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Abstract 

Extant literature on moderation effects narrowly focuses on the average moderated treatment 

effect across the entire sample (AMTE). Missing is the average moderated treatment effect on 

the treated (AMTT) and other targeted subgroups (AMTS). Much like the average treatment 

effect on the treated (ATT) for main effects, the AMTS changes the target of inferences from the 

entire sample to targeted subgroups. Relative to the AMTE, the AMTS is identified under 

weaker assumptions and often captures more policy-relevant effects. We present a theoretical 

framework that introduces the AMTS under the potential outcomes framework and delineates the 

assumptions for causal identification. We then propose a generalized propensity score method as 

a tool to estimate the AMTS using weights derived with Bayes Theorem. We illustrate the results 

and differences among the estimands using data from the Early Childhood Longitudinal Study. 

We conclude with suggestions for future research. 
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Introduction 

A critical consideration in making causal inferences from a sample is the a priori 

specification of the target population and definition of the causal parameter of interest (e.g., 

Ahern, 2018; Hernán, 2018). Causal inference researchers have repeatedly distinguished among 

different types of effects based on different samples and inferential targets. For example, prior 

research has distinguished among several different types of main effects of a treatment including 

the average effect of the treatment on the treated (ATT), the average treatment effect on the 

untreated (ATU), and the average treatment effect (ATE) (Imai, King, & Stuart, 2008; Imbens, 

2004; Kurth et al., 2006; McCaffrey, Ridgeway, & Morral, 2004; Ridgeway et al., 2021).  

Based on the potential outcomes framework (Newman, 1923; Rubin, 1974), the ATE 

contrasts the potential outcomes (Y) for those in the treated and untreated conditions: 𝐸[𝑌(1) −

𝑌(0)] with E[] as the expectation operator, 𝑌(0) as the potential outcome under the untreated 

condition, and 𝑌(1) as the potential outcome under the treatment condition. The ATT also 

contrasts the expected outcomes across conditions but does so conditional upon receipt of the 

treatment (Z = 1): 𝐸[𝑌(1) − 𝑌(0)|𝑍 = 1]. Conceptually, this estimand captures the average 

treatment effect for those who were materially exposed to the treatment condition. The untreated 

counterpart of this estimand, the average treatment effect of the treatment on the untreated 

(ATU), contrasts the potential outcomes across conditions conditional upon receipt of a control 

or comparative condition (Z = 0) and is defined as 𝐸[𝑌(1) − 𝑌(0)|𝑍 = 0].  ATU represents the 

average treatment effect for those in the untreated group should they receive the treatment.  

The scope of inference for treatment effects has also expanded to complements of the 

main treatment effect. For example, researchers and policy makers are increasingly interested in 



differential (moderated) treatment effects associated with dissimilar subgroups based on 

pretreatment variables (Aiken & West, 1991; Baron & Kenny, 1986; Frazier, Tix, & Barron, 

2004; Kraemer, Kiernan, Essex, & Kupfer, 2008; Kraemer, Stice, Kazdin, Offord, & Kupfer, 

2001). 

A principal finding in this literature suggests that effects and inferences may critically 

diverge in different samples when assumptions are violated and/or when individuals in treatment 

conditions systematically differ (e.g., Bun & Harrison, 2019; Dong, 2012; 2015). Although 

literature has thoroughly documented these considerations for main effects (e.g., Dong, Zhang, 

Zeng, & Li, 2020; Mayer, Dietzfelbinger, Rosseel, & Steyer, 2016; Yang et al, 2021), the 

moderation effects counterpart to this literature has largely focused only on the average 

moderated treatment effect (AMTE) for the entire sample under the potential outcomes 

framework (e.g., Bansak, 2018; Dong, 2012, 2015; Dong & Kelcey, 2020; Egami & Imai, 2019). 

There is little to no research on the average moderator effects on subsamples; that is, the 

analogous ATT/ATU version of the average moderated treatment effect on targeted subgroups 

(AMTS) (e.g., the average moderated treatment effect on the treated subgroup)has not been 

studied and well defined.   

The purpose of this article is to develop the average moderated treatment effect on 

targeted subgroups (AMTS) based on the potential outcomes framework (Neyman, 1923/1990; 

Rubin, 1974), delineate identification assumptions, and to develop an estimator. The remainder 

of the paper is organized as follows. First, we introduce a motivating example that focuses on the 

main effect of preschool on the academic achievement for all children and the differential effect 

of preschool on the academic achievement for children with different home language 

background. Second, we review the ATE, ATT, and ATU, and discuss their assumptions for 



causal inference. Third, we present a theoretical framework that introduces the AMTE and 

AMTS definitions for a binary moderator under the potential outcomes framework and delineates 

the assumptions for causal identification of the AMTE and AMTS. Then we propose the 

generalized propensity score method as a tool to estimate the AMTE and AMTS using the 

weights derived based on Bayes Theorem. Fourth, we demonstrate the application of our 

proposed definitions and estimation methods to the motivating example. Finally, we discuss our 

findings and conclude with some suggestions of future directions of research. 

Motivating Example 

Our example focuses on the main and differential effect of preschool on the academic 

achievement of children with different home language background. The early childhood care and 

education (ECCE) programs, such as center-based programs like preschool, pre-Kindergarten, 

and Head Start seek to close the achievement gap at school entry. Some studies indicate positive 

main effects of ECCE on student’s academic achievement (e.g., Magnuson, Ruhm, & Waldfogel, 

2007) while several studies indicate mixed effects of ECCE on student’s academic achievement 

(e.g., Barnett, 2011; Lipsey, Hofer, Dong, Farran, & Bilbrey, 2013). Further, Lipsey et al (2013) 

suggested the effects of ECCE may differ for certain subgroups and found that that non‐native 

English speaking children experienced greater benefit in terms of academic achievement from 

the Tennessee voluntary prekindergarten program than the native English speaking children 

during the pre-k year but less benefit in kindergarten and the first grade. Given the mixed 

findings, the policy questions in this example include: (1) Is there is a main effect of preschool 

(treated) compared to parental care (untreated) on the academic achievement for all children? (2) 

Is there a differential (moderated) effect of preschool on the academic achievement for children 



with different home language background (moderator: speaking English at home or not)? In this 

example, both the treatment and moderator variables are dichotomous.   

Review of ATE, ATT, and ATU 

To illustrate the differences among ATE, ATT, and ATU, we consider the motivating 

example for which we would like to evaluate the main effect of a dichotomous treatment (i.e., 

preschool vs. parental care). Assume the potential outcomes can be expressed as a linear function 

such that: 

𝑌𝑖(𝑍) = 𝛽0 + 𝛽1𝑍𝑖 + 𝛽2𝑋𝑖 + 𝛽3𝑋𝑖𝑍𝑖 + 𝑒𝑖, 𝑒𝑖~𝑁(0, 𝜎
2 ),    (1) 

where 𝑌𝑖(𝑍) is the potential outcome for subject i receiving treatment Z. 𝑍𝑖 represents the 

treatment status: 1 for the treated condition (preschool), and 0 for the untreated condition 

(parental care). 𝑋𝑖 is a baseline moderating covariate for home language background: 1 for 

speaking English at home, and 0 for not speaking English at home. The coefficient, 𝛽1, is the 

treatment effect of preschool when 𝑋𝑖 = 0 (not speaking English at home), and 𝛽3 is the 

moderated treatment effect that depends on the value of the covariate (moderator), 𝑋𝑖. Under this 

simple example, the ATE is estimated as  

𝐴𝑇𝐸 = 𝐸[𝑌(1) − 𝑌(0)] = 𝐸[(𝛽0 + 𝛽1 + 𝛽2𝑋𝑖 + 𝛽3𝑋𝑖 + 𝑒𝑖) − (𝛽0 + 𝛽2𝑋𝑖 + 𝑒𝑖)] =

𝐸[𝛽1 + 𝛽3𝑋𝑖] = 𝛽1 + 𝛽3𝐸(𝑋𝑖).          (2) 

Conceptually, the ATE summarizes the average effect for the entire sample by taking the 

(unconditional) expectation of the moderating covariate over treated and untreated conditions. 

Similarly, the ATT and ATU in this example are estimated as 

𝐴𝑇𝑇 = 𝐸[𝑌(1) − 𝑌(0)|𝑍 = 1] = 𝐸[((𝛽0 + 𝛽1 + 𝛽2𝑋𝑖 + 𝛽3𝑋𝑖 + 𝑒𝑖) − (𝛽0 + 𝛽2𝑋𝑖 +

𝑒𝑖))|𝑍 = 1] = 𝐸[(𝛽1 + 𝛽3𝑋𝑖)|𝑍 = 1] = 𝛽1 + 𝛽3𝐸(𝑋𝑖|𝑍 = 1).      (3) 



𝐴𝑇𝑈 = 𝐸[𝑌(1) − 𝑌(0)|𝑍 = 0] = 𝐸[((𝛽0 + 𝛽1 + 𝛽2𝑋𝑖 + 𝛽3𝑋𝑖 + 𝑒𝑖) − (𝛽0 + 𝛽2𝑋𝑖 +

𝑒𝑖))|𝑍 = 0] = 𝐸[(𝛽1 + 𝛽3𝑋𝑖)|𝑍 = 0] = 𝛽1 + 𝛽3𝐸(𝑋𝑖|𝑍 = 0).      (4) 

In contrast to the ATE, the ATT (or ATU) describes the average effect for only those that took 

up the treatment (or untreated) by taking the expectation of the moderating covariate conditional 

upon treatment status. 

Prior research has demonstrated these connections by showing that the ATE is the 

weighted average of ATT and ATU (Abadie & Imbens, 2008). More specifically, the 𝐴𝑇𝐸 =

𝑛𝑡

𝑛𝑡+𝑛𝑐
𝐴𝑇𝑇 +

𝑛𝑐

𝑛𝑡+𝑛𝑐
𝐴𝑇𝑈, where 𝑛𝑡, and 𝑛𝑐 are sample sizes for the treatment and control groups. 

In a randomized trial with full treatment compliance the ATT, ATU and ATE are all equal in 

expectation because the treatment and control samples and their covariate distributions are 

similar due to random assignment, i.e., 𝐸(𝑋𝑖|𝑍 = 1) = 𝐸(𝑋𝑖|𝑍 = 0) = 𝐸(𝑋𝑖). However, in a 

randomized trial with treatment noncompliance1 or a non-randomized study, the three estimands 

may differ because the samples in the treatment and comparison groups may be systematically 

different due to treatment noncompliance or self-selection, e.g., 𝐸(𝑋𝑖|𝑍 = 1) ≠ 𝐸(𝑋𝑖|𝑍 = 0). As 

a result, when a treatment effect is moderated by a covariate (𝛽3 ≠ 0), the treatment effects 

diverge across the different samples.  

