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A B S T R A C T

A deterministic differential equation model for the dynamics of terrestrial forms of mosquito populations

is studied. The model assesses the impact of multiple probing attempts by mosquitoes that quest for blood

within human populations by including a waiting class for mosquitoes that failed a blood feeding attempt.

The equations are derived based on the idea that the reproductive cycle of the mosquito can be viewed as a

set of alternating egg laying and blood feeding outcomes realised on a directed path called the gonotrophic

cycle pathway. There exists a threshold parameter, the basic offspring number for mosquitoes, whose nature is

affected by the way we interpret the transitions involving the different classes on the gonotrophic cycle path.

The trivial steady state for the system, which always exists, can be globally asymptomatically stable whenever

the threshold parameter is less than unity. The non-trivial steady state, when it exists, is stable for a range

of values of the threshold parameter but can also be driven to instability via a Hopf bifurcation. The model’s

output reveals that the waiting class mosquitoes do contribute positively to sustain mosquito populations as

well as increase their interactions with humans via increased frequency and initial amplitude of oscillations.

We conclude that to understand human–mosquito interactions, it is informative to consider multiple probing

attempts; known to occur when mosquitoes quest for blood meals within human populations.
1. Introduction

Mosquitoes are the agents responsible for the transmission of sev-

eral vector-borne diseases, for example malaria, the deadliest of them

all, dengue fever, yellow fever, Zika, West Nile, lymphatic filaria-

sis (elephantiases), and more [1–5]. A successful transmission of the

athogens, be it a parasite or a virus, that cause the aforementioned

uman diseases, requires a successful interaction between a mosquito

nd the host. By success, we mean an interaction between humans

nd mosquitoes that leads to disease transfer. Thus, in the context of

osquito borne infections of humans, human–mosquito interaction is

n important link to disease transmission success. See, for example, [6–

0], for some ideas on this.

To fight mosquito-borne diseases, continuous efforts and monitor-

ng is needed from both the public health officials in the countries

ost affected by the diseases and WHO. Firstly, regions previously

ninhabitable by disease transmitting mosquitoes are becoming more

uitable as habitats for these disease mosquitoes, exacerbated by global

arming threats as reported for dengue and chikungunya virus vectors

Aedes species mosquitoes) [11–13] and Japanese Encephalitis (JE)

irus vectors in Asia (culex species mosquito) [14]. In particular, global
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warming and shifting climatic patterns have been reported to affect

both the abundance and redistribution of these vector-borne disease

mosquitoes, and these have severe consequences for disease trans-

mission [12,15,16]. Secondly, due to the COVID-19 pandemic, there

are concerns that pre-pandemic control programs for mosquito-borne

diseases may be affected [17,18] with the potential for a reduction in

funding due to the COVID-19 related economic impacts and difficulties.

Some of these vector-borne disease-related control programs seek to

reduce vector abundance and/or competence via mechanistic or chem-

ical means [3,19,20] or disrupt and minimise contacts between vectors

and the vertebrates affected/infected by pathogens transmitted by the

vectors [21]. Methods employed include the use of screens to protect

vector entry into habitats, and/or the use of insecticide treated bednets

aimed to kill vectors that enter residences; removal of vector breeding

habitats from around vertebrate habitats; the use of larvicides applied

at breeding sites aimed at reducing or destroying the aquatic life-forms,

progenies of adult mosquitoes [22]; infusion of predators that feed on

the progeny of the adult mosquitoes at mosquito breeding sites [23],

and increasingly, the use of genetically modified (GM) mosquitoes to

reduce the size of breeding adult mosquitoes and hence total mosquito
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population [5,19,24]. Additionally, Intermittent Preventive Treatment
(IPT) is a preventative tool utilised in some endemic countries in which
at risk non symptomatic individuals (infectious or not) are given a
therapeutic dose of an antimalarial medication [25,26]. In situations
where transmission of the pathogen has succeeded, particularly for
human diseases like malaria and Zika, complete and timely treatment of
the infectious individual is necessary so as to terminate the pathogen’s
cycle [21,26].

It is thus clear that any control of vector-borne diseases requires
an Integrated Vector Management (IVM) approach, embedded with
a human disease management strategy, together with an understand-
ing of environmental drivers and factors that can hinder a successful
implementation of the said control strategies. The successes of such
a holistic and comprehensive control method requires a deeper un-
derstanding of the facets of the interaction among vectors, humans
and pathogens; how their interaction enhances the successes of the
pathogen and the transmitting vector and how such an interaction
can be exploited for a more efficient and successful control. With
vectors the drivers of such diseases via their interaction with humans
for blood like in the case of malaria, and hence an ubiquitous com-
ponent in the disease control problem, it is essential to understand
their population dynamics and characterise the factors that could affect
their size, abundance and survival. Furthermore, given that empirical
studies aimed at monitoring human–mosquito interaction are relatively
difficult, mathematical models developed to capture these interactive
dynamics between mosquitoes and humans with the mosquitoes seen
as the drivers are not only necessary but important and urgent. With
this is mind, we set out to accomplish this task focusing on mosquito
vectors, and for the most part, using the malaria mosquito as our model
example; but the ideas can be transferred to other mosquito vectors
with appropriate modifications.

Mosquitoes that transmit pathogens from one human to another
are the breeding mosquitoes, which are the female mosquitoes, when
they bite humans to harvest blood for the maturation of their eggs,
forming the disease infection pathway from humans to mosquitoes and
from mosquitoes back to humans. The entire cycle from a bloodmeal
to oviposition is known as the gonotrophic cycle, and is typically re-
peated by an adult female mosquito throughout its lifetime [5]. Thus,
transmission in humans is essentially driven by these female mosquitoes
through their human-biting habit, in search for a bloodmeal. For malaria,
these are the female Anopheles sp mosquitoes; for Zika virus disease,
the Aedes sp mosquitoes are the primary route of disease infection in
humans, precisely (Aedes aegypti and Aedes albopictus), same mosquitoes
responsible for the spread of yellow fever, dengue and chikungunya
viruses [13,27]. With focus on the malaria mosquito, the human-biting
habit of the female Anopheles sp mosquito, which has been interpreted
as a restricted form of homogeneous mixing and used successfully in
deriving models for transmission of malaria, [6,7,28–32], requires that
she visits and bites humans from time to time to harvest the blood
which she needs for the maturation of her eggs. During the blood
feeding encounter, the human can infect the questing mosquito or
vice-visa depending on the health status of the human and mosquito.
It is with this understanding that some authors, including [9,10,33–
36], have considered only the population density of female mosquitoes
in modelling mosquito dynamics. Those authors partitioned the fe-
male mosquito population into classes representing physiological status
when considering the demographics model for the population dynamics
of mosquitoes. One such partition often used is that of (i) aquatic
forms of the mosquito, (ii) newly emerged and hungry adult forms
of the mosquitoes, (iii) fertilised adult mosquitoes questing for blood
in human habitat areas, and (iv) well blood-fed and resting adult
mosquitoes [3,20,35,37].

In several of the studied compartmental demographic models for
mosquito population dynamics, it is assumed that during questing, a
questing mosquito can either succeed to feed and survive with proba-
bility 𝑝 or gets killed with probability 1 − 𝑝. This binary success-failure
2

assumption that results in the death of the questing mosquito in the case
of failure of a feeding attempt is not realistic. There can be multiple
reasons, including interruptions of several types, which may lead to
failure to feed by the questing mosquito but not resulting in its death.
We expect, instead, that an evolutionary reproductive need would drive
the questing mosquito that survives an unsuccessful feeding encounter,
to attempt to blood-feed again as often as is required, if each previous
questing attempt to get a satisfactory amount of blood from the human
was unsuccessful. In fact, there is evidence, that questing mosquitoes
do harvest more than one blood meal before entering the resting phase
of their gonotrophic cycle [38]. Multiple blood meals during a single
gonotrophic cycle can have consequences in the spread of malaria in
the sense that an infected and infectious questing mosquito that takes
blood from two different susceptible humans can successfully infect
both humans during one gonotrophic cycle, raising the possibility of
multiple infection transfers in one mosquito outing. In [3], it is argued
that for the malaria parasite to be transmitted from one human to the
next, the infecting mosquito must bite two different humans at two
distinct times, emphasising, in another sense, the necessity of multiple
bites from the questing mosquitoes. In this paper, we shall extend the
model presented in [9] to include the possibility of multiple feeding
attempts by each questing mosquito. The main objective of the current
manuscript is therefore to further interpret the life style of the mosquito
to include the fact that the mosquito can perform multiple feeding
attempts during one questing episode until it harvests the required
amount of blood that it needs to be able to complete a gonotrophic
cycle. An expected outcome of the improved model is an improved
version of the basic offspring number for the mosquito population dy-
namics as well as to provide a platform towards a better understanding
of the transmission potential of pathogens by mosquitoes.

The rest of the paper is organised as follows. In Section 2, we
derive the model for repeated feeding attempts by mosquitoes based on
the earlier models. Here, we also examine the basic properties of the
derived model and perform a re-parameterisation to align the system’s
equations with earlier models. In Section 3 we present a mathematical
analysis of the model’s equations. In particular we discuss the existence
and stability of steady state solutions and in the process identify the
possible threshold parameters that exist in the model. In this section, we
link the identified threshold parameter with the basic offspring number
for mosquitoes. In Section 4, we examine in detail how the multiple
feeding paradigm affects the mosquito dynamic, in more complex ways
than when not considered. We round up the paper with a discussion and
conclusion in Section 5.

2. The mathematical model development

We start by noting that during the periods of time when female
breeding mosquitoes are most active, they systematically seek verte-
brates, including humans, to harvest blood, [39]. We refer to the class
of mosquitoes out in search for a blood meal as questing mosquitoes.
If a questing mosquito is interrupted while attempting to take a blood
meal, we assume that if the mosquito survives the attempted feeding
encounter, it will simply try again to blood feed either on the same or
a different blood source, depending on the prevailing circumstances.
We assume in general that a questing mosquito will repeatedly quest
for blood until it succeeds in harvesting the required and satisfactory
blood meal or dies in the process.

We divide the female mosquito population into four classes repre-
senting physiological status so that at each time 𝑡 we have the following
classes of mosquitoes: (i) Breeding site mosquitoes: These are the newly
emerged adult female mosquitoes together with any older mosquitoes
that have returned to the breeding site to lay eggs, denoted by 𝐵; (ii)
Questing mosquitoes: These are the fertilised adult mosquitoes that have
left the breeding site and are now questing for blood within human
populations, denoted by 𝑄; (iii) Resting mosquitoes: These are the blood-
fed mosquitoes that have successfully harvested blood (from humans)
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and because they are well fed are now resting in view of returning
to the breeding site to lay eggs, denoted by 𝑅 and (iv) Waiting class
mosquitoes: They are mosquitoes that have tried but survived a failed
attempt to take a blood meal and are now in a waiting class, denoted
by 𝑊 . The mosquitoes in the 𝑊 class will then be re-attracted to
humans again for a second and subsequent questing attempt. The new
addition here is the waiting class mosquitoes and it comprises all type
𝑄 mosquitoes that were interrupted during a feeding episode and who
survived the failed feeding attempt. Thus the total mosquito population
at time, 𝑡 is 𝑇𝑚(𝑡) = 𝐵(𝑡)+𝑄(𝑡)+𝑅(𝑡)+𝑊 (𝑡). As in [8,9], we assume that
the newly emerged adults get fertilised before they can proceed to quest
for a blood meal. It is well known to biologist that blood contains the
necessary proteins needed for the maturation of eggs within the female
mosquito, and that autogenous and anautogenous mosquitoes respond
to this blood feeding need differently [5,40,41]. Thus, while some
obligate autogenous mosquitoes can develop eggs without a vertebrate
blood meal, all anautogenous and facultative autogenous mosquitoes
require blood, at one stage or the other, for the maturation of a clutch
of eggs. Questing for blood within vertebrate populations is thus vital
for mosquito survival. We thus assume that new births are only possible
after a successful questing episode. Once type 𝐵 vectors arrive at the
human habitat site, they become type 𝑄 i.e. questing mosquitoes. They
quest with probability of success 𝑝 and failure 1 − 𝑝. We shall equally
ssume that interaction between mosquitoes and humans is via mass
ction contact. If the questing is successful, we have resting mosquitoes,
, else the surviving mosquitoes after the unsuccessful questing episode
re moved into the waiting class 𝑊 . We assume at all time the presence
f humans in the system with constant density 𝐻 , as well as the
ossibility for mosquitoes seeking alternative sources1 for a blood meal
ia the presence of the parameter 𝐾. The different state variables used

in this model are defined in Table 1 and parameter description in
Table 2.

Mosquitoes of type 𝑅 return to the breeding site at the rate 𝑎 to lay
eggs. We assume that the link between adult mosquitoes of the current
generation and new adults is via the reproductive output of the vectors
of type 𝑅, and that each type 𝑅 mosquito produces new offspring at rate
𝜆(𝑅) where 𝜆 ∶ [0,∞) → R is a suitably defined function which we refer
to as the birth rate function. The assumption is that each vector of type
𝑅 produces 𝜆(𝑅) new offspring so that all 𝑅 mosquitoes produce 𝑅𝜆(𝑅)
ew vectors and flow to the breeding site at rate 𝑎. We use the same
estrictions as in Teboh-Ewungkem et al., [3], to have the following
efinition for a suitable birth rate function.

efinition 2.1 (Suitable Birth Rate Function). A function 𝜆 ∶ [0,∞) ⟶
is a suitable birth rate function if it satisfies the following assump-

ions:

1 The mosquito’s blood preference factor defines whether or not the
osquito prefers animal (or non-human) blood over human blood. It is

enerally accepted that each mosquito has its blood preference factor or
oophilic index, and so for a proper modelling exercise, we must take into
onsideration this fact and model the parameter 𝐾 introduced here and shown

on Table 2. See Section 2.2(i) of [20] for a discussion and derivation of
the parameter 𝐾. Note that the units of 𝐾 is humans obtained as follows:
if we let 𝜒𝐴 denote the number of mosquitoes per animal (represented by

) with a preference for animal blood and 𝜒𝐻 the number of mosquitoes
per human (represented by 𝐻) with a preference for human blood, then
a total of 𝜒𝐴𝐴, respectively, 𝜒𝐻𝐻 mosquitoes are questing for blood from
animals, respectively, humans. Thus 𝜒𝐴𝐴+𝜒𝐻𝐻 is the total number of questing
mosquitoes, with 𝜒𝐴𝐴

𝜒𝐴𝐴+𝜒𝐻𝐻
the proportion of meals from animals and 𝜒𝐻𝐻

𝜒𝐴𝐴+𝜒𝐻𝐻
the proportion from humans. Since our focus is on mosquito population growth
in light of the human–mosquito interaction and its link to malaria transmission
dynamics, and without loss of generality we can assume that 𝜒𝐻 > 0 and
define 𝜍 = 𝜒𝐴

𝜒𝐻
, so that the fractions of meals that will be taken from humans

is 𝜒𝐻𝐻
𝜒𝐴𝐴+𝜒𝐻𝐻

= 𝐻
( 𝜒𝐴
𝜒𝐻

)𝐴+𝐻
= 𝐻

𝐾+𝐻
, where 𝐾 = 𝜍𝐴 which has units of humans.

Likewise, the fraction of meals taken from animals is 𝜒𝐴𝐴 = 𝐾 .

𝜒𝐴𝐴+𝜒𝐻𝐻 𝐾+𝐻

b

3

A1: 𝜆 is continuous on [0,∞) with 𝜆(0+) = lim𝑅→0+ 𝜆(𝑅) = 𝜆(0) = 𝜆0 >
0.

A2: 𝜆 is differentiable in (0,∞) with 𝜆′(𝑅) < 0 for all 𝑅 ≥ 0.
A3: 𝜆∞ = lim𝑅→∞ 𝜆(𝑅) < lim𝑅→0+ 𝜆(𝑅) = 𝜆(0+) = 𝜆0.
A4: The function 𝑅𝜆(𝑅), which is continuous and differentiable, is

bounded above and unimodal with a global maximum and turning
point at 𝑅 = 𝑅𝑚 so that 𝑅𝑚𝜆(𝑅𝑚) = 𝜆𝑚 where 0 < 𝜆𝑚 < ∞.

Assumptions 𝐴1 and 𝐴3 will allow us to select only the birth rate
function 𝜆 that is continuous on [0,∞) and differentiable in (0,∞) while
A2 guarantees that 𝜆−1(𝑅) exists for any 𝑅 > 0. Assumption 𝐴4 is
designed to ensure that if we consider a recruitment-death process with
per capita death rate 𝜇𝑅, modelled by the equation 𝑅′(𝑡) = 𝑅𝜆(𝑅)−𝜇𝑅𝑅,
then in addition to the trivial steady state solution 𝑅∗ = 0, a unique
non-zero steady state solution exists, defined by the equation 𝜆(𝑅∗) −
𝜇𝑅 = 0. Its value for any 𝜇𝑅 ∈ (0, 𝜆0) will be given by 𝑅∗ = 𝜆−1(𝜇𝑅),
which is globally and asymptotically stable. Examples of 𝜆(𝑅) are

(𝑎) 𝜆(𝑅) = 𝜆0
(

1− 𝑅
𝐿𝑣

)

; (𝑏) 𝜆(𝑅) =
𝜆0

1 +
(

𝑅
𝐿𝑚

)𝑛 , 𝑛 ≥ 1; (𝑐) 𝜆(𝑅) = 𝜆0𝑒
− 𝑅

𝐿𝑟 ,

(1)

where 𝐿𝑣, 𝐿𝑚 and 𝐿𝑟 are positive constants that can be arbitrarily large.
In each of these examples, we expect 𝑅 ∈ [0, 𝐿) where 𝐿 ∈ {𝐿𝑣, 𝐿𝑚, 𝐿𝑟},
𝐿 ≫ 0 can be identified with the carrying capacity of the environment
in question while 𝜆0 > 0 may be regarded as the limiting rate at which
type 𝑅 mosquitoes would lay eggs, if the population of these types
of mosquitoes should become very small. Formulas (a) and (c) satisfy
𝐴1−𝐴4 above. For formulas (b) and (c), 𝜆(𝑅) > 0 and lim𝑅→∞ 𝜆(𝑅) = 0 =
𝜆∞. On the other hand, for formula (a) 𝜆(𝑅) > 0 only for 𝑅 ∈ (0, 𝐿𝑣) and
negative for 𝑅 > 𝐿𝑣. Thus, if 𝑅 can grow beyond 𝐿𝑣 such that 𝑅 > 𝐿𝑣,
then lim𝑅→∞ 𝜆(𝑅) < 0. But, we should be able to recover similar results
as 𝑅𝜆(𝑅) will be negative with solutions to the equation 𝑅′(𝑡) = 𝑅𝜆(𝑅)
attracted to 𝐿𝑣,2 and a separate analysis would be required. If for (a)
we assume that 𝐿𝑣 is very large, with initial condition 𝑅0 ≪ 𝐿𝑣, then
we can bound 𝑅 by 𝐿𝑣 but having lim𝑅→∞ 𝜆(𝑅) = 𝜆∞. The functions
defined by formulas (a) and (b) in Eq. (1) have been used in [9,34] for
modelling mosquito population dynamics. They are commonly known
in the literature respectively as the Verhulst–Pearl logistic [42] and
the Maynard-Smith–Slatkin [43] growth models, while (c), known as
the Ricker model [44], has been used in fisheries modelling. Unlike
the logistic model, (b) and (c) in Eq. (1) are nonlinear and asymptotic
to zero for large values of 𝑅. Though non-linear, these two functions
can be approximated by the logistic growth model by using the value
𝐿𝑣 = − 𝜆0

𝜆′(0) in (a) in the case where 𝜆(𝑅) is defined by either (b) or (c)
in Eq. (1). The Verhulst–Pearl birth rate function is often used because
of its linearity and hence mathematical tractability of the resulting
equations. In what follows, we shall often not write down a formula
for the explicit birth function being used, but we shall assume our birth
rate function, whenever it shall be needed, is of a suitable type, indexed
by its corresponding carrying capacity 𝐿. For the most part in what
follows, we will consider that lim𝑅→∞ 𝜆(𝑅) = 𝜆∞ = 0, which means
unless otherwise noted as for the case of the logistic model, in which
case lim𝑅→∞ 𝜆(𝑅) = 𝜆∞ < 0.

