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Design and Implementation of a Hardware Test-bed
for Real-time EV-Grid Integration Analysis
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Abstract-This study presents the design of an electric vehicle
(EV)-grid integration hardware test-bed to implement smart EV
charging algorithms. The proposed test-bed allows for creating
various grid events via flexible integration of power hardware
(e.g., controllable loads, and battery energy storage systems) and
analyzing their impacts on EV charging. The design uses a real­
time digital simulator (OPAL-RT OP5600) to simulate a complex
distribution grid model with primary and secondary networks. A
grid simulator (AMETEK MX22.5) physically realizes a selected
node of the simulated grid to power actual loads, including a Nis­
san Leaf EV and a load bank. The EVGI test-bed is demonstrated
based on the custom hardware and software implementation
of the J1772 charging protocol using dSPACE MicroLabBox.
We tested the proposed hardware test-bed by implementing a
machine learning (ML) supported and decentralized EV charging
algorithm based on the Additive Increase and Multiplicative
Decrease (AIMD) control method. The results showed that the
EV charging current successfully followed the control commands
generated by the proposed smart charging controller running on
the EVSE and regulated the charging power to effectively reduce
the system loading caused by high EV penetration.
Index Terms-EV-Grid integration, hardware test-bed, real­

time simulation

I. INTRODUCTION

As electric vehicles (EVs) become more wide-spread, their
possible adverse impacts on electric power distribution grids
have been a major concern. High penetration of EVs with
uncontrolled charging could easily put such a critical infras­
tructure in a great danger, effecting many operations, busi­
nesses, and productions at high costs. Mass EV-grid integration
(EVGI) increases the peak loading of the grid. Furthermore, it
can even overload the capacity of the system transformers and
distribution lines causing thermal overheating, faster ageing,
and even failure of equipment at high penetration levels [1],
[2]. These impacts could be observed mainly on the network
voltage in the form of severe voltage drops, and even blackouts
[3 ]-[7]. As an example, the service interruptions due to severe
cold weather occurred in Texas in February 2021 showed that
the grid could easily lose its balance if fast actions are not
taken to respond to increased demand or loss of generation
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capacity [8]-[10]. Mass transition to electrified transportation
will make this situation harder to cope with. Therefore, every
stage of EVGI has to be carefully analyzed, planned, designed,
and implemented. It starts from preserving high level power
grid stability and resiliency down to satisfying customer-end
expectations, benefits, and quality of service.
One important stage of this integration is designing smart

charging management algorithms and testing them on EVs
with the aid of real-time simulators (RTS) to evaluate their
performance and impacts before the final implementation in
the field. This stage utilizes the prototyping process and helps
foresee possible shortcomings and design flaws, and even
failures of the tested algorithms, hence saves money, time, and
effort. This is also useful to see whether fairly abstracted and
complex charging algorithms can be implemented on real EVs.
A real-time emulated EVGI test-bed allows us to fully analyze
charging EV and other load dynamics under a wide range
of situations in a non-destructive environment [11]. It also
provides an opportunity to test the developed algorithms using
the available communication standards between EV supply
equipment (EVSE) and EV. Therefore, this work presents a
new hardware test-bed design that is intended to be used
mainly for EVGI testing.
The proposed hardware-in-the-loop (HIL) test-beds in [12],

[13] only utilize real-time simulators to emulate the EV and
grid, and no power hardware is involved. The grid model
complexity is also low since they used a microgrid model
of a workplace. The authors in [14] features a slightly more
complex grid model but only investigates the primary network,
reducing the fidelity of the model. There is also no power
hardware, and all tests are performed by HIL simulators. A
power HIL test-bed is proposed in [15], but the simulated
grid-side modeling only consists of a voltage source and grid
impedance, implying a low-fidelity model. A similar work is
proposed in [16], but it suffers from the poor grid modeling
and lack of real-time simulation. Authors in [17] propose an
EV test-bed, but it lacks the grid modeling and simulation
side of the problem, and uses only Lithium-ion batteries and
chargers to emulate EV charging.
Our work differs from the existing literature as follows:

