussian distribution
with zero mean and variance σ2

d. Note that we take the DL
channel as the Hermitian (conjugate) transpose of the UL
channel, whereas reciprocity implies that the two are the
same up to transposition. Our use of the Hermitian transpose
is merely for mathematical and notational convenience. The
classical uplink detection methods, namely zero-forcing (ZF)
or minimum mean squared error (MMSE) (and their decision-
directed variants), require accurate channel estimates for the
in-cell users to deliver acceptable detection performance. We
will next propose a simple UE transmission protocol, which
will be subsequently leveraged to obtain very effective UL/DL
BS beamformers/precoders for use in multicell multiuser sys-
tems.

IV. PROPOSED UPLINK TRANSMISSION SCHEME

Instead of using the traditional TDD frame structure that
employs pilots, uplink data and then downlink data (see
Fig. 2(a)), we propose a new frame structure that basically
transmits the uplink data twice, followed by the downlink
data. The uplink transmission scheme consists of two steps:
repetition and interleaving. First, the k-th UE served by the
`-th BS constructs two blocks by simply sending its signal
sk` ∈ CTu twice. Upon forming the two back-to-back blocks,
i.e., [sTk`, s

T
k`]

T , the k-th UE interleaves the 2Tu symbols
(samples for analog transmission), in a random manner. The
transmitted signal, xk` ∈ C2Tu , from the k-th UE after
repetition and interleaving can be written as

xk` = Πk`

[
sk`
sk`

]
, ∀k ∈ [K`], ` ∈ [L]. (10)

where Πk` ∈ R2Tu×2Tu is a pseudo-random UE-specific
permutation matrix. We assume that different UEs have differ-
ent permutation matrices. Given that there are 2Tu! possible
permutation matrices, even with small Tu, e.g., Tu = 32,
there is a massive number of permutation matrices, making
de-interleaving close to impossible unless the true permutation
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matrix of the desired UE is known. Since the UE identities
(IDs) are distinct and known at the serving BS, one can simply
use them for generating different permutation matrices, that
can be regenerated at the serving BS.

Upon plugging (6) in (8), the received signal at the `-th BS
can be written in more compact form as

Y` =
L∑

j=1

H`jX
T
j + W`, ∀` ∈ [L]. (11)

where Xj := [xkj , · · · ,xKjj ] ∈ C2Tu×Kj contains the UL
transmitted sequences (after repetition and interleaving) of the
UEs located in the j-th cell, and H`j ∈ CMj×Kj holds in its
columns the respective channel vectors between the Kj users
in cell j and BS `, as defined in (7). Also, for simplicity,
the uplink transmit powers pu have been absorbed in the
corresponding channel vectors.

The goal now is to design {qk`}K`

k=1 beamformers at the `-th
BS to be able to efficiently separate the associated UE signals,
and then use such beamformers as precoders for downlink
transmission. We will next present a novel UL beamformer /
DL precoder design that is capable of both reliably decoding
the uplink signals and effectively multiplexing the downlink
signals of the UEs served by the `-th BS, even under strong
inter- and intra-cell interference and without estimating any
UE channel.

V. PROPOSED PRECODER DESIGN

Since the `-th BS knows its serving UE permutation ma-
trices {Πk`}K`

k=1, it can de-interleave its received signal Y`

to obtain K` matrices (one corresponding to applying the
permutation matrix associated with each UE) as follows,

Yk` = Y`Πk`, ∀k ∈ [K`]. (12)

By exploiting the following property of permutation matrices

ΠT
k`Πij =

{
I, if k = i, and ` = j

Π
(`j)
ki , otherwise

where Π
(`j)
ki is another permutation matrix, one can see

from (10) and (12) that the repetition structure will be only
preserved for the k-th UE associated with the `-th cell while
all the other UEs will be randomly permuted. Thus, (12) can
be expressed as

Yk` = H``S
T
`k` +

L∑
j 6=`

H`jS
T
jk` + Vk`, ∀k ∈ [K`] (13)

where Vk` := W`Πk` represents the resulting noise term
after permutation. The matrices S`k` and Sjk` contain the
transmitted signals of the UEs associated with the `-th and j-
th BSs, respectively, upon de-interleaving the signal received
at the the `-th BS using the permutation code of the k-th UE
assigned to the `-th BS. Matrix S`k` can be expressed as

S`k` =

[
ΠT

k`Π1`

[
s1`
s1`

]
, · · · ,

[
sk`
sk`

]
, · · · ,ΠT

k`ΠK``

[
sK``

sK``

] ]

=

[[
s
(1)
1`

s
(2)
1`

]
, · · · ,

[
sk`
sk`

]
, · · · ,

[
s
(1)
K``

s
(2)
K``

]]
(14)

where s
(m)
i` represents the m-th resulting block of the i-th

UE served by the `-th BS, for m = {1, 2}. It is clear that
the repetition structure is destroyed for all the UEs except for
the k-th UE whose permutation matrix is used to obtain (14).
Similarly, the matrix Sjk` is defined as

Sjk` =

[
ΠT

k`Π1j

[
s1j
s1j

]
, · · · ,ΠT

k`ΠKjj

[
sKjj

sKjj

] ]

=

[[
s
(1)
1j

s
(2)
1j

]
, · · · ,

[
s
(1)
Kjj

s
(2)
Kjj

]]
(15)

where it can be easily seen that all the UEs associated with the
j-th cell will be randomly permuted. By splitting the received
signal in (13) into two blocks, one can construct the following
two views

Y
(1)
k` = H``S

(1)T
`k` +

L∑
j 6=`

H`jS
(1)T
jk` + V

(1)
k` , (16)

Y
(2)
k` = H``S

(2)T
`k` +

L∑
j 6=`

H`jS
(2)T
jk` + V

(2)
k` . (17)

where the matrix S
(m)T
`k` contains the data symbols in the m-

th block of the matrix ST
`k`, i.e., S

(m)T
`k` = ST

`k`(1 : Tu, :), for
m = {1, 2}, k ∈ [K`] and ` ∈ [L]. Note that the `-th BS
has to construct K` pairs of views; one pair for each serving
UE. Given the constructed K` pairs at the `-th BS, the goal
is to design a set of combiners/precoders {qk`}K`

k=1 to reliably
decode the signals of interest of the UEs {sk`}K`

k=1.
Our design of the combiners/precoders is based on CCA.