2.1. Modelling repeated feeding

We now extend the model presented in [9] to include multiple
feeding attempts. It is common practice as in [9,34] to ignore the effect
of male mosquitoes in the modelling framework since our developed
model is aimed at investigating ‘‘mosquito-human’’ transmitted diseases
as well as mosquito growth dynamics via human interactions, only
female mosquitoes that systematically seek and bite humans for blood

2 The limiting solution for the updated equation 𝑅′(𝑡) = 𝑅𝜆(𝑅) − 𝜇𝑅𝑅 can
e easily and equally obtained
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Table 1
A table showing the different state variables used in this model, their description and quasi-dimensional
units. The units are Mosquitoes (M).
State variable Description of the state variables Quasi-dimension

𝐵 Density of breeding site mosquitoes. These are newly emerged adult
mosquitoes at the breeding site together with all other adult
mosquitoes that have returned to the breeding site to lay eggs.

𝑀

𝑄 Density of questing mosquitoes. These are fertilised adult
mosquitoes that have left the breeding site and are questing for
blood at the human habitat.

𝑀

𝑅 Density of well blood fed and resting mosquitoes. These are
mosquitoes that have successfully harvested a blood meal and are
now resting in view of returning to the breeding site to lay eggs.

𝑀

𝑊 Density of waiting class mosquitoes. These are mosquitoes that have
attempted, at least once, and failed to feed on humans. They are
waiting for the next opportunity to quest again for blood within the
human population.

𝑀

Table 2
A table showing the different parameters used in this model, their description and quasi-dimensional units.
The units are Humans (H), Mosquito (M) and Time (T).
Parameter Description of parameters Quasi-dimension

𝐻 Constant human population and a source of blood for the questing
mosquitoes.

𝐻

𝐾 = 𝜒𝐴

𝜒𝐻
𝐴 Re-scaled constant that accounts for the availability of an animal or

alternative blood source for mosquitoes, whereby 𝜒𝐻𝐻
𝜒𝐴𝐴+𝜒𝐻𝐻

= 𝐻
𝐾+𝐻

is
the fraction of mosquito meals taken from humans, and

𝜒𝐴𝐴
𝜒𝐴𝐴+𝜒𝐻𝐻

= 𝐾
𝐾+𝐻

is the fraction taken from animals. 𝜒𝐴, respectively
𝜒𝐻 , are the numbers of mosquitoes per animals, respectively
humans, with preference for animal, respectively human, blood.

𝐻

𝑎 Flow rate at which female adult mosquitoes of type 𝑅 return to
breeding sites to lay eggs.

𝑇 −1

𝜇𝑥 Natural death rate of mosquitoes of type 𝑥 mosquitoes. 𝑇 −1

𝑏∗ = 𝑏 𝐻
𝐾+𝐻

𝑏 is the per capita flow rate at which mosquitoes of type 𝐵 visit
human habitat sites, while 𝑏∗ gives the weighted rate, weighted by
the proportion of blood meals derived from humans.

𝑇 −1

𝑐∗ = 𝑐 𝐻
𝐾+𝐻

𝑐 is the per capita flow rate at which mosquitoes of type 𝑊 visit
human habitat sites in search for a blood meal after they tried and
failed, while 𝑐∗ gives the weighted rate, weighted by the proportion
of blood meals derived from humans .

𝑇 −1

𝑝 Probability that a questing mosquito successfully harvests a blood
meal during a feeding encounter with humans.

1

𝜃 Probability that a questing mosquito that failed to harvest a blood
meal during a feeding encounter survived the encounter

1

𝜏 Mass action contact parameter between mosquitoes and humans. 𝐻−1𝑇 −1
are considered. This assumptions is equivalent to stating that we do
not explicitly model mosquito mating patterns in the demographic
models for mosquito dynamics that we present here. However, we shall
assume that questing mosquitoes are also fertilised. In [9], it is assumed
that during questing, a mosquito either succeeds with probability 𝑝 to
arvest blood from a human or is killed with probability 1−𝑝 during the
ame feeding attempt. That is, in that model, once a mosquito engages
he feeding attempt, failure to feed led to certain death of the mosquito.
he certain dead assumption linked to failure to feed is too strong a
estriction that we now start to relax. It is more realistic to assume that
ome questing mosquito do survive a failed feeding attempt and that
uch surviving mosquitoes will, in general, seek to quest again since the
revious questing was unsuccessful and the fertilised mosquitoes are
riven by a natural reproductive urge to blood feed. We now assume
hat if questing is unsuccessful, the questing mosquito is either killed,
r moved to a waiting class denoted by 𝑊 . We assume that this process

continues till the mosquito dies a natural death, is killed or succeeds in
harvesting a blood meal. This process has been summarised in Fig. 1.

The Breeding site mosquitoes. The process starts with breeding site
mosquitoes which comprise the newly emerged adult mosquitoes to-
gether with any older mosquitoes that have returned to the breeding
site to lay eggs. These are denoted by the variable 𝐵. So breeding site
4

mosquitoes are increased when new adults emerge at rate 𝑎𝑅𝜆(𝑅). Their
density also increases when resting mosquitoes of type 𝑅 return to the
breeding site to lay eggs. The density reduces when these breeding
site mosquitoes migrate to the human habitats at rate 𝑏∗ per breeding
site mosquito or when they die naturally at rate 𝜇𝐵 per breeding site
mosquito. The equation for the rate of change of the type 𝐵 mosquitoes,
as in [9] ignoring delay effects, takes the form
𝑑𝐵
𝑑𝑡

= 𝑎𝑅𝜆(𝑅)
⏟⏟⏟

(1)

+ 𝑎𝑅
⏟⏟⏟

(2)

− (𝑏∗ + 𝜇𝐵)𝐵
⏟⏞⏞⏞⏟⏞⏞⏞⏟

(3)

, (2)

where 𝑎, 𝑏∗ = 𝑏𝐻
𝐾+𝐻 , 𝜇𝐵 are positive constants as described in Table 2.

The term in 𝑏∗ has two parameters: 𝐻 the total human population
and 𝐾 a parameter to represent an alternative blood source for the
questing mosquitoes. The provenance of 𝐾 is based on the fact that
human-biting mosquitoes frequently also seek and harvest blood from
animals and this has an effect on the mosquito control problem and
consequently on the transmission of human mosquito borne diseases.
As indicated earlier, a detailed description of the parameter 𝐾 is given
in [20]. In Eq. (2), the different terms are explained as follows:

(1) This term models the rate of eclosion of new adult female
mosquitoes as a result of eggs laid by mosquitoes of type 𝑅. The
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Fig. 1. Extension of the model in [9] to include multiple feeding attempts. The total mosquito population is divided into distinct classes representing vectors at the breeding site,
hose questing, those resting after a blood meal or those in the waiting class. When type 𝐵 mosquitoes arrive at the human habitat sites, they become type 𝑊 mosquitoes. If a
ype 𝑄 mosquito successfully harvests blood, it becomes a type 𝑅 mosquito. If questing is unsuccessful, the mosquito is either killed or is moved to a waiting class, 𝑊 . Mosquitoes
n the waiting class are attracted back to the human population, where they have another chance to quest and the process continues.
e

s
q
t
T

specific form of this term will depend on the type of mosquito
under discussion, whether the Anopheles spmosquito, for example,
or the Aedes sp mosquito, based on their aquatic characteris-
tics [13]. We note this formulation does not explicitly account for
the aquatic life stages. Instead the contributions from the aquatic
stages to the growth of the adult mosquito population is implicitly
embedded via the function 𝜆(𝑅).

(2) This term models the rate of return of older mosquitoes to the
breeding site to lay eggs.

(3) This term models the rate of removal of the breeding site mosquito
either by migration to the human habitat sites at rate 𝑏∗𝐵, or by
natural death at rate 𝜇𝐵𝐵.

he Questing mosquitoes. Fertilised mosquitoes, type 𝐵 mosquitoes from
he breeding site, migrate to the human habitat at the indicated rate
o become questing mosquitoes, that is, mosquitoes of type 𝑄. The
igration is driven by the fact that these mosquitoes require a blood
eal for the maturation of their eggs, with blood obtained either from

he human or animal population. In this model, we account only for
osquitoes that quest for blood within the human population. At the
uman habitat site we assume that the mosquitoes quests by making
ttempts at making contacts and interacting with humans via simple
ass action contact. If questing is successful (with probability 𝑝), the
osquito becomes well fed and reproducing mosquito of type 𝑅. If the

questing fails (with probability 1 − 𝑝), we assume that a fraction, 𝜃,
of these mosquitoes that failed the feeding attempt are moved to the
waiting class, 𝑊 , while the remaining (1−𝜃) are killed. Thus the density
of mosquitoes in the questing class increases, when the breeding site
and waiting class mosquitoes arrive at human habitat site. The density
of the questing mosquitoes decreases when they die of natural causes,
or if they succeed in feeding to move out of the class into the resting
class, or if they fail to feed moving into the waiting class. Assuming a
natural death rate 𝜇𝑄 per 𝑄 mosquito, we have the following equation
for the rate of change of the density of type 𝑄 mosquitoes:

𝑑𝑄
𝑑𝑡

= 𝑏∗𝐵
⏟⏟⏟

− 𝑝𝜏∗𝑄
⏟⏟⏟

− 𝜃(1 − 𝑝)𝜏∗𝑄
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
(1) (2) (3)

5

− (1 − 𝜃)(1 − 𝑝)𝜏∗𝑄
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

(4)

− 𝜇𝑄𝑄
⏟⏟⏟

(5)

+ 𝑐∗𝑊
⏟⏟⏟

(6)

(3)

where 𝜏∗ = 𝜏𝐻 > 0, 𝑝, 𝜃, 𝑏∗ are positive constants and explained in
Table 2. Each of the terms is explained as follows:

(1) New questing mosquitoes from the breeding site.
(2) Questing mosquitoes that survive feeding encounter and success-

fully acquire blood meal.
(3) Questing mosquitoes that survive feeding encounter but did not

acquire blood meal. These live to quest again for the needed
blood meal.

(4) Deaths due to questing. These vectors did not survive feeding
encounter as they were killed in the process.

(5) Deaths due to natural causes. These vectors die due to natural
causes.

(6) Mosquitoes from the waiting class that return to human habitats
to again attempt to quest for blood.

The Waiting class mosquitoes. The density of mosquitoes in the waiting
class increases when questing mosquitoes fail to take a blood meal and
are not killed. The density there decreases when these mosquitoes are
attracted back to the human population, where they can quest again for
blood. They can also die by natural causes. The equation for the rate
of change of the mosquitoes in the waiting class is
𝑑𝑊
𝑑𝑡

= 𝑞𝜏∗𝑄 − (𝑐∗ + 𝜇𝑊 )𝑊 , (4)

where 𝜏∗, 𝑞 = 𝜃(1 − 𝑝), 𝑐∗ = 𝑐𝐻
𝐻+𝐾 , 𝜇𝑊 are positive constants, as

xplained in Table 2.
The Resting class mosquitoes. The well fed and resting mosquitoes are

imply referred to as the resting mosquitoes. These are generated when
uesting mosquitoes succeed to blood feed. Their size decreases when
hey migrate to the breeding site to lay eggs or when they die naturally.
he equation governing the rate of change is
𝑑𝑅
𝑑𝑡

= 𝑝𝜏∗𝑄 − (𝑎 + 𝜇𝑅)𝑅, (5)

where 𝑝, 𝜏∗, 𝜇 and 𝑎 are positive constants.
𝑅
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The system of equations modelling the multiple feeding human–
osquito interactive framework is then given by putting together
qs. (2)–(5), to have
𝑑𝐵
𝑑𝑡

= 𝑎𝑅𝜆(𝑅) + 𝑎𝑅 − (𝑏∗ + 𝜇𝐵)𝐵,

𝑑𝑄
𝑑𝑡

= 𝑏∗𝐵 + 𝑐∗𝑊 − (𝜏∗ + 𝜇𝑄)𝑄,

𝑑𝑊
𝑑𝑡

= 𝑞𝜏∗𝑄 − (𝑐∗ + 𝜇𝑊 )𝑊 , (6)
𝑑𝑅
𝑑𝑡

= 𝑝𝜏∗𝑄 − (𝑎 + 𝜇𝑅)𝑅,

ogether with an appropriate set of initial conditions. One form of initial
ata that can be assigned could be

(0) = 𝐵0, 𝑄(0) = 𝑅(0) = 𝑊 (0) = 0. (7)

n Ngwa et al. [37], a procedure for computing the death rates for
osquitoes at each gonotrophic cycle stage, based on the remaining

ife period of the mosquito, was presented. Here, we have not explicitly
ounted all the gonotrophic cycles and it is no longer straightforward to
ive an accurate prediction on the values of the death rates. However, if
e assume that the natural death rates of the mosquitoes at each stage

s approximately inversely proportional to the remaining life period
or the mosquito in question, then we can write down the general
rescription

𝑥 ≊ 1
remaining life period for mosquito of type 𝑥

, (8)

here the maximum average remaining life period is the lifespan of the
osquito in question. At the start of the process, mosquitoes of type 𝐵

re younger than mosquitoes of type 𝑅 with the ages of the mosquitoes
f types 𝑄 and 𝑊 lying in between these two extremes, i.e. 𝜇𝐵 ≤
𝑄 ≤ 𝜇𝑊 ≤ 𝜇𝑅. As the process progresses, however, mosquitoes at
he breeding site are now made up of the newly emerged mosquitoes
nd those that successfully fed to return to the breeding site and their
emaining life is different. In that case the aforementioned inequality is
o longer true. However we continue to use this relation for the birth
ates for approximation purposes.

.2. Model’s basic properties

Let 𝒙 ∶ R+ ⟶ R4 be the vector valued function such that 𝒙(𝑡) =
𝐵(𝑡), 𝑄(𝑡),𝑊 (𝑡), 𝑅(𝑡)). The system (6) can be written in the form
𝑑𝒙
𝑑𝑡

= 𝒇 (𝒙), 𝒙(0) = 𝒙0, (9)

where 𝒇 ∶ R4 ⟶ R4 is a vector valued function defined as: 𝒇 (𝒙) =
𝑓1(𝒙), 𝑓2(𝒙), 𝑓3(𝒙), 𝑓4(𝒙)), with 𝑓1(𝒙) = 𝑎𝑅𝜆(𝑅) + 𝑎𝑅− (𝑏∗ +𝜇)𝐵, 𝑓2(𝒙) =
𝑏∗𝐵 + 𝑐∗𝑊 − (𝜏∗ + 𝜇)𝑄, 𝑓3(𝒙) = 𝑞𝜏∗𝑄 − (𝑐∗ + 𝜇)𝑊 and 𝑓4(𝒙) = 𝑝𝜏∗𝑄 −
(𝑎 + 𝜇)𝑅.

Lemma 2.1. The function 𝒇 in (9) is Lipschitzian

Proof. See Appendix A. For more information, see [45]. □

Theorem 2.1 (Existence, Uniqueness, Positivity and Boundedness of So-
lutions). The differential Eq. (9) has a unique positive solution that is
bounded.

Proof. See Appendix A and also [45] □

2.3. Reparameterisation and scaling

To remove the dimension-like character of the variables in the
system given by model (53), we re-scale by considering the change of
coordinates:

𝑡∗ = 𝑡 , 𝐵∗ = 𝐵 , 𝑄∗ = 𝑄 , 𝑊 ∗ = 𝑊 , 𝑅∗ = 𝑅 (10)

𝑇 0 𝐵0 𝑄0 𝑊 0 𝑅0 a

6

here

𝑇 0 = 1
𝑎 + 𝜇𝑅

, 𝑅0 = 𝐿, 𝑄0 =
𝑅0(𝑎 + 𝜇𝑅)

𝑝𝜏∗
=

(𝑎 + 𝜇𝑅)𝐿
𝑝𝜏∗

,

𝑊 0 =
𝑞𝜏∗𝑄0

𝑐∗ + 𝜇𝑊
=
(

𝑞
𝑐∗ + 𝜇𝑊

)(

𝐿(𝑎 + 𝜇𝑅)
𝑝

)

, (11)

𝐵0 =
𝑄0(𝜏∗ + 𝜇𝑄)

𝑏∗
=

(𝑎 + 𝜇𝑅)(𝜇𝑄 + 𝜏∗)𝐿
𝑝𝜏∗𝑏∗

.

ropping the asterisks we have the scaled system
𝑑𝐵
𝑑𝑡

= 𝛼𝑅𝜆(𝑅) + 𝛼𝑅 − 𝜌𝐵,

𝑑𝑄
𝑑𝑡

= 𝛾(𝐵 + 𝛽𝑊 −𝑄),

𝑑𝑊
𝑑𝑡

= 𝛿(𝑄 −𝑊 ) (12)
𝑑𝑅
𝑑𝑡

= 𝑄 − 𝑅,

where it is understood that we have scaled the corresponding form in
the birth rate function 𝜆(𝑈 ), and

𝛼 = 𝑎𝑅0𝑇 0

𝐵0
=
( 𝑎
𝑎 + 𝜇𝑅

)( 𝑏∗ + 𝜇𝐵

𝑎 + 𝜇𝑅

)( 𝑏∗

𝑏∗ + 𝜇𝐵

)( 𝜏∗

𝜏∗ + 𝜇𝑄

)

𝑝 <
( 𝑏∗ + 𝜇𝐵

𝑎 + 𝜇𝑅

)

= 𝜌,(13)

𝛽 = = 𝑐∗𝑊 0

𝑄0(𝜏∗ + 𝜇𝑄)
= 𝑞

(

𝑐∗

𝑐∗ + 𝜇𝑊

)(

𝜏∗

𝜏∗ + 𝜇𝑄

)

< 1, (14)

𝛾 =
𝜇𝑄 + 𝜏∗

𝑎 + 𝜇𝑅
, 𝛿 =

𝑐∗ + 𝜇𝑊

𝑎 + 𝜇𝑅
. (15)

e can recover the model, without a waiting class, studied in [9] from
12) by setting3 𝛽 = 𝛿 = 0. In what follows we characterise how
llowing these terms to be non-zero affect the results in [9]. Based on
he fact that mosquitoes start from a breeding site and end up at the
ame breeding site 𝑏 = 𝑎. We deduce that 𝑏∗ < 𝑎, since 𝑏∗ is 𝑏 weighted
y 𝐻

𝐻+𝐾 , with the two equal if 𝐾 = 0. For 𝐾 ≠ 0 and based on the
ssumption that 𝜇𝐵 ≤ 𝜇𝑅 we must have 𝜌 < 1. Thus we have that
≤ 𝛽 < 1, 0 ≤ 𝛼 < 𝜌 < 1, 0 < 𝛾 < ∞. The parameter 𝛾 can therefore be
seful in studying the ensuing dynamics since it is linked to the mass
ction parameter 𝜏∗ = 𝜏𝐻 that measures the availability of blood meals
or the mosquitoes. Similarly, the parameters 𝛽 and 𝛿, which are also
inked to the mass action parameter 𝜏𝐻 and the rate of return to the
uesting state, 𝑐∗, will play an important role in the ensuing analysis.
e note that 𝑐∗ can be very small if it takes long for the waiting class

ectors to return to the questing state (that is 1
𝑐∗ is very large) or 𝑐∗ can

be very large if the waiting time to return to quest is very short (that
is 1

𝑐∗ is very small). So to be general, all we can say about the relative
ize of the parameter 𝛿 is that 0 < 𝛿 < ∞. These reparameterisations

clearly show how the parameters 𝛼, 𝛽 and 𝜌 compare with unity as well
as how 𝜌 compares with 𝛼.