In non-randomized studies, the distinctions among the ATE, ATT, and ATU are useful 

from both theoretical and practical standpoints. Theoretically, for example, the adoption of the 

ATT can be used to partially relax identification assumptions that undergird much of the causal 

inference framework for the ATE (See Moreno-Serra, 2007 for a review). Under the potential 

 
1 See Angrist, Imbens, and Rubin (1996) and Sagarin et al. (2014) for more discussion about treatment 

noncompliance. 



outcomes framework (Neyman, 1923/1990; Rubin, 1974), identification of the ATE requires two 

key assumptions (in addition to other assumptions):  

{𝑌(0),𝑌(1)} ⊥ 𝑍|𝑿,         (5) 

0 < 𝑃𝑟⁡(𝑍 = 1|𝑿) < 1,        (6) 

where X is a vector of covariates, and 𝑃𝑟⁡(𝑍 = 1|𝑿) is the probability of being in the treatment 

group conditional on the covariates. The first assumption (Eq. 5) is often known as 

unconfoundedness or ignorable treatment assignment (Rosenbaum & Rubin, 1983) and is 

commonly referred to as selection on observed variables. This assumption requires the set of 

potential outcomes be independent of the treatment assignment conditional upon the observed 

covariates. The second assumption (Eq. 6) is often referred to as common support or overlap and 

requires that the probability of receiving treatment for each level of the covariates is between 

zero and one (i.e., no one receives treatment or control with certainty). Rosenbaum and Rubin 

(1983) referred to the combination of the first and second assumptions as “strong ignorability”. 

Both assumptions can be weakened when taking up the ATT and ATU. In particular, 

identification of the ATT only requires relaxed versions of the original assumptions (in addition 

to other assumptions):  

𝑌(0) ⊥ 𝑍|𝑿,          (7) 

𝑃𝑟⁡(𝑍 = 1|𝑿) < 1.         (8) 

Similarly, identification of the ATU requires the assumptions: 

𝑌(1) ⊥ 𝑍|𝑿,          (9) 

0 < 𝑃 𝑟(𝑍 = 1|𝑿).         (10) 

Under the ATT (or ATU), the first assumption (expression 7 or 9) is known as weak 

unconfoundedness. This assumption is a weaker version of its ATE counterpart assumption (i.e., 



Eq. 5). For example, for the ATT, the moments of the distribution of 𝑌(1) for the treated are 

directly measurable and the assumption only requires that the potential outcome under the 

control condition is independent of the treatment assignment given the observed variables. In 

parallel, for the ATU, the moments of the distribution of 𝑌(0) for the untreated are directly 

measurable and the assumption only requires that the potential outcome under the treatment 

condition is independent of the treatment assignment given the observed variables. Similarly, the 

second ATT (or ATU) assumption (Eq. 8 or 10) captures what is commonly referred to as weak 

overlap or common support because it requires only that the probability of receiving treatment 

for each level of the covariates is less than one, i.e., no one receives treatment with certainty, (or 

more than 0, i.e., no one receives control with certainty). 

There is also practical purchase in differentiating among the ATE, ATT and ATU. 

Research projects take up a broad range of foci that leverage different designs and necessitate 

different targets of inference for summarizing treatment effects. For example, the students who 

speak English at home may go to preschool at a much higher rate than their counterparts who do 

not speak English at home. In such settings, researchers may have different interest in the ATT, 

ATU, and ATE because the different samples represent different policy targets; e.g., the ATU 

captures the effect of preschool on the sample with more immigrant children who do not speak 

English at home, a policy-relevant segment of the population.  

Theoretical Framework 

Just as the distinction among ATE, ATT, and ATU can be used to understand requisite 

assumptions and probe a diverse set of research purposes when detailing the main effect, the 

distinction between the AMTE and AMTS can be useful for relaxing the assumptions necessary 

for causal inference while aligning research goals, policy, and estimands. For instance, when we 



investigate whether the effect of preschool was moderated by students’ home language 

background, we can distinguish between the AMTE and several versions of the AMTS. The 

AMTE describes the average moderated treatment effect across the entire sample; that is, it 

describes the extent to which treatment effects varied as a function of students’ home language 

background for the entire sample regardless of their selected treatment status. In contrast, the 

AMTS decomposes this overall summary into the average moderated treatment effect for 

targeted subgroups while diminishing identification assumptions as outlined above.  

As an example, consider a conceptual counterpart of the ATT, the average moderated 

treatment effect on the treated (AMTT). The AMTT can be used to capture the moderation 

effects owing to the home language background for those who selected into preschool. This 

estimand is conceptually analogous to the ATT in that it describes the moderation effect for only 

the portion of the sample that received treatment. Alternatively, more fine-grained distinctions 

can also be made using the AMTS—for instance, we can narrowly describe the moderation 

effects for just those students who were exposed to preschool and also spoke English at home. 

As we detail below, when appropriate, the shift has theoretical and practical advantages that 

parallel the differences between ATE and the ATT/ATU described above.  

Potential Outcomes Framework for Causal Moderation Analysis 

 When a potentially manipulable pretreatment covariate moderates a treatment effect, the 

potential outcomes for participant i depend on both the treatment status (Z) and moderator value 

(R). In the case of a dichotomous treatment and a dichotomous moderator, we can define the 

potential outcomes for participants with reference to their statuses on these variables as 

Potential Outcome := 𝑌𝑖(𝑍 = 𝑧, 𝑅 = 𝑟),      (11)  

where 𝑌𝑖 is the potential response for individual i when the treatment (Z) is set to z (Z = 0 for 



untreated, e.g., parental care, or 1 for treated, e.g., preschool) and the moderator (R) is set to r (R 

= 0 for the reference moderator subgroup, e.g., not speaking English at home, or R = 1 for the 

moderator subgroup, e.g., speaking English at home) (Dong, 2012, 2015; Dong & Kelcey, 2020). 

The potential outcomes for the causal moderated treatment effect are presented in Figure 1. 

Under this definition, each individual has four potential outcomes: (a) 𝑌(0,0), (b) 𝑌(0,1), (c) 

𝑌(1,0), and (d) 𝑌(1,1).  

Similar to definitions for the main effect that distinguish the ATE and the average 

treatment effect on subsamples (e.g., ATT for the treated sample) (Imai, King, & Stuart, 2008; 

Imbens, 2004; Kurth et al., 2006; McCaffrey, Ridgeway, & Morral, 2004), we differentiate 

between two general types of moderation effects: (a) the average moderated treatment effect 

(AMTE) that pertains to the entire sample and (b) the average moderated treatment effects on 

targeted subgroups (AMTS) that pertain to selected subgroups.  

The AMTE can be defined using the contrasts among four potential outcomes: 

𝐴𝑀𝑇𝐸 = 𝐸[𝑌(1,1) − 𝑌(0,1)] − 𝐸[𝑌(1,0) − 𝑌(0,0)] 

= 𝐸[𝑌(1,1) − 𝑌(0,0)] − 𝐸[𝑌(1,0) − 𝑌(0,0)] − 𝐸[𝑌(0,1) − 𝑌(0,0)] 

= 𝐸[𝑌(1,1) − 𝑌(1,0)] − 𝐸[𝑌(0,1) − 𝑌(0,0)].    (12) 

The AMTE is the difference in the average treatment effects between the moderator 

subgroup R = 1 (i.e., 𝐸[𝑌(1,1) − 𝑌(0,1)]) and the reference moderator subgroup R = 0 (i.e., 

𝐸[𝑌(1,0) − 𝑌(0,0)]), for the entire sample. The AMTE measures the additional effect of both 

treatment and moderator beyond the average effects of treatment (𝐸[𝑌(1,0) − 𝑌(0,0)]) and 

moderator (𝐸[𝑌(0,1) − 𝑌(0,0)]) in the total effect of treatment and moderator (𝐸[𝑌(1,1) −

𝑌(0,0)]).  

Alternatively, the AMTE can be regarded as the difference in the average moderator 



subgroup differences (gaps) between the treated group Z = 1 (i.e., 𝐸[𝑌(1,1) − 𝑌(1,0)]) and the 

untreated group Z = 0 (i.e., 𝐸[𝑌(0,1) − 𝑌(0,0)]), for the entire sample. More conceptually, this 

AMTE definition aligns with the interaction effect for a factorial design where two concurrent 

treatments exist by Hong (2015), the average marginal interaction effect (AMIE) by Egami and 

Imai (2019) and the average treatment moderation effect (ATME) by Bansak (2018).  

AMTS 

In contrast, the average moderated treatment effect on targeted subgroups (AMTS) 

focuses on the difference among the potential outcomes for a specific subgroup (Z = z and/or R = 

r), and it can be defined as:  

AMTS (Z=z,R=r) = E[Y(1,1) ˗ Y(0,1)|Z = z, R = r] - E[Y(1,0) ˗ Y(0,0)|Z = z, R = r],            (13) 

where z = 0 for untreated or 1 for treated, and r = 0 for the reference moderator subgroup or 1 for 

the moderator subgroup.  

The AMTS for targeted subgroups are summarized in Table 1. For example, the 

AMTS(Z=0,R=0) is the average treatment effect difference between the students who spoke English 

at home (r = 1) and the students who did not speak English at home (r = 0) for those that had 

similar characteristics with the students who were in parental care (Z = 0) and did not speak 

English at home (R = 0). 

In addition, we can leverage the AMTS to describe effect differences for subsamples that 

solely condition upon the treatment status. The AMTS(Z=1) describes the expected treatment effect 

difference between students who spoke and did not speak English at home for those that were 

exposed to the treatment (preschool), i.e., the average moderated treatment effect on the treated 

(AMTT). Similarly, the AMTS(Z=0) describes the expected treatment effect difference between 

students who spoke and did not speak English at home for those that were exposed to the 



untreated condition (parental care), i.e., the average moderated treatment effect on the untreated 

(AMTU). 

We can also detail similar distinctions for moderator-based subsamples. For example, the 

AMTS(R=1) describes the expected treatment effect difference between students who spoke and 

did not speak English at home for those that had similar characteristics with students who spoke 

English at home. Similarly, the AMTS(R=0) the expected treatment effect difference between 

students who spoke and did not speak English at home for those that had similar characteristics 

with students who did not speak English at home. 

If both treatment and moderator are randomly assigned, the AMTS will be equal across 

all four treatment-by-moderator subgroups and the other subgroups defined solely upon the 

treatment or moderator variable, and the AMTS is equal to the AMTE. However, if either the 

treatment or the moderator is not randomly assigned, the AMTS may differ across subgroups 

because the subsamples and thus the covariate distributions across subgroups may be different.  

In general, the AMTE equals the weighted sum of AMTS across four subgroups with 

weights based on the proportion of total individuals in each subgroup, that is,  

AMTE = 
𝑛(𝑍=0,𝑅=0)

𝑁
AMTS(Z=0,R=0) + 

𝑛(𝑍=0,𝑅=1)

𝑁
AMTS(Z=0,R=1)  

+ 
𝑛(𝑍=1,𝑅=0)

𝑁
AMTS(Z=1,R=0) + 

𝑛(𝑍=1,𝑅=1)

𝑁
AMTS(Z=1,R=1) ,    (14) 

where 𝑛(𝑍=0,𝑅=0), 𝑛(𝑍=0,𝑅=1), 𝑛(𝑍=1,𝑅=0), and 𝑛(𝑍=1,𝑅=1)are sample sizes for four treatment-by-

moderator subgroups, and N =  𝑛(𝑍=0,𝑅=0) + 𝑛(𝑍=0,𝑅=1) + 𝑛(𝑍=1,𝑅=0) + 𝑛(𝑍=1,𝑅=1). The 

AMTS(Z=1), AMTS(Z=0), AMTS(R=1), and AMTS(R=0) follow a similar pattern and are shown in Table 

2. 