In a recent work [17], we have introduced a very useful new
interpretation of CCA as a tool that can identify a common
(shared) subspace between two matrix views, irrespective of
how strong the non-shared components in each view are.
Building upon this interpretation, and by looking at the two
signal views in (16) and (17), one can see that the two
matrices Y

(1)
k` and Y

(2)
k` share only one common component

corresponding to the signal of the k-th UE of the `-th BS,
whose permutation matrix was used to construct that pair. To
show how the `-th BS can recover its k-th UE signal from Y

(1)
k`

and Y
(2)
k` , we will use the so-called maximum variance (MAX-

VAR) formulation of CCA [16]. Compared to the distance
minimization formulation in (5), MAXVAR aims at finding a
low dimensional common representation given two different
data views. From an optimization perspective, the MAXVAR
problem can be posed as

min
gk`,q

(1)
k` ,q

(2)
k`

2∑
j=1

‖YT (j)
k` q

(j)
k` − gk`‖22, (18a)

s.t. ‖gk`‖22 = 1. (18b)

where q
(1)
k` ∈ CM` and q

(2)
k` ∈ CM` are the two canonical

vectors, and gk` ∈ CTu is the resulting one-dimensional com-
mon subspace. In the two-views case, the above formulation
is equivalent to the distance minimization (5) in the sense that
both formulations yield the same optimal canonical vectors
which can be obtained via solving for a principal eigenvector
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as explained in Section II. In particular, the optimal solu-
tion of (18), q

?(1)
k` , is the principal eigenvector associated

with the matrix Ak` := Σ
−1(k`)
1 Σ

(k`)
12 Σ

−1(k`)
2 Σ

(k`)
21 , where

Σ
(k`)
i := Y

(i)
k` Y

T (i)
k` and Σ

(k`)
ij := Y

(i)
k` Y

T (j)
k` are the auto-

and cross-correlation matrices, while q
?(2)
k` can be obtained

using equation (4) with the appropriate auto- and cross-
correlation matrices.

Define the matrix B
(m)
k` = [S

(m)
1k` , · · · ,S

(m)
`k` , · · · ,S

(m)
Lk`] ∈

CTu×Ks , and H` = [H``,H`j ] ∈ CM`×Ks with Ks :=
L∑̀
=1

K`, for m ∈ {1, 2}, k ∈ [K`], and ` ∈ [L]. We now

have the following result.

Theorem 1. In the noiseless case, if the matrices B
(m)
k` ∈

CTu×Ks , for ` ∈ [L], and H` ∈ CM`×Ks are full column rank,
for j ∈ [L], then the optimal solution g?

k` of problem (18) is
given by g?

k` = γk`sk`, where γk` ∈ C, γk` 6= 0 is a complex
scaling factor.

Proof. The proof follows from Theorem 1 in [17].

Theorem 1 dictates that if the two full rank conditions are
satisfied, then each BS can identify its serving UEs signals
without knowing/estimating any UE channel, even for the
weak UEs whose signals are overwhelmed by strong inter-
and intra-cell interference. Satisfying the full rank condition
though on the matrix B

(m)
k` requires the packet length (Tu)

to be greater than the total number of UEs in the network
and the transmitted sequences to be linearly independent, for
i = 1, 2. Both conditions can be easily satisfied with modest
Tu since the different UE transmissions across all cells are
independent. Further, to satisfy the full rank condition on the
channel matrix H, we need the number of antennas at each
BS to be greater than the total number of UEs in the system
and the channel vectors of the different UEs to be linearly
independent. The latter will be satisfied with probability one
if the channel vectors are drawn from a jointly continuous
distribution. Hence the most limiting assumption is that the
total number of antennas at each BS is greater than or equal
to the total number of users in the system. As we move
towards massive MIMO and small-cell architectures in mmW
frequencies, more BS antennas than active users is realistic. It
is also worth noting that in practice we only need to account
for the number of active interferers who are significantly above
the noise floor at a given BS. We will show in simulations
that even if M` is only moderately greater than K` but way
less than Ks, our method still works well. In fact, the CCA
beamformers will “automatically” eliminate the M` − K`

dominant interferers and treat the others as noise. This is one
striking observation of our experiments: that the strongest out-
of-cell interferers are automatically suppressed.

