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Abstract 

Multilevel regression discontinuity designs have been increasingly used in education research to evaluate the 

effectiveness of policy and programs. It is common to ignore a level of nesting in a three-level data structure (students 

– classrooms/teachers – schools), whether due to resource constraints during the planning phase or unwittingly during 

data analysis. This study aims to investigate consequences of ignoring either intermediate or top-level in blocked three-

level regression discontinuity (BIRD3) designs during data analysis and planning. During analysis, results indicated 

that ignoring a level did not affect treatment effect estimates; however, it affected power and Type I error rates. Ignoring 
intermediate level did not cause a significant problem. Power rates were slightly underestimated, whereas Type I error 

rates were stable. In contrast, ignoring a top-level resulted in high power rates, however, severe inflation in Type I 

error deemed this strategy ineffective. During planning, it is viable to use parameters from a misspecified two-level 

blocked regression discontinuity model where level 2 was ignored (BIRD2_L2_Ignored) for a future BIRD2 design. 

They can also be used for a future BIRD3 design where level 2 (top level) design parameters in the BIRD2_L2_Ignored 

model are substituted for level 3 design parameters. However, when level 2 (top level) design parameters in the 

BIRD2_L2_Ignored model are used for level 2 (intermediate level) design parameters in a future BIRD3 design, 

researchers risk having low power rates after data collection and analysis. Ignoring the top-level (BIRD2_L3_Ignored) 

was more problematic. Calculated power rates were unstable; thus, using parameters from BIRD2_L3_Ignored model 

in a future BIRD2 or BIRD3 designs should be avoided. 

 
Keywords: blocked regression discontinuity designs, ignoring a level of nesting, power analysis, sample size, 

minimum detectable effect size 

Introduction 

One of the fundamental assumption of Ordinary Least Squares (OLS) regression is the independence of observations. 

This assumption is violated when errors are not independent of each other (presenting autocorrelation) due to nesting 

of observations within organizational structures (Bickel, 2007; Finch & Bolin, 2017; Goldstein, 2011; Hox, 2010; 

Raudenbush & Bryk, 2002; Snijder & Bosker, 2011). Violation of independence presents challenges to hypothesis 
testing. It is well known that bias in point estimate is ignorable, but OLS regression produces overly optimistic standard 

errors, leading to inflated Type I errors (Finch & Bolin, 2017; Singer, 1987; Fox, 1997). Multilevel linear modeling 

(MLM) arouse as a compelling option for remedying the violation of independent errors in the case where nesting 

structure consists of mutually exclusive groups (such as classrooms, teachers, or schools in education systems). 

Additionally, MLM allows inspection of more complex research questions. One can study the influence of contextual 

factors on the outcome of interest and the estimates of predictors. The latter can be translated into substantial research 

questions on treatment effect heterogeneity and cross-level interactions. In the past 30 years, MLM has been 

prevalently used in education research to answer substantial research questions owing to rapid advances in its 
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methodology, development of publicly available software, and accessible literature (e.g., Bickel, 2007; Finch & Bolin, 

2017; Goldstein, 2011; Hox, 2010; Raudenbush & Bryk, 2002; Snijder & Bosker, 2011, among many others). 

However, the complex structure of the education system presents challenges to data collection efforts. Data collection 

efforts on all levels of organizations and actors (students, teachers, administrators, schools, and states) are partially 

hindered by lack of economic resources, lack of administrative records, or partially by researchers via unwittingly 
ignoring what could matter. In one scenario, a researcher could collect data from only students, in the other, from 

students and classrooms/teachers but not schools, yet in another, from students and schools but not classrooms/teachers. 

In other words, one of the levels in the organizational structure (e.g., classroom/teachers or schools) could be ignored 

or omitted. The omission of intermediate level (classrooms/teachers) is typical in practice, sometimes due to the 

absence of administrative records that identify which classroom or teacher the child belongs (Zhu et al., 2011), or due 

to simplicity or small sample sizes (van Den Noorthgate et al., 2005). In education, the most common version of 

ignoring a nesting level occurs when classroom level information is ignored. However, the proportion of variance 

attributed to classroom level can exceed that of school level (Goldstein, 2011; Muthen, 1991), or the magnitude of this 

variance can be subject-specific. For instance, the proportion of variance in the mathematic achievement attributed to 

classroom level is higher than the proportion of variance in the reading achievement compared to the school level 

variance (Nye et al., 2004; Raudenbush & Bryk, 2002). Despite the possibility of a sizeable proportion of variance 
attributed to the intermediate level, many empirical studies did not acknowledge classroom level information in the 

analysis (e.g., Konu et al., 2002; Raudenbush & Bryk, 1986). Some recent evaluation studies indicate that regression 

discontinuity designs (RDDs) are not exempt from this problem (see Jenkins et al., 2016; Konstantopoulos & Shen, 

2016, Luyten, 2006; May et al., 2016). The literature consistently demonstrated that ignoring a top or intermediate 

level has a detrimental effect on variance components, estimates, and standard errors. Some studies reported the effect 

of ignoring a nesting level on variance components (Moerbeek, 2004; Opdenakker & van Damme, 2000), while some 

studies focused on both variance components and standard errors (van Den Noortgate et al., 2005; Zhu et al., 2011). 

From this point forward, for brevity, we will refer to level 1 as L1, level 2 as L2 and level 3 as L3. 

Effects of Ignoring a Level of Nesting on Variance Components  

Using a three-level model (students as L1– classrooms/teachers as L2 – schools as L3), in the case of a balanced 

design†, Moerbeek (2004) found that ignoring L3 did not affect the variance component at L1 but inflated the variance 

component at L2. The amount of inflation in the variance at L2 was approximately equal to the ignored amount at L1. 
Similarly, using a four-level model (students as L1 – teachers as L2 – classrooms as L3 – schools as L4), van Den 

Noortgate et al. (2005) concluded that omission of L4 did not affect variance estimates at L2 and L1. However, the 

ignored variance at L4 was transferred to the variance at L3.  

The consequences of ignoring an intermediate level are more complicated than ignoring the top level. van Den 

Noortgate et al. (2005) found that the omission of an intermediate level (L2 or L3 in a four-level model) resulted in 

inflation of the variance estimates at the flanking levels. For example, if L3 was omitted, the variance was distributed 

to L2 and L4, which confirms findings by Moerbeek (2004) and Opdenakker and van Damme (2000). Moerbeek (2004) 

noted that inflation in variance components depended on the magnitude of the variance component at the ignored level, 

the level at which predictor variable was measured, and sample sizes at one or more levels.  

Effects of Ignoring a Level of Nesting on Standard Errors 

The literature already established that fixed effect estimates themselves are not affected as much when one relies on 
OLS estimation instead of MLM, whereas standard errors are overly optimistic (Finch & Bolin, 2017; Singer, 1987; 

Fox, 1997). If one relies on OLS estimation instead of MLM in the face of a multilevel data structure, it implies that 

all levels of nesting are ignored. When variance component of a given level is affected due to ignoring of a level of 

nesting, naturally, standard errors of the estimates at that level and those at the ignored level could also be affected 

(Opdenakker & Van Damme, 2000).  