Assumptions for AMTE and AMTS 



The assumptions for the causal AMTE are analogous to the assumptions for the factorial 

design with two concurrent treatments (e.g., Egami & Imai, 2019) in that the moderator is 

potentially manipulable2:  

(1) The stable unit treatment and moderator value assumption (SUTMVA). The potential 

outcome for one unit should be unaffected by the particular assignment of treatments or 

moderators to the other units and there is only one version of the treatment and the moderator. 

This assumption extends the single treatment variable version of SUTVA (Rubin, 1980) to the 

two-variable version (Egami & Imai, 2019). That is, the extension applies equally to treatment 

assignments and moderator values in that the effects are only identified when there is no 

influence of one student’s treatment or moderator value on the potential outcomes of another 

student. The extension also applies to the intersections or combinations of the treatment and 

moderator. That is, the potential outcomes of a student must also be independent of the treatment 

by moderator values of another student. Applied to our preschool example, this assumption is 

violated when, for example, the proportion of the students who spoke English at home and 

selected into the treatment condition influences the potential outcomes of students. This can 

arise, for instance, when an immigrant student who did not speak English at home becomes 

disheartened or discouraged by the dominance of the non-immigrant students in preschool such 

that it alters his/her potential outcomes.  

(2) Ignorability of the treatment and moderator given covariates (Egami & Imai, 2019). 

The assignment mechanism for the treatment and moderator does not depend on potential 

outcomes given observable covariates. That is, {𝑌(0,0),𝑌(0,1),𝑌(1,0),𝑌(1,1)} ⊥ (𝑍, 𝑅)|𝑿, 

 
2 Rubin and others have argued that a causal effect cannot be defined without at least a clear hypothetical 

manipulation (e.g., Rubin 1986, 2010). To claim a causal moderator effect, the moderator needs to be potentially 

manipulable to mimic some hypothetical factorial experiments.  



where X is a vector of covariates. This assumption requires that the potential outcomes given 

covariates are independent of the treatment and moderator status. Put differently, there are no 

variables that confound the relationships between the outcome, treatment and moderator. In a 

randomized experiment, this assumption automatically holds for the treatments, but not 

necessarily for the moderators. In non-randomized studies, this necessitates that both the 

treatment and moderator assignment is independent of the potential outcomes conditional upon 

observed covariates. Applied to our preschool example, when the assignment of treatment 

(preschool) is random, if the home language status is not randomly assigned, this assumption can 

be violated when other covariates (e.g., socio-economic status (SES)) that are correlated with the 

home language status and affect the potential outcome are not appropriately accounted for 

(Dong, 2015).       

(3) Independence of the treatment and moderator. The treatment and moderator are 

independent given covariates: 𝑍 ⊥ 𝑅|𝑿. This assumption holds in all randomized studies because 

of the random assignment of treatment. In non-randomized studies, however, this necessitates 

that, for example, treatment assignment is independent of the moderator conditional upon 

observed covariates. Applied to our preschool example, when the assignment of treatment 

(preschool) is not random this assumption can be violated when, for example, higher SES 

students who speak English at home tend to go to preschool. 

(4) Treatment-by-moderator common support: 0 < 𝑃𝑟⁡(𝑍, 𝑅|𝑿) < 1. The assumption 

requires the overlap of the sample among the treatment-by-moderator subgroups, i.e., the 

probability of an individual in either of the four groups should be between 0 and 1. This 

assumption may not automatically hold in randomized experiments where treatment is 

randomized because the moderator may not be randomized, and it is necessary for both 



randomized and non-randomized studies. In our preschool example, this assumption requires that 

each student has a nonzero probability to be in all four treatment (preschool)-by-moderator 

(home language background) subgroups.  

Similar to the contrast between the assumptions for the ATT/ATU and ATE, the 

assumptions buttressing strong ignorability (2 and 4) can be weakened for the AMTS because the 

potential outcomes for the targeted inference group are directly measurable and only assumptions 

about the potential outcomes under the comparison subgroups are needed for estimating the 

counterfactual.  

(5) The assignment mechanism for the treatment and moderator that are not for the 

targeted inference group do not depend on potential outcomes given observable covariates. That 

is, {𝑌(0,1), 𝑌(1,0), 𝑌(1,1)} ⊥ (𝑍, 𝑅)|𝑿 for AMTS(Z=0,R=0); {𝑌(0,0), 𝑌(1,0),𝑌(1,1)} ⊥ (𝑍, 𝑅)|𝑿 

for AMTS(Z=0,R=1); {𝑌(0,0),𝑌(0,1),𝑌(1,1)} ⊥ (𝑍, 𝑅)|𝑿 for AMTS(Z=1,R=0); 

{𝑌(0,0),𝑌(0,1),𝑌(1,0)} ⊥ (𝑍, 𝑅)|𝑿 for AMTS(Z=1,R=1).  

(6)  The probability of being the targeted inference subgroup for an individual in the 

other three subgroups should be between 0 and 1. 

Estimation of AMTS Using the Generalized Propensity Score 

A common approach to estimating causal effects under the potential outcomes framework 

is the use of propensity scores (Rosenbaum & Rubin, 1983). We draw on this approach to 

estimate AMTE and AMTS. When the treatment variable is dichotomous, the propensity score is 

the probability of being in the treatment group given the covariates (Rosenbaum & Rubin, 1983). 

Imbens (2000) extended it to treatments with multiple categories, i.e., the generalized propensity 

score. The generalized propensity score is the conditional probability of receiving treatment z 

given pre-treatment covariate X, i.e., 𝜋 = 𝑃𝑟⁡(𝑍 = 𝑧|𝑿). The inverse of the generalized 



propensity score as a weight can be used to estimate the causal effects of multi-valued treatments 

(Imbens, 2000). Dong (2015) applied the generalized propensity score method to estimate the 

AMTE by collapsing two dimensions (treatment and moderator) to one dimension (a variable 

with multiple categories). Dong’s (2015) simulation demonstrated good performance of the 

generalized propensity score in estimating the effects of two variables on one outcome. We 

extend Dong’s (2015) work to apply the generalized propensity score method to estimate the 

AMTS. We use Bayes Theorem to derive the weights based on the generalized propensity score 

to estimate the AMTS and AMTE. The procedure follows.  

(1) We first convert the two dimensions (treatment by moderator, 2×2) of design to one 

dimension of design with 4 categories by creating a new independent variable, S, where S = 1 if 

Z = 0 and R = 0, S = 2 if Z = 0 and R = 1, S = 3 if Z = 1 and R = 0, and S = 4 if Z = 1 and R = 1. 

This step converts the estimation of effects of two predictors to the estimation of the effect of 

one predictor with four values.  

(2) We then estimate generalized propensity scores (Imbens, 2000). For instance, we can 

use multinomial logistic regression, random forests, or boosted regression (Cham & West, 2016; 

McCaffrey, Ridgeway, & Morral, 2004) to estimate the generalized propensity scores for 

individual i of being in a certain category/subgroup given covariates (X): 𝜋𝑖(𝑠) = 𝑃𝑟(𝑆𝑖 = 𝑠|𝑿𝑖), 

where s = 1, 2, 3, or 4. Note that although the coefficients of the covariates may vary depending 

on which reference outcome subgroup is used, the probability of being in a certain subgroup will 

not change with the reference subgroup (Long, 1997). Each individual has four generalized 

propensity scores, among which, one is the probability of being in the actual/observed subgroup 

and the other three are the probabilities of potentially being in the other subgroups. We also 

assess the overlap of the generalized propensity scores across subgroups. 



(3) We use different propensity score methods for estimating the AMTE and AMTS. We 

elaborate on potential methods below. 

(3a) We use the inverse probability of treatment weighting (IPTW) to estimate the AMTE 

(e.g., Dong, 2015). The weights are 𝑤𝑖(𝑠) =
1

𝜋𝑖(𝑠)̂
, where 𝜋𝑖(𝑠)̂ is the estimated generalized 

propensity score of being in the actual/observed subgroup, s. Note that if an individual has a 

propensity score close to 0 or 1 when the treatment variable is binary, the resulting IPTW-ATE 

weight can be very large. Further, the resulting IPTW-ATE estimator has a large variance and is 

not approximately normally distributed (Robins, Hernán, & Brumback, 2000). To overcome this 

limitation, Robins, Hernán, and Brumback (2000) proposed the stabilized IPTW-ATE weighting 

for the binary treatment variable by taking the proportion of individuals in the treated group into 

account of the weight. Although the stabilized IPTW-ATE weighting approach has demonstrated 

appropriate estimation of the variance of main effect and appropriate type I error rates (Xu et al, 

2010), it should be used with caution, e.g., researchers should conduct appropriate covariate 

balance diagnosis (see Austin & Stuart, 2015 for a detailed review). 

Below we extend the stabilized IPTW-ATE weighting for the binary treatment variable to 

the stabilized IPTW-AMTE weighting. Recall that the key to applying propensity score methods 

is to make the distribution of the features of the sample in the comparison groups resemble the 

distribution of the features of the sample of interest for inference group (e.g., Lenis, Nguyen, 

Dong, & Stuart, 2019; Ridgeway, Kovalchik, Griffin, & Kabeto, 2015). For the AMTE 

estimation, we are interested in the entire sample for making inferences. Hence, we need to make 

the feature distribution of the sample in each of our groups resemble the feature distribution of 

the entire sample. That is, we want to find the weights 𝑤𝐴𝑀𝑇𝐸(𝑿|𝑆 = 𝑠) for individuals in the 

actual/observed Subgroup s, where s = 1, 2, 3, or 4, such that 



𝑓(𝑿)=⁡𝑤𝐴𝑀𝑇𝐸(𝑿|𝑆 = 𝑠)𝑓(𝑿|𝑆 = 𝑠),        (15) 

where 𝑓(𝑿) is the marginal density of the covariates (X) for the entire sample, and 𝑓(𝑿|𝑆 = 𝑠) is 

the marginal density of the covariates for Subgroup s, and s = 1, 2, 3, or 4. 

