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Connected Preceding Vehicle Identification for Enabling
Cooperative Automated Driving in Mixed Traffic
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Abstract: To enable the safe and fast formation of connected automated vehicle (CAV) platoons in real-world traffic, a preceding vehicle
identification system for mixed traffic (PVIS-mixed) is proposed. PVIS-mixed utilizes the vehicle’s radar measurements and global positioning
system (GPS) measurements reported by surrounding connected vehicles to find the communication identity of the preceding vehicle. The
design of PVIS-mixed is based on three goals: a low probability of making a wrong identification, a low probability of missing the connected
preceding vehicle, and short time consumption of the identification procedure. The proposed PVIS-mixed is evaluated in highway traffic si-
mulated by real vehicle trajectory data from the Next Generation Simulation (NGSIM) program. Evaluation results showed that the performance
of PVIS-mixed is not related to the adoption rate of connected vehicles, and 1 m is found to be the required relative positioning accuracy to make
99th percentile time consumption <10 s. It was observed that the multipath bias of GPS positioning could affect the usability of CAV platooning.
The possible solutions are then discussed as future work. DOI: 10.1061/JTEPBS.0000661. © 2022 American Society of Civil Engineers.

Introduction

Improving safety and mobility are the two key objectives for future
transportation systems. In 2018, more than 1.35 million people
worldwide died from traffic crashes, which has become the leading
cause of deaths of people aged 5-29 years (WHO 2018). Vehicle
automation has been considered the most effective way to prevent
crashes because most roadway crashes are associated with drivers’
improper behaviors (Singh 2015). While fully automated vehicles
(i.e., driverless vehicles) are still far from large-scale implementa-
tion due to technical difficulty and high cost, some partially auto-
mated vehicle applications, such as adaptive cruise control (ACC),
have become commercially available (Bengler et al. 2014). Further-
more, significant enhancement in transportation efficiency is
expected to be achieved by introducing connectivity to auto-
mated vehicles, such as vehicle-to-vehicle (V2V) and vehicle-to-in-
frastructure (V2I) communications, which would enable automated
vehicles to travel in cooperative ways.

Cooperative adaptive cruise control (CACC), enhanced from
ACC, is one the most promising and prepared applications of con-
nected automated vehicles (CAVs). It enables vehicles to stably
travel as compact platoons in short headways like 0.6 s, and makes
it possible to double or triple the current roadway capacity and
essentially resolve congestion (Lioris et al. 2017; Shladover et al.
2012). Apart from the state of the preceding vehicle measured by
range sensor, CACC vehicles also make use of the acceleration or
intended acceleration of the preceding vehicle or even information
from vehicles further ahead via communications (Milanés et al.
2013; Naus et al. 2010; Ploeg et al. 2011).
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A variety of CACC systems have been developed in the last two
decades. Based on the communication topology, existing CACC
systems can be divided into three categories: predecessor-following
(PF) CACC (Naus et al. 2010), which only communicates with the
nearest preceding vehicle; predecessor-leader-following (PLF)
CACC (Milanés et al. 2013), which communicates with both the
preceding vehicle and platoon leader; and multi-predecessor-
following (MPF) CACC (Levine and Athans 1966), which requires
communications with multiple preceding vehicles in the platoon.
All these CACC systems require the message from the nearest
preceding vehicle, which directly affects the safety of the subject
vehicle. Actually, when the subject vehicle detects another vehicle
ahead by onboard sensors and tries to platoon with this preceding
vehicle, the first thing it should do is to establish connection with
this preceding vehicle [if it is a connected vehicle (CV)]. Once
done, the communication IDs of other members in the platoon
can be obtained from the preceding vehicle and connections with
them can be further established. Therefore, identification of the
preceding vehicle is a necessary step to form or join a CACC platoon.

Ideally, the subject vehicle can request all the surrounding con-
nected vehicles to share their positions estimated by global position-
ing system (GPS), and then compare those self-reported positions
with the sensor measurement on the actual preceding vehicle. The
vehicle whose self-reported position matches that of the subject
vehicle’s sensor measurement should be considered as the preceding
vehicle. However, this is not a trivial task on real-world multilane
highways where the reported GPS positions may not be accurate
enough to help distinguish the preceding vehicle from other nearby
vehicles. Because the feedforward signal from the preceding vehicle
plays a key role in CACC motion control (Al-Jhayyish and Schmidt
2017), the misidentification of the preceding vehicle could result in
unexpected or undesirable car-following behaviors of the ego ve-
hicle, undermining the ride quality and even threatening the safety
(or activating collision avoidance maneuvers) in extreme situations.

The issue of preceding vehicle identification has neither been
fully identified nor addressed in previous CACC demonstrations.
In Milanés et al. (2013), Naus et al. (2010), and Ploeg et al. (2011),
all the CACC vehicles were traveling in a single platoon so
that they could be easily distinguished from each other. In the
Grand Cooperative Driving Challenge (GCDC) 2011, two CACC

J. Transp. Eng., Part A: Systems



platoons were competing on two adjacent lanes, but the participants
were allowed to preset a blacklist in the vehicle’s software to block
the messages from vehicles in the adjacent lane (Geiger et al.
2012). This blacklist is obviously impossible in the real world.
Most of vehicles in the GCDC were already equipped with high-
performance GPS, but still had insufficient confidence in correctly
identifying the preceding vehicle. A key question awaiting answer
is that how accurate the GPS or sensors should be to guarantee
correct and quick identification of the preceding vehicle.