(1) We propose a power HIL design that employs both real­
time simulation and power hardware integration; (2) we use
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a complex distribution system, modeling both primary and
secondary sides up to 80 end-nodes that have real power
consumption profiles; (3) we demonstrate the integration of
a real EV using the available communication interface and
show how smart charging algorithms can be implemented via
the standard communication on a custom-designed EVSE; (4)
we give a complete guideline at the component level on how
to design such an integrated test-bed; and (5) we demonstrate
the implementation of a smart charging control algorithm on
the EV using the proposed HIL test-bed.

II. HARDWARE TEST-BED DESIGN

The overview of the designed EVGI test-bed is shown
in Fig. 1. The test-bed involves the following components:
RTS (OPAL-RT OP5600), grid simulator (Ametek MX22.5),
hardware and software implementation of a custom EVSE so­
lution, 2019 Nissan Leaf EV, resistive load bank for residential
load emulation, and energy storage system emulation using
Typhoon HIL 402 device. In this work, we only demonstrated
the EV charging operation, but the test-bed has the capability
of integrating and testing a virtual converter for a controller­
HIL operation, which is also investigated in a separate work
of the authors [18].
A detailed power distribution grid model with primary and

secondary networks is developed and simulated on the RTS.
The RTS generates real-time voltage reference signals for all
end-nodes. One secondary end-node in the test distribution
grid is physically realized by feeding its voltage reference
signal to the grid simulator. The output of the grid simulator
supplies power to EV. EV is charged using a custom EVSE,
which monitors the node voltage and controls the charging
current via implementing a distributed charging control algo­
rithm. The role, design specifications, and operation of each
EVGI hardware component are described next.

A. Real Time Simulator (RTS)

The RTS is one of the core components of the test-bed. The
chosen RTS should ensure the targeted performance criterion
required by application constraints at a reasonable cost. In this
design, a multi-core processor based target platform OPAL-RT
OP5600 is used for real-time execution of the developed dis­
tribution grid model. This platform features 12 Intel processor
cores clocking at 3.4 GHz that can be operated in parallel, and
includes a SPARTAN-3 FPGA card for the I/O interface with
256 analog and digital I/O lines.
RTS performance is often evaluated based on computa­

tion time for a given accuracy level, which in our case is
the simulation resolution (i.e., step time). As the simulated
model gets more complicated and grows in scale, the required
computation resources and time increase causing overruns and
inaccurate solutions. In the case of real-time simulation of
a distribution grid, the simulation step time (Tstep ) has to
be considerably smaller than the grid voltage period (Tgrid),

i.e., T step « T grid==I/60Hz ~ 17ms. Most RTS platforms
have maximum step times in the range of microseconds (j.Ls)

that will be sufficient to capture dynamics of an EVGI test­
bed, which can be operated in the millisecond range. We
used Tstep== 250j.Ls for our simulations that would generate
4000 solutions/samples per second. This also sets the sampling
frequency for any input/output data accusation and feedback
channel.

To realize one end-node, the voltage of the end-node
is scaled and transferred from one of the ANALOG-OUT
channels of OP5600 to the grid simulator. This end-node is
turned into an actual, physical node to which the EV and
other loads are connected. This connection is completed by
feeding the resulting EV current measurement back to the
model running on the RTS through its ANALOG-IN channels,
forming an HIL environment. This feedback closes the loop
ensuring that the hardware power consumption is accurately
simulated in the digital environment. Due to the computational
limitations of OPAL-RT, a moderate test distribution grid with
its primary and secondary networks is modeled to run in
real-time as shown in Fig. 1. Secondary network modeling is
necessary from a practical standpoint as most Level-2 charging
takes place at residential locations. EV charging dynamics also
have significant impacts on the local service voltage; thus, the
secondary network modeling helps us see this impact on the
operation of charging controllers.

