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Abstract

Multilevel regression discontinuity designs have been increasingly used in education research to evaluate the
effectiveness of policy and programs. It is common to ignore a level of nesting in a three-level data structure (students
— classrooms/teachers — schools), whether due to resource constraints during the planning phase or unwittingly during
data analysis. This study aims to investigate consequences of ignoring either intermediate or top-level in blocked three-
level regression discontinuity (BIRD3) designs during data analysis and planning. During analysis, results indicated
that ignoring a level did not affect treatment effect estimates; however, it affected power and Type I error rates. Ignoring
intermediate level did not cause a significant problem. Power rates were slightly underestimated, whereas Type I error
rates were stable. In contrast, ignoring a top-level resulted in high power rates, however, severe inflation in Type |
error deemed this strategy ineffective. During planning, it is viable to use parameters from a misspecified two-level
blocked regression discontinuity model where level 2 was ignored (BIRD2 L2 Ignored) for a future BIRD2 design.
They can also be used for a future BIRD3 design where level 2 (top level) design parameters in the BIRD2 L2 Ignored
model are substituted for level 3 design parameters. However, when level 2 (top level) design parameters in the
BIRD2 1.2 Ignored model are used for level 2 (intermediate level) design parameters in a future BIRD3 design,
researchers risk having low power rates after data collection and analysis. Ignoring the top-level (BIRD2 L3 Ignored)
was more problematic. Calculated power rates were unstable; thus, using parameters from BIRD2 L3 Ignored model
in a future BIRD2 or BIRD3 designs should be avoided.

Keywords: blocked regression discontinuity designs, ignoring a level of nesting, power analysis, sample size,
minimum detectable effect size

Introduction

One of the fundamental assumption of Ordinary Least Squares (OLS) regression is the independence of observations.
This assumption is violated when errors are not independent of each other (presenting autocorrelation) due to nesting
of observations within organizational structures (Bickel, 2007; Finch & Bolin, 2017; Goldstein, 2011; Hox, 2010;
Raudenbush & Bryk, 2002; Snijder & Bosker, 2011). Violation of independence presents challenges to hypothesis
testing. It is well known that bias in point estimate is ignorable, but OLS regression produces overly optimistic standard
errors, leading to inflated Type I errors (Finch & Bolin, 2017; Singer, 1987; Fox, 1997). Multilevel linear modeling
(MLM) arouse as a compelling option for remedying the violation of independent errors in the case where nesting
structure consists of mutually exclusive groups (such as classrooms, teachers, or schools in education systems).
Additionally, MLM allows inspection of more complex research questions. One can study the influence of contextual
factors on the outcome of interest and the estimates of predictors. The latter can be translated into substantial research
questions on treatment effect heterogeneity and cross-level interactions. In the past 30 years, MLM has been
prevalently used in education research to answer substantial research questions owing to rapid advances in its
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methodology, development of publicly available software, and accessible literature (e.g., Bickel, 2007; Finch & Bolin,
2017; Goldstein, 2011; Hox, 2010; Raudenbush & Bryk, 2002; Snijder & Bosker, 2011, among many others).

However, the complex structure of the education system presents challenges to data collection efforts. Data collection
efforts on all levels of organizations and actors (students, teachers, administrators, schools, and states) are partially
hindered by lack of economic resources, lack of administrative records, or partially by researchers via unwittingly
ignoring what could matter. In one scenario, a researcher could collect data from only students, in the other, from
students and classrooms/teachers but not schools, yet in another, from students and schools but not classrooms/teachers.
In other words, one of the levels in the organizational structure (e.g., classroom/teachers or schools) could be ignored
or omitted. The omission of intermediate level (classrooms/teachers) is typical in practice, sometimes due to the
absence of administrative records that identify which classroom or teacher the child belongs (Zhu et al., 2011), or due
to simplicity or small sample sizes (van Den Noorthgate et al., 2005). In education, the most common version of
ignoring a nesting level occurs when classroom level information is ignored. However, the proportion of variance
attributed to classroom level can exceed that of school level (Goldstein, 2011; Muthen, 1991), or the magnitude of this
variance can be subject-specific. For instance, the proportion of variance in the mathematic achievement attributed to
classroom level is higher than the proportion of variance in the reading achievement compared to the school level
variance (Nye et al., 2004; Raudenbush & Bryk, 2002). Despite the possibility of a sizeable proportion of variance
attributed to the intermediate level, many empirical studies did not acknowledge classroom level information in the
analysis (e.g., Konu et al., 2002; Raudenbush & Bryk, 1986). Some recent evaluation studies indicate that regression
discontinuity designs (RDDs) are not exempt from this problem (see Jenkins et al., 2016; Konstantopoulos & Shen,
2016, Luyten, 2006; May et al., 2016). The literature consistently demonstrated that ignoring a top or intermediate
level has a detrimental effect on variance components, estimates, and standard errors. Some studies reported the effect
of ignoring a nesting level on variance components (Moerbeek, 2004; Opdenakker & van Damme, 2000), while some
studies focused on both variance components and standard errors (van Den Noortgate et al., 2005; Zhu et al., 2011).
From this point forward, for brevity, we will refer to level 1 as L1, level 2 as L2 and level 3 as L3.

Effects of Ignoring a Level of Nesting on Variance Components

Using a three-level model (students as L1- classrooms/teachers as L2 — schools as L3), in the case of a balanced
design’, Moerbeek (2004) found that ignoring L3 did not affect the variance component at L1 but inflated the variance
component at L2. The amount of inflation in the variance at L2 was approximately equal to the ignored amount at L1.
Similarly, using a four-level model (students as L1 — teachers as L2 — classrooms as L3 — schools as L4), van Den
Noortgate et al. (2005) concluded that omission of L4 did not affect variance estimates at L2 and L1. However, the
ignored variance at L4 was transferred to the variance at L3.