3. Mathematical analysis

In this section we present a mathematical development of the
derived model. In the process we will determine the essential properties
of the system. We start with the issue of existence and stability of steady
constant solutions.

3.1. Existence and stability of steady state solutions

In this subsection, we shall investigate the existence and linear
stability of steady state solutions for the scaled system.

Theorem 3.1 (Existence of Steady States Solutions.). Let 𝜆 ∶ [0,∞)⟶ R
e a continuously differentiable strictly monotone decreasing function with
(0+) = 𝜆(0) > 0 satisfying 𝐴1 − 𝐴3. System (12) has at least two
teady state solutions: The trivial steady state (0, 0, 0, 0) which always exists

3 From the formulation, setting 𝑐∗ = 0, 𝜇𝑊 = 0 and 𝜃 = 0 which corresponds
o 𝑞 = 0, with zero initial values for 𝑊 (𝑡) yields the system with 𝑊 (𝑡) = 0 ∀𝑡 ≥ 0
nd we can recover the simplified model as desired.
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and at least one non-trivial steady state solutions represented in terms of
𝑅∗ as (𝐵∗, 𝑄∗,𝑊 ∗, 𝑅∗) = (𝐵∗(𝑅∗), 𝑄∗(𝑅∗),𝑊 ∗(𝑅∗), 𝑅∗), where 𝑅∗ =
𝜆−1

( 𝜌(1−𝛽)
𝛼 − 1

)

, which exists if

lim
𝑅→∞

𝜆(𝑅) <
𝜌(1 − 𝛽)

𝛼
− 1 < 𝜆(0). (16)

roof. We start by noting that whenever 𝜌(1−𝛽)
𝛼 −1 lies between 𝜆(0) and

lim𝑅→∞ 𝜆(𝑅), then inequality (16) follows by the strict monotonicity of
the function 𝜆. If 𝐸 = (𝐵∗, 𝑄∗,𝑊 ∗, 𝑅∗) is a steady state (equilibrium
olution) of system (12), it must satisfy

𝑅∗𝜆(𝑅∗) +𝛼𝑅∗ − 𝜌𝐵∗ = 𝛾(𝐵∗ + 𝛽𝑊 ∗ −𝑄∗) = 𝛿(𝑄∗ −𝑊 ∗) = 𝑄∗ −𝑅∗ = 0.

(17)

From the last two equations of (17), we have that 𝑄∗ = 𝑊 ∗ = 𝑅∗.
From the first equation, we have 𝐵∗ = 𝛼𝑅∗(𝜆(𝑅∗)+1)

𝜌 and so substituting

in the second equation yields the equation 𝑅∗
(

𝛼(𝜆(𝑅∗)+1)
𝜌 + 𝛽 − 1

)

= 0.
he solution 𝑅∗ = 0 gives the trivial steady state which always exist.
he non-trivial steady state, whenever it exists, is determined from the
quation 𝛼(𝜆(𝑅∗)+1)

𝜌 +𝛽−1 = 0, which can be rewritten as 𝜆(𝑅) = 𝜌(1−𝛽)
𝛼 −1.

Since 𝜆 is strictly monotone decreasing and continuous, with 𝜆(0) >
lim𝑅→∞ 𝜆(𝑅), whenever

( 𝜌(1−𝛽)
𝛼 −1

)

lies between 𝜆∞ = lim𝑅→∞ 𝜆(𝑅) and
𝜆(0), there exists 𝑅∗ > 0 such that 𝜆(𝑅∗) = 𝜌(1−𝛽)

𝛼 −1, by the intermediate
value theorem. Since 𝜆 is monotone decreasing, the constructed 𝑅∗

xists and its value is uniquely given by the formula 𝑅∗ = 𝜆−1
( 𝜌(1−𝛽)

𝛼 −1
)

henever 𝜆∞ < 𝜌(1−𝛽)
𝛼 − 1 < 𝜆(0) as required. □

Theorem 3.1 assures us that the system can have up two steady state
olutions as follows:

𝑎) The trivial steady state 𝐸0 ∶ (𝐵∗, 𝑄∗,𝑊 ∗, 𝑅∗) = (0, 0, 0) (18)
(𝑏) The non-trivial steady state

𝐸1 ∶ (𝐵∗, 𝑄∗,𝑊 ∗, 𝑅∗) = (𝐵∗(𝑅∗), 𝑅∗, 𝑅∗, 𝑅∗) (19)

here 𝑅∗ = 𝜆−1
( 𝜌(1−𝛽)

𝛼 − 1
)

whenever inequality (16) holds. We can
then gather considerable information about the size of the parameter 𝛽
by examining left side of the inequality Eq. (16) in details as we do in
Remark 3.1.

Remark 3.1. We note that for the class of models considered here
for which lim𝑅→∞ 𝜆(𝑅) > 0, the inequality (16) implies that 𝜌(1−𝛽)

𝛼 > 1,
which then translates to the inequality 0 ≤ 𝛽 < 𝜌−𝛼

𝜌 to satisfy the bound
n 𝛽 from Eq. (14); namely, 𝛽 < 1. This places a stricter bound on the
alues of 𝛽. For models for which 𝜆(𝑅) can go negative, 𝜆(𝑅) < 0 can

be interpreted as the case of a decline in the breeding site mosquitoes,
with the restriction on 𝛽, namely, 0 ≤ 𝛽 < 𝜌−𝛼

𝜌 , no longer true. In that
case, the region 𝛽 < 𝜌−𝛼

𝜌 < 1, would then be plausible, extending the
interval to 0 ≤ 𝛽 < 1 as earlier derived in Eq. (14). In the commentaries
hat follow, since our discussion is based on a general model, we will
ontinue to use the restricted interval 0 ≤ 𝛽 < 𝜌−𝛼

𝜌 , unless otherwise
noted.

Remark 3.2. We can also gather considerable information about the
system by examining the inequality (16) in details as follows:

1. The whole of the inequality (16), for any suitable 𝜆, provides a
necessary condition for the existence of a non-trivial steady state
solution to our problem.

2. The right half of the inequality in (16) given by 𝜌(1−𝛽)
𝛼 − 1 <

𝜆(0) can be rearranged, in two ways, to give two threshold
parameters as follows:

(a) In the first instance, we have 𝜌(1−𝛽)
𝛼 − 1 < 𝜆(0) ⇒ 1 > 1,

where

1 =
𝛼𝜆(0)

. (20)

𝜌(1 − 𝛽) − 𝛼

7

In this case, for non-negative 1, we require a restriction
on 𝛽 given by 0 ≤ 𝛽 < 𝜌−𝛼

𝜌 .
(b) In the second instance, we have 𝜌(1−𝛽)

𝛼 − 1 < 𝜆(0) ⇒ 2 >
1, where

2 =
𝜌𝛽 + 𝛼𝜆(0)

𝜌 − 𝛼
, (21)

which is always non-negative for all non-negative values
of the constituent parameters, since 𝛼 < 𝜌, and there is no
restriction on 𝛽.

3. Any one of the threshold parameters 1 and 2 so identified
by (20) and (21) can be useful in determining further properties
of the model, including the stability of steady state solutions,
provided we find a useful interpretation for it in the context of
the model presented here.

Though the natures of 1 and 2 appear different, both exhibit
threshold like properties as expressed in the following results:

Theorem 3.2 (a). 1 > 1 ⇔ 2 > 1, (b) 1 ≤ 1 ⇔ 2 ≤ 1

Proof. (a) Suppose 1 > 1 ⇒ 𝛼𝜆(0)
𝜌(1−𝛽)−𝛼 > 1 ⇒ 𝛼𝜆(0) > 𝜌(1 − 𝛽) − 𝛼 ⇒

𝛽𝜌+𝛼𝜆(0)
𝜌−𝛼 = 2 > 1. On the other hand suppose 𝑁2 > 1 ⇒ 𝛽𝜌+𝛼𝜆(0)

𝜌−𝛼 > 1 ⇒
𝛼𝜆(0)

𝜌(1−𝛽)−𝛼 = 1 > 1. (b) is just the contrapositive of (a). □

Theorem 3.3. Let the conditions of Remark 3.1 and the result of
Theorem 3.2 continue to hold. Let  be any of the quantities 1 or 2.
Then, we have the following:

1. (i) Whenever  < 1, then 1 < 2, (ii) Whenever  > 1, then
1 > 2, and (iii) 1 = 1 ⇔ 2 = 1.

2. When 𝛽 = 0, 1 = 2 =
𝛼𝜆(0)
𝜌−𝛼 = 𝑚.

Proof. 1.(𝑖) Suppose  < 1. Then by Theorem 3.2, both 1 < 1
and 2 < 1. 1 < 1 ⇒ 𝛼𝜆(0)−(𝜌(1−𝛽)−𝛼)

𝜌(1−𝛽)−𝛼 < 0. Now, 1 − 2 =
𝜌𝛽(𝛼𝜆(0)−(𝜌(1−𝛽)−𝛼))

(𝜌(1−𝛽)−𝛼)(𝜌−𝛼) < 0. So 1 < 2. 1.(𝑖𝑖) is established similarly. 1.(𝑖𝑖𝑖)
uppose 1 = 1, then 𝛼𝜆(0) = (𝜌(1 − 𝛽) − 𝛼). Substitute this value of
𝜆(0) in 2 to see results. Similar argument if we start with 2 = 1.

The result in 2. follows from substituting 𝛽 = 0 in  . □

Fig. 2 illustrates the results of Theorems 3.2 and 3.3

Stability of steady state solutions
To explore the stability properties of the steady states of this model,

we note that the community or Jacobian matrix corresponding to model
(16) is given by

𝐴(𝑅∗) =

⎛

⎜

⎜

⎜

⎜

⎝

−𝜌 0 0 𝛼𝐻(𝑅∗)
𝛾 −𝛾 𝛽𝛾 0
0 𝛿 −𝛿 0
0 1 0 −1

⎞

⎟

⎟

⎟

⎟

⎠

(22)

where 𝐻(𝑅∗) = 1 + 𝜆(𝑅∗) + 𝑅∗𝜆′(𝑅∗) and 𝑅∗ is any of the steady state
solutions described by Theorem 3.1. Here, we study the local stability
properties of the steady state solutions by examining the eigenvalues of
the Jacobian matrix, 𝐴(𝑅∗), evaluated at the steady state. If we denote
by 𝜁 the eigenvalues of 𝐴(𝑅∗), then 𝜁 satisfies

𝐴(𝑅∗) − 𝜁𝐼| = 0 ⟺ (𝜌+𝜁 )(1+𝜁 )
(

(𝛾+𝜁 )(𝛿+𝜁 )−𝛽𝛿𝛾
)

−𝛾𝛼𝛽𝐻(𝑅∗)(𝛿+𝜁 ) = 0. (23)

his is a fourth degree polynomial in 𝜁 which we write in the form

4(𝜁 ) = 𝜁4 + 𝑎3𝜁
3 + 𝑎2𝜁

2 + 𝑎1𝜁 + 𝑎0 (24)

here

3 = 𝛿 + 𝛾 + 𝜌 + 1, 𝑎2 = 𝜌 + 𝛾𝛿(1 − 𝛽) + (𝛾 + 𝛿)(1 + 𝜌),

𝑎1 = 𝛿𝛾(1 − 𝛽)(1 + 𝜌) + 𝜌(𝛿 + 𝛾) − 𝛾𝛼𝐻(𝑅∗),
∗
𝑎0 = 𝛿𝛾𝜌(1 − 𝛽) − 𝛿𝛾𝛼𝐻(𝑅 ),



B.M. Ghakanyuy, M.I. Teboh-Ewungkem, K.A. Schneider et al. Mathematical Biosciences 350 (2022) 108832

𝜆
u
b
b

a
m
o
n
o

T
L
a
s
i

P
𝑅
t

𝑎

D

𝛺

t
f



Fig. 2. Illustration of Theorems 3.2 and 3.3. The two threshold parameters 1 and 2, plotted as a function of 𝛽 for 𝛼 = 0.5 and 𝜌 = 0.8, fixed, and for 𝜆(0) = 0.1 (graph (a)),
(0) = 0.6 (graph (b)) and 𝜆(0) = 0.9 (graph (c)). As 𝛽 approaches its maximum value 𝜌−𝛼

𝜌
, illustrated by the dashed vertical line, 1, represented by the black curve grows

nbounded, while 2, represented by the green curve, remains bounded. Both are compared with the value 1, the red line, showing that they are always both less than unity or
oth larger then unity. The − intercept corresponds to the value of 𝑚 = 𝛼𝜆(0)

𝜌−𝛼
, when 𝛽 = 0. Thus, mathematically, both threshold parameters can be used as a measure for the

asic offspring number. Biologically one may be more suitable than the other.
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nd we have completely characterised the coefficients of the polyno-
ial in terms of the parameters of the system showing us clearly that

nly 𝑎1 and 𝑎0 will change as a function of the steady state’s value. The
ext result shows the instability of the trivial steady state when any one
f the Threshold parameters, 1 or 2 is greater than unity.

heorem 3.4. Let 𝜆 ∶ [0,∞) → R be positive and monotone decreasing.
et us denote by  any one of the threshold parameters identified by (20)
nd (21). Then  > 0 determines the stability properties of the trivial
teady state in the sense that when 0 <  < 1, the trivial steady state
s locally-asymptotically stable and unstable if  > 1.

roof. Clearly, referring to the coefficients of (24) when evaluated at
∗ = 0, we have 𝑎3 > 0, 𝑎2 > 0 since 1 > 𝛽. We rewrite 𝑎1 and 𝑎0 in

erms of the threshold parameter,  as follows:

1 =

{

𝛾
(

𝜌𝛽 + (1 − 𝛽)𝛿(𝜌 + 1) + (1 − )(𝜌(1 − 𝛽) − 𝛼)
)

+ 𝛿𝜌 if  = 1,
𝛾
(

(1 − 𝛽)𝛿(𝜌 + 1) + 𝛽𝜌 + (𝜌 − 𝛼)(1 − )
)

+ 𝛿𝜌 if  = 2.

𝑎0 =

{

𝛼𝛿𝛾(𝜌(1 − 𝛽) − 𝛼)(1 − ) if  = 1,
𝛼𝛿𝛾(𝜌 − 𝛼)(1 − ) if  = 2.

Here, 1 and 2 are as defined by (20) and (21). We then note that
𝑎1 > 0 whenever  < 1. Also 𝑎0 is strictly greater than zero whenever
0 <  < 1. The local stability of the trivial steady state when 0 <  < 1
follows immediately from the Routh–Hurwitz conditions, [46], while
its instability for  > 1 can be seen by observing that as  increase
through  = 1 to values where  > 1, 𝑎0 changes sign from positive to
negative. Thus, by Descartes rule of signs, there is a positive real root
for 𝜁 indicating the presence of exponentially growing solutions in the
linear regime. □

The result of Theorem 3.4 seems to indicate that only local stability
for the trivial steady state might be plausible when  < 1. The
next result shows that we do in fact have global stability in these
circumstances.

Theorem 3.5. Suppose 𝜆 satisfy the conditions in Theorem 3.4. The trivial
steady state, 𝟎 = (0, 0, 0, 0) of model (12) is globally and asymptotically
stable in R4

+ whenever  ≤ 1.

Proof. Let 𝑇𝑚 = 𝐵 + 𝑄 + 𝑊 + 𝑅 be the total vector population. Then
𝑇𝑚 ≤ 𝛼𝜆𝑚

𝜇 , where 𝜆𝑚 and 𝜇 are as given in Theorem A.3 and its proof.
efine

= {(𝐵,𝑄,𝑊 ,𝑅) ∈ R4
+ ∶ 0 ≤ 𝑇𝑚 ≤

𝛼𝜆𝑚
𝜇

}, (25)

hen 𝛺 is a positively invariant subset of R4
+. Next, we construct the

unction

(𝒙) = 𝐴𝑣𝐵 +
𝜌
𝐴𝑣𝑄 +

𝛽𝜌
𝐴𝑣𝑊 + 𝜌(1 − 𝛽)𝐴𝑣𝑅, (26)
𝛾 𝛿 m

8

for 𝒙 = (𝐵,𝑄,𝑊 ,𝑅) ∈ 𝛺 and any positive constant 𝐴𝑣. It is clear that
(0, 0, 0, 0) = 0 and (𝒙) > 0 for all 𝒙 ∈ 𝛺∖{𝟎} since 𝛽 < 1. The function
 so defined is therefore a Lyapunov function of system (12). Since the
right hand side of system (12) is made up of continuously differentiable
functions, for each 𝒙 ∈ R4

+ the Lyapunov derivative is

𝑑(𝒙)
𝑑𝑡

=
(

𝜕
𝜕𝐵

, 𝜕
𝜕𝑄

, 𝜕
𝜕𝑊

, 𝜕
𝜕𝑅

)

·
(

𝑑𝐵
𝑑𝑡

, 𝑑𝑄
𝑑𝑡

, 𝑑𝑊
𝑑𝑡

, 𝑑𝑅
𝑑𝑡

)

,

= 𝐴𝑣
𝑑𝐵
𝑑𝑡

+
𝜌
𝛾
𝐴𝑣

𝑑𝑄
𝑑𝑡

+
𝛽𝜌
𝛿
𝐴𝑣

𝑑𝑊
𝑑𝑡

+ 𝜌(1 − 𝛽)𝐴𝑣
𝑑𝑅
𝑑𝑡

,

= 0𝐴𝑣𝑅( − 1) + 𝛼𝑅 (𝜆(𝑅) − 𝜆(0))𝐴𝑣,

0 =
{

(𝜌(1 − 𝛽) − 𝛼) if  = 1,
(𝜌 − 𝛼) if  = 2,

= 0𝐴𝑣𝑅( − 1) + 𝛼𝑅2 (𝜆′(𝑅̃)
)

𝐴𝑣,

𝑅̃ ∈ (0, 𝑅) a mean value point.

e note that 0 so defined is positive for  > 0 since 𝛼 < 𝜌 and 1 > 0
henever 𝛽 < 𝜌−𝛼

𝜌 . Then, 𝑑(𝒙)
𝑑𝑡 < 0 ∀ 𝒙 ∈ 𝛺∖{𝟎} whenever 0 <  ≤ 1

since 𝜆 is monotonically decreasing and 0 > 0. Since 𝑑(𝒙)
𝑑𝑡 < 0 for

all 𝒙 ∈ 𝛺∖{𝟎}, the Lyapunov–LaSalle theorem [47] assures us that all
paths in 𝛺 ⧵ {𝟎} approach the largest positively invariant subset 𝛺̃ ⊂ 𝛺

herein 𝑑(𝒙)
𝑑𝑡 = 0. 𝛺̃ is the singleton {𝒙 = 𝟎}. Hence 𝒙 → 𝟎 as 𝑡 → ∞

whenever  ≤ 1 and so the global stability for 𝟎 whenever  ≤ 1 is
stablished. □

The result in 3.5 indicate that mosquito extinction is possible. In
ppendix B, we present some detail results on the stability properties
f the non-trivial steady state. There, we demonstrate the existence of
Hopf bifurcation to periodic solutions by deriving expressions for the

nitial amplitude and phase of oscillating solutions.

.2. The basic offspring number

We have been carrying the two threshold parameters identified by
20) or (21) which guarantee the existence of positive steady state
olutions for the system in our analyses. In this subsection, we discuss
n depth the nature of the parameter  and its derivation. We start by
ntroducing the notion of a gonotrophic cycle path and then demonstrate
hat the form of the parameter  is dependent on how we view the
low and transitions on the gonotrophic cycle path

Mosquitoes of type 𝐵 visit vertebrate host such as humans at verte-
rate habitat sites (questing places) to become questing mosquitoes of
ype 𝑄 which eventually become resting mosquitoes of type 𝑅 if they
uccessfully acquire a blood meal. If the mosquitoes of type 𝑅 survive
he resting period they eventually return to the breeding site and lay
ggs that hatch to produce new adult mosquitoes. There is therefore
reproductive path, the gonotrophic cycle path, that the female adult
osquito must follow through out its reproductive life.
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Definition 3.1 (Gonotrophic Cycle Path.). A gonotrophic cycle path
ay is the directed path traced by the mosquito as it moves though a

onnected lattice that has vertices or nodes at breeding sites, questing
laces and resting locations. A female mosquito is said to have com-
leted a gonotrophic cycle if it successfully migrates from a breeding
ite to a vertebrate host, takes blood, rests and then migrates back to a
reeding site and lays eggs.