The grid model has five neighborhoods modeled as primary
nodes. These neighborhoods are shown as red and green
circles in Fig. 1, and each has 16 inner nodes representing
residential houses. Each house is modeled as a secondary end­
node, and a group of four houses are powered by a 25 kVA
service transformer [19]. The primary node voltage of the
service transformer is common to the houses connected to the
same transformer. Overall, the grid consists of 5x 16==80 end­
nodes. Each end-node has a unique load profile collected using
eGauge smart meter [20]-[22]. There are also two commercial
office loads connected to the blue and green nodes in Fig. 1.
The developed grid model is run in a single core of OPAL-RT.

In the case of high model complexity, the model can be
decoupled and split into sub-models operating in parallel in
different processor cores. Since the distribution grid lines are
usually much shorter than transmission lines, the propagation
delay between the decoupled subsystems must also be very
small to solve the system accurately. However, this delay is
usually much smaller than the minimum step time (~ 10 j.Ls) of
many real-time simulators causing computational overruns and
inaccuracies. This was one of the major challenges preventing
us from developing larger and more complex distribution grid
models. Some compensated line models are also proposed
to work around this problem [23], [24], but they were not
incorporated in this study.

Other important challenges are the simulation duration and
discharging EV batteries. Long simulation times (more than
three hours) can be overwhelming for the experiment operator
and increase the risk of danger. Additionally, driving the EV
to discharge its battery after every long test could be very
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Fig. 1. Overview of the designed EVGI test-bed.

time consuming and cumbersome!. For these reasons, the
hardware simulations are performed for the first one hour of
the simulation peak times (05:30 PM-6:30 PM). The EV arrival
times are adjusted based on a mean and standard deviation of
05:30 PM and 1min, respectively. This grid operates around
the peak power of 442 kVA with no EV penetration. When EVs
(of Nissan Leaf type) are fully integrated at the rated charging
power and with a 40 mi of equivalent energy demand, the peak
power goes up to 960 kVA. The physically realized end-node
for the HIL operation is located in the 5th neighborhood shown
in a circle in Fig. 1.

B. Grid Simulator

The voltage reference signal generated by the RTS must
be amplified up to the nominal voltage level of the simulated
end-nodes, i.e., 240 Vrms. For this purpose, a programmable
grid simulator is used. Our test-bed features an AMETEK
MX22.5 rated at 22.5 kVA. It has a three-phase AC input
and provides both programmable three-phase and single-phase
AC, and DC outputs. When set to the voltage control mode,
the grid simulator accepts a voltage reference signal between
o- 7Vrms and adjust its output voltage based on this input.
The grid simulator output is connected to the end-node loads
through a line impedance consisting of a 150mH inductor and
a O.ln, 250W power resistor emulating the impedance of an
underground service cable as shown in Fig. 1.

c. Hardware and Software Implementation of EVSE
One must establish a standard charging standard to interface

the EV with the grid to administer the charging process.
The standard for Level-2 charging in North America that
an EVSE must implement is SAE J1772 [25]. The protocol
dictates a low level communication between EVSE and EV.
The communication signal is called control pilot (CP), and it
is a 1kHz square wave with its low held at -12V and its high
varying through different voltage levels (e.g., 12V, 9V, 6V,
and 3V) corresponding to different EV states. These states are
described in Table I.
The duty cycle of the CP determines the maximum charging

current of EV, thus allows us to control the charging current
based on the charging control algorithm. The relationship
between the duty cycle of the CP and the charging current
is given by (1):

I - {Oo6 x Duty cycle if 6A ~ Ie < 51A (1)
e - (Duty cycle - 64) x 2.5 if 51A ~ Ie ~ 80A

To implement the EVSE, a dSpace MicroLabBox (MLBX)
has been utilized. The CP is generated by a dedicated PWM
module of MLBX for a given frequency (1 kHz) and duty
cycle. An additional auxiliary EVSE circuit was designed to
shift and scale the generated PWM signal from 0-5V to the
desired +/-12V level. The CP signal changes its high value

TABLE I
J1772 PILOT SIGNAL STATES

1A solution to this problem is to connect a high power vehicle-to-Ioad (V2L)
bidirectional converter to discharge the EV battery to an external load via the
available communication standard, but we did not have the V2L hardware
available at the laboratory at the time of this study.