Note that in the noiseless case, the two resulting optimal
canonical vectors obtained from solving (18) are identical (i.e.,
q
(1)
k` = q

(2)
k` , ∀k ∈ [K`] and ` ∈ [L], see proof of Theorem 1

in [17]. This arises from the fact that the channel vectors of the
different users are the same across the two views. In the noisy
case, however, the canonical vectors are generally different
due to noise, and hence, for downlink transmission, the `-th
BS constructs the k-th served UE precoder qk` by averaging

out the two resulting canonical vectors q
(1)
k` and q

(2)
k` followed

by a pre-correction of the complex scaling factor γ, as follows

qk` = (q
∗(1)
k` + q

∗(2)
k` )/2γk`, ∀k ∈ [K`], ` ∈ [L]. (19)

where q
∗(1)
k` and q

∗(2)
k` are the conjugate of the optimal

canonical vectors obtained from solving (18). The complex
scaling factor, γk`, can be obtained by assuming that the first
symbol is known at the receiver. While in the noiseless case
or the high SNR regime, one pilot is enough to accurately
estimate the phase, a few pilot symbols (e.g., four pilots)
may be needed in the low SNR region. The precoder design
procedure at the `-th BS is outlined in Algorithm 1. Once the

Algorithm 1 CCA Precoder Design
Input: Y` ∈ CM`×2Tu ,
for k = 1 : K` do

Compute Yk` := Y`Πk`

Construct Y
(1)
k` := Yk`(:, 1 : Tu) and Y

(2)
k` := Yk`(:

, Tu + 1 : 2Tu)

Solve problem (18) given Y
(1)
k` and Y

(2)
k`

Obtain γk` = g?
k`(1)/sk`(1)

Store qk` = (q
∗(1)
k` + q

∗(2)
k` )/2γk`

end

`-th BS obtains all K` precoders (one for each UE it serves), it
uses them for downlink transmission. Recall that the received
downlink signal in (20) can be expressed in more compact
form as,

yk` =
L∑

j=1

hH
jk`Xj + wk`, ∀k ∈ [K`], ` ∈ [L]. (20)

where Xj =
∑Kj

k=1 qkjd
T
kj ∈ CMj×Td is the transmitted

signal from the `-th BS after applying its served UEs precoder.
Towards this end, we have the following claim regarding the
recovery of the downlink transmitted signals {dk`}K`

k=1, ∀` ∈
[L].

Theorem 2. In the noiseless case, under the channel reci-
procity assumption, the recovered downlink signal dk` upon
applying the CCA precoder in (19), is given as dk` = yk`.

Proof. The proof is relegated to Appendix A.

A. Computational Complexity

From Algorithm 1, the complexity of the proposed approach
depends on the cost incurred in solving problem (18). The `-
th BS needs to solve problem (18) for each of its assigned
users. As explained in Section II, solving problem (18) re-
quires solving an eigenvalue problem that involves two matrix
inversions (of the auto-correlation matrices of the two signal
views). Therefore, the `-th BS needs to perform 2K` matrix
inversions to find the beamformers / precoders for the users
it serves. The reason is that each BS first de-permutes the
received signal using one of the permutation matrices of the
UEs it serves, followed by separating the two back-to-back
blocks to construct the two signal views, and hence, the two
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auto-correlation matrices obtained for each UE are clearly
different.

To reduce the computational complexity of the proposed
approach, we propose a new design of the permutation matri-
ces of the UEs that will later allow for performing only two
matrix inversions per BS, irrespective of the number of users
it serves. In particular, we have the following claim.

Proposition 1. Consider the model in (10), if the permutation
matrix Πk` is designed as

Πk` =

[
Π

(1)
k` 0

0 Π
(2)
k`

]
, (21)

then the two auto-correlation matrices of the two different
constructed views for the k-th UE served by the `-th BS are
the same for all UEs, where Π

(i)
k` ∈ RTu×Tu , for i = 1, 2,

k ∈ [K`] and ` ∈ [L].

Proof. The proof is relegated to Appendix B.

B. Uplink Transmission Rate Boosting

One of the main advantages of the proposed CCA approach
relative to prior works that use CCA for common subspace es-
timation is that, owing to the design of the transmitted signals,
the two views always share only one common signal (single-
dimensional common subspace). This significantly reduces the
receiver complexity as opposed to the case with a multi-
dimensional common subspace in our earlier work [17], [28],
because the latter requires an additional stage to unravel the
common signals form the resulting mixture, where depending
on the adopted modulation and coding scheme, different
methods can be employed to recover the original signals.
Such methods are complex to implement in practice, especially
for higher-order QAM signals (and do not work for analog
amplitude-modulated signals). The one-dimensional common
subspace provides a lot of flexibility on the structure of the
transmitted waveform of all UEs. First, waveforms can all
be analog across all UEs. Second, the proposed method can
efficiently work and our recovery claim holds even if each UE
is employing a different modulation scheme.

Perhaps one shortcoming of the proposed approach is that
it requires repetition of the UE uplink data, thereby reducing
the uplink transmission rate. However, it should also be noted
that the proposed approach does not require the transmission of
any training symbols (pilots), and hence, compared to legacy
methods that use pilots for channel estimation, the number of
uplink symbols can be set equal to the number of pilots, so
attaining the same transmission rate of conventional multi-user
detection schemes as we will see in Section VII. One possible
approach that can improve the proposed method’s transmission
rate is that instead of repeating all uplink data (Tu) twice,
one can repeat only a portion of the uplink data to design the
beamformers that can be used to decode the rest of the uplink
data (and subsequently reused for downlink precoding). For
example, instead of using two blocks of the same data, each
of length Tu, we can use two blocks with the same uplink
data each of length (Tu/2) for finding the precoders followed
by the remaining Tu uplink data. This pushes the uplink

payload ratio to 0.75 from 0.5. Theoretically, in the absence
of noise, our proposed approach can recover the common
signals as long as the number of symbols per block (view)
is greater than or equal to the number of UEs (see Theorem
1). In the presence of noise though, it has been shown [17]
that increasing the number of symbols (samples) per view
may improve the detection performance. This suggests that a
careful choice of the size of each block (view) can potentially
improve the transmission rate without considerably hurting the
detection performance.