In the case of a balanced design, using a three-level model (students as L1– classrooms as L2– schools as L3), Moerbek 

(2004) found that inflation in standard errors depended on the ignored level (L2 versus L3), the level at which predictor 

variable was measured, the magnitude of the proportion of variance attributed to ignored level, and sample sizes at one 

more level. For example, ignoring L2 inflates standard errors for the fixed effect estimates at L1, resulting in inflated 

p-values but not those at L3 (Moerbek, 2004). However, as Moerbek (2004) noted, if the proportion of variance 
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attributed to the ignored level was minor, standard errors of fixed effect estimates were not affected to a great extent. 

This finding was later confirmed by Zhu et al. (2011) using elementary school data.   

Using a four-level model (students as L1– teachers as L2 - classrooms as L3– schools as level 4), van Den Noortgate 

et al. (2005) found that, in general, the standard error of the intercept and estimates at the ignored or adjacent levels 

were affected. When level 4 was ignored, the standard error of the estimate for predictors at L3 was affected. When 
L3 was ignored in a balanced data, the standard error of the estimate for predictors at L2 increased. In contrast, the 

standard error of the intercept and estimates for predictors at the ignored level decreased. When the data was 

unbalanced, however, the standard error of the estimates for predictors at level 4 decreased when L3 was ignored.  

Opdenakker and Van Damme (2000) found that regardless of the level ignored, the standard error of the intercept was 

underestimated. However, when level 4 was ignored, the standard error of the estimates at levels 1 and 2 was not 

affected as much. If the predictor itself belongs to the ignored level, then the standard error of their estimates was 

underestimated. Zhu et al. (2011) extended previous work on ignoring a nesting structure by mainly focusing on the 

design phase of cluster-randomized trials rather than analysis, although results apply to both. In particular, authors 

considered design parameters from two-level data to design three-level studies. Manipulating and analyzing four 

empirical multi-site datasets (including elementary and secondary school data), Zhu et al. (2011) concluded that 

ignoring the intermediate level had no substantial effects on statistical power, precision or standard error of the estimate 
for predictors at L3. Additionally, they concluded that using design parameters from a two-level study to design a 

three-level study did not pose a substantial threat.  

Evidence from Empirical Studies that Ignore a Level of Nesting in RDD 

Several studies from 2000 onward focused on the cutoff-based assignment at the individual level, which, one way or 

another, were adjusting estimates for clustering (or nesting structure). About a quarter of these studies adjusted for 

clustering effects using MLM framework (Hustedt et al., 2015; Luyten, 2006; Luyten et al., 2008; May et al., 2016), 

and about a quarter of the studies used Lee and Card (2008) method (Balu et al., 2015; Cortes, 2015; Deke et al., 2012; 

Harrington et al., 2016; Reardon et al., 2010). The remaining studies either used bootstrap methods or none (Jenkins 

et al., 2016; Klerman et al., 2015; Leeds et al., 2017; Ludwig & Miller, 2005; Matsudarie, 2008; Wong et al., 2008). 

The four RDDs relying on individual level cutoff-based assignment and the MLM framework are summarized below.  

Hustedt et al. (2015) evaluated the effectiveness of the Arkansas Better Chance (ABC) initiative at kindergarten on 

student achievement, relying on the state's strict age-based admission criteria to the program. Although they analyzed 
the data using single-level analysis, district-level information was included in the model as fixed effects. Luyten et al. 

(2008) used Progress in International Reading Literacy Study (PIRLS) 2000 large-scale assessment data to examine 

the effect of an extra year of schooling on student achievement relying on the cutoff that split students into 9th and 10th 

grades. They analyzed the data using a two-level model where the schooling effect was assumed to vary across schools. 

Luyten (2006) used Trends in International Mathematics and Science Study (TIMSS) 1995 large-scale assessment data 

to examine the effect of an extra year of schooling on student achievement, relying on the cutoff that split students into 

consecutive grades. Similar to Luyten et al. (2008), a two-level model was used where the schooling effect is assumed 

to vary. May et al. (2016) evaluated the effectiveness of Reading Recovery i3 Scale-Up on students' achievement in 

first and third grades relying on students' pretest scores. They analyzed the data using a two-level RDD where the 

program effect was assumed to vary across schools. In summary, four RDD studies relying on individual level cutoff-

based assignment and also used MLM framework could have been analyzed by acknowledging the classroom level 

information or district or state-level fixed effects.  

Problem Statement 

Drawing from four multi-site empirical elementary and secondary school datasets, Zhu et al. (2011) concluded that 

using design parameters from a two-level study for a future three-level design did not create a substantial problem. 

However, scholars in school effectiveness research portray a different picture (Moerbek, 2004; Opdenakker & van 

Damme, 2000; van Der Noortgate et al., 2005). Unlike Zhu et al. (2011), these scholars usually focused on the data 

analysis phase. The effect of using design parameters from a two-level study for a three-level design is less known 

when the treatment variable is at L1. In this study, within the context of blocked two-level RDD (BIRD2) and blocked 

three-level RDD (BIRD3), we investigate whether it is plausible to use design parameters from a misspecified BIRD2 

model (where intermediate or top-level in BIRD3 design is ignored) for a future BIRD3 design. Specifically, we 

investigate the following questions: 

1. How do variance components shift when intermediate or top-level in a BIRD3 model is ignored?  
2. How standard error of the treatment effect estimate (a L1 predictor) is affected by these misspecifications?  
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3. Can we use design parameters from a misspecified BIRD2 model (where intermediate or top-level in 

BIRD3 design is ignored) for a future BIRD2 or BIRD3 design?  

Method 

Consider a nested sampling structure consisting of three levels (e.g., students at L1 – classrooms at L2 – schools at 

L3), with an assignment variable S and a predetermined cutoff S0  at L1 (from which treatment variable T is derived), 

a covariate X at L1, a covariate W at L2, and a covariate V at L3. Assume intercepts and treatment effect is random 

across L2 and 3 units. Also, assume that the data is balanced, that is, n number of L1 units per L2 unit, J  number of 

L2 units per L3 unit, and K number of L3 units. Balanced data is not the requirement for the model or the estimation 

procedure; however, statistical power of the average treatment effect estimate (obtained from the data) approximates 

formula-based power calculations in the cosa R package (Bulus & Dong, 2021a; Bulus & Dong, 2021b) and 

PowerUp! software (Dong & Maynard, 2013).  

Statistical Models 

The following models pertain to the analysis of correctly specified BIRD3 model.  

Unconditional Model 

The following unconditional model is used to obtain variance parameters 𝜎2, 𝜏2
2, and 𝜏3

2, as defined below, which will 

be used to calculate various standardized parameters along with parameters from the full model.  

L1:  𝑌𝑖𝑗 = 𝛽0𝑗𝑘 + 𝑟𝑖𝑗𝑘     

L2:  𝛽0𝑗𝑘 = 𝛾00𝑘 + 𝜇0𝑗𝑘 

L3: 𝛾00𝑘 = 𝜉000 + ϛ00k, 

where 𝑟𝑖𝑗𝑘~𝑁(0, 𝜎2), 𝜇0𝑗𝑘~𝑁(0, 𝜏2
2) and ϛ00k~𝑁(0, 𝜏3

2). 

Treatment Only Model 

The following model is used to obtain variance parameters 𝜏𝑇2
2  and 𝜏𝑇3

2 , as defined below, which will be used to 

calculate various standardized parameters along with parameters from unconditional and full models.  