The consequences of ignoring an intermediate level are more complicated than ignoring the top level. van Den
Noortgate et al. (2005) found that the omission of an intermediate level (L2 or L3 in a four-level model) resulted in
inflation of the variance estimates at the flanking levels. For example, if L3 was omitted, the variance was distributed
to L2 and L4, which confirms findings by Moerbeek (2004) and Opdenakker and van Damme (2000). Moerbeek (2004)
noted that inflation in variance components depended on the magnitude of the variance component at the ignored level,
the level at which predictor variable was measured, and sample sizes at one or more levels.

Effects of Ignoring a Level of Nesting on Standard Errors

The literature already established that fixed effect estimates themselves are not affected as much when one relies on
OLS estimation instead of MLM, whereas standard errors are overly optimistic (Finch & Bolin, 2017; Singer, 1987;
Fox, 1997). If one relies on OLS estimation instead of MLM in the face of a multilevel data structure, it implies that
all levels of nesting are ignored. When variance component of a given level is affected due to ignoring of a level of
nesting, naturally, standard errors of the estimates at that level and those at the ignored level could also be affected
(Opdenakker & Van Damme, 2000).

In the case of a balanced design, using a three-level model (students as L1— classrooms as L2— schools as L3), Moerbek
(2004) found that inflation in standard errors depended on the ignored level (L2 versus L3), the level at which predictor
variable was measured, the magnitude of the proportion of variance attributed to ignored level, and sample sizes at one
more level. For example, ignoring L2 inflates standard errors for the fixed effect estimates at L1, resulting in inflated
p-values but not those at L3 (Moerbek, 2004). However, as Moerbek (2004) noted, if the proportion of variance
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attributed to the ignored level was minor, standard errors of fixed effect estimates were not affected to a great extent.
This finding was later confirmed by Zhu et al. (2011) using elementary school data.

Using a four-level model (students as L1— teachers as L2 - classrooms as L3— schools as level 4), van Den Noortgate
et al. (2005) found that, in general, the standard error of the intercept and estimates at the ignored or adjacent levels
were affected. When level 4 was ignored, the standard error of the estimate for predictors at L3 was affected. When
L3 was ignored in a balanced data, the standard error of the estimate for predictors at L2 increased. In contrast, the
standard error of the intercept and estimates for predictors at the ignored level decreased. When the data was
unbalanced, however, the standard error of the estimates for predictors at level 4 decreased when L3 was ignored.

Opdenakker and Van Damme (2000) found that regardless of the level ignored, the standard error of the intercept was
underestimated. However, when level 4 was ignored, the standard error of the estimates at levels 1 and 2 was not
affected as much. If the predictor itself belongs to the ignored level, then the standard error of their estimates was
underestimated. Zhu et al. (2011) extended previous work on ignoring a nesting structure by mainly focusing on the
design phase of cluster-randomized trials rather than analysis, although results apply to both. In particular, authors
considered design parameters from two-level data to design three-level studies. Manipulating and analyzing four
empirical multi-site datasets (including elementary and secondary school data), Zhu et al. (2011) concluded that
ignoring the intermediate level had no substantial effects on statistical power, precision or standard error of the estimate
for predictors at L3. Additionally, they concluded that using design parameters from a two-level study to design a
three-level study did not pose a substantial threat.

Evidence from Empirical Studies that Ignore a Level of Nesting in RDD

Several studies from 2000 onward focused on the cutoff-based assignment at the individual level, which, one way or
another, were adjusting estimates for clustering (or nesting structure). About a quarter of these studies adjusted for
clustering effects using MLM framework (Hustedt et al., 2015; Luyten, 2006; Luyten et al., 2008; May et al., 2016),
and about a quarter of the studies used Lee and Card (2008) method (Balu et al., 2015; Cortes, 2015; Deke et al., 2012;
Harrington et al., 2016; Reardon et al., 2010). The remaining studies either used bootstrap methods or none (Jenkins
et al., 2016; Klerman et al., 2015; Leeds et al., 2017; Ludwig & Miller, 2005; Matsudarie, 2008; Wong et al., 2008).
The four RDDs relying on individual level cutoff-based assignment and the MLM framework are summarized below.

Hustedt et al. (2015) evaluated the effectiveness of the Arkansas Better Chance (ABC) initiative at kindergarten on
student achievement, relying on the state's strict age-based admission criteria to the program. Although they analyzed
the data using single-level analysis, district-level information was included in the model as fixed effects. Luyten et al.
(2008) used Progress in International Reading Literacy Study (PIRLS) 2000 large-scale assessment data to examine
the effect of an extra year of schooling on student achievement relying on the cutoff that split students into 9" and 10"
grades. They analyzed the data using a two-level model where the schooling effect was assumed to vary across schools.
Luyten (2006) used Trends in International Mathematics and Science Study (TIMSS) 1995 large-scale assessment data
to examine the effect of an extra year of schooling on student achievement, relying on the cutoff that split students into
consecutive grades. Similar to Luyten et al. (2008), a two-level model was used where the schooling effect is assumed
to vary. May et al. (2016) evaluated the effectiveness of Reading Recovery i3 Scale-Up on students' achievement in
first and third grades relying on students' pretest scores. They analyzed the data using a two-level RDD where the
program effect was assumed to vary across schools. In summary, four RDD studies relying on individual level cutoff-
based assignment and also used MLM framework could have been analyzed by acknowledging the classroom level
information or district or state-level fixed effects.