State I Pilot High
STATE A +12V
STATE B +9V
STATE C +6V
STATE D +3V
STATE E OV
STATE F N/A

Pilot Low
N/A
-12V
-12V
-12V
OV
-12V

Frequency
DC
1 kHz
1 kHz
1 kHz
N/A
N/A

EV Resistance
N/A
2.74k
882
246

Description
Not Connected
EV Connected (Ready)
EV Charge
EV Charge (Vent. Required)
Error
UnknownlError
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Fig. 4. HIL test-bed integration.

(a) HIL test-bed (front view).

Fig. 3. Detailed hardware picture for the main power and control panel.

7A during all hardware tests to get a good converter response.
This is just 1A above the standard's minimum allowable
charging current.
Fig. 5a shows the PWM signal in blue (generated by

dSpace) and the CP duty cycle signal in cyan (generated by the
custom EVSE board). The high side of the CP represents the
EV state. The waveform in Fig. 5a was obtained for IEv==20A

Accessory
Power

~
~ .....
~240V- z Main
~240V- ~ Control
~ ~ Panel
~240V-aa
~

Anderson Plug BOTTOM

Fig. 2. High level system integration.

3p
power

D. Power and Control Panel Design
The physical integration schematics of the system described

in Fig. 1 is shown in Fig. 2. An electrical power and con­
trol panel is designed to electrically isolate, organize, and
house the physical coupling points of the EVGI test-bed.
The hardware picture of the panel is shown in Fig. 3. The
panel was designed to distribute the main AC power from the
grid simulator to four different loads (including the EV) via
individual 50 A circuit breakers. All the loads are connected
through the line impedance housed in a separate panel. The
main circuit breaker in the control panel can be tripped by
an emergency button installed on the panel for emergency
shutdown of the system. The measured voltage and current
signals are processed through signal conditioning circuits and
sent to the RTS and MLBX. The custom EVSE circuit is
also located near the EV power connection point in the
control panel. This circuit controls a relay to switch on/off EV
charging. The low-power circuitry inside the panel is powered
by a 24 V, 30W power supply.

E. Hardware Integration
The proposed EVGI test-bed is integrated as shown in

Fig. 4. The charging process was controlled through a software
interface designed in dSPACE ControlDesk. The control PC
communicates with dSPACE and OPAL-RT in real-time to
monitor the grid model and the EVSE status. The J1772
standard controls the charging current according to (1). It
should be noted that the minimum EV charging current is set to

due to the loading of the EV connector, and this is captured
by reading-in this signal through one of the ANALOG-IN
channels of MLBX.
Besides the low-level charging protocol, a higher-level

charging control algorithm is also implemented on MLBX,
thanks to its high computing capability. The charging al­
gorithm also makes use of real-time voltage and charging
current as feedback. Therefore, charging voltage and current
are sensed and fed back to MLBX through its ANALOG-IN
channels. The overall EVSE controller software was designed
in MATLAB/Simulink, compiled for MLBX, and operated at
1kHz.
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(a) CP duty cycle

(b) Charging voltage and current

Fig. 5. 10min test charging session waveforms

with d==33.3%. The EV charging voltage and current were
probed by a YOKOGAWA DL850E DAQ device and shown
in Fig. 5b for a test charging session of 10min. Also, a six
grid-cycle zoomed version of the current/voltage waveform
is included. For the test session, the EV charging current is
regulated at different current levels via the custom-designed
EVSE.