L1:   𝑌𝑖𝑗 = 𝛽0𝑗𝑘 + 𝛽1𝑗𝑘𝑇𝑖𝑗𝑘 + 𝑟𝑖𝑗𝑘     

L2:  𝛽0𝑗𝑘 = 𝛾00𝑘 + 𝜇0𝑗𝑘 

 𝛽1𝑗𝑘 = 𝛾10𝑘 + 𝜇1𝑗𝑘 

L3: 𝛾00𝑘 = 𝜉000 + ϛ00k 

 𝛾10𝑘 =  𝜉100 + ϛ10k, 

where 𝑟𝑖𝑗𝑘~𝑁(0, 𝜎|𝑇
2 ), (

𝜇0𝑗𝑘

𝜇1𝑗𝑘
) ~𝑁 ((

0
0

) , (
𝜏2|𝑇

2 𝜏2𝑇2

𝜏2𝑇2 𝜏𝑇2
2

)) and (
ϛ00k

ϛ10k
) ~𝑁 ((

0
0

) , (
𝜏3|𝑇

2 𝜏3𝑇3

𝜏3𝑇3 𝜏𝑇3
2

)). 

Full Model 

The following model is used to generate data for Monte Carlo simulations. It is also used to obtain variance parameters 

𝜎|𝑋
2 , 𝜏2|𝑊

2 , and  𝜏3|𝑉
2 , as defined below, which are used to calculate various standardized parameters along with the 

parameters from unconditional and treatment only model. In addition to estimation of the treatment effect, empirical 

standard error and empirical power rates are estimated using this model.  

L1:  𝑌𝑖𝑗 = 𝛽0𝑗𝑘 + 𝛽1𝑗𝑘𝑇𝑖𝑗𝑘 + 𝛽2𝑗𝑘(𝑆𝑖𝑗𝑘 − 𝑆0) + 𝛽3𝑗𝑘𝑋𝑖𝑗𝑘 + 𝑟𝑖𝑗𝑘     

L2: 𝛽0𝑗𝑘 = 𝛾00𝑘 + 𝛾01𝑘𝑊𝑗𝑘 + 𝜇0𝑗𝑘 

 𝛽1𝑗𝑘 = 𝛾10𝑘 + 𝛾11𝑘𝑊𝑗𝑘 + 𝜇1𝑗𝑘 

𝛽2𝑗𝑘 = 𝛾20𝑘  
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𝛽3𝑗𝑘 = 𝛾30𝑘  

L3: 𝛾00𝑘 = 𝜉000 + 𝜉001𝑉𝑘 + ϛ00k 

 𝛾10𝑘 =  𝜉100 + 𝜉101𝑉𝑘 + ϛ10k 

𝛾20𝑘 =  𝜉200  

𝛾30𝑘 =  𝜉300  

𝛾01𝑘 = 𝜉010  

𝛾11𝑘 = 𝜉110, 

where 𝑟𝑖𝑗𝑘~𝑁(0, 𝜎|𝑋
2 ), (

𝜇0𝑗𝑘

𝜇1𝑗𝑘
) ~𝑁 ((

0
0

) , (
𝜏2|𝑊

2 𝜏2𝑇2|𝑊

𝜏2𝑇2|𝑊 𝜏𝑇2|𝑊
2 )) and (

ϛ00k

ϛ10k
) ~𝑁 ((

0
0

) , (
𝜏3|𝑉

2 𝜏3𝑇3|𝑉

𝜏3𝑇3|𝑉 𝜏𝑇3|𝑉
2 )) and where 

𝜌2 =
𝜏2

2

𝜏3
2+𝜏2

2+𝜎2 and represents proportion of variance in the outcome between L2 units, 

𝜌3 =
𝜏3

2

𝜏3
2+𝜏2

2+𝜎2 and represents proportion of variance in the outcome between L3 units, 

𝜔2 =
𝜏𝑇2

2

𝜏2
2 

 and represents treatment effect heterogeneity across L2 units, 

𝜔3 =
𝜏𝑇3

2

𝜏3
2 

 and represents treatment effect heterogeneity across L3 units, 

𝜎2 is the L1 variance, 

𝜏3|𝑉
2  is the L3 variance conditional on L3 variables, 

𝜏2|𝑊
2  is the L2 variance conditional on L2 variables, 

𝑅1
2 = 1 − 𝜎|𝑋

2 /𝜎2 and is the L1 variance explained by L1 variables, 

𝑅𝑇2
2 = 1 − 𝜏𝑇2|𝑊

2 /𝜏𝑇2
2  and is the proportion of variance at L2 on the treatment explained by L2 variables, 

𝑅𝑇3
2 = 1 − 𝜏𝑇3|𝑉

2 /𝜏𝑇3
2  and is the proportion of variance at L3 on the treatment explained by L3 variables. 

Standard Error for Correctly Specified BIRD3  

For the correctly specified BIRD3 model, standard error of the treatment effect takes the form of (Bulus & Dong, 2022) 

𝑆𝐸(𝜉100) = √
𝜔3𝜌3(1 − 𝑅𝑇3

2 )

𝐾
+

𝜔2𝜌2(1 − 𝑅𝑇2
2 )

𝐾𝐽
+

(1 − 𝜌3 − 𝜌2)(1 − 𝑅1
2)(𝑅𝐷𝐷𝐸)

𝐾𝐽𝑛𝑝(1 − 𝑝)
 

where RDDE is regression discontinuity design effect and takes the form of 𝑅𝐷𝐷𝐸 = 1/(1 − 𝜌𝑇𝑆
2 ) when only linear 

form of the score variable is added to the model (Bulus, 2022; Bulus & Dong, 2022; Schochet, 2008, 2009). 𝜌𝑇𝑆
2  is the 

squared correlation between treatment and score variables and defined as 𝜌𝑇𝑆
2 = 𝜎𝑇𝑆/(√𝑝(1 − 𝑝)𝜎𝑆 ) where 𝜎𝑇𝑆 is the 

covariance between T and S, and 𝜎𝑆  is the standard deviation of S (see Bulus, 2022; Bulus & Dong, 2022; Schochet, 

2008, 2009).  

Standard Errors for Misspecified BIRD2 Model 

When intermediate level in BIRD3 model is ignored, standard error of the treatment effect for the new BIRD2 model 

takes the form of (Bulus & Dong, 2022; Schochet, 2008, 2009) 

𝑆𝐸(𝜉100) = √
𝜔2𝜌2(1 − 𝑅𝑇2

2 )

𝐾
+

(1 − 𝜌2)(1 − 𝑅1
2)(𝑅𝐷𝐷𝐸)

𝐾𝐽𝑛𝑝(1 − 𝑝)
 

Different from the correctly specified BIRD3 model, 𝜔2  is now the treatment effect heterogeneity across L2 units 

(schools) in the misspecified BIRD2 model where only treatment variable is included, 𝜌2 is the proportion of variance 
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in the outcome that is between L2 units (schools) in the unconditional misspecified BIRD2 model. Sample size for the 

top level remains 𝐾, however, the sample size at L1 is now 𝐽𝑛.   

