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In the absence of pharmaceutical treatment, various non-pharmaceutical interventions
(NPIs) to contain the spread of COVID-19 brought the entire world to a halt. After almost a
year of seemingly returning to normalcy with the world's quickest vaccine development,
the emergence of more infectious and vaccine resistant coronavirus variants is bringing
the situation back to where it was a year ago. In the light of this new situation, we con-
ducted a study to portray the possible scenarios based on the three key factors: impact of
interventions (pharmaceutical and NPIs), vaccination rate, and vaccine efficacy. In our
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Reinfection study, we assessed two of the most crucial factors, transmissibility and vaccination rate, in
Non-pharmaceutical interventions (NPIs) order to reduce the spreading of COVID-19 in a simple but effective manner. In order to
Vaccination rate incorporate the time-varying mutational landscape of COVID-19 variants, we estimated a

weighted transmissibility composed of the proportion of existing strains that naturally
vary over time. Additionally, we consider time varying vaccination rates based on the
number of daily new cases. Our method for calculating the vaccination rate from past
active cases is an effective approach in forecasting probable future scenarios as it actively
tracks people's attitudes toward immunization as active case changes. Our simulations
show that if a large number of individuals cannot be vaccinated by ensuring high efficacy
in a short period of time, adopting NPIs is the best approach to manage disease trans-
mission with the emergence of new vaccine breakthrough and more infectious variants.
© 2022 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi
Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The catastrophic effect of the H1N1 virus (Influenza Flu) in the twentieth century has returned with the worldwide spread
of coronavirus. Coronavirus disease (COVID-19) is an excellent illustration of what may happen if the proper preventive
measures are not taken in a timely way, even in this advanced age of technology and medical understanding (Rossen et al.,
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2020). Although NPIs have played a critical role in reducing the death toll and the number of infected people in the absence of
medical treatment, delayed interventions and underestimating the severity of the situation have resulted in over 205 million
infected cases, 4.3 million deaths, and billions of dollars in economic losses worldwide (Cutler & Summers, 2020). Due to
delayed measures during the initial wave, coronavirus is responsible for between 593,126 and 752,284 excess deaths in the
USA (Center for Disease Control, 2021b).

To counteract the economic losses and death toll, the world's quickest vaccine was invented (Andreadakis et al., 2020).
With the proper allocation of the vaccine, the number of infected persons and disease-related mortality has reduced over
time, allowing people to return to their normal lifestyles without using NPIs after more than a year (Islam et al., 2021).
However, the advent of new variants (delta, lambda, delta plus and so on) is prompting a new pandemic wave to sweep the
world right now. With the mass vaccination program, there was an almost exponential drop in the number of infected
persons between January 8, 2021 to June 7, 2021 but, with the emergence of new variants, the number of infected people is
exponentially growing again. If proper steps are not implemented quickly, the new variants could produce a considerably
worse situation than previous coronavirus waves. The false sense of security can reenact the historic super-spreader incident
of the Philadelphia Parade-1918, which resulted in 13000 more deaths in Philadelphia in three months owing to the Spanish
flu pandemic (Stetler, 2017).

In light of this situation, in our study, we sought to model scenarios by varying the overall population adoption of NPIs in
conjunction with vaccine efficacy, antibody waning, and change in prevalence of the co-circulating variants of the coronavirus
over time. One of the most pressing questions during the COVID-19 pandemic was how to correctly parameterize the value of
transmission rate (83). It has been quite challenging to keep up with the evolution of coronavirus in estimating ( value. Due to
the continual appearance of newer strains of coronavirus with distinct characteristics, estimating a transmissibility value
without taking the strains into consideration has now become redundant.

In our model, we have considered a time-varying variant dependent transmission parameter (3) by adapting the approach
from Islam et al. (2021). To assess the transmissibility, our approach takes into consideration a crucial factor: the changing
nature of coronavirus predominant strains over time, making it useful in the present. On the other hand, boosting the number
of vaccinated people is one of the most important elements in reducing COVID-19's devastating effects (Mahmud et al., 2021).
As people's perceptions fluctuate over time, especially with the number of active cases (Center for Disease Control, 2021a), a
fixed vaccination rate will give false hope to curb the disease. This method gives a fair picture of how the vaccination rate
changes when the number of current cases changes, which is one of the key reasons why individuals become vaccinated
(Hamel et al., 2021). Furthermore, with the emergence of new variants, this strategy can be very valuable for planning the
third dose and booster dose vaccine based just on historical data of daily cases.

As vaccine protection lasts at least six months (Pfizer Inc, 2021), we observed from our simulations that the best way to
reduce number of cases is to increase vaccination rates with high efficacy. However, owing to people's concern over vacci-
nation safety, NPIs are the only thing that can prevent unvaccinated individuals from falling ill. Interestingly, we found that
NPIs had an effect comparable to raising vaccination rates to control the epidemic. As a result, the best method for reducing
the spread and death toll is to boost immunization and implement NPIs until herd immunity is achieved. With more data
available, this model can provide more accurate projections.