Problem Statement

Drawing from four multi-site empirical elementary and secondary school datasets, Zhu et al. (2011) concluded that
using design parameters from a two-level study for a future three-level design did not create a substantial problem.
However, scholars in school effectiveness research portray a different picture (Moerbek, 2004; Opdenakker & van
Damme, 2000; van Der Noortgate et al., 2005). Unlike Zhu et al. (2011), these scholars usually focused on the data
analysis phase. The effect of using design parameters from a two-level study for a three-level design is less known
when the treatment variable is at L1. In this study, within the context of blocked two-level RDD (BIRD2) and blocked
three-level RDD (BIRD3), we investigate whether it is plausible to use design parameters from a misspecified BIRD2
model (where intermediate or top-level in BIRD3 design is ignored) for a future BIRD3 design. Specifically, we
investigate the following questions:

1. How do variance components shift when intermediate or top-level in a BIRD3 model is ignored?
2. How standard error of the treatment effect estimate (a L1 predictor) is affected by these misspecifications?
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3. Can we use design parameters from a misspecified BIRD2 model (where intermediate or top-level in
BIRD?3 design is ignored) for a future BIRD2 or BIRD3 design?

Method

Consider a nested sampling structure consisting of three levels (e.g., students at L1 — classrooms at L2 — schools at
L3), with an assignment variable S and a predetermined cutoff Sy at L1 (from which treatment variable T is derived),
a covariate X at L1, a covariate W at L2, and a covariate V" at L3. Assume intercepts and treatment effect is random
across L2 and 3 units. Also, assume that the data is balanced, that is, » number of L1 units per L2 unit, / number of
L2 units per L3 unit, and K number of L3 units. Balanced data is not the requirement for the model or the estimation
procedure; however, statistical power of the average treatment effect estimate (obtained from the data) approximates
formula-based power calculations in the cosa R package (Bulus & Dong, 2021a; Bulus & Dong, 2021b) and
PowerUp! software (Dong & Maynard, 2013).

Statistical Models

The following models pertain to the analysis of correctly specified BIRD3 model.
Unconditional Model

The following unconditional model is used to obtain variance parameters a2, 72, and 72, as defined below, which will
be used to calculate various standardized parameters along with parameters from the full model.
L1: Yij = Bojk + Tijk
L2: Bojk = Yook + Hojik
L3: Yook = $o00 + Sooks
where 7, ~N (0, 0%), pto;x~N(0,73) and G0, ~N(0, 75).
Treatment Only Model
The following model is used to obtain variance parameters 72, and T%;, as defined below, which will be used to
calculate various standardized parameters along with parameters from unconditional and full models.
LI: Yij = Bojk + BujkTijk + Tijk
L2: Bojk = Yook + Hojik

Bijk = Yiok T Hijk
L3: Yook = $000 + Sook

Y10k = $100 T S10ks

; 2, T 2, 1

s (1) () (7)) ) (O (7))
Full Model

The following model is used to generate data for Monte Carlo simulations. It is also used to obtain variance parameters
aﬁ{, Tflw, and T§|V, as defined below, which are used to calculate various standardized parameters along with the
parameters from unconditional and treatment only model. In addition to estimation of the treatment effect, empirical

standard error and empirical power rates are estimated using this model.
LI: Yij = Bojk + BujeTiji + ﬁzjk(sijk - 50) + B3 Xiji + Tiji
L2: Bojk = Yook + Yorx Wik + tojk

Bijk = Yiok + YiueWik + Hajie

ﬁzjk = Y20k



AUJES (Adiyaman University Journal of Educational Sciences) 7

Bsjk = V3ok
L3: Yook = $o00 + $001Vk + Sook
Y1ok = $100 T $101Vi + S10k
Y20k = $200
Y30k = €300
Yoik = $o10
Y11k = $110
where rijk~N(0, oﬁf), (Ziji) ~N (8) , (TZELTW I:%le:f) and (ZSEE) ~N (g) ) (Tf:V I:%T;:/) and where

171

P2 = Ziara: and represents proportion of variance in the outcome between L2 units,
3 2
73 . . . .
P3= i and represents proportion of variance in the outcome between L3 units,
3 2

2
w, = TT% and represents treatment effect heterogeneity across L2 units,
2

2
w3 = % and represents treatment effect heterogeneity across L3 units,
3

o2 is the L1 variance,

T§|V is the L3 variance conditional on L3 variables,

T§|W is the L2 variance conditional on L2 variables,

R} = 1 — 0% /0? and is the L1 variance explained by L1 variables,

R%,=1-— T72~2|W /7%, and is the proportion of variance at L2 on the treatment explained by L2 variables,
R%,=1-— 1%3“, /T%; and is the proportion of variance at L3 on the treatment explained by L3 variables.

Standard Error for Correctly Specified BIRD3
For the correctly specified BIRD3 model, standard error of the treatment effect takes the form of (Bulus & Dong, 2022)

K K] Kjnp(1—p)

where RDDE is regression discontinuity design effect and takes the form of RDDE = 1/(1 — pZ¢) when only linear
form of the score variable is added to the model (Bulus, 2022; Bulus & Dong, 2022; Schochet, 2008, 2009). pZ, is the
squared correlation between treatment and score variables and defined as p2; = o7/ (y/p(1 — p)as ) where oy is the

covariance between 7 and S, and g is the standard deviation of S (see Bulus, 2022; Bulus & Dong, 2022; Schochet,
2008, 2009).

Standard Errors for Misspecified BIRD2 Model

SE(Ear) = Jw3p3(1-R%3) L ©2p2(1=RE) (1= ps— ps)(1 = RE)RDDE)

When intermediate level in BIRD3 model is ignored, standard error of the treatment effect for the new BIRD2 model
takes the form of (Bulus & Dong, 2022; Schochet, 2008, 2009)

K Kjnp(1—p)

Different from the correctly specified BIRD3 model, w, is now the treatment effect heterogeneity across L2 units
(schools) in the misspecified BIRD2 model where only treatment variable is included, p, is the proportion of variance

SE(Er) = szpz(l ~ R%,)  (1-py)(1 - RE)(RDDE)
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in the outcome that is between L2 units (schools) in the unconditional misspecified BIRD2 model. Sample size for the
top level remains K, however, the sample size at .1 is now Jn.