When top level in BIRD3 model is ignored, standard error of the treatment effect for the new BIRD2 model takes the 

form of (Bulus & Dong, 2022; Schochet, 2008, 2009) 

𝑆𝐸(𝜉100) = √
𝜔2𝜌2(1 − 𝑅𝑇2

2 )

𝐾𝐽
+

(1 − 𝜌2)(1 − 𝑅1
2)(𝑅𝐷𝐷𝐸)

𝐾𝐽𝑛𝑝(1 − 𝑝)
 

Different from correctly specified BIRD3 model, 𝜔2  is now the treatment effect heterogeneity across L2 units 

(classrooms/teachers) in the misspecified BIRD2 model where only treatment variable is included, 𝜌2 is the proportion 

of variance in the outcome that is between L2 units (classrooms/teachers) in the unconditional misspecified BIRD2 

model. Sample size for the top level is now 𝐾𝐽, whereas the sample size at L1 remains 𝑛.   

Monte Carlo Simulation 

Population Parameters and Scenarios  

We generated 𝑆, 𝑋, 𝑊, 𝑉 ~ 𝑁(0,1) and derived 𝑇 from 𝑆 and 𝑆0 such that 𝑝 = 0.5 or 0.2. Coefficients were manipulated 

such that 𝜌2 and 𝜌3 values are close to those commonly encountered in education settings. The two scenarios that 

produce different values of 𝜌2 and 𝜌3 are as follows (approximately ~0.40 and ~0.20 for Scenario 1 and ~0.15 and 

~0.10 for Scenario 2): 

Scenario 1 

L1: 𝑌𝑖𝑗 = 𝛽0𝑗𝑘 + 𝛽1𝑗𝑘𝑇𝑖𝑗𝑘 + 0.5(𝑆𝑖𝑗𝑘 − 𝑆0) + 0.5𝑋𝑖𝑗𝑘 + 𝑟𝑖𝑗𝑘     

L2: 𝛽0𝑗𝑘 = 𝛾00𝑘 + 0.3𝑊𝑗𝑘 + 𝜇0𝑗𝑘 

 𝛽1𝑗𝑘 = 𝛾10𝑘 + 0.3𝑊𝑗𝑘 + 𝜇1𝑗𝑘 

L3:  𝛾00𝑘 = 0 + 0.25𝑉𝑘 + ϛ00k 

 𝛾10𝑘 =  𝜉100 + 0.25𝑉𝑘 + ϛ10k, 

where 𝑟𝑖𝑗𝑘~𝑁(0,1), (
𝜇0𝑗𝑘

𝜇1𝑗𝑘
) ~𝑁 ((

0
0

) , (
1.5 0
0 1.5

)) and (
ϛ00k

ϛ10k
) ~𝑁 ((

0
0

) , (
1 0
0 0.5

)). 

Scenario 2 

L1:  𝑌𝑖𝑗 = 𝛽0𝑗𝑘 + 𝛽1𝑗𝑘𝑇𝑖𝑗𝑘 + 0.3(𝑆𝑖𝑗𝑘 − 𝑆0) + 0.3𝑋𝑖𝑗𝑘 + 𝑟𝑖𝑗𝑘     

L2: 𝛽0𝑗𝑘 = 𝛾00𝑘 + 0.25𝑊𝑗𝑘 + 𝜇0𝑗𝑘 

 𝛽1𝑗𝑘 = 𝛾10𝑘 + 0.25𝑊𝑗𝑘 + 𝜇1𝑗𝑘 

L3: 𝛾00𝑘 = 0 + 0.2𝑉𝑘 + ϛ00k 

 𝛾10𝑘 =  𝜉100 + 0.2𝑉𝑘 + ϛ10k, 

where 𝑟𝑖𝑗𝑘~𝑁(0,3), (
𝜇0𝑗𝑘

𝜇1𝑗𝑘
) ~𝑁 ((

0
0

) , (
1.5 0
0 1

)) and (
ϛ00k

ϛ10k
) ~𝑁 ((

0
0

) , (
1 0
0 0.5

)). 

Along with the four scenarios (Scenario 1 or 2, by 𝑝 = 0.5 or 0.2) above, we determined treatment effect as 𝜉100 = 

0.25 for statistical power simulation and as 𝜉100 = 0 for Type I error simulation. Additionally, we differed sample size 

𝐾 = 50 or 100, and kept  𝑛 = 20 & 𝐽 = 5 constant across all the scenarios. Sample sizes were chosen to approximate 

those commonly encountered in education. Although 𝐽 = 5 may not be as common, to obtain consistent variance 

estimates it is an ideal minimum number. In total, there were eight scenarios for statistical power simulation (P1-P8) 

and eight scenarios for Type I error simulation (T1-T8).  
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Analysis 

The data were generated for these eight (P1-P8 and T1-T8) scenarios using parameters described in the equations (see 

Monte Carlo Simulation section). As for the correctly specified model, each generated data set was analyzed using 

"Null Model," "Treatment Only Model," and "Full Model." We used PROC MIXED in SAS with default restricted 

maximum likelihood (REML) estimation and unstructured (UN) variance-covariance structure. For each scenario, the  

procedure was replicated 5000 times. Monte Carlo-based standard error (𝑆𝐸𝑀𝐶) was calculated as the standard 

deviation of the 5000 treatment effect estimates. Monte Carlo-based power and Type I error rates were calculated based 

on the proportion of replications rejecting the null with a p-value smaller than 0.05. Other estimated parameters were 

averaged over 5000 replications. The standardized parameters that were used for power calculations are based on the 

averages over 5000 replications. There were 5000 rows for estimates, standard errors, and variance parameters, but 

only their averages were used to obtain standardized parameters.  

Power Calculations 

Averages were transformed into standardized parameters according to definitions in "Null Model," "Treatment Only 

Model," and "Full Model" described in the earlier section. Then, the standardized parameters were used in 

power.bird3() and power.bird2() functions for power calculation using cosa R library (Bulus & Dong, 

2021a, 2021b). Model parameters, corresponding arguments, and their possible range are defined in Tables 1 and 2.  

Table 1 

BIRD3 Model Parameters,, Corresponding cosa R Package Arguments and Their Range  

Parameter 𝐸𝑆 =
𝜉100

√𝜏3
2 + 𝜏2

2 + 𝜎2
 𝜌2 =

𝜏2
2

𝜏3
2 + 𝜏2

2 + 𝜎2
 𝜌3 =

𝜏3
2

𝜏3
2 + 𝜏2

2 + 𝜎2
 𝜔2 =

𝜏𝑇2
2

𝜏2
2 

 𝜔3 =
𝜏𝑇3

2

𝜏3
2 

 

power.bird3() es rho2 rho3 omega2 Omega3 

Range 𝐸𝑆~𝑁(0,1) [0,1] [0,1] [0,1] [0,1] 

Parameter 
𝑔3: number of L3 

covariates excluding 
treatment 

𝑅1
2 = 1 −

𝜎|𝑋
2

𝜎2
 𝑅𝑇2

2 = 1 −
𝜏𝑇2|𝑊

2

𝜏𝑇2
2  𝑅𝑇3

2 = 1 −
𝜏𝑇3|𝑉

2

𝜏𝑇3
2  

𝑝: proportion 
of subjects 
below (or 
above) the 

cutoff 

power.bird3() g3 r21 r2t2 r2t3 p 

Range 𝑔3 ∈ 𝑁+ [0,1] [0,1] [0,1] (0,1) 