2. Methodology
2.1. Model development

We developed an extension of the basic SEIR type compartmental deterministic model to project future disease dynamics
in the USA. Our model consists of two distinct tracks for vaccinated and unvaccinated persons, which takes into consideration
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Fig. 1. SEIR (Susceptible, Exposed, Infected, Recovered) type Compartmental Model. Here, people moves from susceptible (S) and vaccinated (V) compartment to
exposed compartment (E and E,) at ﬂﬁ and éﬁl respectively. From E and E, people become infected (I and I,) after incubation period «. Then from I and I,, infected
people either go to the recovery compartment R or die. With the waning of antibodies, individuals move back to the S compartment from the R and V
compartments.
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vaccination rates, waning immunity, viral variations, and reinfection. The compartmental model diagram is shown in Fig. 1.
The model divides the population into seven compartments: unvaccinated susceptible individuals (S), vaccinated susceptible
individuals (V), unvaccinated exposed individuals (E), vaccinated exposed individuals (E,), unvaccinated infected individuals
(I, vaccinated infected individuals (I,), and recovered individuals (R).

Here, we assume that successful transmission has occurred for both exposed vaccinated and unvaccinated individuals (E
and E,). Unlike existing models Byambasuren et al. (2020); Buitrago-Garcia et al. (2020); Aguilar et al. (2020); Kronbichler
et al. (2020), this model does not explicitly track asymptomatic infections separately from symptomatic infections. This
will not impact the result of our model as the asymptomatic cases go to the recovery without getting identified. In fact, there
isn't enough information on asymptomatic cases of the variants. Further to that, due to the increased virulence of the new
variants, we focused our research on how the changing proportions of variants affects symptomatic people, for whom the
cases may be more deadly than the original strain.

2.2. Disease dynamics

The susceptible population is exposed to the disease at a rate of § and vaccinated at a rate of 5. Although, the vaccinated
susceptible population is exposed to the disease at the same rate as the unvaccinated people, but only a fraction of them will
become infected due to the vaccine's protection, that is efficacy of vaccine p. Once infected, the model assumes that infected
individuals have the same level of infectivity regardless of their vaccination status, since viral loads have been found similar
between vaccinated and unvaccinated infectious individuals (Acharya et al., 2021).

After the incubation period («), the exposed population goes to I and I, compartment. Then infected persons transfer from [
and I, compartments by recovering at v and v, or by passing away at u and u, rates respectively. We are assuming both
vaccinated and unvaccinated people will take same time to recover. The vaccinated and recovered population again become
susceptible owing to the decrease in immunity over time at rates w, and w respectively.

The following system of differential equations is our model equations which keep tracks how the individual moves from
one compartment to another compartment.

S = wVV+wR7w71}(t)S

E_ ﬁ(t)o(I{]+ L)S g

I =aE—(y+wl

v :n(t)s—ﬂ(t)p"g\’]“")v—wuv (1)
E - 5(t)pag\ll+ Lyv o,
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2.3. Model parameterization

Our model consists of ten parameters (see Table 1). Depending on the availability of data, we estimated some and took
some of the well established parameters value based on literature. Determining the value of transmissibility, (t), is the most
challenging parameter of all due to the coronavirus's ever-changing nature and the abundance of circulating variants. To take
into account circulating variants and their relative transmissibility, we used the data from Center for Disease Control (2021a)
to generate a weighted average of transmissibility based on relative infectivity and circulating variants prevalence over time
by incorporating the approach from Islam et al. (2021). Then f(t) becomes time dependent that takes into account the
emergence of newer virulent variants. To parameterize §(t), the time dependent relative infectivity, shown in Fig. 2, is
multiplied by a baseline value resulting in ranges from 0.34320 to 0.5819, which yields effective reproduction numbers in the
realistic ranges (Linka et al., 2020; Inglesby, 2020; Jung et al., 2021; Arroyo-Marioli et al., 2021) shown in Fig. 5.

