
ART I C L E

The causes and consequences of pest population variability

in agricultural landscapes

Daniel Paredes1,2 | Jay A. Rosenheim3 | Daniel S. Karp1

1Department of Wildlife, Fish and

Conservation Biology, University of

California, Davis, California, USA

2Environmental Resources Analysis

Research Group, Department of Plant

Biology, Ecology and Earth Sciences,

Universidad de Extremadura, Badajoz,

Spain

3Department of Entomology and

Nematology, University of California,

Davis, California, USA

Correspondence

Daniel Paredes

Email: danparedes@ucdavis.edu

Funding information

Agence Nationale de la Recherche,

France; Austrian Science Fund, Austria;

Federal Ministry of Education and

Research, Germany; National Science

Foundation USA, Grant/Award Numbers:

1850943, 2017-2018; USDA National

Institute of Food and Agriculture, Grant/

Award Number: 2020-67021-32477;

Belmont Forum; BiodivScen ERA-Net

COFUND; BiodivERsA; Agencia Estatal

de Investigaci�on, Spain; Netherland

Organization for Scientific Research,

Netherlands; Romanian Executive Agency

for Higher Education, Romania

Handling Editor: Juan C. Corley

Abstract

Variability in population densities is key to the ecology of natural systems but

also has great implications for agriculture. Farmers’ decisions are heavily

influenced by their risk aversion to pest outbreaks that result in major yield

losses. However, the need for long-term pest population data across many

farms has prevented researchers from exploring the drivers and implications

of pest population variability (PV). Here, we demonstrate the critical impor-

tance of PV for sustainable farming by analyzing 13 years of pest densities

across >1300 Spanish olive groves and vineyards. Variable populations were

more likely to cause major yield losses, but also occasionally created temporal

windows when densities fell below insecticide spray thresholds. Importantly,

environmental factors regulating pest variability were very distinct from fac-

tors regulating mean density, suggesting variability needs to be uniquely man-

aged. Finally, we found diversifying landscapes may be a win–win situation

for conservation and farmers, as diversified landscapes promote less abundant

and less variable pest populations. Therefore, we encourage agricultural stake-

holders to increase the complexity of the landscapes surrounding their farms

through conserving/restoring natural habitat and/or diversifying crops.
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INTRODUCTION

Variability is inherent to natural systems in which

population densities of different species naturally vary

over time. For decades, ecologists studying natural

ecosystems have tried to understand what causes

populations and ecological processes to fluctuate

(Murdoch, 1975). Variability is also of paramount

importance to agricultural systems. Interannual

fluctuations in crop yields can have dire consequences

for the many farmers who operate at narrow profit

margins and for ensuring food security for a growing

human population (Tilman et al., 2011). As such,

there is increasing interest in understanding what

destabilizes crop yields and how farms can be better

managed to increase stability (Gaudin et al., 2015;

Lin, 2011). For example, as in natural systems,

increasing diversity in agroecosystems may help stabilize
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food production, from local to national scales (Gaudin

et al., 2015; Renard & Tilman, 2019).

Mitigating pest population variability (PV) is of partic-

ular importance to ensuring stable food production

(Lin, 2011), as pest outbreaks can provoke catastrophic

crop losses (Savary et al., 2019). As such, many farmers

are risk averse, with fear of rare but severe pest outbreaks

driving their management decisions (Gong et al., 2016;

Liu & Huang, 2013). If pest populations are thought to be

variable, then farmers will often prophylactically spray

excessive amounts of pesticides to avoid the potential of

an outbreak resulting in major yield losses, which we

define here as damage that renders the crop non-

profitable (Zhang et al., 2018).

In other cases, farmers are more reactive, only applying

insecticides when pests exceed predefined economic injury

thresholds (i.e., integrated pest management) (Stern

et al., 1959). Many crops can compensate fully for low levels

of herbivory, with economic losses only occurring when

pests reach outbreak densities and plants’ compensatory

abilities are overwhelmed (Trumble et al., 1993). In this case,

the effect of pest PV on farmer decision-making may depend

on the tolerance for crop damage. If tolerance is high relative

to equilibrium pest densities, then maintaining stable pest

populations is key to preventing economically and environ-

mentally damaging insecticide applications (Bouchard

et al., 2011; Köhler & Triebskorn, 2013). However, if eco-

nomic thresholds are set low, as they are for many crops that

cannot tolerate even minor cosmetic damage (Higley &

Peterson, 2008), then equilibrium pest densities may exceed

economic injury levels, causing even the most stable pest

populations to elicit heavy insecticide use. Therefore, manag-

ing for PV in agricultural systems can be quite different than

in natural ecosystems because the goal is to stabilize pest

densities below economically damaging levels, rather than

around a natural, equilibrium density (Murdoch, 1975;

Watt, 1965).