Parameter 𝑛1 𝑛2 𝑛3   

power.bird3() n1 n2 n2   

Range 𝑛1 ∈ 𝑁+ 𝑛2 ∈ 𝑁+ 𝑛3 ∈ 𝑁+   

 

Table 2 

BIRD2 Model Parameters, Corresponding cosa R Package Arguments and Their Range  

Parameter 𝐸𝑆 =
𝛾10

√𝜏2
2 + 𝜎2

 𝜌2 =
𝜏2

2

𝜏2
2 + 𝜎2

 𝜔2 =
𝜏𝑇2

2

𝜏2
2 

 

𝑔2: number of L2 
covariates 
excluding 

treatment 

𝑅1
2 = 1 −

𝜎|𝑋
2

𝜎2
 

power.bird2() es rho2 omega2 g2 r21 

Range 𝐸𝑆~𝑁(0,1) [0,1] [0,1] 𝑔2 ∈ 𝑁+ [0,1] 

Parameter 𝑅𝑇2
2 = 1 −

𝜏𝑇2|𝑊
2

𝜏𝑇2
2  

𝑝: proportion of 
subjects below (or 
above) the cutoff 

𝑛1 𝑛2  

power.bird2() r2t2 p n1 n2  
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Range [0,1] (0,1) 𝑛1 ∈ 𝑁+ 𝑛2 ∈ 𝑁+  

For planning a BIRD2 design (planned-BIRD2) based on parameters from a misspecified BIRD2 where L2 was ignored 

(analyzed-msL2ig-BIRD2), we used power.bird2() function. Note that sample size at L1 for BIRD2 is the product 

of sample size at L1 and 2 in BIRD3. An example code chunk is presented below. 

 

For planning a BIRD3 design (planned-BIRD3) based on parameters from a misspecified BIRD2 where L2 was ignored 

(analyzed-msL2ig-BIRD2), we used power.bird3() function. We assume that a researcher substituted L2 

parameters in analyzed-msL2ig-BIRD2 for L3 parameters in planned-BIRD3. Thus, rho2 = 0, omega2 = 0, and 

r2t2 = 0. An example code chunk is presented below. 

 

We can also assume that a researcher substituted L2 parameters in analyzed-msL2ig-BIRD2 for L2 parameters in 

planned-BIRD3. Thus, rho3 = 0, omega3 = 0, and r2t3 = 0 as in the following. 

 

Another possible scenario is that a researcher may attempt planning a BIRD2 design (planned-BIRD2) based on 

parameters from a misspecified BIRD2 where L3 was ignored (analyzed-msL3ig-BIRD2). Again, we used 

power.bird2() function. Note that, different from the previous scenario, the sample size at L2 for BIRD2 is the 

product of sample size at levels 2 and 3 in BIRD3. An example code chunk is presented below. 

 

For planning a BIRD3 design (planned-BIRD3) based on parameters from a misspecified BIRD2 where L3 was ignored 

(analyzed-msL3ig-BIRD2), we used power.bird3() function. We assume that a researcher substituted L2 

parameters in analyzed-msL2ig-BIRD2 for L3 parameters in planned-BIRD3. Thus, rho2 = 0, omega2 = 0, and 

r2t2 = 0. An example code chunk is presented below. 

 

We can also assume that a researcher substituted L2 parameters in the analyzed-msL3ig-BIRD2 for L2 parameters in 

planned-BIRD3. Thus, rho3 = 0, omega3 = 0, and r2t3 = 0 as in the following.  

# misspecified BIRD2 (L2 ignored) 

power.bird2(es = 0.10, rho2 = .30, omega2 = .54, 

            g2 = 1, r21 = 0.22, r2t2 = 0.08, 

            p = 0.50, n1 = 100, n2 = 50) 
 

# L2 parms for analyzed-BIRD2 (L2 of the original BIRD3 ignored)  

# can be substituted for L3 parms in planned-BIRD3  

power.bird3(es = 0.10, rho2 = 0, rho3 = .30, omega2 = 0, omega3 = .54, 

            g3 = 1, r21 = 0.22, r2t2 = 0, r2t3 = 0.08, 

            p = 0.50, n1 = 20, n2 = 5, n3 = 50) 
 

# L2 parms for analyzed-BIRD2 (L2 of the original BIRD3 ignored)  

# can be substituted for L2 parms in planned-BIRD3  

power.bird3(es = 0.10, rho3 = 0, rho2 = .30, omega3 = 0, omega2 = .54, 

            g3 = 0, r21 = 0.22, r2t3 = 0, r2t2 = 0.08, 

            p = 0.50, n1 = 20, n2 = 5, n3 = 50) 
 

# misspecified BIRD2 (L3 ignored) 

power.bird2(es = 0.10, rho2 = .61, omega2 = .65, 

            g2 = 1, r21 = 0.53, r2t2 = 0.04, 

            p = 0.50, n1 = 20, n2 = 250) 
 

# L2 parms for the analyzed-BIRD2 (L3 of the original BIRD3 ignored)  

# can be substituted for L3 parms in planned-BIRD3  

power.bird3(es = 0.10, rho3 = .61, rho2 = 0, omega3 = .65, omega2 = 0,  

            g3 = 1, r21 = 0.53, r2t3 = 0.04, r2t2 = 0,  

            p = 0.50, n1 = 20, n2 = 5, n3 = 50) 
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Results 

Results presented in Table 3 answer the "How do variance components shift when intermediate or top-level in a BIRD3 

model is ignored?” question. Table 3 presents unconditional variances for correctly specified BIRD3 and misspecified 

BIRD2 models. For correctly specified BIRD3 model, sources of variation in the outcome are attributed to L1 

(students), L2 (classrooms), and L3 (schools) denoted as 𝜎2,  𝜏2
2, and 𝜏3

2, respectively. For the misspecified BIRD2 

model, sources of variation in the outcome are attributed to L1 (students), and L2 (classrooms or schools) denoted as 

𝜎2 and 𝜏2
2, respectively. Misspecified BIRD2 models could either ignore the intermediate level for which 𝜏2

2 refers to 

between-school variance or ignore top-level for which 𝜏2
2 refers to between classrooms variance. Table 3 demonstrates 

how variance parameters for an unconditional model shift when intermediate- or top-level was ignored. When the 

intermediate level was ignored in the BRID3 model, the L2 variance was distributed to the flanking levels in the new 

BIRD2 model. The variance distributed to the bottom level model was proportionally more (~80%) than the variance 

distributed to the top-level (~%20) in the new BIRD2 model. When the top-level was ignored, the bottom level 

remained the same; however, L2 variance in the new BIRD2 model was inflated approximately equal to the sum of L2 

and L3 variance in the BIRD3 model. In both cases, the total variance was preserved.  

Table 3  

Unconditional Variance Parameters for BIRD3 and Misspecified BIRD2 Models 

Analysis 

Model 
Specification Parameter P1 P2 P3 P4 P5 P6 P7 P8 

BIRD3  Correctly specified 

𝜎2 2.15 9.66 2.15 9.66 1.92 9.49 1.92 9.48 

𝜏2
2 2.08 1.89 2.07 1.90 1.69 1.64 1.69 1.63 

𝜏3
2 1.27 1.21 1.27 1.21 1.11 1.08 1.11 1.08 

BIRD2 
Intermediate level 

ignored in BIRD3 
𝜎2 3.83 11.18 3.83 11.19 3.29 10.81 3.29 10.80 

𝜏2
2 1.66 1.58 1.67 1.58 1.44 1.39 1.43 1.39 

BIRD2 
Top-level ignored 

in BIRD3  

𝜎2 2.15 9.66 2.15 9.66 1.92 9.49 1.92 9.48 

𝜏2
2 3.32 3.08 3.33 3.10 2.78 2.69 2.79 2.70 

Note. The same symbols bear a different meaning in different models. 𝜎2 : L1 variance. 𝜏2
2 : L2 variance. 𝜏3

2 : L3 variance. 