Breeding sites, questing places and resting locations need not be
istinct for each individual mosquito. However, a gonotrophic cycle
s called complete4 if that path constitutes a cycle that starts at a
reeding site and ends at a breeding site accompanied by a successful
aying of eggs at the breeding site. As the female Anopheles sp mosquito
ompletes several gonotrophic cycles during its entire reproductive
ife, there is a flow of biomass from generation to generation through
he blood feeding habit of the mosquito. That is, each mosquito that
urvives the gonotrophic cycle will introduce new offspring into the
dult mosquito pool, and the mosquito population can continue to
row only in those circumstances where each adult female mosquito
an generate, on average, more than one descendant mosquito into
he adult mosquito pool upon completion of all its gonotrophic cycles.
bviously each adult mosquito that falls out of the gonotrophic cycle
ath way (by, for example, failing to blood feed or being killed during
he resting phase) will not contribute to the next generation of adult
osquitoes. This leads us to consider the concept of a basic offspring
umber. The following definition was used in [3]:

efinition 3.2 (Basic Offspring Number.). The basic offspring number is
he average number of new adult mosquitoes, that arise from one adult
emale reproducing mosquito during its entire period of reproductivity.

The basic offspring number is a threshold parameter comparable
ith the basic reproduction number in epidemiology, and has the same

nterpretation in that if this number is larger than one, we expect the
osquito population to thrive and if it is less than one we expect the
osquito population to die out over time.

We can identify the basic offspring number with a threshold quan-
ity, which is an aggregate of parameters of the system. Such an
ggregate parameter can be identified in several ways: (1) It can be
een as a parameter that sets conditions for the existence of a non-trivial
teady state solution for the system under consideration. This we have
nalysed with Remark 3.2 and seen that such a threshold parameter is
ot uniquely determined. (2) It can also be seen as a parameter whose
ize determines the stability or instability of the trivial steady state as
e have seen in the result of Theorem 3.4. Now, with the hope to

inding a plausible reason to select a suitable threshold parameter for
ur model, we borrow a leaf from epidemiological concepts and use, as
third method, the next generation matrix method of van den Driessche
nd Watmough [48], to calculate the basic offspring number as the
argest eigenvalue of a positive linear operator. To do this, we consider
s before 𝒙 = (𝐵,𝑄,𝑊 ,𝑅)𝑇 a column vector in R4 and write the
ystem 𝒙′(𝑡) = 𝒇 (𝒙(𝑡)) as a difference of two vectors  and  such that
(𝒙) =  (𝒙)−(𝒙), where  is a vector of new adult mosquitoes and 

is a vector of transitions into the different stages. If  is this basic
offspring number, then  = max𝜆{𝜆 ∶ 𝜆 is an eigenvalue of 𝐹𝑁−1}
where 𝐹 and 𝑁 are respectively the Jacobian matrices of  and 
valuated at the trivial state 𝐵 = 𝑄 = 𝑊 = 𝑅 = 0.

4 In [37], an example of a mathematical model for mosquito population
ynamics that explicitly undertakes complete gonotrophic cycle counts is
nalysed. To understand the flow, we must separate the events that occur at
he nodes or vertices of the path (laying of eggs at the breeding site, blood
eeding at the questing places, egg maturation at the resting locations) from
he path itself; even though successful occurrence of each of the events at the
espective nodes, is crucial in the realisation or completion of the gonotrophic
ycle.
9

The computation of the next generation matrix requires that we
interpret very clearly what we mean by new births in the system, as
well as transitions. It has been reported that the choice of interpretation
f the two concepts ‘‘new births’’ and ‘‘transition’’ can have an effect
n the outcome in the sense that it can lead to different threshold
alues that differ in size but retain their threshold-like character [49–
1]. In the original model studied in [9], there was no ambiguity in
he interpretation of new births into the system and transitions in that
ystem. With the introduction of the waiting class 𝑊 , here, there is
hen a possibility of regarding mosquitoes in the 𝑊 class as being
ut of the main flow (or gonotrophic cycle path) and can be seen as

‘new births’’ when they return to the main flow path. This opens up
different possibility for describing the next generation matrix. Thus

he generation and transition of new mosquitoes onto the gonotrophic
ycle path is affected by the introduction of the waiting class 𝑊 , giving
s two possible next generation matrices as we now present below:

On the one hand, we can define

1(𝒙) =

⎛

⎜

⎜

⎜

⎜

⎝

𝛼𝑅𝜆(𝑅)
0
0
0

⎞

⎟

⎟

⎟

⎟

⎠

, 1(𝒙) =

⎛

⎜

⎜

⎜

⎜

⎝

𝜌𝐵 − 𝛼𝑅
𝛾(𝑄 − 𝐵 − 𝛽𝑊 )
𝛿(𝑊 −𝑄)
𝑅 −𝑄

⎞

⎟

⎟

⎟

⎟

⎠

. (27)

n this characterisation, we assume that ‘‘new births’’, i.e. new
osquitoes onto the gonotrophic cycle path constitute the new adult
osquitoes that emerge into the system at the breeding site and all

ther terms in the system are seen as transitions (change of state from
reeding site to questing, waiting to quest and resting). Thus all other
tages in the process are regarded as demographic transition shifts. This
nterpretation leads to a next generation matrix 𝑀1 given by

1 = 𝐹1𝑉
−1
1 =

⎛

⎜

⎜

⎜

⎜

⎝

− 𝛼𝜆(0)
𝛼+(𝛽−1)𝜌 − 𝛼𝜌𝜆(0)

𝛾(𝛼+(𝛽−1)𝜌) − 𝛼𝛽𝜌𝜆(0)
𝛿(𝛼+(𝛽−1)𝜌)

𝛼(𝛽−1)𝜌𝜆(0)
𝛼+(𝛽−1)𝜌

0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

(28)

he basic offspring number 1 is thus the dominant eigenvalue of 𝑀1
nd is given by

1 = max
𝜆

{𝜆 ∶ 𝜆 is an eigenvalue of 𝑀1}

= −
𝛼𝜆(0)

𝛼 + (𝛽 − 1)𝜌
=

𝛼𝜆(0)
𝜌(1 − 𝛽) − 𝛼

, (29)

which is the expression in (20), and is non-negative only for 0 ≤ 𝛽 <
𝜌−𝛼
𝜌 . The basic offspring number so derived shows a strong dependence
n the values of 𝛼 and 𝜆(0) as was reported in [9], in that when either

𝛼 = 0 or 𝜆(0) = 0, its value is zero. It also shows strong dependence
n the size of 𝛽 in the sense that as 𝛽 approaches its upper bound 𝜌−𝛼

𝜌 ,
1 can become very large for fixed values of 𝛼 and 𝜆(0) (see Fig. 2).
Biologically, this seems to be in error since the mosquitoes have not yet
completed a gonotrophic cycle and we do not expect the reproductive
ability of the insects to increase as such only as a function of 𝛽. There
seems therefore to be a poor interpretation of transition events and
births using this scenario.

On the other hand. we can define

2(𝒙) =

⎛

⎜

⎜

⎜

⎜

⎝

𝛼𝑅𝜆(𝑅)
𝛾𝛽𝑊
0
0

⎞

⎟

⎟

⎟

⎟

⎠

, 2(𝒙) =

⎛

⎜

⎜

⎜

⎜

⎝

𝜌𝐵 − 𝛼𝑅
𝛾(𝑄 − 𝐵)
𝛿(𝑊 −𝑄)
𝑅 −𝑄

⎞

⎟

⎟

⎟

⎟

⎠

. (30)

In this second case, we assume that once a mosquito enters the 𝑊
class from the questing 𝑄 class, they have actually fallen out of the
gonotrophic cycle path and can be considered as new births events
when it returns to the gonotrophic cycle path by rejoining the 𝑊
class. If the mosquitoes that fail to feed were allowed to return to the
breeding site, the 𝑄 class will coincide with the 𝐵 class and this type
of consideration will not be possible. Since mosquitoes from several
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sources that fail to feed, even those that initially went to quest for
blood meals in animal population can enter this waiting class, we are
permitted to interpreted flows from the 𝑄 class into the 𝑊 class as new
births to write down the splitting represented by 2 and 2 indicated
in (30). This then leads to the next generation matrix 𝑀2, given by

𝑀2 = 𝐹2𝑉
−1
2 =

⎛

⎜

⎜

⎜

⎜

⎝

− 𝛼𝜆(0)
𝛼−𝜌 − 𝛼𝜌𝜆(0)

𝛾(𝛼−𝜌) 0 𝛼𝜌𝜆(0)
𝜌−𝛼

𝛽𝛾
𝜌−𝛼 − 𝛽𝜌

𝛼−𝜌
𝛽𝛾
𝛿

𝛼𝛽𝛾
𝜌−𝛼

0 0 0 0
0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

. (31)

he basic offspring number 2 is thus the dominant eigenvalue of 𝑀2
nd is given by

2 = max
𝜆

{𝜆 ∶ 𝜆 is an eigenvalue of 𝑀2} = −
𝛼𝜆(0) + 𝛽𝜌

𝛼 − 𝜌
=

𝛽𝜌 + 𝛼𝜆(0)
𝜌 − 𝛼

,

(32)

hich is the expression in (21) and it is always non-negative since
< 𝜌 − 𝛼. The second basic offspring number so derived still shows
strong dependence on 𝛼 as was seen before but when 𝛼 = 0, its value

s no longer zero, capturing the fact that there are still mosquitoes in
he waiting class that can join the cycle. The second threshold value so
omputed appears to have more desirable properties in that it clearly
hows the contributions from the mosquitoes from the gonotrophic
ycle path that bypass the 𝑊 class, 𝛼𝜆(0)

𝜌−𝛼 , and contributions from those
on the path that comes from the 𝑊 class, 𝛽𝜌

𝜌−𝛼 . Since the original model,
studied in [9], was based on the gonotrophic cycle pathway towards
population growth as is followed by a fertilised mosquito, we may
therefore interpret ‘‘new births’’ and ‘‘transitions’’ to mean that these
events take place on that very gonotrophic cycle path that is followed
by each fertilised adult female mosquito. Biologically, we conclude that
the alternate interpretation of ‘‘new births’’ and ‘‘transitions’’, that led
to formula (32), has given a threshold parameter that captures the
expected behaviour and is a generalisation from the value computed
when 𝛽 = 0 studied in [9].

Each of the decompositions given by (27) and (30) is such that
the right hand side 𝒇 (𝒙) can be decomposed into the form 𝒇 (𝒙) =
𝑖(𝒙)−𝑖(𝒙) where 𝑖 is interpreted as a vector of new adult mosquitoes
nd 𝑖 is a vector of transitions into the different stages for 𝑖 = 1, 2.

It is straightforward to establish that each of the given decomposition
satisfies the condition outlined in [48]; the two threshold parameters
so described are mathematically useful as threshold parameters, as
established by the proof of Theorem 3.2.

Remark 3.3.

1. We remark that the expressions for 1 and 2 first identified
in Eqs. (20) and (21) were initially obtained as threshold pa-
rameters associated with the existence of the non trivial steady
state and the instability of the trivial steady state, before the
next generation approach was utilised. In particular, both 1
and 2 are associated with the inequality 𝜌(1−𝛽)

𝛼 − 1 < 𝜆(0)
shown in Eq. (16). One rearrangement of the inequality yields
the expression for 1 with the condition 1 = 𝛼𝜆(0)

𝜌(1−𝛽)−𝛼 > 1,
while a second rearrangement yields expression for 2 with the
condition 2 = 𝜌𝛽+𝛼𝜆(0)

𝜌−𝛼 > 1, both necessary conditions for the
instability of the trivial steady state as well as the existence
of the non-trivial steady state. Furthermore, the third method
was via the next generation approach, in which we considered
the ‘‘new births’’ via breeding site mosquitoes that complete the
gonotrophic cycle pathway and returned to the breeding site
to lay their first batch of eggs. Specifically, at the onset of the
dynamics, some mosquitoes may fail to obtain blood and join the
𝑊 class mosquitoes, eventually returning to quest, succeeding
before returning to the breeding site to lay their first batch of
eggs. These mosquitoes had fallen out of the gonotrophic cycle
 m
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pathway (but had not completed their first gonotrophic cycle),
eventually to return to complete their gonotrophic cycle a little
later than those breeding site mosquitoes that succeeded during
their initial quest attempt. Thus, we believe that accounting
for them in this way, as part of the new births terms, is le-
gitimate and yields the expression 2. Without accounting for
those mosquitoes that eventually rejoined the gonotrophic cycle
pathway after the initial delay, we then get the expression as in
1.

2. From a biological point of view, 1 and 2 have different
interpretations. Firstly, 1 = 𝛼𝜆(0)

𝜌(1−𝛽)−𝛼 , can be interpreted as the
fraction of mosquitoes that returned to the breeding site to lay
eggs without ever leaving the gonotrophic cycle pathway. These
mosquitoes succeeded in their first attempt. On the other hand,
2 =

𝜌𝛽+𝛼𝜆(0)
𝜌−𝛼 = 𝜌𝛽

𝜌−𝛼 + 𝛼𝜆(0)
𝜌−𝛼 , adds those mosquitoes that returned

to the breeding site to lay eggs after succeeding on their first
attempt

(

𝛼𝜆(0)
𝜌−𝛼

)

, to those that failed but succeeded at a later time
to eventually complete their cycle and return to the breeding site
(

𝜌𝛽
𝜌−𝛼

)

.

3. We believe that our methodology is quite robust in that three
different procedures led to the two expressions for 1 and 2,
with the next generation approach illustrating how these two
expressions are associated to two different interpretations of
‘‘new births’’ and ‘‘transitions’’. We believe this is a novelty in
our work and incites a discussion on how we view and compute
the next generation matrices as well as how we use such thresh-
old parameters as a predictive quantity. Here, as a threshold
parameter, there is no ambiguity in that 1 > 1 ⟺ 2 > 1.

4. Multiple feeding and its effects on mosquito population dynam-
ics

Here, we further explore the effects of inclusion of the multiple
feeding attempts affects the dynamics of the mosquito populations as
derived in this paper. We begin by summarising the model and results
for the case where the 𝑊 class is absent as studied in [9].

4.1. Special case where the 𝑊 -compartment is absent

We can regain the model in [9] from (17) by setting 𝛽 = 𝛿 = 0 in
(12). In this case, we have
𝑑𝐵
𝑑𝑡

= 𝛼𝑅𝜆(𝑅) + 𝛼𝑅 − 𝜌𝐵,

𝑑𝑄
𝑑𝑡

= 𝛾(𝐵 −𝑄), (33)
𝑑𝑅
𝑑𝑡

= 𝑄 − 𝑅,

𝐵(0) = 𝐵0, 𝑄(0) = 𝑄0, 𝑅(0) = 𝑅0.

The system (33) has been studied in detail [9,34]. Results such as the
existence of a threshold parameter

𝑚 =
𝛼𝜆(0)
𝜌 − 𝛼

, (34)

hat determines the stability properties of the trivial steady state, as
ell as the existence and stability of nontrivial steady state solutions
ere proven in [34]. In [9], it was also shown that there exists a
arameter regime for which the system (33) admits a Hopf Bifurcation,
s has been demonstrated for the model here in Appendix B, and
hat the amplitude of oscillations of the ensuing dynamics at the Hopf
ifurcation point can be constructed using a perturbation analysis. It is
lso known that stability properties of the bifurcating solutions at the
opf bifurcation point can be approximated using a centre manifold

heory, [52]. Although, in general, computation of the centre manifold
s not always possible, it is always possible to approximate the centre
anifold to any degree of accuracy by a function of class 2 [53];
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this we illustrate in Appendix C. For now, we recall simply that the
threshold parameter, 𝑚, defined in (34), determines the stability
properties of the zero steady state and existence of the nontrivial steady
state as follows:

1. Global and asymptomatic stability of the trivial steady state
when 𝑚 ≤ 1.

2. Instability of the trivial steady state whenever 𝑚 > 1 which
is accompanied with the birth of a second steady state, the non-
trivial steady state, when 𝑚 increases through the value 𝑚 = 1
to values where 𝑚 > 1.

3. Stability of the non-trivial steady state for 1 < 𝑚 < 𝑐
𝑚.

4. Occurrence of a Hopf bifurcation at 𝑚 = 𝑐
𝑚 > 1 and the

emergence of stable limit cycle solutions as 𝑚 further increases
from 𝑐

𝑚. The value of 𝑐
𝑚, being completely determined by the

parameters of the system.

Details on these results can be found in [9,10,34].

4.2. Effects of the 𝑊 compartment on the mosquito dynamics

In [9], questing can either be successful with probability 𝑝 or
unsuccessful with probability 1 − 𝑝. If unsuccessful, the mosquito is
assumed killed. Here, we have relaxed the certain death scenario for
the questing mosquitoes in Section 2 by introducing a waiting class of
mosquitoes, 𝑊 , from where mosquitoes that did not succeed to feed,
and did not die in the course of the feeding attempt, can be attracted
back to the human habitat where they are given another opportunity
to quest. With this additional class of mosquitoes, we have been able
to establish the existence of a threshold parameter  defined as one
of Eqs. (20) or (21) that determines the stability properties of the
zero steady state and the existence of the nontrivial steady state. In
particular, we have established that:

1. The threshold parameter that determined the properties of solu-
tions of the system is no longer unique, which differs from the
results of the model without the 𝑊 (waiting) compartment.

2. The trivial steady state solution, which always exists for all
parameter values is globally and asymptotically stable whenever
0 ≤  ≤ 1 and unstable when  > 1 as was the case with the
model without the 𝑊 -compartment.

3. A nontrivial steady state, which exists only for parameter values
for which  > 1, can be stable for a range of parameter
values but can also be driven to instability via a Hopf bifurcation
for certain values of the parameters of the system. In fact this
result has the same character as with the model without the
𝑊 -compartment

4. The effect of the 𝑊 class shows itself from the provisions of
Remark 3.1 that if 𝜌−𝛼

𝜌 ≤ 𝛽 < 1, and we also insist that the
birthrate function 𝜆 is such that 𝜆 ∶ [0,∞) → [0,∞), then we
cannot have a non-zero steady state. That is, so long as the birth
rate function is non-negative, we can have a nontrivial steady
state only for values of 𝛽 such that 𝛽 < 𝜌−𝛼

𝜌 < 1.

here are therefore restrictions and attributes of the system that come
bout as a result of the re-interpretation of the dynamics of interac-
ion of the mosquitoes with humans to include ability to attempt to
eed at multiple times. We now examine carefully the effect of the

component on the mosquito dynamics taking in turn each of the
haracteristic attributes of the system. In particular we examine what
appens if we allow the existence of a more general function 𝜆 such
hat 𝜆 ∶ [0,∞) → R, so that 𝜆(𝑅) can be negative for some values of
, as would be the case with the logistic growth function. Our answers
ill further illustrate the necessity to properly interpret the meaning
f 𝜆(𝑅). For example, if we interpret 𝜆(𝑅) as the birth rate function per
osquito of type 𝑅, then a negative value of 𝜆 will only signify that the
11
opulation 𝐵, whose growth rate is determined by the sign of 𝜆, will
e experiencing decreasing growth.