By plotting the daily infection and vaccination data over time from the Center for Disease Control (2021a), we see that the
number of people who have been vaccinated per day fluctuates according to the number of infected people per day (Fig. 3a).
We assume that the time-varying vaccination rate (7(t)) is proportional to the number of active cases based on this phe-
nomenon. If the number of cases rises, more individuals will be interested to take the vaccine. Using the data from Center for

Disease Control (2021a), we have calculated the vaccination rate (»(t)) by using the formula, 5(t) = %W, where for

total population we have used the most recent value from the U.S. Census Bureau (2020).
Using the vaccination data from the Center for Disease Control (2021a), we utilized statistical techniques to fit the
vaccination rate to the number of daily cases shown in Fig. 3b. To estimate the vaccination rate using the log-logistic approach,
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Table 1

Model parameters and their description.
Parameter Value Source
B(t) (Transmission Rate) [0.3430—-0.5819] Callibrated
n(t) (Vaccination Rate) [0.0004—0.001] Estimated

p (Vaccine Efficacy)
o, (Incubation Period)

v (Recovery Rate)
u (Disease Induced Death Rate)
wy (Vaccinated Disease Induced Death Rate)

w (Antibody Waning rate)
wy (Vaccine Waning rate)

o (Adoption of NPIs)

0.95

1

5 day 1

0.1

0.0005

0.000041
1

180
1

180

[60%—75%]

day~1

day~1

Katella (2021); Pfizer Inc (2021)
Centers for Disease Control and Prevention (2020)

Usherwood et al. (2021)
Usherwood et al. (2021)
Vahidy et al. (2021)

Assumed
Pfizer Inc (2021)

Varying the parameter based on Borchering et al. (2021)

Prevalence of Strains

[]
1.7 (Alpha)

(Gamma)
.1.617.2 (Delta)
I Others

May 29
Jun 05
Jun 12
Jun 19
Jun 26
Jul 10

Jul 24

Jul 31 |
Aug 07
Aug 14
Aug 21
Aug 28

Relative Infectivity

(b)

Fig. 2. (a) Based on CDC's Prevalence statistics, the change in prevalence of variants of coronavirus over time from May 29 to August 28 (Center for Disease
Control, 2021a). (b) The relative infectivity of circulating viral variants is shown based on 50% increase in infectivity for alpha (B.1.1.7) with respect to other
co-circulating variants and a 50% increase in infectivity for delta (B.1.617.2) in comparison to alpha (B.1.1.7) (blue circles). To estimate future relative infectivity, a

log-logistic equation is fitted with the model (brow:

n curve) (See Appendix B).
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Fig. 3. (a) Daily data on infections and vaccination rate from the Center for Disease Control (2021a). (b) The brown curve line here represents the log-logistic

function which estimates the vaccination rate.

we used the number of daily cases as a predictor to estimate the vaccination rate using the log-logistic function (See Appendix
B). This fitted function will predict future vaccination rates based on the values of past cases.

We have assumed the incubation period («) is same for both vaccinated and unvaccinated people to become infected
(Center for Disease Control, 2021c). The recovery rate (v and v,) and disease induced death rate (u) for the non vaccinated
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persons are adopted from Usherwood et al. (2021). We have used disease induced death rate (u,) adopted from Vahidy et al.
(2021) for vaccinated people.

Based on the recent study, we assumed that the vaccination would be effective for at least 6 months (Pfizer Inc, 2021) and
the recovered patients would have the same period of protection as vaccinated persons.

3. Results
3.1. Analytic results

The basic reproduction number (Ryp) is an epidemiologic statistic used to describe the transmissibility of infectious agents.
Although the vaccination of susceptible individuals in the community will limit the number of effective contacts between
infectious and susceptible people, this activity will not reduce the Ry value as Ry assumes a completely susceptible population
(Delamater et al., 2019). As a result, we have estimated the effective reproduction number (R,). The analytic expression of the
effective reproduction number (R,) is,

_ Wy np
Re = ﬁ"((wﬁm(wm o +uu><wu+n>)

The detailed calculation using the next generation matrix approach of effective reproduction number is shown in
Appendix A. The R, value, rather than the Ry value, would be reduced if the number of susceptible people in a population are
vaccinated. If R, can be decreased to a value < 1, immunization might potentially halt an epidemic (Anderson, 1992; Anderson
& May 1992; Rubio, 2012).

3.2. Co-circulating variants, vaccine efficacy and NPIs

We simulated the scenarios based on the adoption of NPIs and vaccine effectiveness (Fig. 4). The reduction in vaccine
efficacy occurs with time as well as with the advent of new vaccine breakthrough variants. People, on the other hand, are
adopting NPIs as they see fit because right now, there is no set of mandates for individuals to follow when it comes to NPI
strategy, making it impossible to get information on which NPI approach is employed by how many people. Instead of
concentrating on which NPIs are used, it is now more appropriate to take into account the proportion of the population that
uses NPIs as a measure of prevention.

To simulate the scenarios of waning efficacy of the vaccine we varied the effectiveness of the vaccine from 70% to 95%
(Fig. 44, b, 4c). In the simulation, as the efficacy rises, the number of persons infected decreases significantly, implying that a
highly effective vaccine is needed to reduce the number of infections in the short and long term.