Much of the work that has been conducted on PV of

pests in agroecosystems has focused on characterizing

interspecific differences in mean interannual variability

in densities as well as the degree to which populations

exhibit cycles or display density dependence (e.g., Hassel

et al., 1976; Murdoch et al., 1995; Walter et al., 2018;

Lamb et al., 2019). The need for long-term data collected

across many sites has largely prevented researchers from

exploring intraspecific, between-population differences in

PV, how environmental and/or field-management factors

modulate PV, and the consequences of pest PV for

farmers. The few studies that have sought to study envi-

ronmental controls on pest PV have been forced to use

proxies for population densities (e.g., insecticide applica-

tion rates) (Larsen & Noack, 2020) or trade space for time

to assess variability indirectly (Rusch et al., 2013).

In contrast, much research has focused on identifying

the field, landscape, and regional contexts that influence

average pest abundances (Chaplin-Kramer et al., 2011;

Karp et al., 2018; Landis et al., 2000). For example, it is

often hypothesized that simplified landscapes of exten-

sive crop monocultures may allow specialist pest

populations to build rapidly and spread as they exploit

vast food resources (i.e., the resource concentration

hypothesis) (O’Rourke & Petersen, 2017; Root, 1973).

Simplified landscapes may also lack key resources

(e.g., food resources or overwintering sites) to support the

natural enemies of crop pests, therefore releasing pest

populations from top-down control (i.e., the natural

enemy hypothesis) (Chaplin-Kramer et al., 2011; Landis

et al., 2000). Therefore, diversifying farming landscapes,

either through planting multiple crops or retaining non-

crop vegetation, may lower pest densities and reduce

insecticide applications (Dainese et al., 2019; Paredes

et al., 2021; but please refer to Karp et al., 2018;

Tscharntke et al., 2016). It remains unclear, however,

whether the factors that shape mean pest densities are

also the key factors that affect pest variability, and, if so,

whether they have parallel effects on mean densities and

variability of densities.

Here, we used 5–13 years of pest- and field-management

surveys, collected across >1300 olive groves and vineyards

in Spain (18,729 field-years in all for three pests; Figure 1),

to investigate the interannual variability in pest population

sizes of three economically important agricultural pests:

olive fly (Bactrocera oleae), olive moth (Prays oleae), and

European grapevine moth (Lobesia botrana). Through simu-

lations and pest population statistical modeling, we aimed

to answer four guiding questions. First, is it always advisable

to reduce interannual pest PV, or can variability occasion-

ally result in preferable outcomes for farmers? Second, in

what contexts would interannual pest PV provoke insecti-

cide applications or major crop losses? Third, do the same

environmental factors promote elevated mean pest densities

and variable pest populations? Finally, how can farming

landscapes be managed to reduce interannual pest PV?

MATERIALS AND METHODS

Database

The Andalusian Government provided us with a large

database containing pest and field-management data for

13 years (2006–2018) across Andalusia, Spain (Figure 1).

This is an unusually rich data resource, as it contains

detailed, long-term, and well replicated pest observa-

tions. Specifically, personnel within the RAIF network

(Red de Informaci�on y Alerta Fitosanitaria) monitor
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pest populations on privately owned fields across the

Andalusian region of Spain and advise farmers about

when and how to manage pests based on economic

injury thresholds and integrated pest-management

rules. Farmers in the RAIF network are encouraged to

use integrated management criteria, such that insecti-

cides are only applied when pest populations exceed

economic injury thresholds (as described below in the

fifth paragraph of the next section). The RAIF database

also records several pest-management practices, includ-

ing applications of insecticides, herbicides, and fungi-

cides, as well as tillage events. Finally, the database

includes the identities of the crop cultivars, the coopera-

tives in which farmers are members, and the regions in

which the fields are located.