.2.1. On the threshold parameters and their sizes
We compare the two threshold parameters given by Eqs. (20) and

21) with the corresponding value when 𝛽 = 0 as given in (34). We
egin with a discussion on how, for example, 𝛽 compares with 𝜌 and
. To do so, we let

= 1 − 𝛼
𝜌

and set 𝛽 = 𝑠𝜈, (35)

and note that 0 < 𝜈 ≤ 1 since 0 ≤ 𝛼 < 𝜌. Thus 0 < 𝑠𝜈 ≤ 𝑠 which yields
0 < 𝛽 ≤ 𝑠. Then, from the restriction on 𝛽, for which 1 > 0 (so that
0 ≤ 𝛽 ≤ 𝜌−𝛼

𝜌 ), we can only allow 𝑠 to fall in the range 0 ≤ 𝑠 < 1. Then it
ecomes clear that using the characterisation (35) for 𝑠 and 𝜈, we have

1 =
𝛼𝜆(0)

𝜌(1 − 𝛽) − 𝛼
=

𝑚(𝜌 − 𝛼)
𝜌(1 − 𝛽) − 𝛼

=
𝑚
1 − 𝑠

, 0 ≤ 𝑠 < 1, (36)

and

2 =
𝛼𝜆(0) + 𝜌𝛽

𝜌 − 𝛼
=

𝑚(𝜌 − 𝛼) + 𝜌𝛽
𝜌 − 𝛼

= 𝑚 + 𝑠, 0 ≤ 𝑠 < 1, (37)

o even though 1 and 2 have the threshold like character as proved
y Theorem 3.2, 1 seems to over estimate the threshold parameter
hen seen as a function of 𝑠. In particular, lim𝑠→1− 1 = +∞ while

im𝑠→1− 2 = 𝑚 + 1. That the parameter 1 given by (36) is larger
hen compared with 2 given by (37) becomes evident if we recognise
1

1−𝑠 as the limit of an infinite geometric series, so that

1 = 𝑚(1 + 𝑠 + 𝑠2 + 𝑠3 + 𝑠4 +⋯).

hat 1 diverges to infinity as 𝑠 → 1− captures the fact that some of
he 𝑊 mosquitoes can have a very long lifespan pushing up the value
f the threshold number indefinitely. So, if we view the dynamics of
he mosquito in the lens of the threshold parameter 2, the restriction
< 1 is not needed. In this case, the relation 𝑠 ≥ 1 yields 𝜈𝑠 ≥ 𝜈.

hat is, 𝜈 ≤ 𝜈𝑠 = 𝛽 < 1. This gives us the possibility 𝜌−𝛼
𝜌 ≤ 𝛽 < 1.

For this set of values of 𝛽, 1 is negative and is no longer useful as a
threshold parameter, while 2 is still useful as a threshold parameter.
It would appear therefore, that 2 is a better threshold parameter to
consider over 1, and that a more realistic restriction on the size of
the parameter 𝛽 is given by the inequality 0 ≤ 𝛽 < 1.

The appearance of two possible threshold parameters make us
realise that the interpretation of what a transition is, in the context of
compartmental models, has a profound effect on the actual dynamics
of the system.

4.2.2. On the survivability of the mosquito population
In Theorem 3.4, we proved the local stability of the trivial steady

state when 0 <  < 1, with the stronger condition of global stability
proved in Theorem 3.5 for 0 <  ≤ 1, tied to the extinction of the

osquito population. From Eqs. (36) and (37),  = 1 and  = 2
are both bigger than 𝑚, the threshold estimate when 𝛽 = 0, indicating
that the waiting class has a stabilising effect of the chances of survival
for the mosquito population. So, some of the mosquitoes that survive
the questing attempt do indeed eventually succeed to increase the
chances of survival of the insect. When 𝛽 = 0, 1 = 2 and both reduce
to the threshold parameter for the model without repeated feeding
attempts, namely 𝑚 = 𝛼𝜆(0)

𝜌−𝛼 . When 0 <  < 1 ⇒ 𝑚 < 1, but the
converse is not necessarily true. The next result shows that there is a
choice of 𝛽 for which any of 1 or 2 can be bigger than one when
𝑚 < 1.

Theorem 4.1. Let 𝑚 < 1, then there is a choice of 𝛽 in the allowable
range of values of 𝛽 for which  > 1.

Proof. Let 𝑚 = 𝛼𝜆(0)
𝜌−𝛼 < 1. Assume without loss of generality that for

some 𝜀 > 0, with 0 < 𝜀 < 1, 𝛼𝜆(0) = 1 − 𝜀. So 𝛼𝜆(0) = (𝜌 − 𝛼)(1 − 𝜀).
𝜌−𝛼
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Fig. 3. Illustration of Theorem 4.1 for 𝛼 = 0.15, 𝜌 = 0.70 and 𝛿 = 0, and three 𝛽 values: 0, 0.2 and 0.4. In the figures, 𝜆0 = 𝜆(0). Starting with Fig. 3(a), there are three regions:
Region I where  ≤ 1 and where the trivial steady state exists and is globally stable (see Theorems 3.4, 3.5); Region II where  > 1 and 𝜉 < 1, where the non-trivial steady state
exists and is linearly stable (see Theorem B.1 and Remark B.1), and Region III where  > 1 and 𝜉 > 1, where the non-trivial steady state exists but loses its stability as it bifurcates
to periodic solutions, entering the oscillatory region (see Theorem B.3 and Remark B.2). Fig. 3(b) is a zoom-out of the shaded region in Fig. 3(a), where 𝜆0 < 4. As 𝛽 increases
from 0, the region where the trivial steady state exists and is globally stable ( ≤ 1), represented by the shaded regions labelled region I, reduces further with increasing 𝛽. The
egion shown by the black shaded zone which is the region when 𝛽 = 0 reduces as 𝛽 increases to 0.2. For the region between 𝜆0 = 1.8 and about 3.6,  > 1. As we increase
𝛽 further to 0.4 we see that Region I disappears and the extinction equilibrium no longer exists; there is always a thriving mosquito population which can be driven to a Hopf
bifurcation.
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Then consider the inequality 1 > 1. That is 𝛼𝜆(0)
𝜌(1−𝛽)−𝛼 > 1 ⇒ (𝜌−𝛼)(1−𝜀)

𝜌(1−𝛽)−𝛼 >
⇒ 𝜌−𝛼

𝜌 𝜀 < 𝛽 < 𝜌−𝛼
𝜌 . The same inequality can be derived using the

hreshold parameter 2. □

Theorem 4.1 shows that the waiting class destabilises the trivial
teady state. Thus the fact that much energy is required to suppress
osquito population is captured in the model with multiple feeding

ttempts. The source of this effect can be investigated as follows: From
≤ 𝑠 < 1, we have 0 ≤ 𝑠𝜈 < 𝜈 which yields 0 ≤ 𝛽 < 𝜈 = 𝜌−𝛼

𝜌 placing
a restriction on the maximum size of 𝛽. Even with the restriction on 𝛽,
we still see that we now have several possibilities that can be seen as
pathways towards an increase in the value of the threshold parameter
 . When 𝛽 = 𝛿 = 0, we had interpreted an increase in 𝑚 as an
increase in 𝜆(0). This choice of interpretation was fairly natural given
that 𝛼 < 𝜌 < 1 are pretty much fixed parameters of the system. When
𝛽 > 0, the size of the threshold parameter can now also be increased
by increasing 𝛽. There is thus more variability in the outcome of events
with the consideration of the waiting class mosquitoes.

Thus the effect of a non-zero 𝛽 in the model is significant in the
sense that it can enhance the existence of non-trivial solutions. This
result is illustrated in Fig. 3. The figure also depicts results from
Theorems 3.4, 3.5, B.1 and B.3 and Remarks B.1 and B.2.

4.2.3. On the existence of and size of the non-trivial steady state
The steady states of the system are characterised by the results of

Theorem 3.1. In particular we require that inequality (16) should hold.
For 𝛽 = 0, since 𝜌 > 𝛼, there is one uniquely determined steady state
value because of the monotonicity of 𝜆. As 𝛽 increases from 0, the value
f the scaled steady state solution approaches the point 𝑅∗ = 1, which
ill correspond to the system approaching levels where 𝜆(𝑅) = 0. This

orresponds to the point where 𝛽 = 𝜌−𝛼
𝜌 .

For models for which 𝜆(𝑅) can go negative as in the logistic model,
there is a possibility for a second steady state for 𝜌−𝛼

𝜌 < 𝛽 < 1 that will
exists for all values of the parameters and its value is larger than 1. To
ee this, consider the logistic model where 𝜆(𝑅) = 𝜆(0)(1 − 𝑅) which
ives the steady state solution 𝑅∗ = 1 − 𝜌(1−𝛽)−𝛼 . Suppose 𝛽 = 𝜌−𝛼 + 𝜀,
𝛼𝜆(0) 𝜌

12
ith 𝜀 < 𝛼
𝜌 , then 𝑅∗ = 1 + 𝜌𝜀

𝛼𝜆(0) which will exist for all values of the
parameters and its value is bigger than unity whenever the perturbation
𝜀 > 0. For this parameter regime, we expect that since 𝜆(𝑅) < 0, the rate
f production of new eggs is declining and we expect the system to be
itnessing decreasing breeding site mosquito populations.

The second point we note about the effect of the 𝑊 class on
he existence of the steady state is on the size of the breeding site
osquitoes, 𝐵∗, at equilibrium. From Eq. (17), we see that the 𝐵∗ =

(1 − 𝛽)𝑅∗ showing that as 𝛽 increases from zero towards values near
1, 𝐵∗ becomes progressively small. So, to sustain the population of the
breeding site mosquitoes at equilibrium, the value of 𝛽 must not be too
close to the number one.5

In the case where 𝛽 < 𝜌−𝛼
𝜌 < 1, and while using the logistic growth

function, set 𝜆(𝑥) = 𝜆(0)(1 − 𝑥) which gives 𝜆−1(𝑥) = 1− 𝑥
𝜆(0) which then

yields the steady state solution 𝑅∗ = 𝑊 ∗ = 𝑄∗ = 𝜆−1
(

1
𝛼 𝜌(1 − 𝛽) − 1

)

=

1 − 𝜌(1−𝛽)−𝛼
𝛼𝜆(0) , 𝐵∗ = (1 − 𝛽)𝑅∗, and so we have

𝑅∗ =
𝑚 − 1
𝑚

+ 𝑠
𝑚

=  − 1


if  = 1 or 𝑅∗ =  − 1
 − 𝑠

if  = 2.

(38)

herefore, while the steady state values for 𝑅 and 𝑊 type mosquitoes
re increased because of the consideration of the fact that not all
osquitoes that fail to quest die, the steady state value of the breeding

ite mosquitoes 𝐵 is actually reduced. Thus the model without the
aiting class overestimates the equilibrium density of mosquitoes at

he breeding site. It seems therefore that concentrating control effort on

5 We defer to a different occasion the discussion on whether or not the
act that for 𝜌−𝛼

𝜌
< 𝛽 < 1, 1 as computed by (20) becomes negative gives

us a reason to conclude that this particular parameter scenario may not be
biologically realistic. For now, given that we are primarily interested in models
for which 𝜆(𝑅) > 0, we shall only note the existence of steady state solutions
for which 𝑅∗ > 1, which arises as a result of the assumption that 𝛽 can be in
the range 𝜌−𝛼 < 𝛽 < 1, as a mathematical artifact.
𝜌
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mosquitoes that have left the breeding site will have greater impact on
the mosquito population control as more mosquitoes at the equilibrium
would be reached. In fact pushing 𝛽 close to unity will be equivalent
to reducing the breeding site population density at equilibrium.

4.2.4. On the size of the instability window
To understand the effect of the waiting class on the instability

window, we once more employ the logistic function as an example and
note that in this case, the steady state, in the case where 𝛽 < 𝜌−𝛼

𝜌 ,
s given by Eq. (38) and then the coefficients of the characteristic
olynomial, Eq. (24), become

𝑎3 = 𝛿 + 𝛾 + 𝜌 + 1, 𝑎2 = (𝛿 + 𝛾)(1 + 𝜌) + 𝛿𝛾(1 − 𝛽) + 𝜌,
𝑎1 = 𝑃0 +𝑁0( − 1), 𝑎0 = 𝛿𝑁0( − 1)

}

(39)

𝑃0 = 𝛾𝜌𝛽 + 𝜌𝛿 + 𝛾𝛿(1 + 𝜌)(1 − 𝛽), 𝑁0 =

{

𝛾(𝜌(1 − 𝛽) − 𝛼) if  = 1

𝛾(𝜌 − 𝛼) if  = 2
(40)

When 𝛽 = 𝛿 = 0, the characteristic polynomial at the non-zero
steady becomes simply 𝜁 (𝜁3 + 𝑎3𝜁2 + 𝑎2𝜁 + 𝑎1) = 0 and we recover
the polynomial studied in [9], which was shown to admit a Hopf
bifurcation at the point in parameter space where 𝑎1 = 𝑎3𝑎2, which
translates in terms of the threshold parameter to the critical value
𝑐 = 1 + 𝑎3𝑎2

𝛾(𝜌−𝛼) . So, as the threshold parameter increases from 1, the
system loses stability at 𝑐 with the emergence of growing oscillations.
In the current case where 𝛽 ≠ 0 and 𝛿 ≠ 0, the Hopf bifurcation occurs
at that point in the parameter space where 𝜉 = 1 as defined by Eq. (56)
in Appendix B (Since stability is guaranteed when 0 < 𝜉 < 1). This
translates into the inequality 𝑎1

𝑎3

(

𝑎2 −
𝑎1
𝑎3

)

− 𝑎0 > 0, giving rise to an
inequality to define the instability window, which we can write in terms
of the threshold parameter  in the form

𝑃0 +𝑁0( − 1)
𝑎3

(

𝑎2 −
𝑃0 +𝑁0( − 1)

𝑎3

)

− 𝛿𝑁0( − 1) > 0. (41)

Recall from the parameterisation and parameter groupings given by
Eqs. (39) and (40) that when 𝛽 = 𝛿 = 0, 𝑃0 = 0 and 1 = 2 = 𝑚 and
inequality (41) collapses to the inequality

𝑁0( − 1)
𝑎3

(

𝑎2 −
𝑁0( − 1)

𝑎3

)

> 0 ⇒ 1 <  = 𝑚 < 1 +
𝑎3𝑎2
𝑁0

= 1 +
𝑎3𝑎2

𝛾(𝜌 − 𝛼)

(42)

and we recapture the stability window for the original system. As 𝛿
nd 𝛽 increase from zero, the linear character is lost and the quadratic,
q. (41), promises the existence of an interval (−,+) such that

− <  − 1 < + within which we can expect linear stability.
he bounds − and + are simply obtained by regarding Eq. (41)

as an equality and solving for  − 1. The new instability window so
dentified will actually lead to meaningful solutions for those values of
he parameters for which  > 1. The instability window now depends
n the parameters 𝛿 and 𝛽 in the sense that the system is linearly stable
o small perturbations whenever − <  − 1 < +, where

−(𝛿, 𝛽) = −
𝑎3

(

√

4𝛿𝑃0 + (𝑎2 − 𝛿𝑎3)2 + 𝛿𝑎3 − 𝑎2
)

+ 2𝑃0

2𝑁0
, (43)

+(𝛿, 𝛽) =
𝑎3

(

√

4𝛿𝑃0 + (𝑎2 − 𝛿𝑎3)2 − 𝛿𝑎3 + 𝑎2
)

− 2𝑃0

2𝑁0
. (44)

From the size of the parameters, −(𝛿, 𝛽) is always negative and so the
region of stability in this case is 0 ≤  − 1 < +(𝛿, 𝛽) where +(𝛿, 𝛽)
is given by Eq. (44). We can actually estimate the contributions of the
parameters 𝛽 and 𝛿 by noting that

+(𝛿, 𝛽) = +(0, 0) + 𝛿
+𝛿 + 𝛽

+𝛽 + 𝑂(𝛿𝛽), (45)

where

 𝛿 =
𝜕+(0, 0) ,  𝛽 =

𝜕+(0, 0) , (46)
+ 𝜕𝛿 + 𝜕𝛽
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and +(0, 0) is the value of the threshold parameter when 𝛿 = 𝛽 = 0
given by the last term in the inequality (42). Evaluation of these partial
derivatives shows that  𝛿

+ is zero while  𝛽
+ is non-zero signifying

relative contributions to the size of the stability window when 𝛽 and 𝛿
are both small. The fact that 𝛿 captures instead the overall strength of
the interactions (see the position of 𝛿 on the 𝑊 equation in system (12))
is thus seen in these initial responses. Now, as 𝛽 and 𝛿 increase from
zero, the stability window is affected giving us more room for flexibility
and richer dynamics. Note that in the case where 𝜌−𝛼

𝜌 < 𝛽 < 1, the
analysis as we have presented above still holds, except for the fact that
 = 2 all the way.

We illustrate the effects of the waiting times on the instability
window (described by 𝐼𝑊 ) graphically in Figs. 4–9, by plotting the
function

𝐼𝑊 = 𝛿𝑁0( − 1) −
𝑃0 +𝑁0( − 1)

𝑎3

(

𝑎2 −
𝑃0 +𝑁0( − 1)

𝑎3

)

, (47)

n the 𝛾 − 𝜆0 plane, the 𝛾 − 𝛽 plane and the 𝛾 − 𝛿 plane. Here and in
he graphical representations, we will represent 𝜆(0) by 𝜆0. For each of

these figures, 𝛼 = 0.1 and 𝜌 = 0.6, fixed, while all other parameters
are varied, one at a time. Notice that here, the main focus are the
waiting parameters, thus these choices. We begin by plotting 𝐼𝑊 in
3𝐷 as well as the corresponding level-curve 𝐼𝑊 = 0, both on the 𝛾 −𝜆0
plane. Clearly, as illustrated in Fig. 4, the size of the instability window
increases for positive values of 𝛽 and 𝛿, with the right arm of the plot
of 𝐼𝑊 = 0 becoming flatter. The increase is slight with 𝛽 alone, as was
evident in Fig. 3 as well, but increases significantly for larger values of
𝛿.

Next, we plot 𝐼𝑊 in 3𝐷 on the 𝛾 −𝛽 plane, together with the corre-
sponding level-curve 𝐼𝑊 = 0. See Figs. 5–6. These figures illustrate a
different dynamics in the increase of the instability region in the 𝛾 − 𝛽
plane. The right arm grows but at a decreasing rate. Additionally, for
larger 𝜆(0) = 𝜆0 values, the level curves can go negative indicating that
there are values of 𝛾 in which we are always within the oscillatory
region. In the illustrated example, Figs. 6(a) and 6(b), 𝛾 is roughly
between 0.5 and 3.

We next illustrate how the size of the instability window changes
in the 𝛾 − 𝛿 plane as 𝛽 increases from 0.3 to 0.5 and to 0.8, and for
two values of 𝜆(0) = 𝜆0 ∈ {50, 90} fixed, with 𝛼 = 0.1 and 𝜌 = 0.6,
fixed (See Figs. 7–9). For 𝜆0 = 50, an increase in 𝛽 from 0.3 leads
to an increase in the oscillatory region, with a significant increase in
width for larger 𝛽 values, allowing for a larger 𝛾 window under which
oscillatory dynamics are obtained (compare Figs. 7(a) and 7(b) where
𝛽 = 0.3 and 𝜆0 = 50, to Figs. 8(a) and 8(b) where 𝛽 = 0.5, 𝜆0 unchanged
at 50 and to Figs. 9(a) and 9(b) where 𝛽 = 0.8, 𝜆0 unchanged at 50.)
If we now increase 𝜆0 to 90, then the increase in size of the window is
two dimensional, with the size increase in width and height allowing
for both a larger 𝛾 window and wider 𝛿 region under which oscillatory
dynamics can be obtained (compare Figs. 7(c) and 7(d) where 𝛽 = 0.3
and 𝜆0 = 90, to Figs. 8(c) and 8(d) where 𝛽 = 0.5, 𝜆0 unchanged at 90
and to Figs. 9(c) and 9(d) where 𝛽 = 0.8, 𝜆0 unchanged at 50.)