Numbers in the table are averages of 5000 replications.   

It is ideal for a researcher to analyze three-level data using the BIRD3 model. It is also desirable for a researcher to 

plan a BIRD3 model using parameters reported in existing scholarly work in which BIRD3 models were utilized. 

However, it is also possible for a researcher to analyze BIRD3 data using BIRD2 models where either intermediate 

level (classrooms) or top-level (schools) are ignored. Furthermore, it is also possible for a researcher to plan a BIRD3 

model via using parameters from these misspecified BIRD2 models.  

Results presented in Tables 4 to 7 answer “How standard error of the treatment effect estimate (a L1 predictor) is 

affected by these misspecifications?” question. When the intermediate level is ignored in a three-level BIRD3 model, 

it becomes a two-level BIRD2 model where the previous third level remains the top level. In addition to the shift in 

the variance components, which affects variance parameters in the new top and bottom levels, the sample size for the 

top-level remains the same (𝐾). However, the sample size for L1 is now the combined sample size (𝑛𝐽), whereas 

degrees of freedom for the test statistics do not change. MC simulations showed that power was slightly underestimated 

(see Table 4), whereas Type I error rates did not change substantially (see Table 5). 

In contrast, when the top-level is ignored, the variance component shifts, and the sample size for the new top-level is 

now combined (𝐽𝐾). However, the sample size for the new bottom level remains the same (𝑛), whereas degrees of 
freedom for the test statistics change due to the change in the number of top levels. As the top-level sample size is one 

of the most critical determinants of power, the change in top-level sample size alone was sufficient to overestimate 

power (see Table 6). However, Type I error rates were severely inflated (Table 7). Inflated Type I error offset the 

benefit of having an overpowered model.  

# L2 parms for the analyzed-BIRD2 (L3 of the original BIRD3 ignored)  

# can be substituted for L2 parms in planned-BIRD3  

power.bird3(es = 0.10, rho2 = .61, rho3 = 0, omega2 = .65, omega3 = 0,  

            g3 = 0, r21 = 0.53, r2t2 = 0.04, r2t3 = 0,  

            p = 0.50, n1 = 20, n2 = 5, n3 = 50) 
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The result of the MC simulation for the correctly specified BIRD3 model is provided in Tables 1A and 2A in Appendix 

A for comparison purposes. There was a close correspondence between MC-based power rates and those calculated 

via the cosa R package (see Table 1A). Type I error rates match 5% nominal rate (see Table 2A). This creates a 

baseline for further exploring power calculations in misspecified BIRD2 models.  

Table 4 

Comparison of Power Rates from Correctly Specified (BIRD3) and L2 Ignored (BIRD3) Model 

Scenario P1 P2 P3 P4 P5 P6 P7 P8 

MC Power from BIRD3 0.44 0.30 0.74 0.52 0.45 0.26 0.72 0.45 

MC Power from BIRD2 0.38 0.28 0.65 0.49 0.38 0.24 0.62 0.42 

AD in Powers -0.07 -0.03 -0.09 -0.03 -0.07 -0.01 -0.10 -0.03 

RD in Powers -15.09 -8.29 -12.05 -5.16 -16.02 -5.53 -13.57 -7.28 

Note. AD: Absolute difference. RD: Relative difference (%). Power rates are based on 5000 replications.   

Table 5 

Comparison of Type I Error Rates from Correctly Specified (BIRD3) and L2 Ignored (BIRD2) Model 

Scenario T1 T2 T3 T4 T5 T6 T7 T8 

MC Type I Error from BIRD3 0.06 0.06 0.05 0.05 0.05 0.06 0.05 0.05 

MC Type I Error from BIRD2 0.05 0.06 0.06 0.05 0.06 0.06 0.05 0.05 

AD in Type I Errors 0.00 0.00 0.00 0.00 0.00 0.00 -0.01 0.00 

RD in Type I Errors -5.90 2.14 8.95 -4.17 2.19 -2.45 -12.04 -8.65 

Note. AD: Absolute difference. RD: Relative difference (%). Type I error rates are based on 5000 replications.   

Table 6 
Comparison of Power Rates from Correctly Specified (BIRD3) and L3 Ignored (BIRD2) Model 

Scenario P1 P2 P3 P4 P5 P6 P7 P8 

MC Power from BIRD3 0.44 0.30 0.74 0.52 0.45 0.26 0.72 0.45 

MC Power from BIRD2 0.62 0.43 0.86 0.66 0.63 0.34 0.84 0.54 

AD in Powers 0.18 0.13 0.12 0.14 0.19 0.08 0.12 0.09 

RD in Powers  40.68 43.44 16.00 26.01 41.50 30.66 16.52 20.36 

Note. AD: Absolute difference. RD: Relative difference (%). Power rates are based on 5000 replications.   

Table 7 

Comparison of Type I Error Rates from Correctly Specified (BIRD3) and L3 Ignored (BIRD) Model 

Analysis Model T1 T2 T3 T4 T5 T6 T7 T8 

MC Type I Error from BIRD3 0.06 0.06 0.05 0.05 0.05 0.06 0.05 0.05 

MC Type I Error from BIRD2 0.15 0.15 0.16 0.14 0.14 0.10 0.14 0.10 

AD in Type I Errors 0.09 0.09 0.11 0.09 0.09 0.05 0.09 0.05 

RD in Type I Errors 159.03 158.93 208.56 168.94 161.68 79.72 156.20 90.60 

Note. AD: Absolute difference. RD: Relative difference (%). Type I error rates are based on 5000 replications.   

The results presented earlier were related to the analysis phase, and all numbers reported therein was based on MC 

simulation. One possibility mentioned earlier was to use parameters from a misspecified BIRD2 model to design a 

BIRD2 or BIRD3 study. One could obtain parameters needed in power calculations via analyzing three-level data using 

the BIRD2 model (assuming either intermediate/top-level is not available or ignored) or using parameters reported in 

scholarly work in which the BIRD2 model was utilized.  