Rearranging and applying Bayes Theorem we find 

𝑤𝐴𝑀𝑇𝐸(𝑿|𝑆 = 𝑠)=
𝑓(𝑿)

𝑓(𝑿|𝑆=𝑠)
=

𝑓(𝑿)

𝑓(𝑿)𝑓(𝑆=𝑠|𝑿)/𝑓(𝑆=𝑠)
=

𝑓(𝑆=𝑠)

𝑓(𝑆=𝑠|𝑿)
=

𝑛𝑠

𝑁
(

1

𝑓(𝑆=𝑠|𝑿)
),  (16) 

where⁡𝑁 = 𝑛1 + 𝑛2 + 𝑛3 + 𝑛4 and 𝑓(𝑆 = 𝑠) =
𝑛𝑠

𝑁
 is the proportion of the sample size for Group 

s in the total sample. Note that 𝑓(𝑆 = 𝑠|𝑿) is the generalized propensity score (𝜋(𝑠)) for 

individuals in Group s. Hence, we can use the weight below to estimate the AMTE: 

𝑤𝐴𝑀𝑇𝐸(𝑿|𝑆 = 𝑠)=
𝑛𝑠

𝑁
(

1

𝜋𝑖(𝑠)̂
).         (17) 

For instance, the AMTE weight for the students who did not go to preschool and did not 

speak English at home (s = 1) is 𝑤𝐴𝑀𝑇𝐸(𝑿|𝑆 = 1)=
𝑛1

𝑁
(

1

𝜋𝑖(1)̂
), where 𝜋𝑖(1)̂ is the estimated 

generalized propensity score for students being in subgroup 1. This weight can ensure that the 

feature distribution of the students who did not go to preschool and did not speak English at 

home resembles the feature distribution of the entire sample (Expression 15). 

When there are only two groups (s = 1 or 2), this stabilized IPTW-AMTE weighting is 

the same as the stabilized IPTW-ATE weighting for the binary treatment variable (Robins, 

Hernán, & Brumback, 2000). 

(3b) For AMTS, the direct estimate (e.g., using a regression model) is impossible because 

there are four potential AMTS of interest, each AMTS of interest needs four equivalent 

treatment-by-moderator subsamples, and it is impossible to simultaneously have four equivalent 

treatment-by-moderator subsamples for each of four potential AMTS of interest using the 

original sample without any adjustment (except with random assignment of both treatment and 



moderator variables where AMTS = AMTE). However, we can use the odds ratio of the 

generalized propensity scores as the weight, 𝑤𝑖(𝑠) =
𝜋𝑖(𝑠0)̂

𝜋𝑖(𝑠)̂
, to estimate AMTS. The denominator 

of this expression (odds ratio) is the propensity score of being in the actual subgroup (s) and the 

numerator is the propensity score of being in the targeted inference subgroup (𝑠0). For example, 

if the targeted sample of interest for inference is the treated moderator comparison group (Z = 1 

and R = 1, i.e., S = 4), the weight, 𝑤𝑖(𝑠) =
𝜋𝑖(4)̂

𝜋𝑖(𝑠)̂
, where s = 1, 2, 3, or 4.  

Similar to stabilized IPTW-AMTE weighting, alternatively we can get the stabilized 

IPTW-AMTS weighting. For the AMTS estimation, we are interested in a targeted sample (𝑆 =

𝑠0; e.g., the students who went to preschool and did not speak English at home, i.e., 𝑠0 = 3) for 

making inference to the population that it represents. Hence, we need to make the feature 

distribution of the sample in the other three groups (s = 1 for the students who did not go to 

preschool and did not speak English at home, 2 for the students who did not go to preschool and 

spoke English at home, and 4 for the students who went to preschool and spoke English at home) 

resemble the feature distribution of the targeted inference sample. That is, we want to find the 

weights 𝑤𝐴𝑀𝑇𝑆(𝑿|𝑆 = 𝑠) such that 

𝑓(𝑿|𝑆 = 𝑠0)=⁡𝑤𝐴𝑀𝑇𝑆(𝑿|𝑆 = 𝑠)⁡𝑓(𝑿|𝑆 = 𝑠).      (18) 

Rearranging and applying Bayes Theorem we find 

⁡𝑤𝐴𝑀𝑇𝑆(𝑿|𝑆 = 𝑠) =
𝑓(𝑿|𝑆=𝑠0)

𝑓(𝑿|𝑆=𝑠)
=

𝑓(𝑿)𝑓(𝑆=𝑠0|𝑿)/𝑓(𝑆=𝑠0)

𝑓(𝑿)𝑓(𝑆=𝑠|𝑿)/𝑓(𝑆=𝑠)
=

𝑓(𝑆=𝑠)

𝑓(𝑆=𝑠0)
(
𝑓(𝑆=𝑠0|𝑿)

𝑓(𝑆=𝑠|𝑿)
) =

𝑛𝑠

𝑛𝑠0
(
𝑓(𝑆=𝑠0|𝑿)

𝑓(𝑆=𝑠|𝑿)
),           (19) 

where⁡ 
𝑓(𝑆=𝑠)

𝑓(𝑆=𝑠0)
=

𝑛𝑠

𝑛𝑠0
 is the ratio of the sample size for Group s to the sample size for the targeted 

inference group. Note that 
𝑓(𝑆=𝑠0|𝑿)

𝑓(𝑆=𝑠|𝑿)
 is the odds ratio of the generalized propensity scores in the 



targeted inference group (𝑆 = 𝑠0) to the actual/observed Group s. Hence, we can use the weight 

below to estimate the AMTS: 

𝑤𝐴𝑀𝑇𝑆(𝑿|𝑆 = 𝑠) =
𝑛𝑠

𝑛𝑠0
(
𝜋𝑖(𝑠0)̂

𝜋𝑖(𝑠)̂
) .        (20) 

For the individuals in the inference group (𝑠 = 𝑠0), 𝑤𝐴𝑀𝑇𝑆(𝑿|𝑆 = 𝑠0) = 1. 

We then check the overlap of the generalized propensity scores and covariate balance 

based on the weights that we derived (e.g., Austin, 2008; Ridgeway et al. 2021; Rosenbaum, 

2002). The means of covariates for four treatment-by-moderator subgroups (S) are estimated 

using the AMTE and AMTS weights, and without weights. The maximum standardized mean 

differences (MSMD) among four subgroups were calculated for the AMTE:  

𝑀𝑆𝑀𝐷𝐴𝑀𝑇𝐸 = [𝑀𝑎𝑥(𝑋̅|𝑆 = 1, 𝑋̅|𝑆 = 2, 𝑋̅|𝑆 = 3, 𝑋̅|𝑆 = 4) − 𝑀𝑖𝑛(𝑋̅|𝑆 = 1, 𝑋̅|𝑆 =

2, 𝑋̅|𝑆 = 3, 𝑋̅|𝑆 = 4)]/𝑆𝐷𝑥.          (21) 

Similarly, the MSMD between the targeted inference subgroup and the other three 

subgroups were calculated for the AMTS:  

𝑀𝑆𝑀𝐷𝐴𝑀𝑇𝑆 = 𝑀𝑎𝑥(|(𝑋̅|𝑆 = 𝑠1 − 𝑋̅|𝑆 = 𝑠0)|, |(𝑋̅|𝑆 = 𝑠2 − 𝑋̅|𝑆 = 𝑠0)|, |(𝑋̅|𝑆 = 𝑠4 −

𝑋̅|𝑆 = 𝑠0)|)/𝑆𝐷𝑥,           (22) 

where 𝑋̅|𝑆 is the sample mean of covariate X for subgroup S, 𝑆𝐷𝑥 is the pooled standard 

deviation among four subgroups for the unweighted sample, |. | is the operation for absolute 

values, 𝑠0 is the targeted inference subgroup (𝑠0 = 3 in this example), and 𝑠1, 𝑠2, and 𝑠4 are the 

other subgroups. The MSMD with and without weights for the entire sample and targeted 

inference subsamples will be compared and plotted in figures. 

Finally, we can estimate the AMTE and AMTS based on respective weights while 

controlling for covariates in the statistical models to further reduce selection bias and improve 

precision (refereed as “for double robustness”, e.g., Austin, 2017; Kang & Schafer, 2007; Tsiatis 



& Davidian, 2007). We can also estimate the AMTS(Z=1), AMTS(Z=0), AMTS(R=1), and AMTS(R=0) 

based on Expressions in Table 2. 

In addition to weighting, we can use propensity score matching (e.g., greedy matching, 

optimal matching) to estimate AMTS. First, we can estimate the generalized propensity score of 

being in the targeted inference subgroup, 𝑠0. Then we match the sample from the other 

subgroups with Subgroup 𝑠0 based on the generalized propensity score of being in Subgroup 𝑠0. 

After balance checking we can estimate AMTS using the combined sample. The limitation of 

this matching approach is that we may not have well matched units as finding well matched units 

is more likely when the number of comparison units is much larger than the targeted sample. 

Thus the propensity score matching approach may only work well for the targeted inference 

subgroup with the smallest sample size among all four subgroups. 

Illustration: The Differential (Moderated) Effect of Preschool 

Data 

The data were from the Early Childhood Longitudinal Study, Kindergarten Class of 

1998-99 (ECLS-K), a nationally representative longitudinal study of children (U.S. Department 

of Education, National Center for Education Statistics, 2009). A total of 22,666 children 

attending kindergarten during the 1998–99 school year were sampled. The academic 

achievement measures on math and reading were administered in the fall of Kindergarten 

through the spring of Grade 8, and additional extensive data regarding child and family 

characteristics was collected at kindergarten entry. 

Following Magnuson, Ruhm, and Waldfogel (2007) we defined the treatment and 

comparison conditions using the parental response to the fall kindergarten survey question 

“primary type non-parental care at prekindergarten” (variable P1PRIMPK) (U.S. Department of 



Education, National Center for Education Statistics, 2009).  The analytic sample includes two 

groups of interest: center-based preschool treatment (N = 7,367) and parental care comparison (N 

= 3,150). We coded the treatment variable, Preschool = 1 for children in center-based preschool, 

and Preschool = 0 for children in parental care. 

The outcome variable is the Item Response Theory (IRT) scale score of children’s math 

achievement in the fall of Kindergarten. The outcome measure has high reliability, with a 

Cronbach’s alpha coefficient of 0.88 (Tourangeau, Nord, Lê, Sorongon, & Najarian, 2009). We 

standardized the outcome to a z-score to facilitate interpretation. The moderator variable is 

English speaking status at home: Speaking English at home (EnglishHome = 1, N = 9,239) and 

not speaking English at home (EnglishHome = 0, N = 1,278). For the covariates to estimate the 

generalized propensity scores, we considered the covariate list that Magnuson, Ruhm, and 

Waldfogel (2007) used, and we chose the covariates that were correlated with the outcome, the 

treatment status, and the moderator (Steiner, Cook, Shadish, & Clark, 2010). These covariates 

included race, weight, age at the kindergarten entry, parents’ educational level, income, 

composite SES measure, household structure (numbers of parents and siblings), and locality 

(rural or urban). Table 3 presents the descriptive statistics of the covariates by the treatment-by-

moderator groups.  

We conducted the initial covariate balance checking before the moderation analysis. Only 

three out of ten covariates were balanced, that is, the maximum standardized mean difference for 

three covariates among four treatment-by-moderator groups was smaller than 0.25 (Table 3). 