A preceding vehicle identification system (PVIS) under 100%
connected vehicle environment was proposed and evaluated in Chen
and Park (2019). This PVIS calculated a dynamic searching area
based on GPS or sensor errors, vehicle geometry, and radar measure-
ment of the actual preceding vehicle. The searching area is deter-
mined so that the reported GPS position of the actual preceding
vehicle tends to always be within it, while other irrelevant vehicles
will be gradually screened out over time. However, this PVIS is not
able to work in mixed traffic consisting of both connected and un-
connected vehicles. Without a proper mechanism to decide whether
the preceding vehicle is a connected vehicle or not, PVIS would end
up misidentifying an irrelevant vehicle as the preceding vehicle if the
preceding vehicle is actually unconnected. Because it is predicted that
the adoption rate of vehicle connectivity will not reach 100% until
2040s in the United States (Bansal and Kockelman 2017), a more
sophisticated PVIS that can cope with unconnected vehicles is needed
for the implementation of CACC in the near future. To fill the re-
search gap, this paper proposes a new preceding vehicle identification
system for mixed traffic (PVIS-mixed).

The rest of the paper is organized as follows: The archetecture of
PVIS-mixed is proposed in the second section. The third section
describes the identification procedure in mixed traffic conditions.
The fourth section presents the design of PVIS-mixed, including
the design goals, derivation of the searching area, and optimization
of the parameters of PVIS-mixed. In the fifth section, the perfor-
mance of the proposed PVIS-mixed is evaluated with real-world
vehicle trajectory data. The sixth section summarizes findings from

this research and discusses the potential improvements for future
research.

Architecture

The main assumptions in this study are:

» Imperfect adoption rate of connected vehicle;

* Connected vehicles are equipped with GPS;

* The user of PVIS-mixed (i.e., subject vehicle) is capable of

CACC and is equipped with long-range radar sensor; and
e The effect of packet loss on PVIS-mixed is insignificant and can

be easily handled according to the previous results in Chen and

Park (2019).

With the preceding assumptions, the architecture of the
proposed PVIS-mixed can be illustrated in Fig. 1. The core of
PVIS-mixed is the identification procedure, a computer program
to determine the communication ID of the preceding vehicle (if
it exists). This procedure is structured with an outer loop and an
inner loop (to be explained in the next section), which recursively
search for connected vehicles whose locations are close enough to
that of the preceding vehicle.

When the identification procedure runs in real time, PVIS-mixed
acquires the data from the radar, V2V communication device, and
GPS of the subject vehicle. These data indicate the relative location
of the actual preceding vehicle and those of the surrounding
connected vehicles.

To guarantee that the PVIS-mixed works correctly and effi-
ciently, the key parameters in the identification procedure need
to be optimized in advance. The offline parameterization can com-
pute a table of the optimal parameters according to the design goals
and the system models.

Finally, if PVIS-mixed determines that the preceding vehicle is a
connected vehicle and finds its communication ID, then the subject
vehicle is ready to activate CACC, or other CAV applications
demanding this information.

Data acquisition

PVIS-mixed

Identification procedure

Offline parameterization

| | I | | |
| | | | | |
| | | | | |
| | i |
: Range sensor (radar) I : Outer loop | : Design goals |
' ! | I :
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I Vehicular > e A !
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[ [ [ [ [ v [
| | | | | |
| GPS : | Identification result : | Optimal parameters :
| | |
| | | | | |
N o ———————— — — — — — - N —————— —— — — — — — - N ——————————— — — -

Communication ID of

preceding vehicle

CAV applications

Fig. 1. Architecture of PVIS-mixed.
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Identification Procedure

An intuitive way for PVIS-mixed to deal with an unconnected
vehicle in mixed traffic is to determine the preceding vehicle as
unconnected if all the GPS locations (with errors) reported by
surrounding vehicles are continuously far from the radar-measured
location of the preceding vehicle. However, such criterion should
be carefully designed because the tighter criterion may lead to
longer time consumption and higher unusability of CACC, i.e., not
activating CACC when the preceding vehicle is actually a
connected vehicle, while the looser criterion may lead to frequent
misidentifications. Therefore, this study explicitly models this
decision-making process and designs PVIS-mixed to optimally
suppress the identification time, unusability, and misidentification
rates. Accordingly, the identification procedure is proposed as
shown in Fig. 2 and explained as follows:
1. Start the identification procedure when the subject vehicle
detects a preceding vehicle within the preset identification range
(e.g., 200 m).

Start,
Identification time = 0

Y

Identification time +=1,
Search time =0

Y

Y

| Search time +=1
Radar Vav
N GPS
measurement communication
I |
\4 y
Relative location of IDs and relative locations

the preceding of nearby connected
vehicle vehicles

Y \ 4

IDs of vehicles within the
search area

Search area >

earch time < n2

Candidate
umber==12

dentification
time < k?

ID of connected
preceding vehicle

Preceding vehicle
is unconnected

End

Fig. 2. Flowchart of identification procedure.
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2. Measure the relative location of the preceding vehicle via radar
and communicate with nearby vehicles to obtain their self-
reported locations along with their communication IDs.

3. Calculate a searching area A around the radar-measured position
of preceding vehicle and note the communication IDs of
vehicles whose self-reported GPS locations are within A.

4. Repeat Steps 2 and 3 n consecutive times and determine the
candidates for the preceding vehicle whose self-reported GPS
location is within the area A in all n searches, where search
means Steps 2-3 (i.e., the inner loop in Fig. 2). This inner loop
is set up mainly for the goal of avoiding misidentification. It
screens out irrelevant vehicles by utilizing the sensor measure-
ments in multiple consecutive searches.

5. If only one candidate is found in Step 4, this candidate would
then be considered as the preceding vehicle and the identifica-
tion procedure ends.