When top level in BIRD3 model is ignored, standard error of the treatment effect for the new BIRD2 model takes the
form of (Bulus & Dong, 2022; Schochet, 2008, 2009)

KJj Kjnp(1 —p)

Different from correctly specified BIRD3 model, w, is now the treatment effect heterogeneity across L2 units
(classrooms/teachers) in the misspecified BIRD2 model where only treatment variable is included, p, is the proportion
of variance in the outcome that is between L2 units (classrooms/teachers) in the unconditional misspecified BIRD2
model. Sample size for the top level is now K], whereas the sample size at L1 remains n.

. ,p.(1—R%)  (1—p,)(1 — R¥)(RDDE
SE(&OO):JM( ), (1=p)(1 — RE)(RDDE)

Monte Carlo Simulation
Population Parameters and Scenarios

We generated S, X, W,V ~ N(0,1) and derived T from S and S, such that p = 0.5 or 0.2. Coefficients were manipulated
such that p, and p; values are close to those commonly encountered in education settings. The two scenarios that

produce different values of p, and p; are as follows (approximately ~0.40 and ~0.20 for Scenario 1 and ~0.15 and
~0.10 for Scenario 2):

Scenario 1

Ll: Yy = Bojk + BujwTiji + 0.5(Sijk — So) + 0.5X;5 + 7ij
L2: Bojk = Yook + 0.3Wj, + o

Bijk = Yok T 0.3Wj + 1y
L3: Yoox = 0+ 0.25V; + 6ok

Y10k = $100 T 0.25Vk + G101,

where 7, ~N(0,1), (ij’;) ~N ((8) , (1(')5 1(_)5)> and (222]]:) ~N <(8) ’ ((1) 0(.)5))'

Scenario 2

L1: Y =Boji + BuijrTiji + 0.3(Sijx — So) + 03X + Tij
L2: Bojk = Yook + 0.25Wjy + 1oy

Bijk = Yok T 0.25Wj + py ji
L3: Yoor = 0 + 0.2V, + Gook

Yiok = $100 T 0.2Vk + S0k

w0, () ()05 )10 )

Along with the four scenarios (Scenario 1 or 2, by p = 0.5 or 0.2) above, we determined treatment effect as ;40 =
0.25 for statistical power simulation and as &, = 0 for Type I error simulation. Additionally, we differed sample size
K =50 or 100, and kept n = 20 & J = 5 constant across all the scenarios. Sample sizes were chosen to approximate
those commonly encountered in education. Although / = 5 may not be as common, to obtain consistent variance
estimates it is an ideal minimum number. In total, there were eight scenarios for statistical power simulation (P1-P8)
and eight scenarios for Type I error simulation (T1-T&8).
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Analysis

The data were generated for these eight (P1-P8 and T1-T8) scenarios using parameters described in the equations (see
Monte Carlo Simulation section). As for the correctly specified model, each generated data set was analyzed using
"Null Model," "Treatment Only Model," and "Full Model." We used PROC MIXED in SAS with default restricted
maximum likelihood (REML) estimation and unstructured (UN) variance-covariance structure. For each scenario, the
procedure was replicated 5000 times. Monte Carlo-based standard error (SE, ) was calculated as the standard
deviation of the 5000 treatment effect estimates. Monte Carlo-based power and Type I error rates were calculated based
on the proportion of replications rejecting the null with a p-value smaller than 0.05. Other estimated parameters were
averaged over 5000 replications. The standardized parameters that were used for power calculations are based on the
averages over 5000 replications. There were 5000 rows for estimates, standard errors, and variance parameters, but
only their averages were used to obtain standardized parameters.

Power Calculations

Averages were transformed into standardized parameters according to definitions in "Null Model," "Treatment Only
Model," and "Full Model" described in the earlier section. Then, the standardized parameters were used in
power.bird3 () and power.bird?2 () functions for power calculation using cosa R library (Bulus & Dong,
2021a, 2021b). Model parameters, corresponding arguments, and their possible range are defined in Tables 1 and 2.

Table 1
BIRD3 Model Parameters,, Corresponding cosa R Package Arguments and Their Range

P . ES = $100 2 2 72, T2,
arameter = == =-S5 =12 =13
VT3 + 12 + 02 P2 2+ 15402 Ps 2+ 15402 @2 72 @3 3
power.bird3 () es rho2 rho3 omega2 Omega3
Range ES~N(0,1) [0,1] [0,1] [0,1] [0,1]
p: proportion
gs: number of L3 o2 72 72 of subjects
Parameter covariates excluding R2=1- X R%,=1-— T?W Ri.=1- T; L4 below (or
treatment o2 TT2 Tr3 above) the
cutoff
power.bird3 () g3 r2l r2t2 r2t3 P
Range g3 ENY [0,1] [0,1] [0,1] 0,1)
Parameter ny n, ns
power.bird3 () nl n2 n2
Range n, ENT ny, ENt ny €N
Table 2
BIRD?2 Model Parameters, Corresponding cosa R Package Arguments and Their Range
go: number of L2
Parameter ES = o = i3 w0, = Ir2 covariates 2 |2X
JT2 + 02 P2 = 12 + g2 2T 2 excluding Ri=1-—
treatment
power.bird2 () es rho2 omega?2 g2 rzl
Range ES~N(0,1) [0,1] [0,1] g, ENT [0,1]
2 p: proportion of
Parameter R%,=1- %lw subjects below (or n, n,
Tr2 above) the cutoff
power.bird2 () r2t2 i) nl n2
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Range [0,1] (0,1) n, ENT n, EN?t

For planning a BIRD2 design (planned-BIRD2) based on parameters from a misspecified BIRD2 where L2 was ignored
(analyzed-msL2ig-BIRD2), we used power.bird2 () function. Note that sample size at L1 for BIRD?2 is the product
of sample size at L1 and 2 in BIRD3. An example code chunk is presented below.