VI. BLIND CFO AND TIMING ESTIMATION

One major challenge that we encounter in real multiuser
communication systems is the timing and carrier frequency
offset (CFO) estimation of the co-channel users at their
serving BS. While there are indeed powerful solutions that
can deal with synchronization issues, such methods primarily
rely on using training symbols to find the time and frequency
offsets (e.g., using cross-correlation), and for near-far power
imbalance scenarios, long training sequences are required for
the weak UEs to accurately estimate the timing offset. In this
section, we propose a novel and fully blind synchronization
method that can find the timing and frequency offsets of the
different UEs at their serving BS even in aggressive power
imbalance scenarios. This makes the end-to-end approach fully
blind without any need for transmitting pilots for channel
estimation or CFO and timing acquisition.

Instead of transmitting long and orthogonal pilot sequences
to find the start time of the different UEs signals at the BS,
we propose a practical CCA-based synchronization framework
that leverages the repetition structure of the uplink signals of
the UEs to accurately acquire the timing and CFO of the
different UEs. The main idea is to scan the received signal
at the BS across time and frequency, where at each instant the
BS uses the permutation codes of a given UE to construct two
signal views, applies CCA on these two views, and measures
the resulting correlation coefficient. The correlation coefficient
will peak whenever we hit the right timing and CFO for that
UE.

In practical systems, the `-th BS receives a long sequence,
Y` ∈ RM`×T where T > 2Tu represents the number of
samples collected at the UE before synchronization. Given
the uplink received signal at the `-th BS, the goal is to find
the timing offset, mk` and the CFO ωk` associated with the
k-th UE served by the `-th BS, ∀k ∈ [K`] and ` ∈ [L]. To
do so, we first define a CFO window with boundaries wmin
and wmax, discretized to Nw points. To find the correct CFO
and timing for the k-th UE, the `-th BS iterates over the Nw

different frequency points, {wn}Nw
n=1, and for each wn, the BS

corrects for the CFO via element-wise multiplying each row
of its received signal, Y` by the vector vT

n , where

vn = [1, exp(j2πwn), · · · , exp(j2πwn(T − 1))]T . (22)

Once the CFO is corrected using wn, the `-th BS performs a
time scan over M points. Starting with m = 1, the `-th BS
first constructs the signal Y

(m)
= Y(:,m : 2Tu+m−1) (note

the BS index is dropped for ease of notation). Second, the BS
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re-permutes the signal Y
(m)

to obtain Y(mk) using its k-th
UE permutation code. Finally, the BS separates the two blocks
Y

(mk)

1 = Y
(m)

(:, 1 : Tu) and Y
(mk)
2 = Y

(m)
(:, Tu +1 : 2Tu)

followed by applying CCA on the two resulting views and
storing the correlation coefficient ρmn, where m ∈ [M ] :=
{1, · · · ,M} and n ∈ [Nw] := {1, · · · , Nw} .1

The BS repeats the above procedure at all timing and CFO
points. If we hit the correct CFO w?

nk and the start point m? of
the two back-to-back blocks of the k-th UE, then the resulting
correlation coefficient from CCA of the two separated block
"views" will attain its peak. In other words, after iterating
over time and frequency, CCA should yield K` distinct peaks
associated with the K` UEs served by the `-th BS. The power
of the peak will depend on the received SNR of the respective
UEs as we will see in the experiments. It is worth pointing
that the proposed blind synchronization method only utilizes
the repetition structure of the UE uplink signals together with
the CCA-based receiver to find the timing and CFO of the
different UEs, and it has nothing to do with the waveform
used at each UE (it can even work for analog transmissions).
The procedure is summarized below in Algorithm 2.

Algorithm 2 CCA-based Timing and CFO Estimation

Input: Y` ∈ CM`×T , {wn}Nw
n=1

for n = 1 : Nw do
for m = 1 : M do

Correct CFO of Y` using vn defined in (22)
Construct Y

(m)
= Y(:,m : 2Tu +m− 1)

Re-permute Y
(m)

using Πk` to obtain Y(mk)

Construct Y
(mk)

1 = Y
(m)

(:, 1 : Tu) and Y
(mk)
2 =

Y
(m)

(:, Tu + 1 : 2Tu)

Solve problem (18) given Y
(mk)

1 and Y
(mk)

2

Compute ρmn after solving (18)
Store (m,n, ρmn) in a stack

end
end
Selection: pick the (m?, w?

n) := max
m,n

ρmn.

Note that each BS needs to run Algorithm 2, possibly in
parallel, for a total of K` times. The complexity of Algorithm
2 is dominated by solving problem (18). As explained in
Section II, solving (18) is tantamount to solving a maximum
eigenvalue problem of a matrix whose computation involves
two matrix inversions. The maximum eigenvector can be
cheaply computed using the power method. It is worth-
emphasizing that, for the proposed synchronization method to
work properly, we need the received signal power to be a few
dBs above the noise floor (e.g., SNR = 5 dB). In the case of
the very low SNR, pilot based synchronization may be used
as a fallback option if needed.

To further reduce the complexity of Algorithm 2, one can
use the permutation matrix design proposed in Section V to
compute the two matrix inversions once for all UEs per each

1We use MATLAB notation, i.e., X(k) = X(:, k : N+k−1) contains all
the rows of matrix X and a subset of columns of X starting from the k-th
column and ending with the (N + k − 1)-th column.