6. If no candidate is found, go back to Step 1 and restart the iden-
tification, where identification refers to Steps 2-5 (i.e., the outer
loop in Fig. 2). If the candidate is not found for k consecutive
identifications, determine the preceding vehicle to be uncon-
nected and the procedure ends. The main purpose of this outer
loop is to avoid unusability when there is a connected preceding
vehicle. It also limits time consumption in case the preceding
vehicle is indeed unconnected.

7. If multiple candidates are found (which is unlikely), go back to
Step 1 and restart the identification.

In summary, each trial of identification lasts for n time steps. If
there is one and only one vehicle whose location sufficiently matches
the radar-measured location of the preceding vehicle for the n con-
secutive time steps, then it is determined as the preceding vehicle. On
the other hand, if no candidate is found in k trials of such identifi-
cation, then the preceding vehicle is determined to be unconnected.

At worst, PVIS-mixed needs to consider the radar or GPS mea-
surements during nk time steps before making the final decision,
but more commonly the identification procedure is to be terminated
in advance when the connected preceding vehicle is found in any of
the identification trials.

Compared to the PVIS for 100% CV traffic (Chen and Park
2019), the PVIS-mixed are different mainly in three aspects:

1. Additional step. Step 6 is dedicated for PVIS-mixed. It gives a
chance to stop the procedure when the preceding vehicle is un-
connected. Without Step 6, PVIS (Chen and Park 2019) would
keep searching until an irrelevant vehicle is misidentified as the
preceding vehicle.

2. Design goals. PVIS-mixed is set to first exclude irrelevant
vehicles from the candidate list after Step 4 with guaranteed
probability to prevent misidentification when the actual preced-
ing vehicle is unconnected. Second, it tries to include the actual
preceding vehicle if it is connected at a guaranteed probability.
Finally, the identification time consumption is taken into con-
sideration because its maximum value is explicitly linked to the
product of n and k. In contrast, the PVIS in Chen and Park
(2019) only needs to guarantee the actual preceding vehicle
as a candidate with certain probability because false identifica-
tions would not happen as long as the actual preceding vehicle is
on the candidates list.

3. Parameterization. Because of the new parameter introduced in
Step 6 and the multiple design goals, the proper searching area
A, n, and k must be determined jointly. As a result, extra
modeling and nonlinear optimization is required, as shown sub-
sequently, to parameterize PVIS-mixed. As a comparison, PVIS
(Chen and Park 2019) accepts arbitrary » and the searching area
is simply calculated based on the desired error rate (Er) and n,

i.e., a = VEr.
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Parameter Design

Design Goals

The first goal of PVIS-mixed is to guarantee a low probability to
make an error. The error is defined as the mismatch where an irrel-
evant vehicle is determined to be the preceding vehicle through the
identification procedure. In the mixed traffic, the theoretical error
rate is

E { (1—P,)P; if preceding vehicle is connected
r =

P; if preceding vehicle is unconnected

where P, = probability that the actual preceding vehicle is identi-
fied as a candidate; and P; = probability that an irrelevant vehicle is
considered as a candidate. Because (1 — P,,)P; < P;, it will be suf-
ficient to design PVIS-mixed in the case that the preceding
vehicle is unconnected, i.e., the first goal is to make Er = P; — 0.
Second, we need to ensure that PVIS-mixed has a small chance
to miss the preceding vehicle when it is connected. The concept of
unusablity rate (Ur) is defined to reflect this goal
Ur=1-P, (2)
Assuming an Er ~ (0 can be achieved, we have Ur~
(1-P,)(1 —E,), which represents the probability that PVIS-
mixed takes a connected preceding vehicle as unconnected and
mistakenly gives up performing CACC. Unusablity is less serious
than error because it does not cause false behavior of the vehicle.
Finally, a low maximum identification time consumption is
preferred for higher usability of CACC and better user experience.
Because E, &~ 0, Step 7 in the identification procedure actually has
a rare chance to happen; thus, the maximum number of searches is
nk. Assuming the update frequency of communication and GPS
positioning to be 10 Hz, the maximum identification time
consumption is 0.1nk.

Searching Area

A searching area was proposed in Chen and Park (2019). To be
considered as a candidate for preceding vehicle in a single search,
a surrounding vehicle’s GPS measurements should be close enough
to the subject vehicle’s radar measurements on the actual preceding
vehicle

(5 = % P/8 + (7= 3. /8 < *(2.0) ©

where y, and x, = radar-measured longitudinal and lateral locations
of preceding vehicle; y, and x, = GPS-measured longitudinal
and lateral locations of the surrounding vehicle; x> = chi-square
statistic; o = probability that the actual preceding vehicle is
positioned out of the oval area defined by Eq. (3); and

6, = \/(\/x% +y20,)* + 0% and 6, = /o3 + 0%, where o, and
oy are the GPS standard error in longitudinal and lateral directions,
respectively, and o, and o, are the standard angle error and range
error of the radar sensor, respectively. With this searching area, the
corresponding p, can be computed

pp=1-(1—=(1-a)) (4)

Error Rate Model

Because Eq. (4) has revealed the relationship between the searching
area A and P, the next step is to relate A to the desired P;.
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Obviously, P; becomes larger when irrelevant vehicles get closer
to the preceding vehicle. To guarantee Er for all cases, the most
challenging situation in Fig. 3 should be considered.

In this situation, the preceding vehicle is unconnected but
surrounded by connected vehicles; / is the minimum headway
and w is the minimum lateral distance between vehicles. In this
study, it is assumed that # = 10 m and w = 2.5 m. Around the pre-
ceding vehicle, the two nearest irrelevant vehicles are parallel to the
preceding vehicle in the adjacent lanes, and two second nearest
irrelevant vehicles are in the further lanes. Similarly, one can also
find the third and fourth nearest irrelevant vehicles and so on. How-
ever, it is assumed that the two first nearest vehicles have dominant
probability to be mismatched over other vehicles, which can be
proven afterward; thus, only these two vehicles are taken into
consideration when calculating p,.