Multiple covariates demonstrated extremely large imbalances across the four treatment-by- 

moderator subgroups, e.g., Hispanic, parent highest education, and SES yielded standardized 

mean differences of 2.38, 1.23, and 1.31, respectively. Such covariate imbalance across 



treatment by moderator subgroups suggests a violation of assumption 2 such that the treatment 

by moderator interaction is not independent of these covariates.  

Procedures for Estimating AMTE and AMTS 

The procedure unfolds as follows (The annotated SAS code and dataset are in the 

supplemental material package). 

(1) We first created a new variable (S) indicating four treatment-by-moderator subgroups 

(S = 1 if Preschool = 0 and EnglishHome = 0, S = 2 if Preschool = 0 and EnglishHome = 1, S = 3 

if Preschool = 1 and EnglishHome = 0, and S = 4 if Preschool = 1 and EnglishHome = 1). 

(2) We estimated a multinomial logistic regression model to predict the generalized 

propensity scores for individual i of being in certain subgroup: 𝜋𝑖(𝑠) = 𝑃𝑟(𝑆𝑖 = 𝑠|𝑿𝑖), where s = 

1, 2, 3, or 4. We used an iterative process to estimate the generalizing propensity scores by 

assessing covariate balance and revising the model to include polynomials and interactions to 

explore nonlinear functional forms for achieving the best covariate balance. The covariates (X) in 

the final model included those listed in Table 3, the interaction term of one parent with siblings 

and parent highest education, and several high order terms (quadratic and cubic terms of family 

income and SES). We checked the overlap of generalized propensity scores among subgroups. 

Figure 2 presents the kernel density of the generalized propensity scores among the four 

subgroups. There is some overlap on the generalized propensity scores among the four 

subgroups, but the distribution is not the same.  

(3) We calculated various weights based on the generalized propensity scores:  

The IPTW-AMTE weight, 𝑤𝑖(𝑠) =
1

𝜋𝑖(𝑠)̂
, and the stabilized IPTW-AMTE weight, 

𝑤𝐴𝑀𝑇𝐸(𝑿|𝑆 = 𝑠)=
𝑛𝑠

𝑁
(

1

𝜋𝑖(𝑠)̂
), where 𝜋𝑖(𝑠)̂ is the estimated generalized propensity score of being 

in the actual subgroup, s. 



The odds ratio of the generalized propensity scores serves as weight for AMTS, 𝑤𝑖(𝑠) =

𝜋𝑖(𝑠0)̂

𝜋𝑖(𝑠)̂
, and the stabilized AMTS weight, 𝑤𝐴𝑀𝑇𝑆(𝑿|𝑆 = 𝑠) =

𝑛𝑠

𝑛𝑠0
(
𝜋𝑖(𝑠0)̂

𝜋𝑖(𝑠)̂
), where 𝑆 = 𝑠0 indicates 

the targeted inference subgroup. For example, if the actual/observed subgroup of an individual is 

S = 2, then her stabilized AMTS weights are: 𝑤𝐴𝑀𝑇𝑆(𝑿|𝑆 = 1) =
𝑛2

𝑛1
(
𝜋𝑖(1)̂

𝜋𝑖(2)̂
), for resembling 

targeted inference Subgroup 1; 𝑤𝐴𝑀𝑇𝑆(𝑿|𝑆 = 2) =
𝑛2

𝑛2
(
𝜋𝑖(2)̂

𝜋𝑖(2)̂
) = 1, for being in targeted inference 

Subgroup 2; 𝑤𝐴𝑀𝑇𝑆(𝑿|𝑆 = 3) =
𝑛2

𝑛3
(
𝜋𝑖(3)̂

𝜋𝑖(2)̂
), for resembling targeted inference Subgroup 3; 

𝑤𝐴𝑀𝑇𝑆(𝑿|𝑆 = 4) =
𝑛2

𝑛4
(
𝜋𝑖(4)̂

𝜋𝑖(2)̂
), for resembling targeted inference Subgroup 4.  

(4) We assessed the overlap of the generalized propensity scores and covariate balance. 

The kernel density of the generalized propensity scores among the four subgroups after 

weighting by AMTS in Figure 3 indicates much better overlap than without weighting (Figure 

2). The maximum standardized mean differences (MSMD) with and without weights for the 

entire sample and targeted inference subsamples were plotted in Figures 4 and 5, respectively. 

All the covariates were much more balanced when weighted by the AMTE and AMTS weights 

(dots) than without weighting (circles).  For instance, the MSMD for all covariates were below 

0.25 for AMTS (S = 1, 2, and 3), only one covariate was above 0.25 for AMTE (0.31 for one 

parent with siblings), and two covariates were above 0.25 for AMTS (S = 4) (0.31 for Black and 

0.41 for one parent with sibling). 

(5) We estimated the AMTE and AMTS for the four treatment-by-moderator subgroups 

using the general linear model including the respective weights and controlling for covariates for 

double robustness. The statistical model is below:  



𝑌𝑖 = 𝛽0 + 𝛽1(𝑃𝑟𝑒𝑠𝑐ℎ𝑜𝑜𝑙)𝑖 + 𝛽2(𝐸𝑛𝑔𝑙𝑖𝑠ℎ𝐻𝑜𝑚𝑒)𝑖 + 𝛽3(𝑃𝑟𝑒𝑠𝑐ℎ𝑜𝑜𝑙)𝑖 ∗

(𝐸𝑛𝑔𝑙𝑖𝑠ℎ𝐻𝑜𝑚𝑒)𝑖 + ∑ 𝛽𝑞𝑋𝑞𝑖
𝑄
𝑞=4 + 𝑒𝑖, 𝑒𝑖~𝑁(0, 𝜎

2 ).               (23) 

𝑌𝑖 represents the z-score of the math achievement for student i in the fall of Kindergarten. 

(𝑃𝑟𝑒𝑠𝑐ℎ𝑜𝑜𝑙)𝑖 represents the student’s preschool experience (Preschool = 1 for being in the 

preschool, and 0 in parental care). (𝐸𝑛𝑔𝑙𝑖𝑠ℎ𝐻𝑜𝑚𝑒)𝑖 represents the student’s English speaking 

status at home (EnglishHome = 1 for speaking English at home, and EnglishHome = 0 for not 

speaking English at home). 𝑋𝑞𝑖 represents the other covariates listed in Table 1, which include 

Black, Hispanic, rural, one parent with siblings, biological mother, weight (pounds), age 

(month), family income ($ thousand), parent highest education, and SES. The covariates are 

included for further reduction of bias (double robustness) and improved precision. The 

parameter, 𝛽1, is the average effect of preschool on the math achievement in the fall of 

kindergarten for the students who did not speak English at home. The parameter, 𝛽3, is the 

moderator (additional) effects of preschool on the math achievement for the students who spoke 

English at home compared with the students who did not speak English at home. The average 

effect of preschool for the student who spoke English at home can be calculated using (𝛽1 + 𝛽3). 

Because the outcome measure was a z-score, the parameters, 𝛽1 and  𝛽3 are the standardized 

regression coefficients and indicate the effect sizes in the unit of a standard deviation. We 

estimated the AMTS(Z=1), AMTS(Z=0), AMTS(R=1), and AMTS(R=0) based on Expressions in Table 2.  

For comparison purposes, in addition to the weighted analysis with controlling for 

covariates for double robustness (AMTE), we conducted the conventional moderation analysis 

without weighting without controlling for covariates (conventional w/o covariates), with 

controlling for covariates (conventional), and the weighted analysis of the entire sample without 

controlling for covariates (AMTE w/o covariates).   



Results 

The detailed results of the analyses (conventional w/o covariates, conventional, AMTE 

w/o covariates, AMTE, AMTS) are presented in Table 4. The bolding represent the parameters 

of interest. Both 𝛽1 and 𝛽3 are the standardized regression coefficients indicating the effect sizes 

in the unit of a standard deviation as in Expression 23. 𝛽1 indicates the average effect of 

preschool on the math achievement for students who did not speak English at home; 𝛽3, indicates 

the moderator (additional) effects of preschool on the math achievement for the students who 

spoke English at home compared with the students who did not speak English at home. The 

average effect of preschool for the student who spoke English at home can be calculated using 

(𝛽1 + 𝛽3). Figure 6 presents the moderator effect sizes and 95% confidence intervals from the 

different analyses. Figure 7 presents the effect sizes and 95% confidence intervals of the effects 

of preschool by moderator subgroups (speaking and not speaking English at home).  

The findings are summarized below. First, regarding the average treatment effects on the 

subgroups (speaking English at home or not), there were statistically significantly positive 

effects for preschool compared with parental care in all analyses (Figure 7). This suggests that 

preschool is more effective than parental care in improving students’ math achievement 

regardless of home language background. Specifically, the analysis without controlling for 

covariates tend to produce larger effect sizes, and this is more obvious for the conventional 

moderation analysis. The AMTE analysis with double robustness produced slightly smaller 

estimates than the AMTE analysis without controlling for covariates. In addition, the AMTE 

analysis with double robustness produced larger but non-significantly different estimates of the 

effects of preschool on the students not speaking English at home (d = 0.24, p < 0.001) than the 

conventional moderation analysis with controlling for covariates (d = 0.18, p < 0.001), and there 



was no difference between these two analyses on the students speaking English at home. In 

addition, the AMTS analysis produced similar estimates of the effect of preschool on the 

subgroups as the AMTE except for the targeted subgroup S = 1 (the students who received 

parental care and did not speak English at home). For the students in this subgroup, the effect 

size of preschool was 0.05 (p = 0.002) if they had attended preschool and spoke English at home, 

and the effect size of preschool was 0.15 (p < 0.001) if they had attended preschool but did not 

speak English at home. Both effect sizes for this subgroup were smaller than the other subgroups 

and the entire sample. 

Second, the moderator effect in the analysis of the entire sample was non-significant for 

both the conventional moderation analysis with controlling for covariates (d = 0.01, p = 0.881) 

and the AMTE estimate (d = -0.06, p = 0.274), although the students who did not speak English 

at home (d = 0.24, p < 0.001) benefited more from preschool than their peers who spoke English 

at home (d = 0.18, p < 0.001) in the AMTE estimate. In addition, for the analysis of targeted 

subgroups, none of AMTS (S = 2, 3, and 4) estimates produced a significant moderation effect 

size difference; however, the AMTS for S = 1 (the students who received parental care and did 

not speak English at home) is statistically significant (d = -0.10, p = 0.008). This suggests that it 

helped to improve the students’ math achievement more if they went to preschool but did not 

speak English at home than spoke English at home.  

Finally, the AMTE based on the weighted average of AMTS (Expression 14) is -0.06, 

which is the same as the direct estimate. The AMTS(Z=1), AMTS(Z=0), AMTS(R=1), and AMTS(R=0) 

estimates based on Expressions in Table 2 are -0.06, -0.05, -0.05, and -0.07, respectively, 

indicating very little difference on the moderator effect estimates among the targeted subgroups 

solely based on preschool or English speaking status.  