III. SCALABLE, DECENTRALIZED, SMART CHARGING
MANAGEMENT

A. AIMD-based EV Charging Algorithm
In order to test the designed EVGI HIL test-bed, we

developed a scalable, decentralized, smart charging algorithm
based on the Additive Increase and Multiplicative Decrease
(AIMD) algorithm [26], [27]. The proposed smart charging
algorithm aims to detect and reduce the power grid congestion
caused by mass EV penetration. The algorithm uses the local
end-node voltage to predict the power congestion level of
the distribution grid using a linear model. In the context of
this study, the power congestion refers to the total three­
phase apparent power (8) of the substation transformer that
powers the downstream network. This model is trained for
each end-node by using the historical end-node voltage and
total substation power measurements. The training data were
generated by a running a 30-day computer simulation of an

Algorithm 1 AIMD algorithm for EV charging network

Input: Substation preset congestion level: PCL
Compute: [00 ,01] based on historical Vi and 8 measurements
Parameter: AI parameter: ai > 0
Parameter: MD parameter: 0 < f3i < 1
Parameter: Voltage update period: Tu
Parameter: Algorithm action period: Ta

Input: Previous charging current: Ii (t )
Output: New charging current: Ii(t + 1)
1: for t E {O, 1, ... ,T} do
2: for t E {O, Tu , 2Tu ,' .. ,kTu } do
3: Vi +- EWMA(Vi(t))
4: for t E {O, Ta , 2Ta ,' .. ,kTa } do
5: 8 P (t) +- 00 + 01Vi
6: if 8P (t) < PCL and Vien > Vmin then
7: Ii (t + 1) +- Ii (t) + ai
8: else
9: Ii (t + 1) +- f3i X Ii (t)
10: end if
11: end for
12: end for
13: end for

equivalent phasor simulation of the real-time grid model to
save time and effort. The training is performed using linear
regression (LR). After the training, each end-node is assigned
a linear model with two coefficients [00 , 01 ] that maps their
voltage measurements (Vi) to a predicted substation power
(8P ) value:

(2)

An exponentially weighted moving average (EWMA) filter
can also be used to filter out some local dynamics from
the voltage measurements. By predicting the total substation
power (8P (t)) using local voltage measurements, end-nodes
can autonomously determine whether there is congestion in the
grid by comparing 8P with a pre-set congestion level (PCL)
set by the grid network operator. PCL could be the substation
rated power or some lower level beyond which the grid is said
to be congested. Algorithm 1 is proposed as an adaptation of
AIMD for EV charging control.
The additive increase (AI) and multiplicative decrease (MD)

parameters (ai and f3i) can be chosen based on the grid
dynamics and EV charging characteristics. Depending on the
computational limitations, the sampling period of the voltage
could be adjusted by the parameter Tu . The algorithm action
period (Ta ) determines how often AIMD performs congestion
check and takes action. Choosing Ta again depends on the grid
and the on-board EV charger dynamics. At every Ta interval,
the substation total power demand is predicted using (2). If
the predicted value 8P is less than PCL, and the end-node
voltage (Vien ) is higher than the minimum service voltage
(Vmin ), the congestion level is likely not reached, and there is
still capacity in the system. Hence, the EV charging current
is additively increased by ai >0. If this condition does not
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Fig. 6. Flow chart of the EVSE.

where t is the simulation time, and S(t) is the substation
total apparent power resulted from the implementation of the
charging algorithm.
2) Capacity utilization (CU): CD is defined as the percent

ratio of the grid capacity (in terms of energy) utilized as a
result of implementing a charging algorithm to the capacity
that could have been used in the case of an ideal AIMD
implementation. The ideal AIMD refers to the fictitious case
where the end-nodes are notified of the true grid congestion
signal. Therefore, the CD score of the ideal AIMD algorithm
would be 100% by default as it can use all the available