The searching area described by Eq. (3) can be adopted in real-
world operation but cannot be used to determine the n and k in the
design of PVIS-mixed because the area needs to change with radar
measurements. For this reason, the radar error is assumed insignifi-
cant compared to GPS error. Then the boundary of area A can
be reformulated with regard to the radar-measured location (0,0) of
the preceding vehicle

x%/ + yﬁ <ox*(2,a) (5)

where o = o, = 0,. It can be seen that area A is solely determined
by parameter o when a GPS error is given.

For a surrounding irrelevant vehicle, the probability density
function of its relative GPS position with respect to its real position
is given in normal distribution

Qb=

4th nearest |3rd nearest| 4th nearest

h Searching|area A

2nd pearest [Ist nearest [Preceding| 15t nearest| 20d nearest

vehicle

4th pearest

4

4tpearest

Subject
vehicle

Fig. 3. Most challenging situation for PVIS-mixed.
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1 x2 452
f(xgyq) = 3752 P (—ﬁ> (6)

And its probability to be positioned within the area A for n

measurements is
Pn = < / /A S, y)dxdy> (7)

where A’ = searching area in respect to the position of the irrelevant
vehicle. In the view of the first nearest irrelevant vehicles, A’ is the
shifted A in the lateral direction by w

A= {(xy)|(r £ w32 <ox*(2.0)) ®)

At last, the probability that any of the first nearest irrelevant
vehicles is determined to be the preceding vehicle, can be estimated

pi~ 2kpn (9)

It can be seen that p; and p,, are both functions of «, n, and k.

Parameters Optimization

Based on Egs. (4)—(9), an optimization problem can be set:
Minimize J = W,(1 — p,(a.n, k)) + 0.1W,nk by changing «,
n, and k
Subject to

pi(a,n k) <Er*
0.1nk < thax
Pp 2 Prin
nkeNT

O<ax<l

where J = cost function, a combination of weighted unusability rate
(Ur) and maximum time consumption; and W, and W, = weights
for Ur and maximum time consumption, respectively, with a higher
ratio between W, and W, leading to higher usability of CACC but
longer identification time, and vice versa; Er* = required theoreti-
cal error rate; t,,, = maximum acceptable time consumption; and
P in = minimum acceptable usability of CACC.

Because there are nonlinear and integer constraints, genetic
algorithm (GA) is adopted to search for (potential) optimal
parameters.

Using W, =500, W, =1, tpn. =35(s), and P, =0.95
(users are free to choose other values according to their prefer-
ences), the optimal parameters and expected performance given
Er* =107% — 1070 and different GPS error are listed in Table 1.
No solution can be found when GPS standard error is greater than
1.1 musing Er* = 107% and 1078, or I m using Er* = 10719, It can
be seen that pursuing an Er closer to zero will lead to longer
identification time and higher theoretical Ur.

According to n and « provided in Table 1, it can be computed
that the second nearest vehicles have probability <1073 to be iden-
tified as the preceding vehicle, which means that they indeed have
insignificant contribution to the error rate.
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Table 1. Optimal parameters and expected performance of PVIS-mixed
GPS standard

Maximum time Theoretical,

Er* error (m) n « k  consumption (s) Ur (%)

10-¢ 0.5 5 0.0026 2 1 0.02
0.6 9 0.0031 2 1.8 0.07
0.7 9 0.0208 4 3.6 0.09
0.8 10 0.0506 7 7 0.18
0.9 20 0.0184 5 10 0.29
1 17 0.059 11 18.7 0.79
1.1 26 0.039 10 26 1.24

1078 0.5 3 01254 7 2.1 0.04
0.6 6 0.0474 5 3 0.10
0.7 13 0.0144 4 5.2 0.09
0.8 26 0.0062 3 7 0.34
0.9 34 0.0089 4 13.6 0.47
1 38 0.0155 5 22.8 0.81
1.1 50 0.0159 7 35 1.55

10710 0.5 5 0.0211 3 1.5 0.10
0.6 10 0.0109 3 3 0.11
0.7 11 0.0386 6 6.6 0.19
0.8 12 0.0822 12 144 0.50
0.9 33 0.0136 5 16.5 0.63
1 42 0.0163 ©6 25.2 1.54
1.1 N/A

Performance Evaluation

To validate the effectiveness of the proposed PVIS-mixed, the
real-world vehicle trajectory data collected by the Next Generation
Simulation (NGSIM) program (Alexiadis et al. 2004) were utilized
to reproduce the traffic on a high-density highway segment. PVIS-
mixed was then supposed to pair preceding/following vehicles
under measurement errors of radar and GPS, which were generated
by error models. The time consumed to make final decisions, and
the resulted Er and Ur, served as the measures of effectiveness.

NGSIM Data

The NGSIM program (Alexiadis et al. 2004) was conducted by
the Federal Highway Administration (FHWA) Traffic Analysis
Tools Program. It recorded detailed trajectories of the vehicles
on real roads using high-resolution cameras. The US Highway
101 (US 101) data set is the representative data set for highway
traffic conditions. It reflects how vehicles moved over time on the
640-m-long segment of US Highway 101. While the full data set
of US 101 witnessed heavy traffic during rush hour from 7:50 a.m.
to 8:35 a.m., only the first 15-min period of data was used in this
study. This is because in the last 30 min the highway became fully
congested with frequent stop-and-go conditions, which deviated
from a typical operating condition for CACC. In the first 15 min,
more than 3,000 vehicles entered the highway segment, forming
and reforming 2,500 pairs of preceding/following vehicles.