We focus on the abundance of two key olive pests,

the olive fly (B. oleae) and the olive moth (P. oleae), and

one key vineyard pest, the European grapevine moth

(L. botrana). The RAIF database contains information

about pest abundance (i.e., the number of individuals

captured in traps during a defined sampling interval) as

well as other variables related to damage. Some of these

metrics are used as proxies for future damage to inform

decisions about insecticide applications (i.e., economic

thresholds). Other variables directly measure damage to

fruit at harvest but were available only for the olive fly

and the grapevine moth (please refer to Appendix S1 for

a detailed description pest abundance and damage

metrics).

We supplemented the RAIF database with regional

climate and topographic (elevation, slope, and aspect)

data associated with each field. Topographic data were

extracted from a Digital Elevation Model (IGN, 2019). We

also gathered data from 79 weather stations located

F I GURE 1 Study site map. Map depicts olive orchard and vineyard study sites in the Andalusia region of southern Spain. Inset shows

study region location within Europe
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across the study region and extracted climate data from

the station nearest to each field. Specifically, for each sur-

veyed field-year, we averaged mean monthly temperature

and precipitation from March to December for olive pests

(the olive growing season) and from March to September

for grape pests (the grape growing season). In addition,

we compiled data on the landscape context surrounding

each field from two sources. To measure landscape sim-

plification, we delineated a buffer of 2000 m radius cen-

tered on the focal olive orchard (or grape vineyard)

within which we calculated the proportion of land that

was planted with olives (or grapes) using CORINE Land

Cover inventory. We also calculated landscape productiv-

ity surrounding each focal field using the normalized dif-

ference vegetation index (NDVI). using Landsat imagery.

We implemented a weighting procedure such that areas

located closer to the focal field were more influential

than those further away (please refer to Appendix S1 for

a detailed description of landscape composition and pro-

ductivity calculations).

Statistical modeling

Our basic unit of replication was the individual field

(i.e., an olive grove or grape vineyard). Fields were usually

visited on a weekly basis; however, data gaps within grow-

ing seasons were common. To ensure that variation in the

timing of field visits did not bias population size estimates,

we only included data from visits during periods of peak

pest population sizes (olive fly: mid-August to mid-

December; olive moth: mid-March to mid-August; grape-

vine moth: mid-March to late September). To produce

accurate mean abundance estimates for each sampling

year, we only included field-years for which ≥7 weekly

visits occurred within these focal temporal windows.

Finally, to robustly estimate interannual pest variability,

we only analyzed fields for which ≥5 years of data were

available. The average numbers of years surveyed per field

for the olive fly, olive moth, and grapevine moth were

7.86 � 2.59, 8.31 � 2.55, and 7.91 � 1.89 years, respec-

tively. This resulted in a final data set of 1315 fields for the

olive fly, 1184 for the olive moth, and 60 for the grapevine

moth. Fields were separated by more than 5 km.

To measure interannual PV, we first averaged

weekly pest density estimates across all visits to a given

field, in a given year. Then, we calculated the standard

deviation of the log-transformed annual mean pest

densities (Watt, 1965). This measure of interannual

pest variability was either uncorrelated or minimally

correlated with the average pest densities across years

(Appendix S1: Figure S1). We also explored other met-

rics such as the standard deviation of annual pest

densities, the coefficient of variation (CV), and the PV

metric proposed by Heath (2006). However, the high num-

ber of zeros in our data set disproportionately influenced

these metrics, especially when pest densities were low,

eliciting very strong mean–variance relationships

(Appendix S1: Figure S1). Therefore, we calculated log

(mean density + 1.0) for the more abundant pests (density

range for olive fly: 0–58.8 per trap per day; and olive moth:

0–572.4 per trap per day) and log (mean density + 0.01)

for the much less abundant grapevine moth (density range

0–14.5 per trap per day).

Our variability measure does not differentiate between

populations that have been completely extirpated from a

field versus those that are present but with unchanging

density over time. However, it was unusual for pests to be

completely absent from a field over an entire year

(i.e., 0.31% of field-years for the olive fly, 0.08% for the

olive moth, and 10.74% for the grapevine moth). Impor-

tantly, we chose not to detrend variability measures, as

systematic pest population increases (or decreases) would

be important to farmers as key sources of population den-

sity variability.