4.2.5. On the size of the initial period of oscillations at the bifurcation point
We have established Appendix B that the system can be driven to

instability via a Hopf bifurcation as the threshold parameter increases
from unity. The initial period of the oscillation is given by Eq. (63). At
the bifurcation point, we have that the initial period is 2𝜋

𝜔 , where we
can regard 𝜔 as a function of 𝛽 and 𝛿, to write

𝜔(𝛽, 𝛿) =

√

𝑎1(𝛽, 𝛿)
𝑎3(𝛽, 𝛿)

=

√

𝑃0 +𝑁0+(𝛿, 𝛽)
𝑎3(𝛽, 𝛿)

. (48)

Observe that 𝜔(𝛽, 𝛿) > 𝜔(0, 0) =
√

𝑎2(0) =
√

𝜌 + 𝛾 + 𝜌𝛾 obtained by
inserting 𝛿 = 0 in the value for 𝑎2 in Eq. (39). Therefore the initial
period of oscillation in the upgraded system is smaller, capturing a
higher frequency of behaviour of the questing mosquitoes.
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Fig. 4. Illustration of the changes incurred in the size of the instability window in the 𝛾 − 𝜆0 (where 𝜆0 = 𝜆(0)) plane for different choices of 𝛽 ∈ (0, 1 − 𝛼∕𝜌) and 𝛿. In each of the
Figs. 4(b)–4(f), 𝛼 = 0.1 and 𝜌 = 0.6, fixed. The region where 𝐼𝑊 < 0 (grayish blue region) corresponds to the region where 0 < 𝜉 < 1, the linear stability region, while the region
where 𝐼𝑊 > 0 corresponds to the region where 𝜉 > 1, the oscillatory region. The emergence of a Hopf bifurcation occurs when 𝐼𝑊 = 0 which corresponds to 𝜉 = 1, indicated by
the 2-D plots.

14



B.M. Ghakanyuy, M.I. Teboh-Ewungkem, K.A. Schneider et al. Mathematical Biosciences 350 (2022) 108832

Fig. 5. Illustration of the changes incurred in the size of the instability window in the 𝛾 − 𝛽 plane as, 𝛽 ∈ (0, 1 − 𝛼∕𝜌), for different choices of 𝛿 and 𝜆(0) = 𝜆0. In Figs. 5(b)–5(f),
𝛼 = 0.1 and 𝜌 = 0.6, and 𝜆0 = 60 fixed. The grayish-blue region where 𝐼𝑊 < 0 (0 < 𝜉 < 1) is where linear stability occurs, while the region where 𝐼𝑊 > 0 (red zone corresponding
to 𝜉 > 1) is the oscillatory region. The emergence of a Hopf bifurcation occurs when 𝐼𝑊 = 0 equivalent to 𝜉 = 1, indicated by the 2-D plots.

15



B.M. Ghakanyuy, M.I. Teboh-Ewungkem, K.A. Schneider et al. Mathematical Biosciences 350 (2022) 108832

w

𝜆

i

i

t
t

Fig. 6. Illustration of the changes incurred in the size of the instability window in the 𝛾 − 𝛽 plane as we vary 𝛿, where 𝛽 ∈ (0, 1 − 𝛼∕𝜌). Here, we increase 𝜆0 from 60 (the value
used in Figs. 5 graphs 5(e)–5(f)) to 90, while maintaining 𝛼 = 0.1, 𝜌 = 0.6, and 𝛿 = 3.0 fixed. Clearly there are values for 𝛾 where we are within the oscillatory regions only.
b

b

4.2.6. On the size of the initial amplitude of oscillations at the bifurcation
point

We have established, see Appendix B, that the system can be
driven to instability via a Hopf bifurcation as the threshold param-
eter increases from unity. The initial amplitude of the oscillation is
given by Eq. (63). At the bifurcation point, we have that the initial
growth rate of the exponential growing oscillations is proportional to
exp(𝜆𝑟𝜀𝜈𝑡), where we can regard 𝜆𝑟 as a function of 𝛽 and 𝛿 from Eq. (63)

e write

𝑟(𝛽, 𝛿) =
2𝑎3𝜔2(𝑎2 − 𝜔2)

4𝑎23𝜔
2 + (2𝑎2 − 4𝜔2)2

. (49)

Thus, as 𝛿 and 𝛽 increase from zero we can compute the initial ampli-
tude of the oscillating solutions which is a positive quantity since 𝑎2 −
𝜔2 = 𝑎3𝑎2−𝑎1

𝑎3
> 0 from Eqs. (59) and (60). The size of this growth rate is

also different from the base case defined when 𝛽 = 𝛿 = 0 and reported
n [9], which is 𝑎3𝑎2

2(𝑎2+𝑎23) |𝛿=𝛽=0
(here 𝑎3 and 𝑎2 are as in Eq. (39)). That

s, setting 𝛽 = 𝛿 = 0 in Eq. (49) yields 𝜆𝑟(0, 0) = 0 ≠ 𝑎3𝑎2
2(𝑎2+𝑎23) |𝛿=𝛽=0

, since

then 𝜔2 = 𝑎2. There is thus lack of continuity when 𝜆𝑟(𝛽, 𝛿) is regarded
as a function of 𝛽 and 𝛿. Thus in the real sense, we should write

𝜆𝑟(𝛽, 𝛿) =

⎧

⎪

⎨

⎪

⎩

2𝑎3𝜔2(𝑎2−𝜔2)
4𝑎23𝜔

2+(2𝑎2−4𝜔2)2
if (𝛽, 𝛿) ≠ (0, 0)

𝑎3𝑎2
2(𝑎2+𝑎23)

if (𝛽, 𝛿) = (0, 0).
(50)

This addresses this discontinuity mathematically.

4.2.7. Special case I: Where the waiting time to return to quest is short
In the derivation of Eq. (3), mosquitoes of type 𝑊 can return

o the questing state at rate 𝑐∗ = 𝑐𝐻
𝐻+𝐾 . Here, 𝑐∗ is weighted with

he dimensionless quantity 𝐻
𝐻+𝐾 , while the actual rate, 𝑐, should be

interpreted as the reciprocal of the residence time in the 𝑊 state. Thus,
if this residence time is very short, 𝑐 will be very large and consequently
the parameter 𝛿, defined in Eq. (15) will be also be very large. In this
case, the 𝑊 equation given in Eq. (12) will then show a fast reaction
sequence, so that the state variable 𝑊 is essentially in equilibrium
with 𝑄 and we can evoke the Michaelis–Menten pseudo-steady state
hypothesis, [54], and approximate 𝑊 with 𝑄 for all times so that the
system with waiting class can be approximated by the system
𝑑𝐵
𝑑𝑡

= 𝛼𝑅𝜆(𝑅) + 𝛼𝑅 − 𝜌𝐵,

𝑑𝑄 = 𝛾(𝐵 − (1 − 𝛽)𝑄), (51)

𝑑𝑡

16
𝑑𝑅
𝑑𝑡

= 𝑄 − 𝑅.

𝐵(0) = 𝐵0, 𝑄(0) = 𝑄0, 𝑅(0) = 𝑅0.

The reduced system (51) has the same steady states as the full system
(12), but has the added advantage that we have a reduced dimension
in complexity. We provide a detailed study of the stability properties
for the non-trivial steady state for the reduced model in Appendix C,
where we also demonstrate how to derive the amplitude of the oscil-
lating solutions by approximating the solution on the centre manifold.
Fig. 10 shows a phase diagram of the dynamics on the centre manifold
illustrating the presence of limit cycles near the origin of the system in
the (𝑢,𝑤)−phase space where 𝑢 and 𝑤 satisfy Eq. (80), a transformed
version of the system in Eq. (51).

The dynamical behaviour of the full nonlinear system for the re-
duced model (51) can be captured by studying and following the
progression of the system as the parameters change across different
regions of the parameter space as shown in Table 3.

It is informative, in view of studying the properties of the solution
in the different regions, to view 𝜆(0) as a function of the two parameters
𝛽 and 𝛾. In this regard, we can fix 𝛽 and vary 𝛾 or fix 𝛾 and vary 𝛽. The
bifurcation diagrams for these two scenarios are shown in Fig. 11.

4.2.8. Special case II: Where the waiting time to return to quest is long
In Eq. (3), mosquitoes of type 𝑊 can conceivably take a long time to

return to the questing state, still at rate 𝑐∗ = 𝑐𝐻
𝐻+𝐾 , where 𝑐 is weighted

y the dimensionless quantity 𝐻
𝐻+𝐾 . Since the actual rate, 𝑐, can be

interpreted as the reciprocal of the residence time in the 𝑊 state, a
long waiting time implies that 𝑐 ≈ 0 and thus 𝑐∗ ≈ 0. Therefore 𝛽 ≈ 0
with 𝛿, defined in Eq. (15), now satisfying 𝛿 ≈ 𝜇𝑦

𝑎+𝜇𝑊
. In this case, the 𝑊

equation given in Eq. (12) decouples, satisfying a linear equation which
is dependent on the solution for 𝑄 and system (12) can be approximated
y the system

𝑑𝐵
𝑑𝑡

= 𝛼𝑅𝜆(𝑅) + 𝛼𝑅 − 𝜌𝐵,

𝑑𝑄
𝑑𝑡

= 𝛾(𝐵 −𝑄), (52)
𝑑𝑅
𝑑𝑡

= 𝑄 − 𝑅,

𝑑𝑊
𝑑𝑡

= 𝛿(𝑄 −𝑊 ) = 𝛿𝑄 − 𝛿𝑊 .

𝐵(0) = 𝐵 , 𝑄(0) = 𝑄 , 𝑅(0) = 𝑅 .
0 0 0



B.M. Ghakanyuy, M.I. Teboh-Ewungkem, K.A. Schneider et al. Mathematical Biosciences 350 (2022) 108832

A
r

T
e
i
c

4

g
f
b
o
i
T
o
a

a
𝑐

Fig. 7. Illustration of the changes incurred in the size of the instability window in the 𝛾 − 𝛿 plane, for 𝛽 = 0.3 and for 𝜆(0) = 𝜆0 ∈ {50, 90} fixed, with 𝛼 = 0.1 and 𝜌 = 0.6, fixed.
gain, the region where 𝐼𝑊 < 0 (grayish blue region) corresponds to the region where 0 < 𝜉 < 1, the linear stability region, while the region where 𝐼𝑊 > 0 corresponds to the
egion where 𝜉 > 1, the oscillatory region. The emergence of a Hopf bifurcation occurs when 𝐼𝑊 = 0 which corresponds to 𝜉 = 1, indicated by the 2-D plots.
i
b

he reduced system (52) is thus mainly driven by the first three
quations, which is the model without waiting class mosquitoes studied
n detail in [9]. Once 𝑄 is known, then the solution for the waiting
lass mosquitoes is just the solution to the linear differential equation
𝑑𝑊
𝑑𝑡 +𝛿𝑊 = 𝛿𝑄. Thus, the dynamics of the said system is already known.

.2.9. Relating to the original parameters of the system
We note from the explorations given above that though the up-

raded system has richer dynamics and predicts greater possibilities
or resilience by the mosquitoes, the qualitative results are the same as
efore: There exists a threshold parameter that determines the existence
f non-zero steady state solutions, and whose size can be used as an
ndicator for the existence of a Hopf bifurcation in model equations.
he main difference here being that while in the simplified model,
ne could uniquely regard an increase in the threshold parameter as
n increase in the birth rate constant, 𝜆(0), we now have two new

parameters 𝛽 and 𝛿 whose sizes can also influence the size of the
threshold parameter. We must recall that 𝛽 = 𝑞

(

𝑐∗

𝑐∗+𝜇

)(

𝜏∗

𝜏∗+𝜇

)

, so
it is easy to see that 𝛽 is an increasing function of 𝑐∗. Thus  is
n increasing function of 𝑐∗ since 𝑚, 𝜌 and 𝛼 are independent of
∗. This tells us that the non-stabilising effect comes from mosquitoes
17
n the waiting class returning to the human habitats to quest for a
lood meal. Thus even when 𝑚 < 1, it is possible for mosquitoes

in the waiting class to drive the value of  above one. In addition
to the control measures seen earlier, the model with multiple feeding
attempts suggests that receptacles that can serve as temporal waiting
sites in our environment should be destroyed. This will reduce 𝑐∗ as
possible waiting sites will be at a considerable distance from the human
habitats.

5. Discussion and conclusions

Many infectious diseases of humans, including malaria, yellow
fever, Zika and more, are transmitted from human to human by female
mosquitoes, which from time to time visit humans at human habitat
sites to quest for blood needed for the maturation of their eggs. When a
mosquito searches and bites a human for blood, where there is infection
either in the mosquito or the human, the infection can be transferred
from the one party to the other. It is therefore of paramount interest
for human health systems, for people residing in mosquito infested
and malarious, yellow fever, dengue fever and zika zones, that we
understand the dynamics of populations of the mosquito.
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Fig. 8. Illustration of the changes incurred in the size of the instability window in the 𝛾 − 𝛿 plane, for 𝛽 = 0.5 and for 𝜆0 ∈ {50, 90} fixed, with 𝛼 = 0.1 and 𝜌 = 0.6, fixed. Again,
he region where 𝐼𝑊 < 0 (grayish blue region) corresponds to the region where 0 < 𝜉 < 1, the linear stability region, while the region where 𝐼𝑊 > 0 corresponds to the region

where 𝜉 > 1, the oscillatory region. The emergence of a Hopf bifurcation occurs when 𝐼𝑊 = 0 which corresponds to 𝜉 = 1, indicated by the 2-D plots.
A framework for studying the dynamics of mosquito populations,
that captures the blood feeding habit of the mosquitoes, was devel-
oped in [9]. In that first paper, it was assumed that any mosquito
that attempts to feed on a human and did not succeed in that first
attempt also died in the process. This assumption, which was then
used to measure human’s success in using insecticide impregnated bed
nets [55], is unrealistic because not all mosquitoes that engage to feed
on a human and fail do die in the process. It is desirable, therefore, to
assume that a mosquito that attempted to feed and did not succeed
(perhaps because it was disturbed during the feeding process), but
survived the encounter, would be driven to attempt to feed again by
its reproductive need. There may be several reasons, including the fact
that the mosquito may be infected with a pathogen, why a mosquito
would attempt to feed multiple times during one questing episode. In
one study, it was discovered that when the duration of contact with
a host is limited, infected mosquitoes make more attempts at probing
before being successful at taking a blood meal, [56]. There is therefore
a possibility that transmission of infection from mosquito to humans
maybe continually enhanced by the infection causing the mosquito to
probe more for blood meals. In this paper we addressed the problem
18
of multiple feeding by mosquitoes by extending the model originally
studied in [9] to include this multiple feeding aspect.

The extension we made on the model was to include a waiting class
whereto surviving mosquitoes that failed to take a blood meal after
interacting with humans could go into, and from where they can make
the next attempt to blood feed on the humans. The institution of the
waiting class came along with some important changes in the dynamics.
It now becomes important to discuss issues relating to the length of time
the mosquitoes would stay in the waiting class state before returning
to feed. In a more general setting it will also be important to discuss on
whether or not the mosquito in the waiting class would return to the
same vertebrate host or choose another. The inclusion of the waiting
class also brought to the fore the question of defining what we mean
by a ‘‘transition’’ and what we interpret as ‘‘new recruits’’ in relation
to the mosquitoes in the system.

Examination of different transition patterns gave rise to two thresh-
old parameters that could be used to study the dynamics of populations
of mosquitoes. We gave meaning to different transition patterns by
regarding the mosquito’s reproductive pathway or gonotrophic cycle;
the cycle comprising the steps of leaving the breeding site to the
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t

Fig. 9. Illustration of the changes incurred in the size of the instability window in the 𝛾 − 𝛿 plane, for 𝛽 = 0.8 and for 𝜆0 ∈ {50, 90} fixed, with 𝛼 = 0.1 and 𝜌 = 0.6, fixed. Again,
he region where 𝐼𝑊 < 0 (grayish blue region) corresponds to the region where 0 < 𝜉 < 1, the linear stability region, while the region where 𝐼𝑊 > 0 corresponds to the region

where 𝜉 > 1, the oscillatory region. The emergence of a Hopf bifurcation occurs when 𝐼𝑊 = 0 which corresponds to 𝜉 = 1, indicated by the 2-D plots.
Table 3
The parameter space is delimited by parameter groupings whose size determines the behaviour of the
system changing the qualitative properties of the solutions of the system. The first bifurcation point is
where 𝜆(0) = 𝜆𝑚(𝛽) =

𝜌(1−𝛽)−𝛼
𝛼

. The second bifurcation point occurs ate 𝜆(0) = 𝜆𝑐 (𝛽, 𝛾) = 𝜆𝑚(𝛽) +
𝑎2 (𝛽,𝛾)𝑎1 (𝛽,𝛾)

𝛼𝛾
.

The interval 0 ≤ 𝜆(0) < 𝜆𝑚(𝛽) corresponds to the interval 0 ≤  < 1 in terms of the threshold parameter  .
The second interval 𝜆𝑚(𝛽) < 𝜆(0) < 𝜆𝑐 (𝛽, 𝛾) corresponds to the interval 1 ≤  < 𝑁𝑐 (𝛽, 𝛾).
Region Description of the parameters Properties of the system

Reg I 0 ≤ 𝜆(0) ≤ 𝜆𝑚(𝛽) The system has a uniquely determined steady
state: the trivial steady state, that is globally and
asymptotically stable for all parameter regimes

Reg II 𝜆𝑚(𝛽) < 𝜆(0) < 𝜆𝑐 (𝛽, 𝛾) (i) The trivial steady state loses stability but still
coexists with a non trivial steady state which
become existent as 𝜆(0) becomes larger than 𝜆𝑚(𝛽)
(ii) The newly created non trivial steady state is
linearly stable for these value of the parameters

Reg III 𝜆 = 𝜆𝑐 (𝛽, 𝛾) (i) The trivial steady state still coexists with a non
trivial steady state.
(ii) The non trivial steady state’s stability
properties changes from a stable nodes to a centre.
This is a Hopf bifurcation point

Reg IV 𝜆 > 𝜆𝑐 (𝛽, 𝛾) Growing oscillations with positive real parts are
observed in this region. The nonlinearity in the
system then bounds the exponential growth
leading to bounded and stable limit cycle solutions
19
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Fig. 10. Figure showing the dynamic of the flow in closed cycles near the origin on the centre manifold for the reduced system (51) as approximated by system (80). The dynamics
here are generated using the logistic function 𝜆(𝑢) = 𝜆(0)(1 − 𝑢) alongside the parameters 𝛾 = 2, 𝜌 = 0.8, 𝛼 = 3

4
𝜌, 𝛽 = 𝜌−𝛼

2𝜌
, 𝜆(0) = (1−𝛽)𝜌−𝛼

𝛼
+ 𝑎2𝑎1

𝛼𝛾
, where the parameter groupings 𝑎2

and 𝑎1 are as described in the text in Appendix C.
Fig. 11. Illustration of the bifurcation diagram for the full nonlinear system for the model (51) with fast 𝑊 dynamics. The parameter values are the same as those in Fig. 10
except that in Fig. 11(b), for a fixed value of 𝛽 and also 𝜆(0), 𝛾 was allowed to vary and the final amplitude of the solution for 𝑅 is collected for each value of 𝛾. In Fig. 11(a), all
parameters are fixed and 𝛽 is allowed to vary over its domain. In both cases, we clearly see how the amplitude of the solutions goes from fixed amplitude to varying amplitude
and back to fixed amplitude as was predicted.
human habitat, harvesting a blood meal, resting and returning to the
breeding site to lay eggs, as the natural path. It was then possible to
consider two ways of entering this path: One way as newly emerging
adult mosquitoes from the aquatic stages at the breeding site, and a
second way by coming from the waiting compartment back onto the
path. These two interpretations gave rise to two plausible threshold
parameters that could be used as an indicator for the basic offspring
number for the mosquitoes. The discussion as to what constitutes new
entries and what constitutes transitions in a compartmental model
framework as has been done here, which has been known to influence
interpretation of threshold-like parameters in epidemic and ecological
models, [49–51], was discussed in the context of mosquito dynamics
model for the first time in this paper.