Sensor Error Model

Automotive Radar

Millimeter-wave radar is one of the fundamental sensors for auto-
mated vehicles. The setting of radar in the evaluations follows the
Bosch long (Stuttgart, Germany)-range radar (LRR), which has
been extensively used for ACC (Hasch et al. 2012). It is featured
by 250-m detection range, 30° detection angle, 0.1-m distance
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accuracy, and 0.1° angle accuracy. The measurement errors were
assumed to be white noise (Ploeg et al. 2014).

GPS

Although the most accurate real-time kinematic GPS (RTK-GPS) is
capable of centimeter-level positioning, it is too expensive for large-
scale implementation. Instead, the pseudorange relative positioning
approach (Alam et al. 2013; Miiller et al. 2014; Liu et al. 2013) is
assumed to be adopted by PVIS-mixed because it can achieve better
performance than normal differential GPS (DGPS) while neither
expensive hardware nor support of reference station is needed. The
accuracy of pseudorange relative positioning can reach 0.5-1.2 m on
open highway (Miiller et al. 2014; Liu et al. 2013) and 2-6.5 m in
dense urban environments (Alam et al. 2013; Miiller et al. 2014).
Because the pseudorange DGPS’s errors follow unbiased normal dis-
tribution from long-term observations (Matosevic et al. 2006), it is
reasonable to assume that pseudorange relative positioning has the
same long-term error pattern due to the technical similarity.

In pseudorange relative positioning, the error caused by satellite
or user clock difference and the Earth’s atmosphere can be mostly
eliminated, so the major error source would be the multipath effect
caused by roadside buildings/trees (Miiller et al. 2014). Based on
Giremus et al. (2007), the multipath effect can be seen as “abruptly
adding biases with random magnitudes and durations to pseudo-
range measurements.” Accordingly, an error model for pseudor-
ange relative positioning was proposed in Chen and Park (2019)
as follows:

e(t) ~ e,(t) +¢ (10)
en(1) = Zlﬁ(f’ tio1.1)b; (11)
1
_ 1 ift,_ <t -
Yt by, 1) = {0 else (12)

where 7 = time; e(¢) = overall positioning error in x- or y-direction;
e,,(t) = multipath effect error; and £ = normally distributed unmod-
eled error

e~N(0,02) (13)

Error/m

3 . ) \ . . R . .
40 60 80 100 120 140 160

Time/s

180 200

Frequency

where o, = standard deviation (STD) of the unmodeled error and
also the minimum STD of overall error when there is no multipath
effect.

Multipath effect error e,,(f) is considered as random bias that
has normally distributed magnitude b; and uniformly distributed
duration t;_; — t;

b; ~N(0,02) (14)

(tiog — 1)~ (15)

where 0, = STD of positioning bias; and ¢, and ¢,,,, = lower and
upper boundary of the duration of the multipath effect.

While the error propagation from pseudorange measurements to
position measurement is simplified, the model [Eqs. (10)-(15)]
makes sense. This is because from long-term observations the over-
all positioning error tends to comply with an unbiased normal

distribution with an STD of /o2 + o7, but from short-term obser-
vations the distribution of overall error is biased and skewed.

Egs. (10)—(15) can only be applied to PVIS-mixed evaluation,
not to the design of PVIS-mixed, because real-world vehicles can
only obtain the statistics of overall error, either from long-term GPS
tests or onboard sensor fusion (Hult et al. 2018).

In this paper, the STD of overall positioning errors in x- and
y-directions are set the same, and the irreducible error e = min(c,)
0.5 m is assumed, so the STD of the multipath bias in Eq. (14) can

besetas oy, = /o1 —0.57and 0, , = |/ 03 — 0.5% snd duration of

the multipath effect is assumed to be 10-30 s.

An exemplary snapshot of GPS positioning error in the x-
direction generated by this model over 200 s and the error’s
frequency histogram are shown in Fig. 4 (overall error STD is
set as 1 m). It can be seen that the bias of GPS measurement fluc-
tuates over time and brings higher uncertainty to the generated
positioning error than a simple normal distribution can.

U(tmim tmax)

Simulation

The evaluation of PVIS-mixed was conducted in MATLAB. Basi-

cally, the simulation follows the flowchart in Fig. 2. The steps of

simulation are explained in detail as follows:

1. Initialize. The simulation was driven by two parameters: ¢ and j.
Parameter t means time, ranging from 0.0 to 900.0 s with a

500 T

450 ¢

400 ¢

350 -

300 -

250 ¢

200 ~

150 -

100 +

50 -

0
-3

-2

-1 0 1 2 3
Error/m

Fig. 4. Positioning error generated by the GPS error model.
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resolution of 0.1 s. Parameter j means the sequence of the ve-
hicle on the road, ranging from 1 (which denotes the vehicle
closest to the entrance) to j,.. (which denotes the vehicle far-
thest to the entrance). Connectivity is randomly assigned to the
vehicles. At the beginning of simulation, ¢ and j were set as 0
and 1, respectively.

2. Obtain vehicle locations from NGSIM data. With an input of ¢
and j, the locations of the jth vehicle (i.e., subject vehicle) and
locations of surrounding vehicles within 200 m in all lanes are
returned. The number of surrounding vehicles was denoted by i,
ranging from 1 (denoting the vehicle closest to the subject
vehicle) to i, (denoting the vehicle farthest to the subject
vehicle within 200 m).

3. Check necessity of identification. No identification is needed if
there is no vehicle ahead of the jth subject vehicle within 200 m
or the current preceding vehicle has already been identified.

4. Generate sensor measurements. Radar measurements of the
preceding vehicle and GPS measurements of other surrounding
vehicles are generated by adding random sensor errors to the
actual relative vehicle locations (which have been obtained in
Step 2).