We first explored how mean pest abundances and PV

affect the likelihood of pests exceeding hypothetical pest

tolerance thresholds. To do so, we simulated variation in

farmers’ pest tolerance levels by setting multiple hypo-

thetical thresholds based on the abundance of each of

our three focal pests. Although simulations were solely

based on pest abundances, real tolerance thresholds for

our focal pests are defined using fruit infestation mea-

sures (except olive fly, which includes both infestation

and abundance measures). We then calculated the frac-

tion of years during which observed pest densities

exceeded the hypothetical thresholds on each field. In

each case, we generated generalized linear mixed models

(glmm) examining the likelihood that different pest den-

sity thresholds would be exceeded. Hypothetical thresh-

olds were established by calculating the 1st, 25th, 50th,

75th, and 99th percentiles of mean abundance of each

pest. Based on these thresholds, we then calculated

response variables in two ways. First, for each field, we

recorded the number of years that the threshold was

exceeded at least once versus the number of years that

the threshold was never exceeded, to create a proportion

of counts binomial variable. Second, for each field, we

recorded the total number of weekly observations that

the threshold was exceeded out of the total number of

weekly observations made across all years as a second

binomial variable. We report the results for the first

response variable in the main text, as we consider it to be

the more conservative measure; however, results using

the second measure were very similar Appendix (S1:

Figure S2).
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Next, we related pest PV to real-world outcomes of

direct importance to farmers (e.g., major losses of either

harvest quantity or quality) using similar GLMMs. Specifi-

cally, we used established thresholds for economic injury

(when the cost of control is less than the value of the

prevented crop injury) for harvested fruit quality and for

major yield losses as established by the Andalusian Govern-

ment’s rules for integrated pest management (BOJA, 2005,

2010). As for the hypothetical thresholds, the response vari-

able that we analyzed was a binomial proportion of counts

(years exceeding the threshold versus years not exceeding

it). For the olive fly, the economic injury threshold is set at

three flies captured per trap per day and 3% of olives ‘stung’

(i.e., oviposited into) per week. This is the only pest for

which the economic threshold is jointly defined by two

criteria. For olive moth and grapevine moth, thresholds are

set at 2% of olives and 8% of grapes with visible signs of ovi-

position, respectively.

Our prior work using the same data set has already

documented that insecticide applications increase in

vineyards when the grapevine moth exceeds economic

spray thresholds (Paredes et al., 2021). To determine

whether exceeding economic thresholds also results in a

higher probability of applying insecticides in olive groves,

we modeled whether or not insecticides were sprayed in

a given field and in a given year as a function of the frac-

tion of field visits for which economic thresholds were

exceeded. Importantly, reporting of management prac-

tices in the RAIF database appeared to be less uniform

than other key variables, with some RAIF technicians

frequently failing to report on field management. There-

fore, we omitted from our analyses all field-years in

which no insecticide, herbicide, or fungicide applications

were reported, assuming that these were not true

absences but instead represented failures to report. We

then implemented generalized additive mixed models

(GAMM) with a binomial error distribution, a logit link

function, and random effects of year, observer identity

(i.e., the technician collecting the data), and olive cultivar

(N = 15 cultivars).

Higher pest densities and variability may lead to

worse economic outcomes for farmers beyond simply

eliciting insecticide applications. For olive flies, a fruit

quality threshold of 10% of fruits with olive fly exit holes

has been established, as this level of infestation causes

olive oil to be downgraded from extra-virgin to virgin

(Mraicha et al., 2010). No comparable fruit quality

thresholds have been established for the olive moth or

European grapevine moth. Nonetheless, we also defined

major yield losses for the olive fly and grapevine moth

at 20% crop loss; other yield loss thresholds (10%, 15%,

and 30% for the grapevine moth and 30% and 50% for

the olive fly) are shown in the Appendix S1. Because

olive and grape damage accumulates over the growing

season, thresholds were considered to have been

exceeded if any of the last three samples prior to harvest

showed above-threshold levels of damage, and we

included fields with any number of within-season dam-

age estimates. Similarly, as the response variable that

we analyze is a binomial proportion of counts (years

exceeding the threshold versus years not exceeding it),

we relaxed the requirement for a minimum number of

annual observations, as the number of annual observa-

tions was already accounted for in the response variable.

Fruit damage data were not collected as regularly as

abundance data; the final data set included 1270 obser-

vations for the olive fly and 39 observations for the

grapevine moth.