# misspecified BIRD2 (L2 ignored)

power.bird2 (es = , rho2 = , omegal = ,
g2 =1, r21 = , r2t2 = 0
p = , nl = , n2 = 50)

For planning a BIRD3 design (planned-BIRD?3) based on parameters from a misspecified BIRD2 where L2 was ignored
(analyzed-msL2ig-BIRD2), we used power.bird3 () function. We assume that a researcher substituted L2
parameters in analyzed-msL2ig-BIRD2 for L3 parameters in planned-BIRD3. Thus, rho2 = 0, omega2 = 0, and
r2t2 = 0. Anexample code chunk is presented below.

# L2 parms for analyzed-BIRD2 (L2 of the original BIRD3 ignored)
# can be substituted for L3 parms in planned-BIRD3

power.bird3(es = , rho2 = 0, rho3 = , omegaz2 = (0, omega3 = ,
g3 =1, r21 = , Yr2t2 = 0, r2t3 = 0
p = , nl = , n2 =5, n3 = )

We can also assume that a researcher substituted L2 parameters in analyzed-msL2ig-BIRD2 for L2 parameters in
planned-BIRD3. Thus, rho3 = 0, omega3 = 0,and r2t3 = 0 as in the following.

# L2 parms for analyzed-BIRD2 (L2 of the original BIRD3 ignored)
# can be substituted for L2 parms in planned-BIRD3

power.bird3 (es = , rho3 = 0, rho2 = , omegal3 = 0, omega2 = ,
g3 =0, r21 = , r2t3 = 0, r2t2 = ,
p = , nl = , n2 =5, n3 = )

Another possible scenario is that a researcher may attempt planning a BIRD2 design (planned-BIRD2) based on
parameters from a misspecified BIRD2 where L3 was ignored (analyzed-msL3ig-BIRD2). Again, we used
power.bird2 () function. Note that, different from the previous scenario, the sample size at L2 for BIRD2 is the
product of sample size at levels 2 and 3 in BIRD3. An example code chunk is presented below.

# misspecified BIRD2 (L3 ignored)

power.bird2 (es = , rho2 = , omega2 = ,
g2 =1, r2l = , r2t2 = ,
o = , nl = , N2 = )

For planning a BIRD3 design (planned-BIRD?3) based on parameters from a misspecified BIRD2 where L3 was ignored
(analyzed-msL3ig-BIRD2), we used power.bird3 () function. We assume that a researcher substituted L2
parameters in analyzed-msL2ig-BIRD2 for L3 parameters in planned-BIRD3. Thus, rho2 = 0, omega2 = 0, and
r2t2 = 0. Anexample code chunk is presented below.

# L2 parms for the analyzed-BIRD2 (L3 of the original BIRD3 ignored)
# can be substituted for L3 parms in planned-BIRD3

power.bird3(es = , rho3 = , rho2 = 0, omega3 = , omega2 = 0,
g3 =1, r2l = , r2t3 = , r2t2 = 0,
p = , nl = , n2 =5, n3 = )

We can also assume that a researcher substituted L2 parameters in the analyzed-msL3ig-BIRD2 for L2 parameters in
planned-BIRD3. Thus, rho3 = 0, omega3 = 0,and r2t3 = 0 as in the following.
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# L2 parms for the analyzed-BIRD2 (L3 of the original BIRD3 ignored)
# can be substituted for L2 parms in planned-BIRD3

power.bird3(es = , rho2 = , rho3 = 0, omega2 = , omegal3 = 0,
g3 =0, r21 = , r2t2 = , r2t3 = 0,
p = , nl = , n2 =5, n3 = )
Results

Results presented in Table 3 answer the "How do variance components shift when intermediate or top-level in a BIRD3
model is ignored? ” question. Table 3 presents unconditional variances for correctly specified BIRD3 and misspecified
BIRD2 models. For correctly specified BIRD3 model, sources of variation in the outcome are attributed to L1
(students), L2 (classrooms), and L3 (schools) denoted as o2, 7%, and 72, respectively. For the misspecified BIRD2
model, sources of variation in the outcome are attributed to L1 (students), and L2 (classrooms or schools) denoted as
o? and 13, respectively. Misspecified BIRD2 models could either ignore the intermediate level for which 73 refers to
between-school variance or ignore top-level for which 72 refers to between classrooms variance. Table 3 demonstrates
how variance parameters for an unconditional model shift when intermediate- or top-level was ignored. When the
intermediate level was ignored in the BRID3 model, the L2 variance was distributed to the flanking levels in the new
BIRD2 model. The variance distributed to the bottom level model was proportionally more (~80%) than the variance
distributed to the top-level (~%20) in the new BIRD2 model. When the top-level was ignored, the bottom level
remained the same; however, L2 variance in the new BIRD2 model was inflated approximately equal to the sum of L2
and L3 variance in the BIRD3 model. In both cases, the total variance was preserved.

Table 3
Unconditional Variance Parameters for BIRD3 and Misspecified BIRD2 Models
AT Specification Parameter Pl P2 P3 P4 PS5 P6 P7 P8
Model
g? 215 9.66 215 966 192 949 192 9.48
BIRD3 Correctly specified 2 208 1.80 207 190 169 164 169 1.63
s 1.27 121 127 121 1.1l  1.08 1.11 1.08
BIRD?2 ;nterme('iiate level c? 3.83 11.18 3.83 11.19 329 10.81 3.29 10.80
ignored in BIRD3 T .66 158 167 158 144 139 143 1.39
BIRD? Top-level ignored o? 215 966 215 966 192 949 192 948
in BIRD3 2 332 308 333 310 278 269 279 270

Note. The same symbols bear a different meaning in different models. o2 : L1 variance. T2 : L2 variance. 72 : L3 variance.
Numbers in the table are averages of 5000 replications.

It is ideal for a researcher to analyze three-level data using the BIRD3 model. It is also desirable for a researcher to
plan a BIRD3 model using parameters reported in existing scholarly work in which BIRD3 models were utilized.
However, it is also possible for a researcher to analyze BIRD3 data using BIRD2 models where either intermediate
level (classrooms) or top-level (schools) are ignored. Furthermore, it is also possible for a researcher to plan a BIRD3
model via using parameters from these misspecified BIRD2 models.