5. Update the candidate list. If this is the first search for the jth
vehicle, every surrounding vehicle whose GPS location is within
the searching area is added on the candidate list. For the 2 — n
searches, the former candidates that are not found at this time are
removed from the candidate list. If the candidate list becomes
void after checking all the surrounding vehicles, stop this iden-
tification trial immediately and restart another one if the number
of identifications has not reached k.

6. Determine whether the identification procedure for the jth
vehicle should be finished at this time. The procedure ends if
the number of searches reaches n and one vehicle is still left
on the candidate list, or the list is void but k trials of identifi-
cation have been used.

7. Determine the search result. A results matrix is defined: T
(9,000 rows, 3,000 columns), where each element 7'(z,m)
means the search result for the jth subject vehicle at the time
t, where m is the vehicle ID of the jth subject vehicle. The
default value of T'(¢, j) is 0, indicating no identification needed
for the jth subject vehicle at . When Step 6 decides this is
not the time to finish, T(¢, j) is to be set to 2, indicating an
undecided preceding vehicle at ¢, and the identification should

Evaluation Results

PVIS-mixed was evaluated under three different adoption rates:

30%, 60%, and 90%. Following the previous study (Chen and

Park 2019), Er* = 108 was used in the evaluation.The results

are given in Table 2. The key findings are summarized as follows:

e The results showed no significant correlation between the
performance and adoption rate of vehicle connectivity. This
is because PVIS-mixed always considers the worst case as
shown in Fig. 3, no matter the proportion of connected vehicles
on the road.

e The time consumption increases with GPS error. The required
GPS accuracy was found to be 1 m to make the 99th percentile
time consumption <10 s; 0.8 m is the required accuracy to make
that <5 s. These accuracy levels are realizable in a highway sce-
nario with low-cost GPS (Miiller et al. 2014; Liu et al. 2013), but
difficult to be achieved in an urban environment (Alam et al.
2013; Miiller et al. 2014). Nevertheless, the simulation was con-
ducted on an urban highway with heavy traffic, and thus led to
more conservative results. To some extent, the required GPS
accuracy may be relaxed in lower-density cases such as rural
highway or uncongested urban roadway.

e The Ur was not as low as its theoretical value. Except for
accuracy = 0.5 m (where there is no multipath effect), Ur for
all the other accuracy levels increase by 1%—4%. This is because
the multipath effect is simulated in the evaluation but not able to
be considered in the design of PVIS-mixed. Under the effect of
multipath bias, the continuously large positioning error can
occur to the actual preceding vehicle and make its GPS position
out of the searching area during the identification procedure.
Nevertheless, an Ur < 5% can still be guaranteed when GPS
standard error is no greater than 1 m.

* In terms of incorrect identification, the actual Er is kept at 0% in
all the runs, indicating the robustness of PVIS-mixed against
incorrect identification.

To further verify the necessity of PVIS-mixed, the previous

PVIS (Chen and Park 2019) was tested in the mixed traffic

Table 2. Evaluation results under different adoption rates

GPS 99th
Adoption standard Actual, Average time  percentile time Ur

go on to ¢ + 0.1s; when only one candidate is found (N = 1), rate (%) error (m) Er (%) consumption (5) consumption (s) (%)
check whether its vehicle ID matches that of the preceding ve- 30 0.5 0.00 04 1.2 0.17
hicle. If positive, change T'(¢, m) to 1, meaning a correct iden- 0.6 0.00 0.7 18 0.87
p g g
g . . 0.7 0.00 1.4 2.7 2.07
tification; otherwise, change T(f,m) to —1, meaning an 08 0.00 27 51 337
incorrect identification (i.e., an error). When no candidate is 0.9 0.00 36 75 3.29
found, check the connectivity of the preceding vehicle. If it 1 0.00 4.1 8.2 4.07
is unconnected, 7'(z, j) is to be set to 3, indicating a correct de- 1.1 0.00 5.7 12.2 5.76
cisior'l on the connect’ivit_y (_)f precgding v§hicle; otherwise 60 05 0.00 04 | 0.00
T(t, j) is to be set to 4, indicating a failure to find the connected 0.6 0.00 0.7 1.7 1.02
preceding vehicle. 0.7 0.00 1.4 2.9 1.90
8. Go through the Steps 1-7 for all subject vehicles and all time. 0.8 0.00 2.6 43 2.67
After obtaining the matrix 7, the effectiveness of PVIS-mixed 0.9 0.00 3.6 6.5 3.35
can be measured. By screening each row of T, the number of 2 1 0.00 4.3 9.7 3.54
before every 1 or —1 can be counted; thus, the time consumption L1 0.00 57 12.5 5.74
for each final decision can be calculated. The average time con- 90 05 0.00 04 12 0.00
sumption and 99th percentile of time consumption were found 0.6 0.00 0.7 1.7 1.26
to represent the efficiency of the PVIS-mixed. 0.7 0.00 1.4 29 1.97
At last, the error rate and unusability rate can be computed as 038 0.00 2.7 52 174
follows: 0.9 0.00 3.6 7.1 3.10
Er = No.of — 1/(No.of — 1 + No.of 1)) i | 888 gg 121 ig;
Ur = No.of 4/(No. of 4 + No.of 1)) : : . . .
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Table 3. Performance comparison of PVIS and PVIS-mixed under 1-m
GPS error and different adoption rates

99th

Adoption Actual, Average time percentile time Ur
rate (%) Method  Er (%) consumption (s) consumption (s) (%)
30 PVIS 38.14 4.43 33.60 0.00
PVIS-22.8 36.46 4.39 22.60 9.45
PVIS-10  24.07 3.15 9.80 26.59
PVIS-mixed 0.00 4.10 8.20 4.07
60 PVIS 23.73 2.05 20.50 0.00
PVIS-22.8 21.82 2.05 21.60 1.08
PVIS-10 17.93 1.60 9.80 8.12
PVIS-mixed 0.00 4.30 9.70 3.54
90 PVIS 5.46 0.75 9.90 0.00
PVIS-22.8 5.59 0.67 9.70 0.13
PVIS-10 5.23 0.64 9.40 0.85
PVIS-mixed 0.00 4.20 9.40 4.97

environment. Table 3 compares the evaluation results of PVIS and

PVIS-mixed under 1-m GPS standard error and different adoption

rates of connectivity.