Finally, we explored the determinants of population

densities and variability using GAMMs. Predictors included

mean values of the following variables, calculated across all

years the fields were visited: landscape productivity

(i.e., NDVI), landscape composition (i.e., percentage land

cover of the focal crop), elevation, aspect, and weather

(i.e., growing season temperature and precipitation). We

also included mean population density in models examin-

ing determinants of pest PV to provide statistical control for

any residual correlation between mean density and vari-

ability of density that remained after the log transformation

of population size (Appendix S1: Figure S1). The topo-

graphic variable slope was highly correlated with altitude,

and therefore was not included as a predictor. We also

included year-to-year variation in some of these variables

as predictors, measured as the standard deviation of the

log-transformed values: precipitation (log[value +0.01]),

temperature (log[value +1.0]), and NDVI (log[value +1.0]).

We could not include across-year variability in land cover

measures, because we did not have independent yearly

measurements. All continuous predictor variables were

allocated a maximum of three knots to avoid overfitting

(Taylan et al., 2007).

Importantly, we opted for another approach for the

grapevine moth because the low number of observations

(N = 60) prevented us from fitting the same models that

were fit for the olive fly and moth. Instead, we fit a linear

model containing the same predictors that were included

in the GAMMs, but excluding all random effects from the

model (please refer to the last paragraph of the section).

Including random effects resulted in model over-

parameterization and non-convergence. Even after

removing the random effects, no environmental variables

were identified as significant predictors of grapevine

moth PV (Appendix S1: Table S1).

Spatial variation in field management could possibly

confound insights into the environmental drivers of

mean pest density and variability. We therefore
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calculated a single index of management intensity by

summing the aggregated per field scaled numbers of her-

bicide and fungicide applications and tillage events. The

two sets of analyses, with management intensity excluded

and included, produced very similar results. Therefore,

because technicians frequently failed to report informa-

tion on field management (as noted four paragraphs

above), we present analyses without management inten-

sity in the main text and with management intensity in

the supplement (please refer to Appendix S1: Tables S2

and S3).

In all cases, mean pest population densities and vari-

ability in population densities were modeled with Gaussian

error distributions. For olive pests, we included random

effects for plant cultivar and for the cooperative through

which the farmer marketed their crops (N = 290 coopera-

tives). By including random effects for cooperative identity,

we accounted for any potentially unmeasured but impor-

tant management practices that might vary across coopera-

tives. For example, members of each cooperative may tend

to share the same pest-management practices. Moreover,

as cooperatives were spatially clustered, the variable also

helped account for spatial autocorrelation in mean pest

abundance and pest variability. Nonetheless, we still

detected residual spatial autocorrelation in the models of

mean pest abundance. We therefore also included a ran-

dom effect of geographic region in abundance models

(N = 63 regions). This variable was included in the RAIF

database and delineates regions with similar crop and pest

characteristics. Residuals from models including random

effects of geographic region displayed no further evidence

of spatial autocorrelation (p > 0.05 for Moran’s I tests). To

account for the variable number of years of survey effort

per field and produce robust estimates of our response vari-

ables, all observations of mean pest density and variability

were weighted by the number of years that contributed to

a particular estimate. GLMMs used to assess the likelihood

of pests exceeding hypothetical or real threshold values

(detailed in the fourth paragraph of this section) shared

similar mixed effects structures as GAMMs, with coopera-

tive and cultivar as random factors. Response variables for

the GAMMs were log-transformed to satisfy the assump-

tion of normality. Finally, we verified that all analyses con-

formed to model assumptions regarding normality (when

appropriate) and heteroscedasticity. All analyses were con-

ducted in R (R Development Core Team, 2018), with

GLMMs implemented in the lme4 package (Bates

et al., 2015) and GAMMs implemented in the mgcv pack-

age (Wood, 2011).

RESULTS

Context-dependent effects of pest
population variability

We found that the effects of pest PV were complex,

depending on whether the average pest population

F I GURE 2 (a–d) Temporal dynamics of olive fly abundances across four actual farm fields, exhibiting distinct combinations of low

versus high mean population densities and variabilities. Red dashed lines represent the economic threshold for the olive fly. Arrows indicate

years in which the threshold was exceeded (d) or years in which population densities fell below the threshold (b)
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F I GURE 3 Effects of pest population variability depend on pest abundances and tolerance levels. Hypothetical pest tolerance

thresholds were set at the 1%, 25%, 50%, 75%, and 99% quantiles of pest numbers trapped per week (olive fly: 0.07, 1.00, 2.70, 5.95, and 28.1

individuals/week; olive moth: 0.14, 2.57, 10.2, 34.3, and 400 individuals/week; grapevine moth 0.07, 0.21, 0.57, 1.70, and 21.7 individuals/