Results presented in Tables 8 and 9 answers "Can we use design parameters from misspecified BIRD2 model (either 

intermediate or top-level ignored) for a prospective BIRD2 or BIRD3 design?” question. Table 8 presents the 

misspecified BIRD2 model where the intermediate level was ignored. Power rates for a prospective study were 

calculated considering three cases; parameters obtained from the misspecified BIRD2 analysis can be used (i) for 

planning a BIRD2 design, (ii) for planning a BIRD3 design where parameters of L2 in BIRD2 analysis were substituted 
for parameters of L3 in BIRD3 design (thus parameters of L2 in BIRD3 design were all constrained to zero), and (iii) 

for planning a BIRD3 design where parameters of L2 in BIRD2 analysis were substituted for parameters of L2 in 

BIRD3 design (thus parameters of L3 in BIRD3 design are all constrained to zero).  
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Table 8  

Power Rates for the Misspecified BIRD2 Model (L2 Ignored) 

Scenario P1 P2 P3 P4 P5 P6 P7 P8 

𝜉100 0.24 0.25 0.25 0.25 0.25 0.24 0.25 0.25 

𝑆𝐸(𝜉100) 0.15 0.18 0.11 0.13 0.15 0.20 0.11 0.14 

𝐸𝑆(𝜉100) 0.10 0.07 0.11 0.07 0.12 0.07 0.11 0.07 

𝜌2 0.30 0.12 0.30 0.12 0.30 0.11 0.30 0.11 

𝜔2  0.54 0.49 0.53 0.48 0.66 0.57 0.65 0.57 

𝑅1
2 0.22 0.04 0.22 0.04 0.22 0.03 0.22 0.03 

𝑅2𝑇
2  0.08 0.07 0.07 0.06 0.07 0.07 0.07 0.06 

p 0.50 0.50 0.50 0.50 0.20 0.20 0.20 0.20 

𝜌𝑇𝑆 0.80 0.80 0.80 0.80 0.70 0.70 0.70 0.70 

K 50 50 100 100 50 50 100 100 

𝑆𝐸𝑀𝐶(𝜉100) 0.15 0.19 0.11 0.13 0.15 0.21 0.11 0.14 

MC Power 0.38 0.28 0.65 0.49 0.38 0.24 0.62 0.42 

(i) cosa R Package (Plan BIRD2) 0.33 0.24 0.67 0.44 0.38 0.22 0.59 0.40 

(ii) cosa R Package (Plan BIRD3: L2 Parms = 0) 0.33 0.24 0.67 0.44 0.38 0.22 0.59 0.40 

(iii) cosa R Package (Plan BIRD3: L3 Parms = 0) 0.64 0.33 0.95 0.58 0.73 0.29 0.92 0.53 

Note. Results are based on 5000 replications. 𝜉100: Treatment effect. SE: Standard Error. ES: Effect size.  𝜌2: Proportion of variance 

in the outcome between L2 units. 𝜔2: Treatment effect heterogeneity across L2 units. 𝑅1
2: Proportion of variance in the outcome 

explained L1 covariates. 𝑅𝑇2
2 : Proportion of variance in the treatment effect explained L2 covariates. p: Proportion of subjects fall 

below (or above) cutoff score on the assignment variable. 𝜌𝑇𝑆: Correlation between the assignment variable and the treatment status. 
nJ: Average number of L1 units per L2 units, set to 100. K: Number of L3 units.  

Table 9 

Power Rates for the Misspecified BIRD2 Model (L3 Ignored) 

Scenario P1 P2 P3 P4 P5 P6 P7 P8 

𝜉100 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 

𝑆𝐸(𝜉100) 0.10 0.14 0.07 0.10 0.11 0.17 0.07 0.12 

𝐸𝑆(𝜉100) 0.10 0.07 0.11 0.07 0.12 0.07 0.11 0.07 

𝜌2 0.61 0.24 0.61 0.24 0.59 0.22 0.59 0.22 

𝜔2  0.65 0.52 0.65 0.52 0.77 0.60 0.77 0.59 

𝑅1
2 0.53 0.07 0.54 0.07 0.48 0.05 0.48 0.05 

𝑅2𝑇
2  0.04 0.05 0.04 0.04 0.04 0.04 0.03 0.04 

p 0.50 0.50 0.50 0.50 0.20 0.20 0.20 0.20 

𝜌𝑇𝑆 0.80 0.80 0.80 0.80 0.70 0.70 0.70 0.70 

JK 250 250 500 500 250 250 500 500 

𝑆𝐸𝑀𝐶(𝜉100) 0.14 0.19 0.10 0.13 0.14 0.20 0.10 0.14 

MC Power 0.62 0.43 0.86 0.66 0.63 0.34 0.84 0.54 

(i) cosa R Package (Plan BIRD2) 0.62 0.34 0.94 0.59 0.71 0.30 0.90 0.54 

(ii) cosa R Package (Plan BIRD3: L2 Parms = 0) 0.20 0.20 0.23 0.19 0.23 0.18 0.20 0.18 

(iii) cosa R Package (Plan BIRD3: L3 Parms = 0) 0.61 0.33 0.69 0.33 0.70 0.30 0.62 0.30 

Note. Results are based on 5000 replications. 𝜉100: Treatment effect. SE: Standard Error. ES: Effect size.  𝜌2: Proportion of variance 

in the outcome between L2 units. 𝜔2: Treatment effect heterogeneity across L2 units. 𝑅1
2: Proportion of variance in the outcome 

explained L1 covariates. 𝑅𝑇2
2 : Proportion of variance in the treatment effect explained L2 covariates. p: Proportion of subjects fall 

below (or above) cutoff score on the assignment variable. 𝜌𝑇𝑆: Correlation between the assignment variable and the treatment status. 
n: Average number of L1 units per L2 units, set to 20. JK: Number of L2 units. AD: Absolute difference. RD: Relative difference.  

For cases (i) and (ii) in Table 8 (L2 ignored), calculated power rates slightly underestimated MC-based power rates for 

misspecified BIRD2 and underestimated MC-based power rates for correctly specified BIRD3. However, in case (iii), 

calculated power rates were somewhat optimistic, substantially exceeding MC-based power rates of both designs. On 
the contrary, Table 9 (L3 ignored) portray a different picture. Calculated power rates were unstable for all cases. 

Calculated power rates in case (i) were underestimated or overestimated compared to MC-based power rates for 

misspecified BIRD2 and overestimated compared to MC-based power rates for correctly specified BIRD3, in (ii) they 
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were severely underpowered compared to both, and in (iii) they were unstable considering both. The term "unstable" 

means we observed no trend regarding the magnitude or direction of the difference from MC-based power rates. 

Discussion 

From analysis perspective, when intermediate-level was ignored in BIRD3, the majority of the variance in the ignored 

level shifts to the new bottom level, and a small portion of the variance shifts to the new top-level in BIRD2. These 

results are in line with findings in Moerbeek (2004), van Den Noortgate et al. (2005), and Opdenakker and van Damme 

(2000). This shift in variance components causes a slight underestimation of power rates. It can be neglected if the 

variance at the intermediate level is small to moderate, to begin with, confirming findings in Zhu et al. (2011). However, 

classroom-level variance can exceed school-level variance in practice (Goldstein, 2011; Muthen, 1991). Even if sample 

sizes at the intermediate level are very small, this problem can be addressed by using bootstrapping or Bayesian 

methods (Goldstein, 2011) or introducing L2 information as fixed effects into the model (van Den Noorthgate et al., 
2005). Another way to decide whether to acknowledge or ignore an intermediate level is to base the modeling decision 

on the model fit (Opdenakker & Van Damme, 2000). Suppose the chi-square test of difference is meaningful between 

the model that ignores and the model that acknowledges the intermediate level. In that case, it is advisable to 

acknowledge the intermediate level and pursue the analysis accordingly. If the data permits, to mitigate the problem, 

the least an analyst could do is to introduce predictors belonging to the ignored level (Opdenakker & Van Damme, 

2000). However, the reason to ignore a level is the absence of information on that level. If any information is available 

(e.g., covariates), the L2 or L3 membership can be constructed.  