To make the comparison even fairer, we also tested PVIS (Chen
and Park 2019) enhanced with cutoff search time, after which PVIS
can terminate the identification and conclude that the preceding
vehicle is unconnected. Two such PVISs are defined:

1. PVIS-22.8: The time consumption was cut off at 22.8 s, which is
the maximum time consumption allowed by PVIS-mixed under
1-m GPS standard error.

2. PVIS-10: The time consumption was cut off at 10 s, the general
requirement for 99th percentile time consumption in Chen and
Park (2019) and this study.

As expected, PVIS resulted in large numbers of misidentifica-
tions. Even when there was a cutoff time consumption, the actual
Er could only be reduced slightly and at the cost of higher Ur.
Also, the performance of PVIS improves with the increase of adop-
tion rate. Nevertheless, none of PVIS, PVIS-22.8 or PVIS-10 are
fundamentally suitable for mixed traffic due to the poor reliability.

Conclusions and Future Work

In this research, a preceding vehicle identification system for mixed
traffic (PVIS-mixed) was developed to facilitate cooperative pla-
tooning operation under imperfect market penetration. The param-
eters of PVIS-mixed were optimized considering the probability to
make incorrect identification, the probability to miss the actual
preceding vehicle, and the time consumption of the identification
procedure. The proposed PVIS-mixed was tested by simulation
utilizing real vehicle trajectory data from NGSIM. To make the test
more realistic, the multipath bias of GPS positioning was modeled.
The results showed that the performance of PVIS-mixed was irrel-
evant to the adoption rate of connected vehicles, and the required
GPS accuracy to make 99th percentile time consumption <10 s was
1 m, with the theoretical error rate of 10~8. The results also showed
that the usability of CACC was negatively affected by the multipath
bias of GPS, which makes it easier to mistakenly take a connected
preceding vehicle as unconnected.

An immediate improvement that can be made is to further lower
the unusability rate of CACC, while the constraints on error rate
and time consumption should still be met. It can be found that a
critical variable that limits the efficiency of PVIS-mixed is the mini-
mum lateral intervehicle distance w. When a constant w is used, it is
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either so conservative that no irrelevant vehicle is that close to the
preceding vehicle in most cases, or too loose to include the worst
situation. An adaptive w is a possible solution to improve the
performance of PVIS-mixed. In fact, when the subject vehicle is
equipped with a wider-angle radar or lidar, the subject vehicle
should be capable of detecting the existence of the first nearest irrel-
evant vehicle and determining a more reasonable w based on how
close it is to the preceding vehicle. However, higher cost on the
range sensor can also be expected for its wider detection angel.

Additional future work includes extending this PVIS-mixed for
more connected vehicle applications such as cooperative lane
change (Dolk et al. 2017) or cooperative platooning controls dedi-
cated for mixed traffic (Chen and Park 2020; Jin and Orosz 2018)
where more surrounding vehicles need to be identified rather than
the preceding vehicle. Hardware-in-the-loop simulations and real-
world experiments are also necessary steps to prepare PVIS-mixed
for future implementation.
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Acknowledgments

This research is in part supported by the US National Science Foun-
dation under Grant No. CMMI-2009342, and in part supported by a
generous unrestricted research fund given by Toyota Motor North
America R&D.

References

Alam, N., A. Kealy, and A. G. Dempster. 2013. “An ins-aided tight inte-
gration approach for relative positioning enhancement in VANETSs.”
IEEE Trans. Intell. Transp. Syst. 14 (4): 1992-1996. https://doi.org/10
.1109/TITS.2013.2265235.

Alexiadis, V., J. Colyar, J. Halkias, R. Hranac, and G. McHale. 2004. “The
next generation simulation program.” Inst. Transp. Eng. ITE J. 74 (8):
22-26.

Al-Jhayyish, A. M., and K. W. Schmidt. 2017. “Feedforward strategies for
cooperative adaptive cruise control in heterogeneous vehicle strings.”
IEEE Trans. Intell. Transp. Syst. 19 (1): 113-122. https://doi.org/10
.1109/TITS.2017.2773659.

Bansal, P.,, and K. M. Kockelman. 2017. “Forecasting Americans’ long-
term adoption of connected and autonomous vehicle technologies.”
Transp. Res. Part A Policy Pract. 95 (Jan): 49-63. https://doi.org/10
.1016/j.tra.2016.10.013.

Bengler, K., K. Dietmayer, B. Farber, M. Maurer, C. Stiller, and H. Winner.
2014. “Three decades of driver assistance systems: Review and future
perspectives.” IEEE Intell. Transp. Syst. Mag. 6 (4): 6-22. https://doi
.org/10.1109/MITS.2014.2336271.

Chen, Z., and B. B. Park. 2019. “Preceding vehicle identification for co-
operative adaptive cruise control platoon forming.” I[EEE Trans. Intell.
Transp. Syst. 21 (1): 308-320. https://doi.org/10.1109/TITS.2019
.2891353.

Chen, Z., and B. B. Park. 2020. “Cooperative adaptive cruise control with
unconnected vehicle in the loop.” IEEE Trans. Intell. Transp. Syst. 1—
11. https://doi.org/10.1109/T1TS.2020.3041840.