week, respectively). At high tolerance levels (99% quantile), more variable pest populations are always more likely to exceed thresholds. At

low tolerance levels (1% and 25% quantiles), pest densities are almost always above-threshold levels, except when variable pest populations

drop to unusually low densities. At intermediate tolerances (50% and 75%), variability in pest populations may increase, decrease, or have

little effect on the risk of exceeding thresholds. Lines are predicted effects of pest variability (standard deviation of interannual log mean

abundances) on the likelihood of exceeding thresholds from generalized linear mixed models. Red and blue lines represent fields with high

mean pest densities (top 10% pest abundance quantile) and low mean pest densities (bottom 10% quantile), respectively (Nolivefly = 1315

fields, Nolivemoth = 1184 fields, Ngrapevinemoth = 60 fields)
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densities were above or below the threshold for economic

pest damage. Pest PV always increased the likelihood that

pests would exceed economic thresholds that were higher

than the mean population density (i.e., panels (c) and

(d) in Figures 2 and 3; Appendix S1: Table S4). However,

if economic thresholds were below mean pest densities

(i.e., panels (a) and (b) in Figure 2), then pest PV para-

doxically decreased the likelihood of pests exceeding

thresholds. Finally, if economic thresholds were set very

near the mean pest population density, then global effects

of variability were predicted to be neutral, and effects reg-

istered at any particular field depended on that field’s

average pest abundance. For fields in which pests tend to

be abundant, variability increased the likelihood that

densities occasionally dropped beneath threshold levels.

However, for fields where pests tended to be rare, vari-

ability increased the likelihood of occasional outbreaks

that exceeded threshold levels (Figure 3; Appendix S1:

Table S4).

Pest population variability effects on real-
world outcomes

We found that more variable olive fly and grapevine

moth populations were neither more nor less likely to

exceed economic established thresholds, which is con-

sistent with mean densities of these pests being neither

far below, nor far above their respective thresholds

(Figure 4; Appendix S1: Figure S3 and Table S5). In

contrast, variable olive moth populations were less

likely to exceed economic thresholds (p = 0.040;

Appendix S1: Table S5 and Figure S3), which is consis-

tent with the economic damage threshold being located

below the mean population density for this pest. Impor-

tantly, exceeding economic thresholds for the olive fly

and moth increased the likelihood of applying insecti-

cides targeted to each pest, as was previously shown for

the grapevine moth (Paredes et al., 2021; Appendix S1:

Figure S4).

Increased PV, however, would always cause negative

outcomes for farmers concerned about crop quality or

catastrophic damage from olive flies and grapevine

moths (damage data were not available for the olive

moth). More variable olive fly populations were more

likely to downgrade the quality of harvested olives

(p = 0.016; Figure 4). Moreover, more variable olive fly

and grapevine moth populations were more likely to

cause major crop damage (Figure 4; Appendix S1:

Figures S5 and S6, Table S6). For example, the likeli-

hood of suffering >20% crop losses more than doubled

when comparing the least versus the most variable olive

fly populations.

Determinants of mean pest abundances
versus pest population variability

We found that environmental and landscape variables

often influenced mean pest abundances and pest PV in

F I GURE 4 Effects of olive fly population variability on the

probability of exceeding real-world economic, quality, and major

losses thresholds. More variable populations are not more likely to

exceed economic thresholds for spraying insecticides but are

significantly more likely to cause severe crop quality declines and

major yield losses. Blue lines and shaded regions correspond to

predictions and 95% confidence regions from generalized linear

mixed models (N = 1270 fields)
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fundamentally different ways. In some cases, entirely dif-

ferent variables shaped mean pest densities versus pest

PV (Appendix S1: Table S7). For example, high levels of

precipitation during the growing season tended to

increase mean olive fly population densities but not PV,

whereas elevated temperatures increased olive moth PV

but not mean densities. In addition, olive moth densities

were significantly affected by landscapes with more sur-

rounding olive groves but the effect on variability was

not significant. Unsurprisingly, interannual variability in

landscape productivity, growing season temperatures,

and growing season precipitation regularly increased

interannual variability in pest populations but tended to

have more muted effects on mean pest abundances

(Appendix S1: Table S7 and Figures S7–S10).