Fig. 3. Snapshot of the simulated scenario with seven cells.

time index and CFO index. Further, instead of computing the
two matrix inversions each time index, i.e., for each m, one can
exploit the fact that any increment in m results in removing the
first sample and appending one more sample to the constructed
signal at time m , i.e., Y

(m+1)
is the same as Y

(m)
except

for one sample. Thus, the auto-correlation matrices obtained
at time m + 1 are merely two rank-one updates of the auto-
correlation matrices obtained at time m, and hence, one can
use the Sherman-Morrison formula to find the inversions of
the auto-correlation matrices in closed form at time m, ∀m ∈
{2, · · · ,M}.

VII. NUMERICAL RESULTS

In this section, we we will first use numerical simulation to
assess the performance of the proposed method in multiuser
multicell scenarios with a large number of users. Then, we will
demonstrate that our approach works well in practice through
real experiments using software defined radios (SDRs). In the
hardware experiments, we will consider a 2x2 MIMO setup
comprising two non synchronized UEs communicating with a
two-antenna BS.

A. Simulation Results

Throughout this subsection, we will use a simulated scenario
with L = 7 hexagonal cells, each of radius R = 100 meters
and a BS located at its center, as shown in Fig. 3. The number
of antennas at the `-th BS was set to M` = M = 16 antennas,
and the number of users assigned to the `-th BS was set to
K` = 10 UE devices, unless stated otherwise.

Each BS is serving only the UEs located in its cell (see the
color codes in Fig. 3). The UEs locations are chosen uniformly
at random up to distance R from the center of each cell. The
downlink packet length was set to Td = 1024 while the uplink
packet length was set to Tu = 256. The transmit power of all
users was set to p`k = 20 dBm ∀k ∈ [K`] and ` ∈ [L]. In
the downlink, the `-th BS transmit power was set to 35 dBm
divided equally across its served UEs, and the noise power
was set to σ2 = −80 dBm. We used 500 different user drops,
each with 200 different Monte Carlo trials. Within each Monte
Carlo trial, the uplink transmit signals sk`, downlink transmit
signals dk`, uplink noise matrix W`, downlink noise vectors
wk`, and channel matrices H`j (except for the drop-dependent
path losses) are all drawn randomly, ∀k ∈ [K`], ` ∈ [L].
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Fig. 5. Uplink SER CCDF with M` = 16 and K` = 10.

The uplink channel between the `-th BS and the k-th user
in the j-th cell is modeled as

hH
`kj =

√
1

M

Np∑
n=1

√
β
(n)
`kjg

H
`kj (23)

where Np is the number of paths between the `-th BS and
the k-th user in cell j, ∀{`, j} ∈ [L] and k ∈ [K`], and
is randomly chosen between [5, 15]. The path gain, β(n)

`kj , is
computed using the path-loss model of the urban macro (UMa)
scenario from Table 7.4.1 – 1 in the 3GPP 38.901 standard,
with the carrier frequency set to fc = 2 GHz. Further, all
UEs in all cells are allowed to possibly have a line of sight
(LOS) component to their serving BS according to the LOS
probability expression for the UMa scenario in Table 7.4.2 –
1 in the 3GPP 38.901 standard. The vector g`kj represents the
small scale fading coefficients with its elements drawn from a
complex circularly symmetric Gaussian distribution with zero
mean and unit variance.

For the proposed CCA based detector, we use the proposed
frame structure in Fig. 2(b), where the uplink data is repeated
twice. At each BS, we separate the two uplink blocks and use
CCA on the two constructed signal views to find the CCA-
based beamformers/precoders. We use four pilots to resolve
the (complex) scaling ambiguity that is inherent in CCA.
Note that the scaling ambiguity is corrected after recovering
the common signal using CCA. Also, to further improve
the uplink detection performance, when detecting the uplink
signals, we average out the resulting signals from Y

T (1)
k` q

(1)
k`

and Y
T (2)
k` q

(2)
k` prior to scaling correction and hard detection.
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Fig. 6. Downlink SER CCDF with M` = 16 and K` = 10.
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Fig. 7. Uplink SER CCDF, 16PSK, M` = 32, K` = 10.

To assess the efficacy of our approach, we use the following
approaches as performance baselines, i) ZF / MMSE: The
channels of all users associated with a given BS are estimated
at their serving BSs with the help of orthogonal pilot sequences
(across all UEs in all cells, no pilot contamination) of length
Tp = 256 transmitted by each UE. This way, the total
redundancy is kept the same, with baselines using 256 symbols
as pilots followed by 256 as UL payload, and our method
transmitting the same payload of length 256 twice.Then, the
MMSE or ZF detector is employed to decode the UE signals
using their estimated channels, and ii) MRC: The maximum
ratio combining detector using the same UE channel estimates.

In the first simulation, we considered QPSK modulation
for all UEs in all cells. To measure the uplink and down-
link performance, we report the complementary cumulative
distribution function (CCDF) of the symbol error rate (SER)
across all UEs in all cells. We simulated 500 different UE
drops where in each drop we have 10 UEs per cell.