Results presented in Tables 4 to 7 answer “How standard error of the treatment effect estimate (a L1 predictor) is
affected by these misspecifications?” question. When the intermediate level is ignored in a three-level BIRD3 model,
it becomes a two-level BIRD2 model where the previous third level remains the top level. In addition to the shift in
the variance components, which affects variance parameters in the new top and bottom levels, the sample size for the
top-level remains the same (K). However, the sample size for L1 is now the combined sample size (nJ), whereas
degrees of freedom for the test statistics do not change. MC simulations showed that power was slightly underestimated
(see Table 4), whereas Type I error rates did not change substantially (see Table 5).

In contrast, when the top-level is ignored, the variance component shifts, and the sample size for the new top-level is
now combined (JK). However, the sample size for the new bottom level remains the same (n), whereas degrees of
freedom for the test statistics change due to the change in the number of top levels. As the top-level sample size is one
of the most critical determinants of power, the change in top-level sample size alone was sufficient to overestimate
power (see Table 6). However, Type I error rates were severely inflated (Table 7). Inflated Type I error offset the
benefit of having an overpowered model.
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The result of the MC simulation for the correctly specified BIRD3 model is provided in Tables 1A and 2A in Appendix
A for comparison purposes. There was a close correspondence between MC-based power rates and those calculated
via the cosa R package (see Table 1A). Type I error rates match 5% nominal rate (see Table 2A). This creates a
baseline for further exploring power calculations in misspecified BIRD2 models.

Table 4
Comparison of Power Rates from Correctly Specified (BIRD3) and L2 Ignored (BIRD3) Model
Scenario P1 P2 P3 P4 P5 P6 P7 P8
MC Power from BIRD3 0.44 0.30 0.74 0.52 0.45 0.26 0.72 0.45
MC Power from BIRD2 0.38 0.28 0.65 0.49 0.38 0.24 0.62 0.42
AD in Powers -0.07 -0.03 -0.09 -0.03 -0.07 -0.01 -0.10 -0.03
RD in Powers  -15.09 -8.29 -12.05 -5.16 -16.02 -5.53 -13.57 -7.28
Note. AD: Absolute difference. RD: Relative difference (%). Power rates are based on 5000 replications.

Table 5
Comparison of Type I Error Rates from Correctly Specified (BIRD3) and L2 Ignored (BIRD2) Model
Scenario Tl T2 T3 T4 T5 T6 T7 T8
MC Type I Error from BIRD3  0.06 0.06 0.05 0.05 0.05 0.06 0.05 0.05
MC Type I Error from BIRD2 ~ 0.05 0.06 0.06 0.05 0.06 0.06 0.05 0.05
AD in Type I Errors  0.00 0.00 0.00 0.00 0.00 0.00 -0.01 0.00

RD in Type I Errors  -5.90 2.14  8.95 -4.17 2.19  -245 -12.04 -8.65
Note. AD: Absolute difference. RD: Relative difference (%). Type I error rates are based on 5000 replications.

Table 6
Comparison of Power Rates from Correctly Specified (BIRD3) and L3 Ignored (BIRD2) Model
Scenario P1 P2 P3 P4 P5 P6 P7 P8
MC Power from BIRD3 0.44 0.30 0.74 0.52 0.45 0.26 0.72 0.45
MC Power from BIRD2 0.62 0.43 0.86 0.66 0.63 0.34 0.84 0.54
AD in Powers 0.18 0.13 0.12 0.14 0.19 0.08 0.12 0.09
RD in Powers  40.68 43.44 16.00 26.01 41.50 30.66 16.52 20.36
Note. AD: Absolute difference. RD: Relative difference (%). Power rates are based on 5000 replications.

Table 7
Comparison of Type I Error Rates from Correctly Specified (BIRD3) and L3 Ignored (BIRD) Model
Analysis Model T1 T2 T3 T4 T5 T6 T7 T8
MC Type I Error from BIRD3 0.06 0.06 0.05 0.05 0.05 0.06 0.05 0.05
MC Type I Error from BIRD2 0.15 0.15 0.16 0.14 0.14 0.10 0.14 0.10
AD in Type I Errors ~ 0.09 0.09 0.11 0.09 0.09 0.05 0.09 0.05
RD in Type [ Errors  159.03  158.93  208.56 168.94 161.68 79.72  156.20 90.60
Note. AD: Absolute difference. RD: Relative difference (%). Type I error rates are based on 5000 replications.

The results presented earlier were related to the analysis phase, and all numbers reported therein was based on MC
simulation. One possibility mentioned earlier was to use parameters from a misspecified BIRD2 model to design a
BIRD2 or BIRD3 study. One could obtain parameters needed in power calculations via analyzing three-level data using
the BIRD2 model (assuming either intermediate/top-level is not available or ignored) or using parameters reported in
scholarly work in which the BIRD2 model was utilized.

Results presented in Tables 8 and 9 answers "Can we use design parameters from misspecified BIRD2 model (either
intermediate or top-level ignored) for a prospective BIRD2 or BIRD3 design?” question. Table 8 presents the
misspecified BIRD2 model where the intermediate level was ignored. Power rates for a prospective study were
calculated considering three cases; parameters obtained from the misspecified BIRD2 analysis can be used (i) for
planning a BIRD2 design, (ii) for planning a BIRD3 design where parameters of L2 in BIRD2 analysis were substituted
for parameters of L3 in BIRD3 design (thus parameters of L2 in BIRD3 design were all constrained to zero), and (iii)
for planning a BIRD3 design where parameters of L2 in BIRD2 analysis were substituted for parameters of L2 in
BIRD?3 design (thus parameters of L3 in BIRD3 design are all constrained to zero).
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Table 8
Power Rates for the Misspecified BIRD2 Model (L2 Ignored)