In other cases, the same environmental variable

affected both mean pest densities and density variability,

but in fundamentally different ways. Perhaps the most

important driver of mean pest abundances was elevation

(olive fly: p-value <0.0001; olive moth: p-value = 0.0001;

Figure 5; Appendix S1: Table S7). For the olive fly,

increasing elevation had opposite effects on mean

densities versus PV: mean densities increased strongly as

elevation increased to �800 m, where densities peaked,

declining slightly at still higher elevations, whereas vari-

ability of population densities declined as elevation

increased to ca. 800 m, and then increased at still higher

elevations (Figure 5a,b). Mean densities of the olive moth

increased steadily with increasing elevation, whereas the

variability in population densities showed a U-shaped

pattern (Figure 5d,e).

Finally, our analysis revealed a case in which land-

scape composition affected mean population densities

and PV in parallel ways: both olive fly mean population

densities and PV tended to increase in simplified land-

scapes (Figure 6).

DISCUSSION

Together, our results demonstrate that pest PV directly

influences critical farm production outcomes related to

insecticide applications, crop quality, and major yield

losses. Specifically, we found that mitigating pest PV is

F I GURE 5 Effects of altitude on olive fly and olive moth population mean abundance and variability. At intermediate elevations, olive

fly populations are most abundant (a) but also most stable (b). Similarly, at intermediate elevations, olive moth populations are most stable

(e) but abundance tends to increase continuously with altitude (d). Brown lines and shaded regions represent predictions and 95%

confidence intervals for mean abundance from generalized additive mixed models; green lines and shaded regions correspond to variability.

Panels (c) and (f) are zoomed in to better view effects (Nolivefly = 1315 fields; Nolivemoth = 1184 fields)
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crucial if farmers are either growing crops that can toler-

ate some damage from pests that are usually rare but

occasionally problematic or are concerned about cata-

strophic outbreaks. Pest PV strongly increased the likeli-

hood of farmers experiencing major yield losses from

both the olive fly and grapevine moth. Critically, how-

ever, our analyses also suggested that high pest PV can

sometimes result in positive outcomes for farmers; this

occurs when their tolerance for damage is extremely low

and therefore the usual pest densities are above the

threshold at which control measures are applied. This is

because more variable pest populations are more likely to

occasionally dip below the control threshold level.

When olive flies damage >10% of the olives, crop

quality is automatically downgraded, and farmers receive

a lower price for their crop (Mraicha et al., 2010). This

creates a non-linearity in the relationship between olive

fly densities and economic damage, in which losses jump

up when olive fly densities pass a critical threshold.

Under such a non-linear density–damage relationship,

variability of pest densities will create more economic

damage than would be expected if the olive fly

populations were stable at their long-term means

(as expected under Jensen’s inequality; Jensen, 1906).

Correspondingly, the most variable olive fly populations

were twice as likely to experience quality downgrading

compared with the least variable populations. Therefore,

any time economic damage accelerates as pest densities

rise (i.e., greater than linear increases in damage),

farmers will benefit from managing pest populations to

reduce their variability.

Ecologists have long been interested in the determi-

nants of PV and how patterns of population fluctuations

are shaped by processes that regulate population

densities (e.g., Hassell et al., 1976; Murdoch et al., 1995;

Walter et al., 2018; Lamb et al., 2019). Yet most of these

studies treat population variation as a species-specific

characteristic, often analyzing a single time series per

species. Given the data requirements required to produce

a long time series, this is not surprising. By capitalizing

on highly decentralized, massive data gathering efforts

that occur in production agriculture, we were able to pro-

duce well replicated time-series data for three insect her-

bivores and examine, for the first time, a broad suite of

correlates of across-population differences in population

variation.

Our analyses suggest that variability may need to be

managed independently from mean pest population den-

sities, as the factors that influenced population means

versus variability often differed. For example, precipita-

tion metrics tended to more strongly affect mean pest

densities, whereas growing season temperatures tended

to affect pest PV. We also found that the same variable

can affect pest population means and variability in dis-

tinct ways, with significant implications for field manage-

ment. For example, we found that mean olive fly

abundance showed a hump-shaped response to elevation

(as in Castrignanò et al., 2012; Kounatidis et al., 2008),

whereas variability instead showed a U-shaped response.