The extended model that we studied in this paper had a realistic
non-zero steady-state solution which is stable for certain parameter
regimes and can be driven to instability to stable limit cycle solutions
via a Hopf bifurcation for other values of the parameters. The oscil-
latory phenomena, which has been observed and reported before, is
an important feature of this class of models as it captures the fact
that population densities of mosquitoes fluctuate in time according
20
to the seasons of the year. The leading order term for the period of
oscillations was also approximated in terms of the parameters of the
model and the effect of the waiting class on the nature of the stability
window, the initial period of oscillation and the initial amplitude
were fully discussed. The fact that the upgraded model continues to
exhibit oscillatory behaviour from the simple assumptions made is an
important feature of our modelling framework. It is worth pointing
out that the paradigm used in building up this mode brings out the
oscillatory dynamics that are known to be present in the dynamics
of mosquito populations and consequently the diseases they transmit,
without recourse to external seasonal forcing.

By assuming that the waiting time for the mosquitoes to stay in
the waiting class is short, we used the pseudo-equilibrium approxima-
tion theory to argue that the mosquitoes in the waiting class are in
equilibrium with the mosquitoes in the questing class. This enabled
us to reduce the dimension of the system by one. A full nonlinear
analysis of the reduced model is then possible using the centre man-
ifold theorem [57], and numerical solutions agreed with the analysis
conducted.
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We compared the results of the model without the waiting class
ith the results of the model with the waiting class and saw that even

hough the two models have the same qualitative dynamical properties,
he upgraded model has richer dynamics, and also captured the ability
f the mosquito to survive as a species. For example, it was possible
o establish the existence of a positive non-trivial steady state for the
pgraded model in parameter regimes where the model without the
aiting class predicted extinction. We interpreted this to mean that
llowing the mosquitoes the possibilities for repeated feeding gave the
nsect a higher chance of succeeding to reproduce.

In terms of control, we are able to report the existence of a threshold
arameter,  , which we have identified as the basic offspring number

or vectorial reproduction number with the property that if 0 ≤  ≤ 1,
he trivial steady state of the system is globally asymptotically stable,
nd if  > 1 mosquito eradication is impossible. The control criterion
herefore is to set the parameters of the system such that the basic
ffspring number stays below unity for a long time. This control pa-
ameter is seen to be sensitive to the rate at which mosquitoes lay eggs
hen the population numbers of egg laying mosquitoes are small as
ell as on the rate at which the mosquitoes in the waiting class return

o the breeding site to feed. In particular, if the flow or exchange rate
etween waiting class and questing class mosquitoes is very efficient,
hen the density of breeding site mosquitoes at equilibrium is also small
ndicating that fewer mosquitoes would complete the gonotrophic cycle
ventually leading to control. That is, 𝛽 ≊ 1, 𝐵∗ = (1 − 𝛽)𝑅∗ ≊ 0.

This is an important results which we are reporting for the first time:
disrupt the flow on the gonotrophic cycle path by providing a bypass
state, the waiting class, where the mosquitoes can detour into. The snag
here is that there are also values of 𝛽 at which level the waiting class
mosquitoes become a pathway to recovery for the mosquito population
when the numbers are small. Creating and sustaining a sizable waiting
class can be achieved by a judicious use of repellents and bed nets to
curb human–mosquito contact combined with suitable baits to draw the
questing mosquitoes into the waiting class.

The results of the current paper are very useful in that they set the
stage for the investigation of the impact of multiple probing attempts by
mosquitoes on malaria transmission. We have also set the stage for dis-
cussing how multiple feeding will impact the population dynamics in a
human–mosquito–animal interactive framework. Mating patterns, envi-
ronmental stochasticity, temperature, precipitation and the availability
of breeding sites are all factors that affect the population dynamics
of mosquitoes. A clear stratification of the mosquito population into
autogenous and anautogenous classes [5], will also affect the human–
mosquito–animal interactive framework. These and other aspects of the
paper including spatial spread and dispersion of mosquitoes are aspects
that are still under consideration.
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Appendix A. Model’s basic properties

Let 𝒙 ∶ R+ ⟶ R4
+ be the vector valued function such that 𝒙(𝑡) =

(𝐵(𝑡), 𝑄(𝑡),𝑊 (𝑡), 𝑅(𝑡)), with system (6) written in the form
𝑑𝒙
𝑑𝑡

= 𝒇 (𝒙), 𝒙(0) = 𝒙0, (53)

here 𝒇 ∶ R4 ⟶ R4 is defined as follows: 𝒇 (𝒙) = (𝑓1(𝒙), 𝑓2(𝒙), 𝑓3(𝒙),
𝑓4(𝒙)), with 𝑓1(𝒙) = 𝑎𝑅𝜆(𝑅)+𝑎𝑅−(𝑏∗+𝜇)𝐵, 𝑓2(𝒙) = 𝑏∗𝐵+𝑐∗𝑊 −(𝜏∗+𝜇)𝑄,
𝑓3(𝒙) = 𝑞𝜏∗𝑄 − (𝑐∗ + 𝜇)𝑊 and 𝑓4(𝒙) = 𝑝𝜏∗𝑄 − (𝑎 + 𝜇)𝑅.

Lemma A.1. The function 𝒇 in (53) is (locally) Lipschitzian

Proof. Let ‖ ⋅‖∞ be the maximum modulus norm in R4. Then we easily
establish that for 𝒙1,𝒙2 ∈ R4

+, ‖𝒇 (𝒙1) −𝒇 (𝒙2)‖∞ ≤ 𝑀‖𝒙1 −𝒙2‖∞, where

𝑀 = max{𝑀1,𝑀2,𝑀3,𝑀4} with 𝑀𝑘 = max
{

|

|

|

|

𝜕𝑓𝑘
𝜕𝑥𝑗

|

|

|

|

, 𝑥𝑗 ∈ {𝑅,𝐵,𝑄,𝑊 }
}

.
< ∞ since 𝑅𝜆(𝑅) is differentiable and bounded whenever the initial

ondition 𝑅0 ∈ [0, 𝐿), where 𝐿 is the corresponding carrying capacity of
he system. For the logistic model we can at best surmise that 𝑅𝜆(𝑅) is
ocally bounded, within the set [0, 𝐿), from continuity arguments. □

heorem A.1 (Existence and Uniqueness of Solutions). The differential
q. (53) has a unique solution.

roof. Since 𝒇 is Lipschitz continuous with respect to 𝒙 and continuous
ith continuous 𝑡, we conclude by the Picard’s existence and unique-
ess theorem that system (53) has a unique solution which is defined
n some neighbourhood of the initial condition (𝑡0,𝒙(𝑡0)) = (𝑡0,𝒙0). □

heorem A.2 (Positivity). Let G = {(𝐵,𝑄,𝑊 ,𝑅) ∈ R4 ∶ 𝐵,𝑄,𝑊 ,𝑅 ∈
+}. If the initial conditions of system (53) lies in G, then the unique
olutions characterised by Theorem A.1 lie in G, whenever it exists.

roof. Assume for a contradiction that there exists a first time 𝑡1 such
hat 𝑋(𝑡1) = 0, 𝑑𝑋(𝑡1)

𝑑𝑡 < 0 for 0 < 𝑡 ≤ 𝑡1, 𝐗(𝑡) ∈ G∖{0} where
𝑋 ∈ {𝐵,𝑄,𝑊 ,𝑅}. Now, when 𝑋 = 𝐵,
𝑑𝐵(𝑡1) = 𝑎𝑅𝜆(𝑅) + 𝑎𝑅 > 0.

𝑑𝑡
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For 𝑋 = 𝑄,𝑊 and 𝑅, we have respectively that
𝑑𝑄(𝑡1)
𝑑𝑡

= 𝑏∗𝐵 + 𝑐∗𝑊 > 0,
𝑑𝑊 (𝑡1)

𝑑𝑡
= 𝑞𝜏∗𝑄 > 0,

𝑑𝑅(𝑡1)
𝑑𝑡

= 𝑝𝜏∗𝑄 > 0

hich contradicts the assumption 𝑑𝑋(𝑡1)
𝑑𝑡 < 0. Thus no such 𝑡1 exists. □

Theorem A.3 (Boundedness). The unique solution characterised by Theo-
rem A.1 is bounded.

Proof. From the nature of 𝜆(𝑅), 𝑅𝜆(𝑅) is bounded above for all 𝑅 ≥ 0
or on a restricted domain (0, 𝐿).6 Suppose this bound is 𝜆𝑚 = 𝑅𝑚𝜆(𝑅𝑚)
which is obtained by finding 𝑅𝑚 such that 𝜆(𝑅𝑚) + 𝑅𝑚𝜆′(𝑅𝑚) = 0.
Consider system (6) and let 𝑇𝑚(𝑡) = 𝐵(𝑡) + 𝑄(𝑡) + 𝑊 (𝑡) + 𝑅(𝑡) with
𝑇𝑚(0) = 𝐵(0) +𝑄(0) +𝑊 (0) + 𝑅(0). Then 𝑇𝑚 satisfies the equation
𝑑𝑇𝑚
𝑑𝑡

= 𝑎𝑅𝜆(𝑅) − (1 − 𝑝)(1 − 𝜃)𝜏∗𝑄 − 𝜇𝐵𝐵 − 𝜇𝑄𝑄 − 𝜇𝑊 𝑊 − 𝜇𝑅𝑅, (54)

ince 𝑞 = 𝜃(1−𝑝). Let 𝜇 = max{𝜇𝐵 , 𝜇𝑄, 𝜇𝑊 , 𝜇𝑅}. Then from (54) we have
hat
𝑑𝑇𝑚
𝑑𝑡

≤ 𝑎𝜆𝑚 − 𝜇𝑇𝑚 ⇒ 𝑇𝑚(𝑡) ≤ 𝑇𝑚(0)𝑒−𝜇𝑡 +
𝑎𝜆𝑚
𝜇

−
𝑎𝜆𝑚
𝜇

𝑒−𝜇𝑡. (55)

From (55), we see that the size of 𝑇𝑚 is bounded above by a quantity
that converges to 𝑎𝜆𝑚

𝜇 as 𝑡 → ∞. In particular, if 𝑇𝑚(0) ≤
𝑎𝜆𝑚
𝜇 , then 𝑇𝑚(𝑡)

is bounded from above by 𝑎𝜆𝑚
𝜇 . If 𝑇𝑚(0) >

𝑎𝜆𝑚
𝜇 , we have from (55) that

lim
→∞

sup 𝑇𝑚 =
𝑎𝜆𝑚
𝜇

.

□

Appendix B. Stability of the non-trivial steady state and Hopf
bifurcation

In this section we show that there exists region in parameter space
for which the non-trivial steady state is asymptotically stable and points
where the system loses stability via a Hopf bifurcation to oscillatory
solutions.

Theorem B.1. Let  > 1 and let 𝑅∗ be the value of 𝑅 for which
he non-trivial steady state solution prescribed by Theorem 3.1, which is
uaranteed to exist only for those parameters for which  > 1, is defined.
et 𝑎𝑖, 𝑖 = 1, 2, 3 be the coefficients in the characteristic polynomial (24).
et us define

=
−𝑎23𝛾𝛼𝛿𝑅

∗𝜆′(𝑅∗)

𝑎1𝑎2𝑎3 − 𝑎21
. (56)

Then, the non-zero steady state solution of the entire system, which cor-
responds to 𝑅∗ > 0, is linearly stable to small perturbations whenever
𝜉 < 1.

Proof. The requirement that  > 1 for the nontrivial steady state to
exists follows from Remark 3.2, here, as before, we use  in place
of any one of the two threshold parameters shown in Eqs. (20) and
(21). At the non-zero steady state, the coefficients 𝑎1 and 𝑎0 in the
characteristic polynomial (24) become

𝑎1 = 𝛾𝜌𝛽 + 𝜌𝛿 + 𝛾𝛿(1 + 𝜌)(1 − 𝛽) − 𝛾𝛼𝑅∗𝜆′(𝑅∗);

𝑎0 = −𝛾𝛼𝛿𝑅∗𝜆′(𝑅∗).

For linear stability, we note that since 𝜆 is monotone decreasing and
1 > 𝛽, 𝑎𝑖 > 0, 𝑖 = 0, 1, 2, 3 we only require, from the Routh–Hurwitz
conditions, that

𝑎1𝑎2𝑎3 − 𝑎21 − 𝑎23𝑎0 > 0 ⟺ 𝑎1𝑎2𝑎3 − 𝑎21 + 𝑎23𝛾𝛼𝛿𝑅
∗𝜆′(𝑅∗) > 0 ⟺ 𝜉 < 1. □

6 The restricted case applies to the logistic model for example.
22
Since the coefficients of (24) are all positive whenever  > 1, there
re no sign changes in the sequence of coefficients {1, 𝑎3, 𝑎2, 𝑎1, 𝑎0}

indicating absence of a positive real roots of the polynomial. Letting
𝜁 = −𝜔, the Characteristic polynomial becomes

⇒ 𝑃4(𝜔) = 𝜔4 − 𝑎3𝜔
3 + 𝑎2𝜔

2 − 𝑎1𝜔 − 𝛾𝛼𝛿𝑅∗𝜆′(𝑅∗)

which has four sign changes in its sequence of coefficients indicating
the presence of 4,2 or 0 negative real roots. The complex roots, when-
ever they exist, occur in conjugate pairs. Thus we can either have: a
conjugate pair of complex roots and two negative real roots, two pairs
of a conjugate pair of complex roots with no real solution, or four
negative real solutions. This suggest that 𝑅∗ can lose its stability only to
oscillatory instabilities as the parameter 𝜉 defined in (56) grows above
unity. We now show that there is a choice for the parameter of the
system and 𝜉 which for Eq. (24), admits a pair of purely imaginary
roots (with the remaining two having negative real parts) and use this
fact to deduce that our system admits a Hopf bifurcation.

Lemma B.1. Let 𝜉 be as defined in (56), which defines a value for 𝑎0 in
erms of 𝑎1, 𝑎3 and 𝑎2. At 𝜉 = 𝜉𝑐 = 1, the characteristic polynomial (24)
as a pair of distinct roots ±𝑖𝜔 on the imaginary axis and the other two
oots in the left hand plane.

roof. We can rewrite Eq. (24) in terms of 𝜉 as

𝑃4(𝜁 ) = 𝜁4 + 𝑎3𝜁
3 + 𝑎2𝜁

2 + 𝑎1𝜁 + 𝜉
(𝑎1𝑎2𝑎3 − 𝑎21)

𝑎23
(57)

At 𝜉 = 𝜉𝑐 = 1, Eq. (57) factors well into two parts

4(𝜁 ) = 𝜁4 + 𝑎3𝜁
3 + 𝑎2𝜁

2 + 𝑎1𝜁 +
(𝑎1𝑎2𝑎3 − 𝑎21)

𝑎23

=
(

𝜁2 +
𝑎1
𝑎3

)(

𝜁2 + 𝑎3𝜁 + 𝑎2 −
𝑎1
𝑎3

)

. (58)

Since 𝑎1 and 𝑎3 are both positive, the purely imaginary root can be
read off from the last expression in (58). The other two roots will have
negative real parts whenever 𝑎0 =

(𝑎1𝑎2𝑎3−𝑎21)

𝑎23
> 0 which translates to

the condition 𝑎3𝑎2 − 𝑎1 > 0 so that at the point 𝜉 = 𝜉𝑐 = 1. Using the
quadratic formula we then compute all the roots of the polynomial at
the critical point to be

𝜁± = ±𝑖𝜔 = ±𝑖
√

𝑎1
𝑎3

⇒ 𝑎1 = 𝑎3𝜔
2 and 𝜁1,2 =

−𝑎3 ±
√

𝑎23 −
4(𝑎2𝑎3−𝑎1)

𝑎3

2
.

(59)

Since 𝑎2𝑎3 − 𝑎1 > 0, these two roots are real and negative if 𝑎23 >
4(𝑎2𝑎3−𝑎1)

𝑎3
and are complex with negative real part when 𝑎23 <

4(𝑎2𝑎3−𝑎1)
𝑎3

.
□

emark B.1. The result of Theorem B.1 assures us that the eigenvalues
f the linearised system can have negative real parts if 0 ≤ 𝜉 < 1,
nd that there may be solutions with positive real part if 𝜉 > 1, so
hat a bifurcation can occur in parameter space at the point where
=

𝑎23𝑎0
𝑎1𝑎3𝑎2−𝑎21

, defined by Eq. (56), is such that 𝜉 = 1. The condition
𝜉 = 1 translates into two important relations in terms of the coefficients
of the characteristic polynomial (24), namely;

(𝑖) 𝑎3𝑎2 − 𝑎1 > 0, (𝑖𝑖) 𝑎0 =
𝑎1
𝑎3

(

𝑎2 −
𝑎1
𝑎3

)

. (60)

The next result, which requires notions of subspaces, guarantees the
existence of a centre manifold to system (6). We recall the following:

Definition B.1. Let 𝜎(𝐷𝒇 (𝒙∗)) be the set of eigenvalues of the operator
𝐷 on the vector field 𝒇 (𝒙∗) and let 𝜎𝑠 = {𝜆 ∈ 𝜎(𝐷𝒇 (𝒙∗)) ∶ 𝑅𝑒𝜆 < 0}.
Then, 𝐸𝑠, the generalised eigenspace of 𝜎 , is called a stable subspace of
𝑠
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𝑊

𝜁

(

𝜁

𝜁

a

𝜆
𝑧
i
b
w
e
i

the vector field 𝒇 . Similarly, if we let 𝜎𝑐 = {𝜆 ∈ 𝜎(𝐷𝒇 (𝒙∗)) ∶ 𝑅𝑒𝜆 = 0},
then 𝐸𝑐 , the generalised eigenspace of 𝜎𝑐 , is called the centre subspace
of the vector field 𝒇 .

Theorem B.2. Let 𝜉 be as defined in Eq. (56). At 𝜉 = 𝜉𝑐 = 1, 𝐸𝑐 and
𝐸𝑠 are nonempty and there exists a two dimensional centre manifold, 𝑊 𝑐 ,
tangent to the centre subspace 𝐸𝑐 and a two dimensional stable manifold,
𝑊 𝑠 tangent to the stable subspace 𝐸𝑠.

Proof. We show that 𝐸𝑐 , 𝐸𝑠 ≠ ∅ by showing that 𝜎𝑐 and 𝜎𝑠 are not
empty. At 𝜉 = 𝜉𝑐 = 1, we clearly see from Lemma B.1 that 𝜎𝑐 ≠ ∅.

The remaining eigenvalues are given by 𝜉1,2 =
−𝑎3±

√

𝑎23−
4(𝑎2𝑎3−𝑎1)

𝑎3
2 , as

in Eq. (59). In particular, the following are possible:

1. 𝑎23 − 4(𝑎2𝑎3−𝑎1)
𝑎3

≥ 0, in which case, there are two negative real

roots, since 𝑎3 ≥
√

𝑎23 −
4(𝑎2𝑎3−𝑎1)

𝑎3
.

2. 𝑎23 − 4(𝑎2𝑎3−𝑎1)
𝑎3

< 0, in which case, there are a pair of complex
roots with negative real parts.

In either case, 𝜎𝑠 is also not empty. The existence of two manifolds:
𝑐 and 𝑊 𝑠 tangent respectively to 𝐸𝑐 and 𝐸𝑠 follows from the centre

manifold theorem [53]. □

Theorem B.3. Let 𝜉 be defined as in Eq. (56). If the zeros of Eq. (57)
depend analytically on 𝜉, then as 𝜉 increases through 𝜉𝑐 = 1, the non-zero
steady state as given in Eq. (16) bifurcates to periodic solutions whose initial
period and amplitude can be determine as a function of the perturbation of
𝜉 from 𝜉𝑐 = 1.