Before reporting the SER performance, we observe from
the uplink received SNR distribution (blue curve in Fig. 4)
that the uplink average received SNR is less than 4.5 dB for
15% of the UEs, more than 22.5 dB for 15% of the UEs
and between 4.5 dB and 22.5 dB for 70% of the UEs the
SNR. Now by looking at the CCDF of the SER in Fig. 5, we
observe that the proposed CCA approach made no detection
errors in our (extensive) simulation for 42% of the UEs, while
the corresponding percentages for MMSE and ZF are 32% and
25%, respectively. This corresponds to UEs with at least 14
dB, 16 dB and 18.5 dB for CCA, MMSE and ZF, respectively,
which means that CCA provides 2 dB SNR gain over MMSE.
Furthermore, Fig. 5 shows that CCA achieves more than an



10

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

SER

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
C

D
F

CCA (proposed)

MMSE

ZF

MRC

Fig. 8. Downlink SER CCDF, 16PSK, M` = 32, K` = 10

order of magnitude reduction in the average SER (3×10−4) at
50% compared to MMSE (4×10−3) and ZF ( 10−2 ). Finally,
CCA achieves 0.1 SER for roughly 85% of the UEs (minimum
4.5 dB SNR) relative to 75% of the UEs (minimum 6.7 dB
SNR) and 65% of the UEs (minimum 8.7 dB SNR) for MMSE
and ZF, respectively. This demonstrates the effectiveness of the
proposed CCA approach in the low SNR region where it can
achieve 2.2 dB SNR gain relative to MMSE.

For the downlink performance, one can see from Fig. 6
that CCA attains the same SER approximately achieved by
MMSE (only slight improvement for CCA at the high SNR
region where CCA and MMSE made no errors for 61% and
64%, respectively).

Next, we simulated another scenario where all UEs are
employing 16PSK modulation and the number of transmit
antennas at the BS is set to 32. All other parameters are kept
the same, and hence, we have the same SNR distribution in
Fig. 4. Fig. 7 shows that the uplink performance degraded
with all the CCDF curves compared to Fig. 5 are shifted as
expected. One can see that with 16PSK modulation, CCA
achieves on average (50-percentile of the CCDF) 0.04 SER
compared to 0.13 SER makes no errors for 22% of the UEs
as opposed to 16% for MMSE and ZF. This corresponds to
UEs with average SNR greater than 19.5 dB for CCA and 21
dB for both MMSE and ZF. In downlink, CCA outperforms
both MMSE and ZF by achieving 0.02 SER for 50% relative
to 0.04 for ZF and MMSE as Fig. 8 depicts.

In the previous simulations, the uplink packet length Tp
was set to 256 symbols and was repeated one time as shown
in Fig. 2(b). To further improve the uplink transmission rate,
instead of repeating the entire uplink packet and thus having
two blocks of size Tu each, we shrink the size of the repeated
blocks to be of size T ′u each and use these blocks to construct
the CCA precoders which will be used to detect the rest of
the uplink packet and then used for the downlink. In this
case, the uplink payload data will be 2Tu − T ′u as opposed
to only Tu. We evaluated the uplink performance with T ′u
set to 0.4Tu, 0.6Tu, 0.8Tu and Tu, where Tu = 250. Low
T ′u values yield higher uplink rate but at the same time
degrade the CCA performance. Fig. 9 shows the CCDF of
the SER achieved by our proposed method for the different
values of T ′u. With T ′u = Tu, one can see that CCA achieves
the best SER (blue curve), outperforming the MMSE with
Tp = Tu (which operates at the same UL transmission rate)
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Fig. 9. Uplink SER CCDF with different repetition size, Tp = 256 symbols.

by more than an order of magnitude improvement in SER.
More interestingly, with T ′u = 0.6Tu (black curve), CCA still
significantly outperforms the MMSE in terms of SER and also
achieves better uplink rate with uplink payload size equal to
350 symbols compared to 250 symbols for the MMSE. This
suggests that with a slight sacrifice in the performance, CCA
can significantly improve the uplink transmission rate.

B. Experimental Results

In this subsection, we performed real-world tests of the
proposed method in various experimental setups.

1) Hardware Setup: we used multiple National Instruments
USRP-2920 software-defined radios (SDRs) to demonstrate
practical implementations of the proposed framework. To do
so, we built a 2x2 prototype using SDRs. BS and UEs are
built using USRP-2920 devices linked to general-purpose
computers as shown in Fig. 10. The USRPs are used for
radio signal transmission / reception, while the computers are
used for baseband signal processing. For the purpose of time
and frequency synchronization of the antenna downconversion
chains at the BS, a 10 MHz eight-port reference clock from
a CDA-2990 external clock module with GPS Disciplined
Oscillator (GPSDO) was used. The clock is connected with
a GPS antenna which is used for driving the pulse per
second (PPS) signals to the clock. The UEs are located in
different locations, and hence, they are not synchronized. The
experiments were conducted in an indoor static environment
with two single-antenna UEs, each realized using a stand-
alone USRP-2920. The BS, however, has three synchronized
single-antenna USRPs (one is used for calibration purposes
for maintaining reciprocity) as shown in Fig. 11(a). The two
UEs have line-of-sight link with the BS as shown in Fig. 10.
The locations of UEs and the BS are fixed throughout the
experiments. The distances between the UE1, UE2 and the
BS are 5, and 3.5 meters, respectively. The transmit power of
the UEs is set to 5 dBm, unless stated otherwise, while the
transmit power of the BS is set to 20 dBm. The sampling rate
used in the experiments is set to 1 mega samples per second
(MS/sec), the signal bandwidth is 100 KHz, and the carrier
frequency is 1.2 GHz.

2) Uplink and Downlink Processing: In the uplink, each
UE transmits two identical back-to-back blocks of QPSK
symbols of length 128 symbols per block, then the symbols
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Fig. 10. Experimental setup.

(a) (b) (c)

Fig. 11. (a) Base station. (b) UE1. (c) UE2.

are shuffled using a unique random generator for each UE. The
random generator IDs are known at the BS. The constructed
signals are then oversampled by a factor of 10, then the
resulting oversampled signal is passed through a square-root
raised cosine (SRRC) pulse shaper with roll-off factor and
amplitude set to 0.5 and 6, respectively. The pulse shaped
signal is zero-padded with a number of zeros equal to one third
of the packet, yielding a sequence of length 4020 samples.
This results in a transmission rate of 64 Kbps for all UEs.
The zero-padding is also used at the receiver side to measure
the received SNR, as we will see later. Symbol generation, up-
sampling, and pulse shaping are all done in MATLAB. Then,
the transmit data of each user is fed to GNU radio before
being wirelessly transmitted.