Discussion and Conclusion 

In this study, we proposed an extended causal moderation analysis framework based on 

potential outcomes. We defined and proposed two types of estimands (AMTE and AMTS) for 

making inferences to different populations of interest to estimate the moderator effects and main 

treatment effects. These estimands provide more options to study policy relevant subgroups, e.g., 

the children who did not speak English at home with parental care. Furthermore, we used the 

(stabilized) IPTW-AMTE weight to estimate the AMTE and the (stabilized) AMTS weight (odds 

ratio of generalized propensity scores rescaled by sample sizes) to estimate the AMTS. We 

derived these weights aiming to make the feature distribution of the sample in other subgroups 

resemble the feature distribution of the inference sample of interest. This weighting approach 

makes it feasible to make causal inferences for moderator effects to targeted populations. 

We demonstrated the application of the new causal moderation analysis framework 

through the preschool example. Several key findings emerged. First, the covariates are much 

more balanced using the AMTE and AMTS weights than without weights. This suggests our 

proposed method can reduce selection bias due to non-random assignment of the treatment 

(preschool) and the moderator (home language status). In addition, the weighting approach can 

balance all the other potential moderators that are included in the propensity score model, hence, 

the AMTE and AMETS estimates of the moderator of interest are still valid even if there are 

other moderators. 

Second, the non-significant AMTE estimate on the entire sample suggests that the home 

language status is not a moderator, which is consistent with the findings from the conventional 

moderation analysis. In our example, although the AMTE estimation does not draw a different 

conclusion from the conventional moderation analysis, it provides evidence of good covariate 



balance. It suggests that the conventional moderation analysis based on the regression model that 

controls for covariates may sometimes work well to reduce selection bias (e.g., in this case), but 

the AMTE estimation can reduce selection bias through balancing covariates in general.  

Third, the AMTS estimates demonstrate some variation among four targeted subgroups. 

The AMTS estimates for S = 2, 3, and 4 were non-significant; however, the AMTS estimate for 

S = 1 (not speaking English at home with parental care) was statistically significant (d = -0.10, p 

= 0.008). This finding suggests that for the students who had a similar background to this 

subgroup (S = 1), i.e., most were Hispanic students (82%) with lower family income, lower 

parent education, and lower SES (Table 3), the preschool was more effective if their status was 

not speaking English at home (d = 0.15, p < 0.001) than if it were speaking English at home (d = 

0.05, p = 0.002). This finding is consistent with Lipsey et al. (2013). This provides additional 

evidence of the effects of preschool in improving the math achievement for students with low 

SES and not speaking English at home (e.g., Hispanic). It implies that preschool may be a policy 

tool to improve the academic achievement for economically disadvantaged immigrant children. 

Fourth, the AMTS estimates can help with the investigation of treatment effect 

heterogeneity. For instance, the largest effect (d = 0.26, p < 0.001, Table 4) of preschool 

compared to parental care was for the students who attended preschool and spoke English at 

home (S = 4) should they not speak English at home, i.e., among four subgroups the preschool 

had the largest effect for the students with the same characteristics as S = 4 if they did not speak 

English at home. In contrast, the smallest effect of preschool was for the students with the same 

characteristics as S = 1 (did not speak English at home with parental care): the effect was d = 

0.15 (p < 0.001, Table 4) should they attend preschool and not speak English at home, and the 

effect was d = 0.05 (p = 0.002, Table 4) should they attend preschool and speak English at home. 



The treatment effect heterogeneity may be due to the sample difference, e.g., proportion of 

Hispanic, family income, parent education, and SES (Table 3), and suggest existence of the other 

moderators. Applying the similar analysis to other potential moderators may help identify the 

source of treatment effect heterogeneity. 

Finally, the AMTS estimate has an advantage in that it reduces assumptions compared to 

the AMTE estimate. For example, if our targeted subgroup is S = 1 (Z = 0, R = 0), the 

ignorability of the treatment and moderator assumption only requires that the potential outcome 

is independent of the treatment and moderator variables given observed covariates for all other 

three subgroups (S = 2, 3, and 4) whereas the AMTE requires for all four subgroups. Hence, it is 

more likely to produce unbiased AMTS estimates than the AMTE estimate.  

Limitations 

As in all propensity score analyses, the veracity of causal inferences are potentially 

susceptible to hidden bias due to unmeasured variables. When either the treatment or the 

hypothesized moderator variable is not randomly assigned, the interaction term of the treatment 

and the hypothesized moderator variables cannot be assured to be independent of other measured 

and unmeasured variables. Like all other applications, our proposed approach is limited in that it 

only balances the measured variables among the treatment-by-moderator subgroups through 

weighting to make the interaction term independent of the measured variables. It is very 

important to for researchers to plan and use as many variables as possible that are associated with 

the outcome, treatment, and hypothesized moderator variables to reduce hidden bias due to 

omitted variables (e.g., Steiner et al, 2010).   

Another limitation of this study that is common to other propensity score methods is that 

the results may be subject to bias from the propensity score model misspecification. In the 



demonstration, we used multinomial logistic regression model and used the iterative process to 

revise our model by including the interaction terms and higher order terms of covariates to reach 

best covariate balance. Some other methods for estimating propensity scores, e.g., random 

forests or boosted regression (Cham & West, 2016; McCaffrey, Ridgeway, & Morral, 2004), 

might produce better covariate balance.  

In addition, although the double robustness adjustment using propensity score weighting 

while controlling for covariates in the outcome model generally reduces selection bias if either 

the propensity score model, the outcome model, or both are correctly specified, it may fail to 

reduce bias if both models are mis-specified. Other adjustment approaches should be considered 

(see Kang & Schafer, 2007, and Tsiatis & Davidian, 2007, for deeper discussion).  

Future work 

One important direction for future work on this track is to explore sensitivity analysis 

methods to assess the robustness of inferences when there is an unmeasured moderator variable. 

Researchers may extend Rosenbaum’s (2002) Gamma parameter based on Wilcox rank statistics, 

or other statistics based on regression (Frank, 2000; Frank et al., 2013; Hong & Raudenbush, 

2006; Lin, Psaty, & Kronmal, 1998; Pan & Frank, 2003) to the causal moderation analysis 

framework.  

The second direction for future work is to extend the study to non-binary moderators. The 

current framework can be easily extended for a multi-valued treatment variable (z > 2) and a 

multi-valued categorical moderator (r > 2) by converting the two dimensions (treatment by 

moderator, k=z×r) of design to one dimension of design with k categories and using the 

procedure discussed in this article. Future work includes developing a causal framework and 

approaches to conducting a moderated treatment effect analysis for targeted subgroups defined 



by continuous moderators. For instance, the generalized propensity score method that was 

developed for analyzing continuous treatment variables (Imai & van Dyk, 2004; Hirano & 

Imbens, 2004) can be extended for the analysis of moderated treatment effect with continuous 

moderators using stratification. 

In addition, all estimands in our framework are expressed on an additive scale by looking 

at mean differences. Another direction for future work is to consider risk ratios or odds ratios for 

binary outcomes. 

In summary, we provide a causal moderation analysis framework and estimation 

approach for eliminating the influence of the other measured covariates/moderators on the 

estimate of AMTE. In addition, the AMTS estimates provide an approach for identifying the 

targeted policy-relevant subgroup for effective intervention.  
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Figure 1: Potential outcomes 𝑌(𝑍 = 𝑧, 𝑅 = 𝑟) 
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Figure 2: Kernel density of the generalized propensity scores among four treatment-by-moderator subgroups before weighting

 
 
Note: S = 1 if Preschool = 0 and Speaking English at home = 0, S = 2 if Preschool = 0 and Speaking English at home = 1, S = 3 if Preschool = 1 

and Speaking English at home = 0, and S = 4 if Preschool = 1 and Speaking English at home = 1.
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Figure 3: Kernel density of the generalized propensity scores among four treatment-by-moderator subgroups after weighting 

 
Note: S = 1 if Preschool = 0 and Speaking English at home = 0, S = 2 if Preschool = 0 and Speaking English at home = 1, S = 3 if Preschool = 1 
and Speaking English at home = 0, and S = 4 if Preschool = 1 and Speaking English at home = 1.  
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Figure 4: Covariate balance checking before and after propensity score weighting for all sample 

 

 
Note: Variables are sorted from highest to lowest maximum standardized mean difference (MSMD) prior to weighting. Dots to the right of the 

vertical red dashed line indicates variables with MSMD > 0.20 imbalance among four subgroups.  
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Figure 5: Covariate balance checking before and after propensity score weighting for targeted subsample 

 
Note: Variables are sorted from highest to lowest maximum standardized mean difference (MSMD) prior to weighting. Dots to the right of the vertical red 

dashed line indicates variables with MSMD > 0.20 imbalance among four subgroups. S = 1 if Preschool = 0 and Speaking English at home = 0, S = 2 if 

Preschool = 0 and Speaking English at home = 1, S = 3 if Preschool = 1 and Speaking English at home = 0, and S = 4 if Preschool = 1 and Speaking English at 

home = 1. 
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Figure 6: Moderator effect sizes (preschool effect size differences between students speaking and not speaking English at home) and 

95% confidence intervals by different analysis 

 
Note: N = 10,517. Conventional (w/o covariates) refers to the moderation analysis without weight and without controlling for covariates for the 

entire sample. AMTE (w/o covariates) refers to the analysis weighted by the stabilized AMTE weights but without controlling for covariates. All 

the other analysis controlled for covariates. AMTE refers to the analysis weighted by the stabilized AMTE weights; AMTS (S=s) refers to the 

analysis weighted by the stabilized AMTS weights, where is the targeted inference sample of interest S = 1, 2, 3, and 4, respectively. Unweighted 
(S=s) refers to the analysis without weights, where all the other subgroups are compared with the targeted inference sample of interest S. S = 1 if 

Preschool = 0 and Speaking English at home = 0, S = 2 if Preschool = 0 and Speaking English at home = 1, S = 3 if Preschool = 1 and Speaking 

English at home = 0, and S = 4 if Preschool = 1 and Speaking English at home = 1. 
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Figure 7: Preschool effect sizes and 95% confidence intervals by moderator subgroups 

 
Note: N = 10,517. Conventional (w/o covariates) refers to the moderation analysis without weight and without controlling for covariates for the 

entire sample. AMTE (w/o covariates) refers to the analysis weighted by the stabilized AMTE weights but without controlling for covariates. All 

the other analysis controlled for covariates. AMTE refers to the analysis weighted by the stabilized AMTE weights; AMTS (S=s) refers to the 

analysis weighted by the stabilized AMTS weights, where is the targeted inference sample of interest S = 1, 2, 3, and 4, respectively. Unweighted 

(S=s) refers to the analysis without weights, where all the other subgroups are compared with the targeted inference sample of interest S. S = 1 if 

Preschool = 0 and Speaking English at home = 0, S = 2 if Preschool = 0 and Speaking English at home = 1, S = 3 if Preschool = 1 and Speaking 

English at home = 0, and S = 4 if Preschool = 1 and Speaking English at home = 1.
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Table 1: Summary of formulas for various AMTS estimands 

Estimand Formula 

 AMTS(Z=0,R=0) = E[Y(1,1) ˗ Y(0,1)|Z = 0, R = 0] - E[Y(1,0) ˗ Y(0,0)|Z = 0, R = 0]  