Proof. We use the result of a theorem7 of Brillinger [58] to deduce that
is an analytic function of 𝜉 and write 𝜁 = 𝜁 (𝜉). Then, denote the pair

of purely imaginary roots guaranteed by Lemma B.1 by 𝜁 (𝜉𝑐 ) = ±𝑖𝜔.
Let 0 < 𝜀 ≪ 1 and 𝜉 = 𝜉𝑐 + 𝜀𝜈. So, we choose a positive 𝜀 ≪ 1 such
that 𝜀2 ≈ 0 and 𝜈 = ±1. Notice that this is just a small displacement of
𝜉 from 𝜉𝑐 = 1.

𝜁 (𝜉) = 𝜁 (𝜉𝑐 + 𝜀𝜈) ≈ 𝜁 (𝜉𝑐 ) + 𝜁 ′(𝜉𝑐 )𝜀𝜈. (61)

Substituting (61) in (57), expanding, retaining only linear terms in 𝜀,
we have

𝜁4(𝜉𝑐 ) + 4𝜁3(𝜉𝑐 )𝜁 ′(𝜉𝑐 )𝜀𝜈 + 𝑎3
[

𝜁3(𝜉𝑐 ) + 3𝜁2(𝜉𝑐 )𝜁 ′(𝜉𝑐 )𝜀𝜈
]

+ 𝑎2
[

𝜁2(𝜉𝑐 ) + 2𝜁 (𝜉𝑐 )𝜁 ′(𝜉𝑐 )𝜀𝜈
]

+ 𝑎1(𝜁 (𝜉𝑐 ) + 𝜁 ′(𝜉𝑐 )𝜀𝜈)

+ (𝜉𝑐 + 𝜀𝜈)
(𝑎1𝑎2𝑎3 − 𝑎21)

𝑎23
≈ 0.

But

𝜁4(𝜉𝑐 ) + 𝑎3𝜁
3(𝜉𝑐 ) + 𝑎2𝜁

2(𝜉𝑐 ) + 𝑎1𝜁 (𝜉𝑐 ) + 𝜉𝑐
(𝑎1𝑎2𝑎3 − 𝑎21)

𝑎23
= 0

since 𝜁 (𝜉𝑐 ) is a solution to (57) at 𝜉𝑐 . Therefore, since the first term of
59), 𝑎1 = 𝑎3𝜔2 at the bifurcation, we have that

′(𝜉𝑐 ) ≈
−𝜔2(𝑎2 − 𝜔2)

[

4𝜁3(𝜉𝑐 ) + 3𝑎3𝜁2(𝜉𝑐 ) + 2𝑎2𝜁 (𝜉𝑐 ) + 𝜔2𝑎3
] .

Here we only examine the contributions from the purely imaginary
pair, given by 𝜁 (𝜉𝑐 ) = ±𝑖𝜔, since the other two roots, given by (59),
are real and negative and will contribute only perturbations that decay
to zero with time. So the last expression simplifies to

𝜁 ′(𝜉𝑐 ) =
2𝑎3𝜔2(𝑎2 − 𝜔2)

4𝑎23𝜔
2 + (2𝑎2 − 4𝜔2)2

± 𝑖
𝜔(𝑎2 − 𝜔2)(2𝑎2 − 4𝜔2)
4𝑎23𝜔

2 + (2𝑎2 − 4𝜔2)2
.

7 Theorem [58]: The roots of an 𝑛th degree complex polynomial, 𝑃𝑛(𝑧), are
analytic functions of the coefficients in the region where 𝑃𝑛(𝑧) = 0, while
𝑃 ′(𝑧) ≠ 0 for some 𝑧.
𝑛

23
We can now write down the constructed linear approximation to 𝜁 as

(𝜉) ≈ 𝜁 (𝜉𝑐 ) + 𝜁 ′(𝜉𝑐 )𝜀𝜈

= ±𝑖𝜔 +

(

2𝑎3𝜔2(𝑎2 − 𝜔2)
4𝑎23𝜔

2 + (2𝑎2 − 4𝜔2)2
± 𝑖

𝜔(𝑎2 − 𝜔2)(2𝑎2 − 4𝜔2)
4𝑎23𝜔

2 + (2𝑎2 − 4𝜔2)2

)

𝜀𝜈

Finally, we write the approximation for 𝜁 in the vicinity of the bifurca-
tion point as

𝜁 (𝜉) =

(

2𝑎3𝜔2(𝑎2 − 𝜔2)
4𝑎23𝜔

2 + (2𝑎2 − 4𝜔2)2

)

𝜀𝜈

± 𝑖

(

𝜔 +
𝜔(𝑎2 − 𝜔2)(2𝑎2 − 4𝜔2)
4𝑎23𝜔

2 + (2𝑎2 − 4𝜔2)2
𝜀𝜈

)

+ 𝑂(𝜀2). (62)

Recall that from Eq. (59), 𝑎1 = 𝑎3𝜔2 and since 𝑎1 = 𝑎3𝑎2, get 𝑎2 −
𝜔2 > 0, showing that for 𝜀 > 0, when 𝜈 = 1, the real part of the
perturbation in 𝜁 from 𝜁𝑐 is positive. That is, as 𝜉 passes through 𝜉𝑐 = 1,
the character of the stable stationary equilibrium changes in such a
way that oscillatory solutions whose initial amplitude and period of
oscillations are respectively approximated by

exp

(

2𝑎3𝜔2(𝑎2 − 𝜔2)
4𝑎23𝜔

2 + (2𝑎2 − 4𝜔2)2
𝜀𝜈𝑡

)

and 2𝜋
(

𝜔 + 𝜔(𝑎2−𝜔2)(2𝑎2−4𝜔2)
4𝑎23𝜔

2+(2𝑎2−4𝜔2)2
𝜀𝜈
) (63)

are observed. □

Remark B.2. We have just described conditions for the occurrence of
a Hopf bifurcation using the same procedure that was adopted in [9].

Appendix C. Analysing the reduced system: centre manifold ap-
proximation

The reduced system for the case of short waiting time is given
by Eq. (51). To study the stability of the non-trivial steady state for this
reduced system, we shift the nontrivial equilibrium of system (51) to
the origin by considering the transformation: 𝑥 = 𝐵 − 𝐵∗, 𝑦 = 𝑄 −𝑄∗

nd 𝑧 = 𝑅 − 𝑅∗, where it is known that 𝑄∗ = 𝑅∗, 𝐵∗ = (1 − 𝛽)𝑅∗,
𝛼𝑅∗𝜆(𝑅∗) + 𝛼𝑅∗ − 𝜌𝐵∗ = 0, so that system (51) becomes

𝑑𝑥
𝑑𝑡

= 𝛼(𝑧 + 𝑅∗)
[

𝜆(𝑧 + 𝑅∗) + 1
]

− 𝜌(𝑥 + 𝐵∗),

𝑑𝑦
𝑑𝑡

= 𝛾(𝑥 − (1 − 𝛽)𝑦), (64)
𝑑𝑧
𝑑𝑡

= 𝑦 − 𝑧.

Consider a Taylor expansion so that 𝜆(𝑧 + 𝑅∗) = 𝜆(𝑅∗) + 𝑧𝜆′(𝑅∗) +
1
2 𝑧

2𝜆′′(𝑅∗) + 𝑂(𝑧3), and substitute in system (64). We note that when
(𝑅) is the logistic formula as introduced in (1), 𝜆(𝑅∗ + 𝑧) = 𝜆(𝑅∗) +
𝜆′(𝑅∗) and we do not need to worry about any higher order approx-
mation terms as all higher order derivatives vanish. When 𝜆(𝑅) is a
ounded nonlinear function of the other types shown in (1), 𝜆(𝑅∗ + 𝑧)
ill admit an infinite Taylor expansion. In this case we truncate the
xpansion as indicated to aim for a manageable quadratic nonlinearity
n the reduced system. Next, make use of the fact that (𝐵∗, 𝑄∗, 𝑅∗) is

an equilibrium point of system (51), then our system (64) reduces to

𝑑𝑥
𝑑𝑡

= 𝛼𝐻(𝑅∗)𝑧 − 𝜌𝑥 + 𝛼
(

𝜆′(𝑅∗) + 1
2
𝑅∗𝜆′′(𝑅∗)

)

𝑧2 + 𝑂(𝑧3),

𝑑𝑦
𝑑𝑡

= 𝛾(𝑥 − (1 − 𝛽)𝑦), (65)
𝑑𝑧
𝑑𝑡

= 𝑦 − 𝑧.

We can then rewrite system (65) in the form

𝑑𝒙 = 𝐴𝒙 + 𝑭 (𝒙) where 𝒙 = (𝑥, 𝑦, 𝑧)𝑇 , (66)

𝑑𝑡
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w

𝑇
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𝜆
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𝜁

w

𝑎
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e

H

𝑀

I

⎛

⎜

⎜

⎝

f

∇
t

r
o
n
a

W
n
5
e

𝐴 =
⎛

⎜

⎜

⎝

−𝜌 0 𝛼𝐻(𝑅∗)
𝛾 −𝛾(1 − 𝛽) 0
0 1 −1

⎞

⎟

⎟

⎠

and 𝑭 =
⎛

⎜

⎜

⎝

𝛼𝑇 (𝑅∗)𝑧2 + 𝑂(𝑧3)
0
0

⎞

⎟

⎟

⎠

,

(67)

here

(𝑅∗) = 𝜆′(𝑅∗) + 1
2
𝑅∗𝜆′′(𝑅∗) and 𝐻(𝑅∗) = 𝜆(𝑅∗) + 𝑅∗𝜆′(𝑅∗) + 1.

e can approximate 𝑭 by ignoring the 𝑂(𝑧3) terms in its definition,
hile noting that the error for this approximation is in fact zero when
is the logistic growth function. It is clear that (0, 0, 0) is now an

quilibrium point of Eq. (66). If 𝜁 is an eigenvalue of the matrix 𝐴,
hen 𝜁 satisfies the equation

3 + 𝑎2𝜁
2 + 𝑎1𝜁 + 𝑎0 = 0, (68)

here now,

2 = 1+𝜌+𝛾(1−𝛽), 𝑎1 = 𝜌+𝜌𝛾(1−𝛽)+𝛾(1−𝛽), 𝑎0 = 𝜌𝛾(1−𝛽)−𝛼𝛾𝐻(𝑅∗).

(69)

t the Hopf bifurcation, 𝑎0 = 𝑎2𝑎1. This corresponds to the point
n parameter space where 𝛼𝐻(𝑅∗) = 𝜌𝛾(1−𝛽)−𝑎2𝑎1

𝛾 . At this point, the
igenvalues of 𝐴, given by the roots of (68), are 𝜁 = −𝑎2, 𝜁 = ±𝑖

√

𝑎1,
with corresponding eigenvectors

𝒗𝑎2 =
⎛

⎜

⎜

⎜

⎝

𝜌𝛾(1−𝛽)−𝑎2𝑎1
𝛾(𝜌−𝑎2)

1 − 𝑎2
1

⎞

⎟

⎟

⎟

⎠

, 𝒗𝑖√𝑎1 =

⎛

⎜

⎜

⎜

⎝

𝜌𝛾(1−𝛽)−𝑎2𝑎1
𝛾(𝜌−𝑖

√

𝑎1)

1 − 𝑖
√

𝑎1
1

⎞

⎟

⎟

⎟

⎠

, 𝒗−𝑖√𝑎1 =

⎛

⎜

⎜

⎜

⎝

𝜌𝛾(1−𝛽)−𝑎2𝑎1
𝛾(𝜌+𝑖

√

𝑎1)

1 + 𝑖
√

𝑎1
1

⎞

⎟

⎟

⎟

⎠

(70)

The centre manifold theorem [57] guarantees the existence of a centre
manifold at the origin in the (𝑥, 𝑦, 𝑧)-space which corresponds to the
steady state 𝐵∗ = 𝑊 ∗ = 𝑅∗ in the (𝐵,𝑊 ,𝑅)-space. This centre manifold
can be realised when we construct the Jordan decomposition of Eq. (66)
as in [53] by applying the transformation 𝒙 = 𝑀𝒖, where 𝒙 = (𝑥, 𝑦, 𝑧)𝑇

and 𝒖 = (𝑣,𝑤, 𝑢)𝑇 , and 𝑀 is the matrix such that

𝑀−1𝐴𝑀 =
⎛

⎜

⎜

⎝

−𝑎2 0 0
0 0 −

√

𝑎1
0

√

𝑎1 0

⎞

⎟

⎟

⎠

. (71)

ere, the matrix M is given by

=

⎛

⎜

⎜

⎜

⎝

𝜌𝛾(1−𝛽)−𝑎2𝑎1
𝛾(𝜌−𝑎2)

𝜌(𝜌𝛾(1−𝛽)−𝑎2𝑎1)
𝛾(𝜌2+𝑎1)

√

𝑎1(𝜌𝛾(1−𝛽)−𝑎2𝑎1)
𝛾(𝜌2+𝑎1)

1 − 𝑎2 1 −
√

𝑎1
1 1 0

⎞

⎟

⎟

⎟

⎠

. (72)

The first column of 𝑀 is the eigenvector corresponding to the real
and negative eigenvalue −𝑎2, its second column is the real part of the
eigenvector corresponding to eigenvalue −𝑖

√

𝑎1 while its third column
its imaginary part. The differential equation 𝒙̇ = 𝐴𝒙 + 𝑭 (𝒙) is then
transformed to the equivalent system

𝒖̇ = 𝑀−1𝐴𝑀𝒖+𝑀−1𝑭 (𝑀𝒖) =
⎛

⎜

⎜

⎝

−𝑎2 0 0
0 0 −

√

𝑎1
0

√

𝑎1 0

⎞

⎟

⎟

⎠

𝒖+𝑀−1𝑭 (𝑀𝒖).

(73)

n expanded form, the transformed system (73), takes the form

𝑣̇
𝑤̇
𝑢̇

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

−𝑎2 0 0
0 0 −

√

𝑎1
0

√

𝑎1 0

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

𝑣
𝑤
𝑢

⎞

⎟

⎟

⎠

+

⎛

⎜

⎜

⎜

⎝

𝐵(𝑅∗)(𝑣 +𝑤)2

−𝐵(𝑅∗)(𝑣 +𝑤)2

− 𝑎2
√

𝑎1
𝐵(𝑅∗)(𝑣 +𝑤)2

⎞

⎟

⎟

⎟

⎠

(74)
 H

24
leading to the decomposed system separating the stable manifold de-
fined by the equation
𝑑𝑣
𝑑𝑡

= −𝑎2𝑣 + 𝐵(𝑅∗)(𝑣 +𝑤)2, (75)

rom the centre manifold defined by the system of equations

𝑑
𝑑𝑡

(

𝑤
𝑢

)

=
(

0 −
√

𝑎1
√

𝑎1 0

)(

𝑤
𝑢

)

+

(

−𝐵(𝑅∗)(𝑣 +𝑤)2

− 𝑎2
√

𝑎1
𝐵(𝑅∗)(𝑣 +𝑤)2

)

.

(76)

From Eq. (75), if 𝐵(𝑅∗) < 0, then surely this component of the solution
decays to zero as 𝑡 increases so that the nature of the solutions for
the full system near the steady state (which now is the origin) can
be well approximated by the behaviour of the solutions in the centre
manifold defined by Eq. (76). Even if 𝐵 is non-negative, the form of
the nonlinearity suggests that perturbations arising from the stable
manifold will decay linearly to zero. We note here that from the
definition of the parameters, 𝑎2 − 𝜌 > 0 just as ((𝛽 − 1)𝛾𝜌 + 𝑎2𝑎1) > 0,
and so the sign of 𝐵 is determined by that of 𝑇 (𝑅∗), which is known to
be negative for the logistic birth function.

In order to determine the stability of the solution on the centre
manifold, use the approximation

𝑣 = ℎ(𝑤, 𝑢) = 𝑎𝑤2 + 𝑏𝑤𝑢 + 𝑐𝑢2 + 𝑂(3), (77)

where 𝑂(3) is used to indicate terms of the form 𝑤𝑖𝑢𝑗 where 𝑖+𝑗 ≥ 3, 𝑎, 𝑏
and 𝑐 are constants to be determine. This form ensures that ℎ(𝟎) = 𝟎 and
ℎ(𝟎) = 𝟎 which are all conditions for tangency of the centre manifold

o the centre subspace at the origin [53,57], namely that
𝜕ℎ
𝜕𝑤

𝑑𝑤
𝑑𝑡

+ 𝜕ℎ
𝜕𝑢

𝑑𝑢
𝑑𝑡

− 𝑑𝑣
𝑑𝑡

= 0, (78)

where 𝑑𝑢
𝑑𝑡 ,

𝑑𝑣
𝑑𝑡 and 𝑑𝑤

𝑑𝑡 are defined by the Eqs. (75) and (76) with 𝑣
eplaced by the indicated approximation. We can retain only second
rder terms in the approximation of the system on the centre manifold
ear the origin, so that (𝑣 + 𝑤)2 = (ℎ(𝑢,𝑤) + 𝑤)2 = 𝑤2 + 𝑂(3) if 𝑣 is
pproximated by (77). Now, from the assumed form for 𝑣, ∇ℎ(𝑤, 𝑢) =

(2𝑎𝑤+𝑏𝑢, 𝑏𝑤+2𝑐𝑢). Substituting in (78), expanding and equating powers
of 𝑢2, 𝑤𝑢 and 𝑤2 to zero, so that the approximation is valid to the
designated order of accuracy, yields the following equations

𝑢2 ∶ −
√

𝑎1𝑏 + 𝑎2𝑐 = 0, 𝑤2 ∶ 𝑏
√

𝑎1 + 𝑎𝑎2 − 𝐵(𝑅∗) = 0,

𝑤𝑢 ∶ − 2𝑎
√

𝑎1 + 𝑎2𝑏 + 𝑎2𝑏 + 2
√

𝑎1𝑐 = 0.

Solving this system gives us

𝑎 =

(

𝑎22 + 2𝑎1
)

𝐵 (𝑅∗)

𝑎2
(

𝑎22 + 4𝑎1
) , 𝑏 =

2
√

𝑎1𝐵 (𝑅∗)

𝑎22 + 4𝑎1
, 𝑐 =

2𝑎1𝐵 (𝑅∗)
𝑎2

(

𝑎22 + 4𝑎1
) (79)

The centre manifold of (33) can thus be represented in the (𝑤, 𝑢) plane
by the projection (77) where the coefficients 𝑎, 𝑏 and 𝑐 are defined in
(79). The flow of (33) within the centre manifold is governed by the
system

𝑑
𝑑𝑡

(

𝑤
𝑢

)

=
(

0 −
√

𝑎1
√

𝑎1 0

)(

𝑤
𝑢

)

+

(

−𝐵(𝑅∗)(ℎ(𝑤, 𝑢) +𝑤)2

− 𝑎2
√

𝑎1
𝐵(𝑅∗)(ℎ(𝑤, 𝑢) +𝑤)2

)

,

=
(

0 −
√

𝑎1
√

𝑎1 0

)(

𝑤
𝑢

)

+

(

−𝐵(𝑅∗)𝑤2 + 𝑂(3)
− 𝑎2

√

𝑎1
𝐵(𝑅∗)𝑤2 + 𝑂(3)

)

. (80)

e can proceed to approximate the system on the centre manifold by
eglecting the terms of order three and higher; see, for example, [53,
9]. For some degenerate systems, it may happen that truncating the
xpansion at order three will lead to a loss of the oscillatory dynamics.
owever, we do not believe it is the case here. It is evident from the
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form of the approximating equations from system (80) that we can
have limit cycles in the (𝑤, 𝑢)− phase plane near the origin where
(𝑤, 𝑢) = (0, 0) is a steady state for the dynamics on the centre manifold.
It is now possible to study the dynamics of the system on the limit
cycle be examining closely the behaviour of the two-component system
described by system (80). The limit cycle near the origin for the reduced
system is illustrated in the streamplot shown in Fig. 10, and the full
nonlinear model is simulated and a bifurcation diagram shown in
Fig. 11.
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