IV. HIL SIMULATION CASE STUDIES
The proposed AIMD-based EV charging control algorithm

using the end-node voltage was tested on the HIL test­
bed shown in Fig. 4. Two case studies (Case-I and Case-II)
are developed to evaluate the algorithm's performance. Both
cases are simulated for one hour on the test distribution grid
described in Fig. 1.
Case-I investigates the responsiveness of the proposed al­

gorithm in case of a significant load increase. For this case,
PCL was set to 0.7 pu in the AIMD operation, and the system
loads were increased between 750 sand 2250 s. The goal is
to control the system congestion level around PCL during EV
charging. However, the increase of the uncontrolled system
loads increases the system peak power up to around the
same level as PCL (0.7 pu). The EVs should detect the load
increase and reduce their charging power during this time in a
decentralized way. This case has three-time intervals. The first
interval (t<750 s) covers the arrival time of EVs. The second
interval (750 s~t~2250 s) is when the system loads gradually
increase, stay stable for some time and decrease again. The
third interval (t>2250 s) goes back to the expected level of
the system loads.
Case-II tests the ability of the algorithms to operate at

different PCL. The simulation time is split into three intervals.
The first interval (t< 1000 s) implements uncontrolled charging
where all EVs are charged at the rated current of 27A. The
second interval (1000 s~t<2500 s) switches to the AIMD con­
trol with a PCL of 0.7 pu. The transition between the first two
intervals also shows the difference between uncontrolled and
controlled EV charging. The third interval (2500 s~t~3600 s)
changes PCL to 0.8 pu by allocating higher capacity for
charging. The transition between the second and third intervals
demonstrates how the end-nodes detect the capacity increase
and respond by increasing their average charging power.
The AI and MD parameters of the AIMD algorithms are set

to 1 and 0.5, respectively. The voltage update period (Tu ) is set
to 1 s. The algorithm period (Ta ) is set to 15 s to better observe
AIMD actions within the one-hour simulation duration.
1) Case-I: Load increase: Fig. 7 demonstrates the end-node

pu voltage, EV charging current, and actual and predicted total
substation power (S and SP) in pu. The green dotted lines
mark the starting and ending of the three time intervals. The

where tl and t2 are the start and end times during which the
ideal AIMD algorithm uses up the full capacity determined by
PCL. sbase ( t) is the baseload of the grid after the EV load is
removed.
3) Average charging power (ACP): ACP is the average

charging power of the vehicle for a given time interval.

capacity thanks to the actual congestion feedback. CD is
defined as follows:

1t2

(S(t) - sbase(t)) dt
CD = t~ x 100%, (4)

12 (peL - sbase(t)) dt
tl

(3)

AIMD
IMPLEMENTATION

~NL+
I

YES (EV CONNECTED)

+

hold, the algorithm's MD phase steps in and scales down the
charging current by O<{3i<l. The flow chart of the charging
algorithm and EVSE level control is shown in Fig. 6. More
information on the operation of the AIMD algorithm can be
found in the previous studies of the authors [27]-[30].
B. Performance Evaluation

From a demand-side management perspective, an EV charg­
ing control algorithm should avoid overloading the grid infras­
tructure (e.g., substation transformer and distribution lines),
utilize the available capacity, and satisfy EV customer expec­
tations as much as possible. In this regard, three performance
metrics are developed to measure the effectiveness of the
presented charging algorithm.
1) Maximum loading percentage (MLP): MLP is defined

as the ratio of the maximum substation apparent power in
pu to the pre-set congestion level (PCL). PCL could be
the transformer's rated power as well as a lower set point
determined by the system operator.

MLP = max(S(t)) x 100%
Pre-set congestion level (PCL) ,
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MLP drops below 100% for this interval with a CD score of
77.61%. 8 goes below PCL and stays fairly constant during
the second interval showing that the system's congestion is
controlled under PCL. As a result, the EV's average charging
power drops from 6.23kW to 1.92kW.
At the second transition (t=2500 s), PCL changes to 0.8 pu

for all EVs. The EV quickly responds to the capacity increase
by increasing its average charging power to 2.39 kW. The
transient capacity increase did not make the system unstable.
8 gradually increased and sat on a higher level slightly lower
than the PCL resulting in an MLP of 91.68% and CD of
78.16%. 8P is again slightly over the actual 8 causing the grid
to sit on a congestion level lower than PCL. This is mainly
because the end-node voltage is sensitive to local dynamics,
affecting the prediction results.