 AMTS(Z=0,R=1) = E[Y(1,1) ˗ Y(0,1)|Z = 0, R = 1] - E[Y(1,0) ˗ Y(0,0)|Z = 0, R = 1]  

AMTS(Z=1,R=0)  = E[Y(1,1) ˗ Y(0,1)|Z = 1, R = 0] - E[Y(1,0) ˗ Y(0,0)|Z = 1, R = 0]  

AMTS(Z=1,R=1)  = E[Y(1,1) ˗ Y(0,1)|Z = 1, R = 1] - E[Y(1,0) ˗ Y(0,0)|Z = 1, R = 1]  

 AMTS(Z=1) = E[Y(1,1) ˗ Y(0,1)|Z = 1] - E[Y(1,0) ˗ Y(0,0)|Z = 1]  

 AMTS(Z=0) = E[Y(1,1) ˗ Y(0,1)|Z = 0] - E[Y(1,0) ˗ Y(0,0)|Z = 0]  

 AMTS(R=1) = E[Y(1,1) ˗ Y(0,1)|R = 1] - E[Y(1,0) ˗ Y(0,0)|R = 1]  

 AMTS(R=0) = E[Y(1,1) ˗ Y(0,1)|R = 0] - E[Y(1,0) ˗ Y(0,0)|R = 0]  
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Table 2: Summary of formulas for calculation of AMTS for the subgroup that is solely based on 

treatment or moderator 

Estimand Formula 

 AMTS(Z=1) =  
𝑛(𝑍=1,𝑅=0)

𝑁(𝑍=1)
AMTS(Z=1,R=0) + 

𝑛(𝑍=1,𝑅=1)

𝑁(𝑍=1)
AMTS(Z=1,R=1) 

 AMTS(Z=0) =  
𝑛(𝑍=0,𝑅=0)

𝑁(𝑍=0)
AMTS(Z=0,R=0) + 

𝑛(𝑍=0,𝑅=1)

𝑁(𝑍=0)
AMTS(Z=0,R=1) 

 AMTS(R=1) =  
𝑛(𝑍=0,𝑅=1)

𝑁(𝑅=1)
AMTS(Z=0,R=1) + 

𝑛(𝑍=1,𝑅=1)

𝑁(𝑅=1)
AMTS(Z=1,R=1) 

 AMTS(R=0) =  
𝑛(𝑍=0,𝑅=0)

𝑁(𝑅=0)
AMTS(Z=0,R=0) + 

𝑛(𝑍=1,𝑅=0)

𝑁(𝑅=0)
AMTS(Z=1,R=0) 

 

Note: 𝑛(𝑍=0,𝑅=0), 𝑛(𝑍=0,𝑅=1), 𝑛(𝑍=1,𝑅=0), and 𝑛(𝑍=1,𝑅=1)are sample sizes for four treatment-by-

moderator subgroups.  𝑁(𝑍=1) = 𝑛(𝑍=1,𝑅=0) + 𝑛(𝑍=1,𝑅=1), 𝑁(𝑍=0) = 𝑛(𝑍=0,𝑅=0) + 𝑛(𝑍=0,𝑅=1),  

𝑁(𝑅=1) = 𝑛(𝑍=0,𝑅=1) + 𝑛(𝑍=1,𝑅=1), and 𝑁(𝑅=0) = 𝑛(𝑍=0,𝑅=0) + 𝑛(𝑍=1,𝑅=0).
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Table 3: Descriptive statistics of the sample and covariate balance among four treatment-by-moderator subgroups 

 

Treatment-by-Moderator (S) 1   2   3   4   

MSMD 
Preschool (Z) 0  0  1  1  

Speaking English at home (R) 0  1  0  1   

Variable Mean SD  Mean SD  Mean SD  Mean SD  

Binary              

Black 0.01 0.11  0.12 0.33  0.02 0.15  0.12 0.33  0.36 

Hispanic 0.82 0.38  0.13 0.33  0.60 0.49  0.08 0.27  2.38 

Rural 0.03 0.18  0.26 0.44  0.03 0.17  0.16 0.37  0.63 

One parent with siblings 0.13 0.33  0.13 0.34  0.09 0.29  0.11 0.31  0.13 

Biological mother 0.98 0.15  0.95 0.22  0.97 0.17  0.95 0.22  0.13 

Continuous              

Weight (pounds) 46.92 9.71  45.69 8.62  47.17 9.55  46.25 8.14  0.18 

Age (month) 64.55 4.61  65.62 4.36  64.72 4.05  65.79 4.23  0.29 

Family income ($ thousand) 27.36 33.49  43.77 41.02  50.33 54.56  68.41 64.68  0.71 

Parent highest education 3.17 2.04  4.37 1.78  4.89 2.38  5.45 1.82  1.23 

SES -0.63 0.68  -0.14 0.73  0.05 0.92  0.34 0.74  1.31 

Sample size 654  2,496  624  6,743   

 

Note: Treatment-by-Moderator (S) corresponds to the four combinations of Preschool (Z) and Speaking English at home (R). The 

maximum standardized mean difference (MSMD) on covariate X among four subgroups is [𝑀𝑎𝑥(𝑋̅|𝑆 = 1, 𝑋̅|𝑆 = 2, 𝑋̅|𝑆 = 3, 𝑋̅|𝑆 =
4) −𝑀𝑖𝑛(𝑋̅|𝑆 = 1, 𝑋̅|𝑆 = 2, 𝑋̅|𝑆 = 3, 𝑋̅|𝑆 = 4)]/𝑆𝐷𝑥, where 𝑋̅|𝑆 is the mean for subgroup S, 𝑆𝐷𝑥 is the pooled standard deviation 

among four subgroups. 
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Table 4: Results of conventional moderation analysis, AMTE, and AMTS 

 

  

Conventional (w/o 

covariates)   Conventional   

AMTE (w/o 

covariates)   AMTE   AMTS (S=1)   AMTS (S=2)   AMTS (S=3)   AMTS (S=4) 

Variable b SE p   b SE p   b SE p   b SE p   b SE p   b SE p   b SE p   b SE p 

Intercept -0.718 0.038 <0.001   -4.003 0.147 <0.001   -0.091 0.035 0.009   -3.884 0.149 <0.001   -3.359 0.126 <0.001   -3.735 0.138 <0.001   -3.371 0.150 <0.001   -4.001 0.155 <0.001 

Black NA    -0.263 0.029 <0.001  NA    -0.220 0.029 <0.001  -0.233 0.059 <0.001  -0.215 0.026 <0.001  -0.225 0.056 <0.001  -0.218 0.028 <0.001 

Hispanic NA    -0.261 0.028 <0.001  NA    -0.275 0.025 <0.001  -0.294 0.018 <0.001  -0.226 0.025 <0.001  -0.339 0.018 <0.001  -0.250 0.033 <0.001 

Rural NA    -0.121 0.023 <0.001  NA    -0.147 0.023 <0.001  -0.113 0.039 0.003  -0.152 0.019 <0.001  -0.108 0.050 0.032  -0.140 0.025 <0.001 

One parent 

with 

siblings NA    -0.115 0.028 <0.001  NA    -0.121 0.028 <0.001  -0.059 0.020 0.004  -0.107 0.025 <0.001  -0.102 0.030 0.001  -0.141 0.029 <0.001 

Biological 

mother NA    0.166 0.039 <0.001  NA    0.160 0.040 <0.001  0.073 0.043 0.090  0.125 0.036 <0.001  0.145 0.050 0.004  0.180 0.040 <0.001 

Weight 

(pounds) NA    0.004 0.001 <0.001  NA    0.004 0.001 <0.001  0.004 0.001 <0.001  0.003 0.001 0.002  0.002 0.001 0.006  0.004 0.001 <0.001 

Age 

(month) NA    0.047 0.002 <0.001  NA    0.046 0.002 <0.001  0.034 0.002 <0.001  0.043 0.002 <0.001  0.038 0.002 <0.001  0.049 0.002 <0.001 

Family 

income 

($ thousand) NA    0.001 <0.001 <0.001  NA    0.001 <0.001 <0.001  0.002 <0.001 <0.001  0.001 <0.001 <0.001  0.001 <0.001 <0.001  0.001 <0.001 <0.001 

Parent 

highest 

education NA    0.079 0.009 <0.001  NA    0.092 0.009 <0.001  0.126 0.006 <0.001  0.107 0.007 <0.001  0.090 0.008 <0.001  0.079 0.010 <0.001 

SES NA    0.216 0.023 <0.001  NA    0.192 0.023 <0.001  0.058 0.017 0.001  0.145 0.019 <0.001  0.122 0.021 <0.001  0.236 0.025 <0.001 

Preschool 

(𝜷𝟏) 0.551 0.054 <0.001  0.179 0.049 <0.001  0.269 0.053 <0.001  0.241 0.047 <0.001  0.154 0.036 <0.001  0.200 0.046 <0.001  0.221 0.047 <0.001  0.263 0.048 <0.001 

Speaking 

English at 

home (𝛽2) 0.463 0.042 <0.001  0.084 0.042 0.047  -0.027 0.040 0.501  -0.024 0.036 0.496  0.158 0.029 <0.001  0.013 0.034 0.692  0.109 0.037 0.003  -0.066 0.037 0.072 

Preschool* 

Speaking 

English at 

home (𝜷𝟑) -0.117 0.059 0.046   0.008 0.052 0.881   -0.081 0.058 0.162   -0.056 0.051 0.274   -0.105 0.040 0.008   -0.029 0.049 0.559   -0.029 0.051 0.562   -0.062 0.053 0.237 

Note: N = 10,517. Conventional (w/o covariates) refers to the moderation analysis without weight and without controlling for covariates for the entire sample. 