J. Transp. Eng., Part A: Systems



Dolk, V., J. den Ouden, S. Steeghs, J. G. Devanesan, 1. Badshah, A.
Sudhakaran, K. Elferink, and D. Chakraborty. 2017. “Cooperative au-
tomated driving for various traffic scenarios: Experimental validation in
the GCDC 2016.” IEEE Trans. Intell. Transp. Syst. 19 (4): 1308-1321.
https://doi.org/10.1109/TITS.2017.2750079.

Geiger, A., M. Lauer, F. Moosmann, B. Ranft, H. Rapp, C. Stiller, and J.
Ziegler. 2012. “Team AnnieWAY’s entry to the 2011 Grand Co-
operative Driving Challenge.” IEEE Trans. Intell. Transp. Syst.
13 (3): 1008-1017. https://doi.org/10.1109/TITS.2012.2189882.

Giremus, A., J.-Y. Tourneret, and V. Calmettes. 2007. “A particle filtering
approach for joint detection/estimation of multipath effects on GPS
measurements.” IEEE Trans. Signal Process. 55 (4): 1275-1285.
https://doi.org/10.1109/TSP.2006.888895.

Hasch, J., E. Topak, R. Schnabel, T. Zwick, R. Weigel, and C.
Waldschmidt. 2012. “Millimeter-wave technology for automotive radar
sensors in the 77 GHz frequency band.” IEEE Trans. Microwave
Theory Tech. 60 (3): 845-860. https://doi.org/10.1109/TMTT.2011
.21784217.

Hult, R., F. E. Sancar, M. Jalalmaab, A. Vijayan, A. Severinson, M. Di
Vaio, P. Falcone, B. Fidan, and S. Santini. 2018. “Design and experi-
mental validation of a cooperative driving control architecture for the
grand cooperative driving challenge 2016.” [EEE Trans. Intell. Transp.
Syst. 19 (4): 1290-1301. https://doi.org/10.1109/TITS.2017.2750083.

Jin, I. G., and G. Orosz. 2018. “Connected cruise control among human-
driven vehicles: Experiment-based parameter estimation and optimal
control design.” Transp. Res. Part C Emerging Technol. 95 (Oct):
445-459. https://doi.org/10.1016/j.trc.2018.07.021.

Levine, W., and M. Athans. 1966. “On the optimal error regulation of a
string of moving vehicles.” IEEE Trans. Autom. Control 11 (3):
355-361. https://doi.org/10.1109/TAC.1966.1098376.

Lioris, J., R. Pedarsani, F. Y. Tascikaraoglu, and P. Varaiya. 2017. “Platoons
of connected vehicles can double throughput in urban roads.” Transp.
Res. Part C Emerging Technol. 77 (Apr): 292-305. https://doi.org/10
.1016/j.trc.2017.01.023.

© ASCE

04022013-9

Liu, K., H. B. Lim, E. Frazzoli, H. Ji, and V. C. Lee. 2013. “Improving
positioning accuracy using GPS pseudorange measurements for co-
operative vehicular localization.” IEEE Trans. Veh. Technol. 63 (6):
2544-2556. https://doi.org/10.1109/TVT.2013.2296071.

Matosevic, M., Z. Salcic, and S. Berber. 2006. “A comparison of accuracy
using a GPS and a low-cost DGPS.” IEEE Trans. Instrum. Meas. 55 (5):
1677-1683. https://doi.org/10.1109/TIM.2006.880918.

Milanés, V., S. E. Shladover, J. Spring, C. Nowakowski, H. Kawazoe, and
M. Nakamura. 2013. “Cooperative adaptive cruise control in real traffic
situations.” IEEE Trans. Intell. Transp. Syst. 15 (1): 296-305. https://
doi.org/10.1109/TITS.2013.2278494.

Miiller, F., E. M. Diaz, B. Kloiber, and T. Strang. 2014. “Bayesian co-
operative relative vehicle positioning using pseudorange differences.”
In Proc., IEEE/ION PLANS 2014, 434-444. New York: IEEE.

Naus, G. J., R. P. Vugts, J. Ploeg, M. J. van De Molengraft, and M.
Steinbuch. 2010. “String-stable CACC design and experimental valida-
tion: A frequency-domain approach.” IEEE Trans. Veh. Technol. 59 (9):
4268-4279. https://doi.org/10.1109/TVT.2010.2076320.

Ploeg, J., B. T. Scheepers, E. Van Nunen, N. Van de Wouw, and H.
Nijmeijer. 2011. “Design and experimental evaluation of cooperative
adaptive cruise control.” In Proc., 2011 14th Int. IEEE Conf. on Intel-
ligent Transportation Systems (ITSC), 260-265. New York: IEEE.

Ploeg, J., E. Semsar-Kazerooni, G. Lijster, N. van de Wouw, and H.
Nijmeijer. 2014. “Graceful degradation of cooperative adaptive cruise
control.” [EEE Trans. Intell. Transp. Syst. 16 (1): 488—497. https://doi
.org/10.1109/TITS.2014.2349498.

Shladover, S. E., D. Su, and X.-Y. Lu. 2012. “Impacts of cooperative adap-
tive cruise control on freeway traffic flow.” Transp. Res. Rec. 2324 (1):
63-70. https://doi.org/10.3141/2324-08.

Singh, S. 2015. Critical reasons for crashes investigated in the national
motor vehicle crash causation survey. Washington, DC: USDOT, Na-
tional Highway Traffic Safety Administration, National Center for Sta-
tistics and Analysis.

WHO (World Health Organization). 2018. Global status report on road
safety 2018: Summary. Geneva: WHO.

J. Transp. Eng., Part A: Systems