134.54 N/A 6.23
92.35 77.61 1.92
91.68 78.16 2.39

MLP (%) CD (%) ACP of Nissan Leaf (kW)

TABLE III
PERFORMANCE SCORES OF CASE-II

Time interval
t < 10008

10008 ~ t < 25008
25008 < t < 36008

MLP and CD scores and the average charging power of Nissan
Leaf in the three intervals are given in Table II.
MLP stays below 100% (0.7pu) in the first and third

intervals, indicating that the AIMD charging effectively holds
the grid congestion below PCL. ACP is around 2.14kW in
the first interval. The second interval is dominated by the
uncontrolled loads increasing MLP up to 100%. The increase
of the system loads decreases the end-node voltage and causes
AIMD to go into the MD phase more often. This overall results
in a reduced ACP of 1.60 kW. After the system loads return"'[ . ; 0.6

to the normal level at the beginning of the third interval, jo.98 ~
the system capacity increases, yielding an ACP of 2.04 kW, ~ _ go.
similar to the first interval. The CD scores are above 75% 0....7 ~
for the first and third intervals but slightly below 70% for the U)

second interval due to the increased system loads. This node's .96

predicted substation power (8P ) is slightly above the actual
substation power (8), especially for the first and third intervals
lowering the potential CD score. It triggers the MD phase of Fig. 8. RMS EV current and voltage, and actual and predicted substation
the AIMD algorithm at the points where 8P hits the PCL line. power for Case-II.
In the second interval, the end-node voltage is significantly
reduced by the increased uncontrolled system loads and local
consumption resulting in over-prediction and reduced average
charging power.
2) Case-II: Different congestion levels: This case study first

compares uncontrolled charging with the AIMD control. Fig. 8
shows the end-node voltage, EV charging current, and actual
and predicted substation total power. The first interval in Case­
II simulates uncontrolled charging. During this interval, the
EV charging current is set to its maximum (27 A), yielding an
average charging power of 6.23kW (Tablelll). Note that the
voltage in this interval significantly drops due to the heavy
system congestion. The uncontrolled charging results in a
highly congested grid with an MLP of 134.54%.
In the second interval, the EVs start implementing the

AIMD charging control with a PCL of 0.7 pu. As a result,

V. CONCLUSIONS

An EVGI hardware test-bed is an essential step prior to
deploying a smart charging algorithms out on the field. It
provides valuable and cost effective insights into possible
outcomes and hardware/software challenges of EV integra­
tion. The grid-related challenges can also be emulated and
addressed in real time by creating virtual events (i.e., faults,
service interruptions, etc.) in the RTS triggered by real loads.
This platform also supports the integration and testing of
any power electronics based loads and sources (i.e., ESS,
PV inverters, motor drives, etc.) under different scenarios.
To this end, this study presents a detailed guideline for
designing and operating an EVGI hardware test-bed. The test­
bed components, and their roles and interactions within the
system are described.
This work also presented a HIL implementation of an AIMD

based smart EV charging control algorithm on the designed
hardware test-bed. The charging algorithm was implemented
based on the J1772 standard using a custom EVSE running
on a dSpace MicroLabBox platform. The results showed that

5

~'~~~~~~20 _«
hr-NMWl\NM~wt\! 15 ~

~1I1i1lmV1J1jM1NlJ~ 10 u

91.08 75.35 2.14
100 69.38 1.60
93.30 77.66 2.04

"1000 150 000 2500 30 0 ·3500
Ti es)

MLP (%) CD (%) ACP of Nissan Leaf (kW)

TABLE II
PERFORMANCE SCORES OF CASE-I

500
oL.I.-_---..l..--.l_..l....-_----L__.....l...-----l....-----l__--L.-__---l n
o

Time interval
t < 7508

7508 ~ t < 22508
22508 < t < 36008

Fig. 7. RMS EV current and voltage, and actual and predicted substation
power for Case-I.

>
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the AIMD algorithm successfully detected and eliminated the
grid congestion.
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