The strong effects of elevation on olive fly mean

abundance and variability may reflect the thermal ecol-

ogy of this pest. B. oleae is very sensitive to high tempera-

tures, which can cause heavy mortality (Abd El-Salam

et al., 2019; Gutierrez et al., 2009; Wang et al., 2009). In

the Andalusia region of southern Spain, low-elevation

olive groves experience periods of extremely high temper-

atures during the summer and early fall, when fly

populations are active. Fly populations found in cooler,

F I GURE 6 Effects of landscape composition on olive fly population mean abundance and variability. More simplified landscapes with

higher fractions of surrounding olive groves are most likely to host both abundant (a) and variable (b) fly populations, conditions that

elevate the chances of major crop losses. Brown lines and shaded regions represent predictions and 95% confidence intervals for mean

abundance from generalized additive mixed models; green lines and shaded regions correspond to variability. Panel (c) is zoomed in to

better view effects (N = 1315 fields)

10 of 13 PAREDES ET AL.



higher elevation locations escape these severe heat

waves, allowing them to reach higher densities and avoid

major episodes of mortality that can cause population

collapses. This results in both higher and less variable

populations. Further warming, as expected under global

climate change, could lead to further increases in olive

fly population volatility, creating novel management

challenges. Careful monitoring of olive fly population

densities may be especially important, given the links we

found between increased PV and major crop damage.

Importantly, our models also provide key insights into

how landscapes could be managed to simultaneously

achieve reductions in both mean population density and

PV. We found that landscape simplification (i.e., cultivating

expansive monocultures) increased both mean olive fly den-

sities and pest PV. This suggests that conserving or restoring

patches of natural habitat, or planting multiple crop

types, may reduce the potential for major crop damage

in olive groves. To our knowledge, our study is the first

to directly explore landscape impacts on pest variabil-

ity in agroecosystems. Nonetheless, our findings align

with recent work documenting elevated pesticide

application variability in simplified agricultural land-

scapes (Larsen & Noack, 2020).

In contrast, more work has focused on linking land-

scape patterns to mean pest abundances, often with con-

flicting and context-dependent results (Karp et al., 2018;

Tscharntke et al., 2016). So why does landscape complex-

ity seem to improve olive fly control? One explanation is

that the olive fly is a specialist, and landscape diversifica-

tion has been shown to better control specialist than gen-

eralist pests (Tamburini et al., 2020). Indeed, simplified

landscapes may concentrate resources for specialist pests,

removing dispersal barriers such that pests can rapidly

move into areas of relatively low abundance and increase

in population size (O’Rourke & Petersen, 2017; Perovic

et al., 2010; Root, 1973; Villa et al., 2021). Complex land-

scapes may also provide key resources for natural ene-

mies, contributing to top-down control (Chaplin-Kramer

et al., 2011; Landis et al., 2000). Regardless of mecha-

nism, our results contribute to a small but growing body

of literature that suggests simplified landscapes may lack

key density control mechanisms that temper rapid popu-

lation growth of specialist pests (Dainese et al., 2019;

Paredes et al., 2021).

CONCLUSIONS

Despite its importance, PV is rarely studied in agricul-

tural landscapes, let alone managed directly. One barrier

is the high level of spatiotemporal replication needed to

quantify interannual variability in pest populations and

then relate it to field, landscape, or regional factors.

A prior analysis of the grapevine moth data set demon-

strated that pest population stochasticity can easily mask

strong drivers of pest population densities if sample sizes

are similar to those reported in most landscape pest con-

trol studies (e.g., �25 fields surveyed for 2 years; Paredes

et al., 2021). Understanding drivers of pest variability is

an even more data-demanding endeavor. Here, we show

that the 447 field-years of grapevine moth observations

(60 vineyards surveyed for an average of 7.91 years) was

still insufficient to resolve any factors that significantly

influenced grapevine moth variability (Appendix S1:

Table S1). Only through analyses of substantially larger

data sets could we understand drivers of pest PV

(i.e., N = 9343 field-years for the olive fly and N = 8939

field-years for the olive moth).

One promising path forward is for researchers to partner

with governments, private industry, or distributed working

groups to acquire and analyze large pest monitoring data

sets, using ecoinformatic approaches (Rosenheim &

Gratton, 2017). Indeed, the causes and consequences of pest

PV are likely to differ among regions and cropping systems.

Still, based on the few studies that have been conducted to

date (Dalin et al., 2009; Larsen & Noack, 2020), it appears

that farms and landscapes can be managed to mitigate pest

PV. In particular, policies that incentivize the diversification

of farms and farming landscapes may not only result in pos-

itive conservation outcomes (Bat�ary et al., 2015), but also

dampen the volatile pest populations that provoke excessive

insecticide applications (Larsen & Noack, 2020) and

threaten farmers’ livelihoods.
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