On the other hand, if the number of infected people decreases, people will be less likely to use NPIs which is why we have
varied the total populations adoption of NPIs to simulate the situations with different adoption rates. Fig. 4 indicates that even
if 75% of the population uses NPIs, the number of sick people will remain relatively low. It implies that using NPIs, until herd
immunity is obtained or high vaccine efficacy is maintained indefinitely, is the best strategy.

3.3. Effective reproduction number

The effective reproduction number, R, is affected by changes in immunization rate, vaccine efficacy, and NPI adoption.
While vaccine efficacy cannot be modified quickly, NPI adoption and vaccination rate can change drastically. Also, against the
new variants, vaccine loses its efficacy (Center for Disease Control, 2021d) for which we calculated the R, value by setting the
vaccine effectiveness to 80% instead of 90% while varying the vaccination rate, »(t) from 0.0001 to 0.003, as well as the NPIs
adoption rate from 0% to 75%. The effective reproduction number fluctuates between 4.31 (worst scenario) and 0.78 (best
scenario)(Fig. 5).

4. Discussion

The adoption of NPIs, effective allocation, and deployment by assuring the high efficacy of the vaccine against the virus
throughout time are the most significant components in controlling the spread of the COVID-19. With the introduction of
novel coronavirus variants and declining immunity over time, along with an increasing perception of safety, has produced an
ideal environment for the superspreading of highly infectious and lethal coronavirus variants. In this situation, we developed
an extension of the standard compartmental SEIR type model that dynamically tracks changes in co-circulating variants and
dynamic vaccination rates. As time passes, the emergence of new coronavirus variants renders a fixed transmission rate
obsolete, because each variant differs in terms of transmission potential. The overall coronavirus transmission rate changes
over time depending on the transmissibility of the co-circulating variants. As a result, tracking the change in ((t) value with
the change in co-circulating variants over time is a useful technique to track the transmission rate of coronavirus at any given
time. Furthermore, the vaccination data was not uniform at first due to people's anxiety and misinformation about the COVID-
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Fig. 4. The effect of NPIs adoption and vaccine efficacy on the daily number of infected cases is depicted in this figure. Figures a, b, and c depict the change in daily
case count with fixed vaccine efficacy (70%, 80%, 95%) with changing adoption of NPIs, while figures d, e, and f depict the corresponding cumulative case count.
From a, b, ¢, d, e, f it is clear that if the majority of the population uses NPIs, NPIs will have the greatest influence on lowering the daily number of instances in the

short and long term. If NPI adoption is not achievable, the only way to minimize the number of cases is to have a high vaccination rate with high effectiveness
(Check out Appendix C for a comparison of peak values.).
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NPIs Adoption

Fig. 5. Heat-map here depicts how with fixed vaccine efficiency the effective reproduction number (R,) varies with vaccination rates and adoption of NPIs. With

vaccine efficacy 80%, the most efficient method to halt the spread of the disease is to increase immunization rates paired with good implementation of NPIs until
herd immunity is reached.

19 vaccine. Based on our data fitting, it is clear that the vaccination rate currently follows the trend in daily number of cases
with a lag, allowing us to create a time-varying case-dependent vaccination rate. This strategy particularly accounts for

people’s shifting attitudes toward vaccination as the number of cases grows, making it a practical way to account for variants
and vaccination rates in the current situation.
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To reduce the complexity caused by the continual change in variants, we did not explicitly include asymptomatic infected
people in our model, instead of on the shifting landscape of variant strains and parameterizing relative transmissibility using
empirical time series weighted prevalence data for symptomatic people (Fig. 2). Furthermore, rather than indicating which
NPIs are most beneficial, we now state what percentage of the population has implemented NPIs. This is the logical thing to do
right now, because individuals are no longer adopting a predetermined set of NPIs plan, but rather choosing to protect
themselves against the COVID-19 in their own way, as states no longer have a mandate. Moreover, to avoid ambiguity about
the efficacy of different NPIs measures, we concentrated on the overall adoption of NPIs by the proportion of the population.

Based on the findings of our model, we can definitely claim that vaccination rate, vaccine effectiveness, and NPIs are
significant factors in reducing the number of infected patients and controlling the disease. According to our simulation, if
vaccine efficacy declines slightly, the number of sick people increases considerably, demonstrating that vaccine efficacy is
crucial for viral containment. As a result, the race to create and deliver booster dose and third dose is critical right now in
order to maintain the vaccine's efficacy against new strains. On the other hand, if mass vaccination is not possible in a timely
way or if vaccine breakthrough variants become prevalent, NPIs are the only option for controlling the spread of COVID-19.

The project's next phase will be to add asymptomatic individuals with strain-based data. Furthermore, vaccination data
will grow more consistent over time, improving the accuracy of this model. Therefore, this modeling technique highlights the
importance of the individuals to become vaccinated, as well as the need of planning and distributing booster dose in a timely
manner in order to mitigate the spread of coronavirus.
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