Scenario Pl P2 P3 P4 P5 P6 P7 P8

oo 024 025 025 025 025 024 025 025
SE(£0) 0.5 0.18 0.1 0.13 0.15 020 0.11 0.14
ES(é00) 010 007 0.11 007 012 007 0.11 007

p, 030 012 030 012 030 011 030 0.11
w, 054 049 053 048 0.66 0.57 0.65 0.57
RZ 022 004 022 004 022 0.03 022 003

RZ.  0.08 0.07 007 006 007 007 0.07 0.06

p 050 050 050 0.50 020 020 020 0.20
prs 0.80 0.80 0.80 0.80 0.70 0.70 0.70 0.70
K 50 50 100 100 50 50 100 100

SEMc(éwo) 0.15 0.19 0.11 0.13 0.15 021 0.11 0.14
MC Power 038 028 0.65 049 038 024 0.62 0.42

(i) cosa R Package (Plan BIRD2) 033 024 0.67 044 038 022 0.59 040
(ii) cosa R Package (Plan BIRD3: L2 Parms = 0) 033 024 0.67 044 038 022 059 040
(iii) cosa R Package (Plan BIRD3: L3 Parms = 0) 0.64 033 095 058 073 029 092 0.53

Note. Results are based on 5000 replications. &, 4, Treatment effect. SE: Standard Error. ES: Effect size. p,: Proportion of variance
in the outcome between L2 units. w,: Treatment effect heterogeneity across L2 units. R?: Proportion of variance in the outcome
explained L1 covariates. RZ,: Proportion of variance in the treatment effect explained L2 covariates. p: Proportion of subjects fall
below (or above) cutoff score on the assignment variable. prg: Correlation between the assignment variable and the treatment status.
nJ: Average number of L1 units per L2 units, set to 100. K: Number of L3 units.

Table 9
Power Rates for the Misspecified BIRD2 Model (L3 Ignored)

Scenario Pl P2 P3 P4 P5 P6 P7 P8

£o0 025 025 025 025 025 025 025 025
SE(€60) 0.10 0.14 0.07 010 0.11 0.17 007 0.12

ES(§,00) 0.10 007 0.1 007 0.12 007 0.11 0.07
p, 061 024 061 024 059 022 059 0.22

w, 065 052 065 052 077 060 077 059

R? 053 007 054 007 048 005 048 0.05

RZ. 004 0.05 004 004 004 004 003 004

p 050 050 050 050 020 020 020 0.20

prs 0.80 0.80 0.80 080 070 0.70 0.70 0.70

JK 250 250 500 500 250 250 500 500

SEyc(é00) 014 0.19 0.10 0.3 0.14 020 0.10 0.14
MC Power 0.62 043 0.86 0.66 0.63 034 084 0.54

(1) cosa R Package (Plan BIRD2) 0.62 034 094 059 071 030 090 0.54
(i1) cosa R Package (Plan BIRD3: L2 Parms = 0) 0.20 0.20 0.23 0.19 023 0.18 0.20 0.18
(ii1) cosa R Package (Plan BIRD3: L3 Parms = 0) 0.61 033 069 033 070 0.30 0.62 0.30

Note. Results are based on 5000 replications. &, oo: Treatment effect. SE: Standard Error. ES: Effect size. p,: Proportion of variance
in the outcome between L2 units. w,: Treatment effect heterogeneity across L2 units. R?: Proportion of variance in the outcome
explained L1 covariates. R2,: Proportion of variance in the treatment effect explained L2 covariates. p: Proportion of subjects fall
below (or above) cutoff score on the assignment variable. pyg: Correlation between the assignment variable and the treatment status.
n: Average number of L1 units per L2 units, set to 20. JK: Number of L2 units. AD: Absolute difference. RD: Relative difference.

For cases (i) and (ii) in Table 8 (L2 ignored), calculated power rates slightly underestimated MC-based power rates for
misspecified BIRD2 and underestimated MC-based power rates for correctly specified BIRD3. However, in case (iii),
calculated power rates were somewhat optimistic, substantially exceeding MC-based power rates of both designs. On
the contrary, Table 9 (L3 ignored) portray a different picture. Calculated power rates were unstable for all cases.
Calculated power rates in case (i) were underestimated or overestimated compared to MC-based power rates for
misspecified BIRD2 and overestimated compared to MC-based power rates for correctly specified BIRD3, in (ii) they
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were severely underpowered compared to both, and in (iii) they were unstable considering both. The term "unstable"
means we observed no trend regarding the magnitude or direction of the difference from MC-based power rates.

Discussion

From analysis perspective, when intermediate-level was ignored in BIRD3, the majority of the variance in the ignored
level shifts to the new bottom level, and a small portion of the variance shifts to the new top-level in BIRD2. These
results are in line with findings in Moerbeek (2004), van Den Noortgate et al. (2005), and Opdenakker and van Damme
(2000). This shift in variance components causes a slight underestimation of power rates. It can be neglected if the
variance at the intermediate level is small to moderate, to begin with, confirming findings in Zhu et al. (2011). However,
classroom-level variance can exceed school-level variance in practice (Goldstein, 2011; Muthen, 1991). Even if sample
sizes at the intermediate level are very small, this problem can be addressed by using bootstrapping or Bayesian
methods (Goldstein, 2011) or introducing L2 information as fixed effects into the model (van Den Noorthgate et al.,
2005). Another way to decide whether to acknowledge or ignore an intermediate level is to base the modeling decision
on the model fit (Opdenakker & Van Damme, 2000). Suppose the chi-square test of difference is meaningful between
the model that ignores and the model that acknowledges the intermediate level. In that case, it is advisable to
acknowledge the intermediate level and pursue the analysis accordingly. If the data permits, to mitigate the problem,
the least an analyst could do is to introduce predictors belonging to the ignored level (Opdenakker & Van Damme,
2000). However, the reason to ignore a level is the absence of information on that level. If any information is available
(e.g., covariates), the L2 or L3 membership can be constructed.