AMTE (w/o covariates) refers to the analysis weighted by the stabilized AMTE weights but without controlling for covariates. All the other analysis controlled 

for covariates. AMTS (S=s) refers to the analysis weighted by the stabilized AMTS weights, where s is the targeted inference sample of interest. S = 1 if 

Preschool = 0 and Speaking English at home = 0, S = 2 if Preschool = 0 and Speaking English at home = 1, S = 3 if Preschool = 1 and Speaking English at home 

= 0, and S = 4 if Preschool = 1 and Speaking English at home = 1. The bolding represent the parameters of interest. Both 𝛽1 and 𝛽3 are the standardized 

regression coefficients as in Expression 21. 𝛽1 indicates the average effect of preschool on the math achievement for students who did not speak English at home; 

𝛽3, indicates the moderator (additional) effects of preschool on the math achievement for the students who spoke English at home compared with the students 

who did not speak English at home.  
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Supplemental Material – SAS Code For Estimating AMTE and AMTS 

 
/* Note: The words in green are the annotated note.                       */ 

 

/* Create a new categorical variable (S) by combining the treatment variable 

(PREK) and moderator (ENGLISHHOME)                                        */ 

 

data causal_mod; /* The dataset is causal_mod                             */ 

set causal_mod; 

if PREK = 1 and  ENGLISHHOME = 1 then S = 4; 

if PREK = 1 and  ENGLISHHOME = 0 then S = 3; 

if PREK = 0 and  ENGLISHHOME = 1 then S = 2; 

if PREK = 0 and  ENGLISHHOME = 0 then S = 1; 

PREK_ENGLISHHOME = PREK * ENGLISHHOME; /* Create the interaction term of PREK 

and ENGLISHHOME */ 

run; 

 

 

/* Estimate generalized propensity scores using multinomial logistic 

regression model using SAS Procedure Logistic */ 

 

proc logistic data = causal_mod   simple; 

class S (ref = "4"); /* The reference group is S=4 in estimating the 

probability for being in Group S                                           */ 

 

/* Predicting S by the covariates: Black, etc.                             */ 

MODEL S  =  

BLACK  

HISPANIC 

RURAL       /* Rural area (=1) or not (=0)                            */ 

ONEPAR_WISIB     /* One parent with siblings                               */ 

ONEPAR_WISIB_wk  /* ONEPAR_WISIB_wk = ONEPAR_WISIB * WKPARED               */ 

BIOMOTHER        /* Biological mother                                      */ 

C1WEIGHT      /* Wight (pounds)                                         */ 

P1AGEENT      /* Age (month)                                            */ 

WKINCOME_k       /* Family income ($ thousand)         */ 

WKINCOME_k2      /* Squared term: WKINCOME_k2 = WKINCOME_k * WKINCOME_k    */ 

WKINCOME_k3      /* WKINCOME_k3 = WKINCOME_k * WKINCOME_k * WKINCOME_k     */ 

WKPARED          /* Parent highest education                               */ 

WKPARED2         /* WKPARED2 = WKPARED * WKPARED                           */ 

WKSESL           /* SES                                                    */ 

WKSESL2      /* WKINCOME_k2 = WKINCOME_k * WKINCOME_k                  */ 

WKSESL3       /* WKINCOME_k3 = WKINCOME_k * WKINCOME_k * WKINCOME_k     */ 

/ link=glogit  waldrl clodds = wald rsq lackfit ;    /* By specifying 

link=glogit, the generalized logit model is used to model a nominal, 

multinomial response (S)                                                   */ 

 

OUTPUT OUT=causal_mod2 P=prob;  /* The new dataset including the predicted 

probability is casual_mode2, with prob as the probability                  */ 

 

run; quit; 

 

/* Sort the dataset by CHILDID                                             */ 

proc sort data = causal_mod2;    

by CHILDID ; 

run; 
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/* Transpose the long format dataset (each child has four records/rows to 

indicate four probabilities in four groups (“_LEVEL_”) to the wide format 

dataset (one child has only one record to include four probabilities in four 

groups with prob_1 representing the probability of being in Group 1, and so 

on.       */ 

 

proc transpose data = causal_mod2 out=causal_mod2 prefix=prob; 

by CHILDID; 

id _LEVEL_; 

var prob; 

copy  

Math_K 

PREK 

ENGLISHHOME 

PREK_ENGLISHHOME 

S 

BLACK  

HISPANIC 

RURAL 

ONEPAR_WISIB 

ONEPAR_WISIB_wk 

BIOMOTHER  

C1WEIGHT 

P1AGEENT 

WKINCOME_k  

WKINCOME_k2 

WKINCOME_k3 

WKPARED 

WKPARED2 

WKSESL 

WKSESL2 

WKSESL3  

; 

run; 

 

/* Create AMTE and AMTS Weights                                            */ 

data causal_mod2; 

set causal_mod2; 

drop _NAME_ _LABEL_;        /* Drop variables _NAME_ & _LABEL_ from dataset*/ 

if prob_1 ne .;             /* Keep cases without missing data on prob_1   */ 

 

if S = 1 then do;           /* When the observed group is 1 (S = 1), do the 

following:                                                                 */ 

weight_AMTE=1/prob_1;       /* Create AMTE weight by the inverse of the 

propensity score                                                           */ 

weight_AMTS1=prob_1/prob_1; /* When the targeted subgroup is 1, the AMTS 

weight for being in Group 1 is 1                                           */ 

weight_AMTS2=prob_2/prob_1; /* When the targeted subgroup is 2, the AMTS 

weight for being in Group 2 is the odds ratio: prob_2/prob_1               */ 

weight_AMTS3=prob_3/prob_1; /* When the targeted subgroup is 3, the AMTS 

weight for being in Group 3 is the odds ratio: prob_3/prob_1               */ 

weight_AMTS4=prob_4/prob_1; /* When the targeted subgroup is 4, the AMTS 

weight for being in Group 4 is the odds ratio: prob_4/prob_1               */ 

end; 

if S = 2 then do;           /* When the observed group is 2 (S = 2), do the 

following:                                                                 */ 
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weight_AMTE=1/prob_2;       /* Create AMTE weight by the inverse of the 

propensity score                                                           */ 

weight_AMTS1=prob_1/prob_2; /* When the targeted subgroup is 1, the AMTS 

weight for being in Group 2 is the odds ratio: prob_1/prob_2               */ 

weight_AMTS3=prob_3/prob_1; /* When the targeted subgroup is 3, the AMTS 

weight_AMTS2=prob_2/prob_2; /* When the targeted subgroup is 2, the AMTS 

weight for being in Group 1 is 1                                           */ 

weight_AMTS3=prob_3/prob_2; /* When the targeted subgroup is 3, the AMTS 

weight for being in Group 3 is the odds ratio: prob_3/prob_2               */ 

weight_AMTS4=prob_4/prob_2; /* When the targeted subgroup is 4, the AMTS 

weight for being in Group 4 is the odds ratio: prob_4/prob_2               */ 

end; 

if S = 3 then do; 

weight_AMTE=1/prob_3; 

weight_AMTS1=prob_1/prob_3; 

weight_AMTS2=prob_2/prob_3; 

weight_AMTS3=prob_3/prob_3; 

weight_AMTS4=prob_4/prob_3; 

end; 

if S = 4 then do; 

weight_AMTE=1/prob_4; 

weight_AMTS1=prob_1/prob_4; 

weight_AMTS2=prob_2/prob_4; 

weight_AMTS3=prob_3/prob_4; 

weight_AMTS4=prob_4/prob_4; 

end; 

run; 

 

/* Calculate sample size by subgroups: N_s1, N_s2, N_s3, and N_s4          */ 

proc sql;  

create table causal_mod3 as  

select *,  

sum(S = 1) as N_s1 , 

sum(S = 2) as N_s2 , 

sum(S = 3) as N_s3 , 

sum(S = 4) as N_s4  

from causal_mod2 ; 

quit; 

 

/*Create Stabilized AMTE Weights (weight_AMTE_adj) by multiplying AMTE with 

the proportion of sample size in specific observed group (N_s/10517), where 

10517 is the total sample size                                            */ 

proc sql;  

create table causal_mod3 as  

select *,  

(count(*)/10517)*weight_AMTE as weight_AMTE_adj, count(*) as N_s  

from causal_mod3  

group by S;  

quit; 

 

/* Create Stabilized AMTS Weights (weight_AMTSs_adj) by multiplying AMTSs 

with the ratio of sample size in the observed group (N_s) over the targeted 

group (N_s1, N_s2, N_s3, or N_s4                                          */ 

proc sql;  

create table causal_mod3 as  

select *,  

(N_s/N_s1)*weight_AMTS1 as weight_AMTS1_adj , 
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(N_s/N_s2)*weight_AMTS2 as weight_AMTS2_adj , 

(N_s/N_s3)*weight_AMTS3 as weight_AMTS3_adj , 

(N_s/N_s4)*weight_AMTS4 as weight_AMTS4_adj  

from causal_mod3 ; 

quit; 

 

 

/* Macro for Exporting Data to Excel Files                                */ 

%macro EXPORTDATA_EXCEL(FILENAME); 

PROC EXPORT DATA = &FILENAME  OUTFILE="C:\Causal Moderation\&FILENAME..xls" 

  DBMS=xls  REPLACE; 

 RUN;QUIT; 

%MEND EXPORTDATA_EXCEL; 

 

/* Macro for Estimating AMTE and AMTS using weighted General Linea Model  */ 

/* "weight" is the variable names for different weights for AMTE and AMTS */ 

 

%Macro AMTE_AMTS(weight); 

PROC GLM data =causal_mod3; /* SAS Procedure for General Linea Model (GLM)*/ 

WEIGHT &weight;             /* Weighted by the variable “weight”          */ 

MODEL Math_K =              /* Predicting outcome (Math_K) by predictor 

(PREK), Moderator (ENGLISHHOME), & the interaction (PREK_ENGLISHNAME) while 

controlling for covariates, BLACK, etc.                                   */ 

BLACK  

HISPANIC 

RURAL 

ONEPAR_WISIB 

BIOMOTHER  

C1WEIGHT 

P1AGEENT 

WKINCOME_k  

WKPARED 

WKSESL 

PREK 

ENGLISHHOME 

PREK_ENGLISHHOME / solution CLPARM;   /* Output parameter estimates with 95% 

confidence intervals                                                       */ 

ODS OUTPUT ParameterEstimates = Mod_&weight;  /* Save parameter estimates 

from GLM to the data set with prefix Mod_ followed with the weight name    */              

ESTIMATE 'Treat_Effect_ENGLISHHOME_0' PREK 1; /* Estimate the treatment 

effect of PREK (the coefficient of PREK) when ENGLISHHOME is 0             */                   

ESTIMATE 'Treat_Effect_ENGLISHHOME_1' PREK 1  PREK_ENGLISHHOME 1; /* Estimate 

the treatment effect of PREK when ENGLISHHOME is 1                         */    

ESTIMATE 'Moderator_Effect' PREK_ENGLISHHOME 1; /* Estimate the moderated 

treatment effect of PREK (the coefficient of PREK_ENGLISHHOME)             */    

 

ODS OUTPUT Estimates=Mod_&weight._2;   /* Save the above parameter estimates  

to the data set with prefix Mod_ followed with the weight name plus _2     */          

run;quit; 

 

%EXPORTDATA_EXCEL(Mod_&weight); /* Export the SAS data to the Exel file    */ 

%EXPORTDATA_EXCEL(Mod_&weight._2);/* Export the SAS data to the Exel file  */ 

%Mend; 

 

/*Conduct the stabilized AMTE weighted analysis                            */ 

%AMTE_AMTS(weight_AMTE_adj); 

/*Conduct the stabilized AMTS weighted analysis for Targeted group 1       */ 
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%AMTE_AMTS(weight_AMTS1_adj); 

/*Conduct the stabilized AMTS weighted analysis for Targeted group 2       */ 

 

%AMTE_AMTS(weight_AMTS2_adj); 

/*Conduct the stabilized AMTS weighted analysis for Targeted group 3       */ 

%AMTE_AMTS(weight_AMTS3_adj); 

/*Conduct the stabilized AMTS weighted analysis for Targeted group 4       */ 

%AMTE_AMTS(weight_AMTS4_adj); 

 

 