At the receiver side, the BS performs matched-filtering
with the same filter used at the UEs. Then, the BS uses the
proposed synchronization method in Algorithm 2 to estimate
the timing and CFO of each UE. Once the synchronization
parameters are found, the BS uses them to correct the CFO
and then identify the start of the two back-to-back blocks
of each UE, deinterleave with the associated code, separate
the two blocks and then pass the two views to CCA. For
the considered baselines (ZF and MRC), we still use our
synchronization method to find the synchronized UE packets.
Then, we estimate the channel vector for each UE using one
of the blocks symbols as pilots, then we use the estimated
channel vector for each UE to decode the UEs packet using
ZF and MRC.

In the downlink, we use the Argos calibration method
proposed in [29] to maintain channel reciprocity. Such a
method requires using a reference antenna at the BS to perform
the calibration (that is why we always use one more antenna
at the BS as we will see later). The BS constructs the CCA
beamformer by averaging out the two resulting canonical

(a)

(b)

Fig. 12. Timing and CFO recovery using Algorithm 2 for (a) UE1. (b) UE2.

vectors for each UE followed by correcting the inherent phase
ambiguity. Then the BS splits its available power budget across
the UEs, precodes and adds the downlink signals of the UEs
followed by using the same pulse shaper used in the uplink.
At the receiver, the UE merely performs temporal matched
filtering followed by a phase correction assuming 10 pilots
out of the 256 transmitted symbols.

C. Performance Evaluation.

The considered 2x2 setup involved the use of two UEs
(noted as UE1 and UE2 in Fig 10) and a BS with 3 active
USRPs; out of these 3 radios, 2 were used for uplink and
downlink communication while the third one was used as a
reference antenna for Argos calibration [29]. All USRPs are
equipped with a single vertically-oriented antenna.

To show how well our proposed CCA-based synchronization
method works, we tested the proposed method in both the 2x2
and 3x3 MIMO setups. For each setup, we ran Algorithm 2
with Nw set to 500, the CFO window boundaries wmin and
wmax set to −10−2 and 10−2, respectively, and the number
of time points set to M = 200. The 3D plots in Fig.
12 demonstrate how effective the proposed synchronization
approach is in recovering the timing and CFO of the UEs.
One can clearly see a distinct peak corresponding to the right
timing and CFO of UE1 and UE2 in Fig. 12(a) and Fig. 12(b),
respectively.

To show the efficacy of our proposed method in practice,
we start with a balanced setup where the two UEs transmit at
the same power, 10 dBm. The measured received SNR of each
UE at the BS in this case is approximately 22.5 dB, and all
methods (CCA, ZF and MRC) make no errors that we could
record in this case. Fig. 13 shows the scatter plots of the soft
received symbols of both UEs in uplink and downlink using
our proposed CCA method. Fig. 13(a) and 13(b) depict how
well-clustered the received symbols from the two UEs are prior
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Fig. 13. The scatterplots of the received symbols of the two UEs in uplink
and downlink. a) UE1 in uplink. b) UE2 in uplink. c) UE1 in downlink. d)
UE2 in downlink

to detection using the proposed method, while Fig. 13(c) and
13(d) demonstrate the effectiveness of the CCA precoders in
spatially isolating the downlink signals of the two UEs. While
the received symbols in the downlink are clearly separated in
the four quadrants, they are not well-clustered as in the uplink.
We attribute this to imperfect channel reciprocity, which only
holds approximately even when (imprefect) Argos calibration
is used. Still, the results are very satisfactory, confirming that
reciprocity is a reasonable assumption.

Next, we set up a power imbalanced scenario where we
reduce the power of UE2 to be −5 dBm while UE1 is
kept at 10 dBm. To visualize the power imbalance between
the two UEs, the two plots in Fig. 14(a) and Fig. 14(b)
show the received packets of both UEs at one of the two
antennas after synchronization and matched filtering but before
downsampling. Looking at the received samples energy of
UE2 in Fig. 14(b), one can clearly see two signal levels: the
higher level at −20 dB corresponds to the strong user (UE1)
signal covering the weak user (UE2) one and the other (-35
dB) corresponding to part of UE2 signal overlapping with the
padded zeros of UE1. Further, after downsampling, we plot
the energy of the 256 received symbols at one of the two
antennas for the two UEs, Fig. 14(c) shows that the symbol
energy is centered around −20 dB for all symbols while for
UE2 one can obviously see the fluctuations of the power due
to the existence of the two power levels as depicted in 14(d).
This shows how UE2 is overwhelmed by UE1.

We now compare the resulting SER for both UEs in uplink
and downlink. We observed that all methods make no symbol
errors in the uplink for UE1 (strong user). For UE2, however,
one can see from Fig. 15(a) that the proposed method achieves
less than 10−3 SER which is an order of magnitude less that
ZF which attains 0.04 SER. Further, MRC completely fails
due to the large power imbalance between the two UEs. In
the downlink, Fig. 15(b) reveals the superiority of CCA where
UE1 and UE2 achieve 0.006 and 0.015 SER, respectively.
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Fig. 14. Snapshot of the received packets of UE1 and UE2. a) Sample
energy UE1. b) Sample energy UE2. c) Symbol energy UE1. d)
Symbol energy UE2
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Fig. 15. SER performance of a 2x2 setup. a) Uplink results for UE2.
There were no errors recorded for UE1. b) Downlink results of UE1
and UE2 using CCA.