These remedies might apply to the analysis phase but are not necessarily needed for the planning phase. Considering 

Type I errors did not change substantially, one could use parameters from the BIRD2 model to design a BIRD2 or 

BIRD3 model. The study will be adequately powered during the analysis phase as long as the design satisfies the 

desired level of power rate, except when L2 parameters of a misspecified BIRD2 model is substituted for L2 parameters 

in a future BIRD3 design. In this case, the test statistics will be underpowered in the analysis phase. The top-level 
sample size could be oversampled to make up for this, but to what extent it should be inflated is unknown ahead of the 

study.  

Ignoring the top level is more problematic, although the variance component at the third level is negligible. When the 

top-level is ignored, the variance of the ignored level in BIRD3 shifts to the new top-level in BIRD2, in line with 

findings in Moerbeek (2004) and van Den Noortgate et al. (2005). This shift in variance component and increased 

sample size at L2 causes overestimation of power rates. Compared to the ignoring intermediate-level, the distortion in 

ignoring the top-level is more pronounced as the top-level sample size change dramatically. On its own, this would not 

constitute a significant problem if the top-level sample size is inflated during the planning phase. However, as 

mentioned earlier, to what extent it should be inflated is unknown ahead of the study. Regardless, it should be avoided 

at all costs because Type I error rates were severely inflated.  

Limitations  

Results and their implications are limited to the simulated scenarios. When the variance component for the intermediate 

level is significant, results may differ. Furthermore, ignoring a level may also mean omitting relevant variables at that 

level. This means ignoring a level also comes with an omitted variable bias, which complicates misspecification. 

Functional form misspecification is another topic that deserves attention. Bulus (2022) recently found that for balanced 

RDD designs (p = 0.50), power rates for a linear form of the score variable, linear form interacting with the treatment 

variable, or quadratic form of the score variable does not change. However, a quadratic form of the score variable 

interacting with the treatment variable requires a larger sample size to reach the same power rate of lower polynomial 
forms. He also found that power rates may differ across different functional form specifications for unbalanced designs 

(e.g., p = 0.20). In this study, only the linear form of the score variable was considered. The incorrect functional form 

may complicate misspecification even further.  
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Appendix 

Table 1A  

Power Rates for Correctly Specified BIRD3 Design 

Scenario P1 P2 P3 P4 P5 P6 P7 P8 

𝜉100 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 

𝑆𝐸(𝜉100) 0.14 0.18 0.10 0.13 0.14 0.19 0.10 0.14 

𝐸𝑆(𝜉100) 0.10 0.07 0.11 0.07 0.12 0.07 0.11 0.07 

𝜌2 0.38 0.15 0.38 0.15 0.36 0.13 0.36 0.13 

𝜌3 0.23 0.09 0.23 0.09 0.23 0.09 0.23 0.09 

𝜔2  0.77 0.57 0.77 0.56 0.90 0.64 0.91 0.65 

𝜔3  0.47 0.47 0.46 0.46 0.54 0.52 0.52 0.52 

𝑅1
2 0.53 0.07 0.54 0.07 0.48 0.05 0.48 0.05 

𝑅𝑇2
2  0.06 0.07 0.06 0.06 0.05 0.07 0.05 0.06 

𝑅𝑇3
2  0.13 0.11 0.11 0.09 0.13 0.14 0.11 0.09 

p 0.50 0.50 0.50 0.50 0.20 0.20 0.20 0.20 

𝜌𝑇𝑆 0.80 0.80 0.80 0.80 0.70 0.70 0.70 0.70 

K 50 50 100 100 50 50 100 100 

𝑆𝐸𝑀𝐶(𝜉100) 0.14 0.18 0.10 0.13 0.14 0.20 0.10 0.14 

MC Power 0.44 0.30 0.74 0.52 0.45 0.26 0.72 0.45 

Note. Results are based on 5000 replications. 𝜉100: Treatment effect. SE: Standard Error. ES: Effect size.  𝜌2: Proportion of 

variance in the outcome between L2 units. 𝜌3: Proportion of variance in the outcome between L3 units. 𝜔2: Treatment effect 

heterogeneity across L2 units. 𝜔3: Treatment effect heterogeneity across L3 units. 𝑅1
2: Proportion of variance in the outcome 

explained L1 covariates. 𝑅𝑇2
2 : Proportion of variance in the treatment effect explained L2 covariates. 𝑅𝑇3

2 : Proportion of variance 
in the treatment effect explained L3 covariates. p: Proportion of subjects fall below (or above) cutoff score on the assignment 

variable. 𝜌𝑇𝑆: Correlation between the assignment variable and the treatment status. n: Average number of L1 units per L2 units, 
which is set to 20. J: Average number of L2 units per L3 units, which is set to 5. K: Number of L3 units.  

Table 2A 

Type I Error Rates for Correctly Specified BIRD3 Design 

Scenario T1 T2 T3 T4 T5 T6 T7 T8 

𝜉100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.01 

𝑆𝐸(𝜉100) 0.14 0.18 0.10 0.13 0.14 0.19 0.10 0.14 

𝐸𝑆(𝜉100) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

𝜌2 0.39 0.15 0.39 0.15 0.36 0.13 0.36 0.13 

𝜌3 0.23 0.10 0.23 0.10 0.24 0.09 0.24 0.09 

𝜔2  0.77 0.57 0.77 0.56 0.90 0.64 0.91 0.65 

𝜔3  0.47 0.47 0.46 0.46 0.54 0.52 0.53 0.52 

𝑅1
2 0.51 0.06 0.51 0.06 0.46 0.05 0.46 0.05 

𝑅𝑇2
2  0.06 0.07 0.06 0.06 0.05 0.07 0.05 0.06 

𝑅𝑇3
2  0.13 0.10 0.11 0.09 0.13 0.13 0.12 0.10 

p 0.50 0.50 0.50 0.50 0.20 0.20 0.20 0.20 

𝜌𝑇𝑆 0.80 0.80 0.80 0.80 0.70 0.70 0.70 0.70 

K 50 50 100 100 50 50 100 100 

𝑆𝐸𝑀𝐶(𝜉100) 0.14 0.18 0.10 0.13 0.14 0.20 0.10 0.14 

MC Type I Error 0.06 0.06 0.05 0.05 0.05 0.06 0.05 0.05 

Note. Results are based on 5000 replications. 𝜉100: Treatment effect. SE: Standard Error. ES: Effect size.  𝜌2: Proportion of 

variance in the outcome between L2 units. 𝜌3: Proportion of variance in the outcome between L3 units. 𝜔2: Treatment effect 

heterogeneity across L2 units. 𝜔3: Treatment effect heterogeneity across L3 units. 𝑅1
2: Proportion of variance in the outcome 

explained L1 covariates. 𝑅𝑇2
2 : Proportion of variance in the treatment effect explained L2 covariates. 𝑅𝑇3

2 : Proportion of variance 
in the treatment effect explained L3 covariates. p: Proportion of subjects fall below (or above) cutoff score on the assignment 

variable. 𝜌𝑇𝑆: Correlation between the assignment variable and the treatment status. n: Average number of L1 units per L2 units, 
which is set to 20. J: Average number of L2 units per L3 units, which is set to 5. K: Number of L3 units.  

 