These remedies might apply to the analysis phase but are not necessarily needed for the planning phase. Considering
Type 1 errors did not change substantially, one could use parameters from the BIRD2 model to design a BIRD2 or
BIRD3 model. The study will be adequately powered during the analysis phase as long as the design satisfies the
desired level of power rate, except when L2 parameters of a misspecified BIRD2 model is substituted for L2 parameters
in a future BIRD3 design. In this case, the test statistics will be underpowered in the analysis phase. The top-level
sample size could be oversampled to make up for this, but to what extent it should be inflated is unknown ahead of the
study.

Ignoring the top level is more problematic, although the variance component at the third level is negligible. When the
top-level is ignored, the variance of the ignored level in BIRD3 shifts to the new top-level in BIRD2, in line with
findings in Moerbeek (2004) and van Den Noortgate et al. (2005). This shift in variance component and increased
sample size at L2 causes overestimation of power rates. Compared to the ignoring intermediate-level, the distortion in
ignoring the top-level is more pronounced as the top-level sample size change dramatically. On its own, this would not
constitute a significant problem if the top-level sample size is inflated during the planning phase. However, as
mentioned earlier, to what extent it should be inflated is unknown ahead of the study. Regardless, it should be avoided
at all costs because Type I error rates were severely inflated.

Limitations

Results and their implications are limited to the simulated scenarios. When the variance component for the intermediate
level is significant, results may differ. Furthermore, ignoring a level may also mean omitting relevant variables at that
level. This means ignoring a level also comes with an omitted variable bias, which complicates misspecification.
Functional form misspecification is another topic that deserves attention. Bulus (2022) recently found that for balanced
RDD designs (p = 0.50), power rates for a linear form of the score variable, linear form interacting with the treatment
variable, or quadratic form of the score variable does not change. However, a quadratic form of the score variable
interacting with the treatment variable requires a larger sample size to reach the same power rate of lower polynomial
forms. He also found that power rates may differ across different functional form specifications for unbalanced designs
(e.g., p=0.20). In this study, only the linear form of the score variable was considered. The incorrect functional form
may complicate misspecification even further.
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Appendix

Table 1A
Power Rates for Correctly Specified BIRD3 Design

Scenario P1 P2 P3 P4 P5 P6 P7 P8

£o 025 025 025 025 025 025 025 025
SE(§00) 014 018 010 013 014 019 0.0 0.14

ES(§0) 010 007 011 007 012 007 011 007
p, 038 015 038 015 036 013 036  0.13
ps 023 009 023 009 023 009 023  0.09
w, 077 057 077 056 090 064 091  0.65
ws 047 047 046 046 054 052 052 052
R2 053 007 054 007 048 005 048  0.05

R, 006 007 006 006 005 007 005 006
Rz, 013 011 011 009 013 014 011  0.09
p 050 050 050 050 020 020 020 020
prs 080 080 080 080 070 070 070  0.70
K 50 50 100 100 50 50 100 100

SEMC(élOO) 0.14 0.18 0.10 0.13 0.14 0.20 0.10 0.14
MC Power  0.44 0.30 0.74 0.52 0.45 0.26 0.72 0.45

Note. Results are based on 5000 replications. &40 Treatment effect. SE: Standard Error. ES: Effect size. p,: Proportion of
variance in the outcome between L2 units. p5: Proportion of variance in the outcome between L3 units. w,: Treatment effect
heterogeneity across L2 units. w: Treatment effect heterogeneity across L3 units. R?: Proportion of variance in the outcome
explained L1 covariates. R%,: Proportion of variance in the treatment effect explained L2 covariates. R%;: Proportion of variance
in the treatment effect explained L3 covariates. p: Proportion of subjects fall below (or above) cutoff score on the assignment
variable. prg: Correlation between the assignment variable and the treatment status. n: Average number of L1 units per L2 units,
which is set to 20. J: Average number of L2 units per L3 units, which is set to 5. K: Number of L3 units.

Table 2A
Type I Error Rates for Correctly Specified BIRD3 Design

Scenario T1 T2 T3 T4 T5 T6 T7 T8

&0 0.00 0.00  0.00 000 0.0 0.00 0.00  -0.01
SE(§100)  0.14 018 010 013  0.14 0.19 0.10  0.14

ES(&00)  0.00 0.00  0.00 000  0.00 0.00 0.00  0.00
p, 039 015 039 015 036 0.13 036  0.13
ps 023 010 023 010 024 0.09 024  0.09
w, 077 057 077 056  0.90 0.64 091  0.65
ws 047 047 046 046 054 0.52 053  0.52
RZ 051 006 051 006 046 0.05 046  0.05

RZ,  0.06 007 006 006  0.05 0.07 0.05  0.06
Rz,  0.13 010 011 009 0.3 0.13 012  0.10
p 050 050 050 050 020 0.20 020  0.20
prs  0.80 080 080 080  0.70 0.70 070  0.70
K 50 50 100 100 50 50 100 100

SEwc(&100) 0.14 0.18 0.10  0.13 0.14 0.20 0.10 0.14
MC Type I Error  0.06 0.06 0.05  0.05 0.05 0.06 0.05 0.05

Note. Results are based on 5000 replications. &,o: Treatment effect. SE: Standard Error. ES: Effect size. p,: Proportion of
variance in the outcome between L2 units. p3: Proportion of variance in the outcome between L3 units. w,: Treatment effect
heterogeneity across L2 units. w5: Treatment effect heterogeneity across L3 units. R?: Proportion of variance in the outcome
explained L1 covariates. R2,: Proportion of variance in the treatment effect explained L2 covariates. R2;: Proportion of variance
in the treatment effect explained L3 covariates. p: Proportion of subjects fall below (or above) cutoff score on the assignment
variable. prs: Correlation between the assignment variable and the treatment status. n: Average number of L1 units per L2 units,
which is set to 20. J: Average number of L2 units per L3 units, which is set to 5. K: Number of L3 units.