VIII. CONCLUSIONS

In this paper, we proposed a new pilot-free TDD frame
structure that involves uplink data repetition followed by
downlink data. The proposed frame structure requires each UE
to repeat its uplink data followed by randomly permuting the
two uplink blocks via a unique pre-determined permutation
code (e.g., based on the UE equippment ID). Constructing
two signal views after de-permuting using one of the UE
codes, a receive beamformer for that UE can be obtained
using CCA. We showed that the CCA-derived beamformer
is theoretically guaranteed to recover the uplink signal of that
UE, under high inter-cell and intra-cell interference; and it
reliably does so in practice. Further, we verified that, with
perfect channel reciprocity, downlink user signals can be
accurately precoded to “isolate” the downlink transmissions
in a way that theoretically allows simple interference-free
downlink decoding at the UE. We then proposed a novel pilot-
free synchronization framework that can accurately estimate
timing and carrier frequency offsets for each UE, in an asyn-
chronous multiuser MIMO setup, without using any pilots. We
demonstrated through simulations on a large scale multiuser
multicell MIMO network that the proposed method achieves
striking performance compared to existing methods that rely
on orthogonal pilot transmission to accurately estimate the
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UE channels. To further validate how practically feasible the
proposed approach is, we tested the proposed method and
synchronization framework in a real world wireless testbed,
where experiments using software defined radios revealed the
superiority of the proposed method in an asynchronous setup
involving two UEs and a two-antenna BS.

APPENDIX A
PROOF OF THEOREM 2

The proof utilizes the optimal CCA canonical vectors ob-
tained from the proof of Theorem 1. Given the signals Y

(1)
k`

and Y
(2)
k` in (16) and (17), respectively, it follows from the

proof of Theorem 1 that, the optimal canonical vectors are
given as

q
(j)
k` = γk`H

∗
` (HT

` H∗` )−1ek` (24)

where j = 1, 2 and γk` ∈ C is a complex scaling ambiguity.
The vector ek` ∈ RKs has one at the location of the signal
of interest and zero otherwise. The scaling ambiguity of the
different UEs {γk`}K`

k=1 served by the `-th BS can be easily
resolved via correlation with each UE identification sequence.
Now, let us construct the k-th UE precoder as

qk` = (q
∗(1)
k` + q

∗(2)
k` )/2γk` (25)

= H`(H
H
` H`)

−1ek`

By stacking all the precoders qk` designed at the `-th BS, for
k ∈ [K`] and ` ∈ [L], in a matrix Q` ∈ CM`×K` , ∀` ∈ [L],
the noise-free received signal at the k-th UE served by the
`-th BS can be expressed as,

yk` =
L∑

j=1

hH
jk`QjD

T
j ∀k ∈ [Kj ], j ∈ [L]. (26)

where Dj := [d1j , · · · ,dKjj ] ∈ CTd×Kj . We can write (26)
in more compact form as,

yk` = hH
k`QDT ∀k ∈ [Ks], ` ∈ [L]. (27)

where hk` = [hT
1k`, · · · ,hT

Lk`]
T ∈ CMs , and Ms =

L∑̀
=1

M`.

Further, the matrices D ∈ CTd×Ks and Q ∈ CMs×Ks are
defined as D := [D1, · · · ,DL] and

Q =

Q1

Q2

QL

 ,
respectively. It can now be readily verified that hH

k`Q is equal
to a row vector with one at the location of the signal of interest
and zero otherwise, thus yk` = dk`.

APPENDIX B
PROOF OF PROPOSITION 1

Let us write the permutation matrix Πk` introduced in (10)
as

Πk` =

[
Π

(1)
k` 0

0 Π
(2)
k`

]
(28)

where Π
(i)
k` ∈ RTu×Tu , for i = 1, 2, k ∈ [K`] and ` ∈ [L].

Exploiting the block diagonal structure of the permutation
matrix used for each UE, it can be easily seen that randomly
permuting each block separately allows the `-th BS to first
separate the received signal to two blocks and then use the
two random codes Π

(1)
k` and Π

(2)
k` of the k-th UE to align

the corresponding signal views. This block partitioning of the
permutation matrices ensures that the auto-correlation matrices
of the two views will be the same for all UEs associated with
a given BS. To see this, let us split the received signal Y` into
two parts Y

(1)
` and Y

(2)
` , i.e., Y` = [Y

(1)
` ,Y

(2)
` ]. Then, using

Y` and the permutation matrix in (21), (12) can be expressed
as

Yk` = [Y
(1)
` ,Y

(2)
` ]

[
Π

(1)
k` 0

0 Π
(2)
k`

]
, ∀k ∈ [K`]. (29)

Now, by constructing the two views associated with the k-th
UE served by the `-th BS, it follows that

Y
(1)
k` = Y

(1)
` Π

(1)
k` , Y

(2)
k` = Y

(2)
` Π

(2)
k` .

By computing the auto-correlation matrices of the two views,
one can obtain Σ

(j)
k` = 1

Tu
Y

(j)
k` Y

(j)H
k` , for j = 1, 2. Using

the fact that Π
(j)
k` Π

(j)
k` = I ∀k, `, then it can be readily seen

that Σ
(j)
k` = Y

(j)
` Y

(j)H
` = Σ

(j)
` . This shows that the auto-

correlation matrices are the same across all UEs served by BS
`, hence, only two matrix inversions are required at each BS
to design the CCA based beamformers / precoders.
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