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LINEAR MAPS PRESERVING THE LORENTZ SPECTRUM: THE 2 x 2 CASE*

M. I. BUENO'T, SUSANA FURTADO?!, AELITA KLAUSMEIERS, AND JOEY VELTRIY

Abstract. In this paper, a complete description of the linear maps ¢ : W,, — W,, that preserve the Lorentz spectrum is
given when n = 2, and W), is the space M,, of n X n real matrices or the subspace Sy of M), formed by the symmetric matrices.
In both cases, it has been shown that ¢(A) = PAP~! for all A € Wa, where P is a matrix with a certain structure. It was also
shown that such preservers do not change the nature of the Lorentz eigenvalues (that is, the fact that they are associated with
Lorentz eigenvectors in the interior or on the boundary of the Lorentz cone). These results extend to n = 2 those for n > 3
obtained by Bueno, Furtado, and Sivakumar (2021). The case n = 2 has some specificities, when compared to the case n > 3,
due to the fact that the Lorentz cone in R? is polyedral, contrary to what happens when it is contained in R” with n > 3. Thus,
the study of the Lorentz spectrum preservers on W,, = M, also follows from the known description of the Pareto spectrum
preservers on M,y,.
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1. Introduction. Given a matrix A in M, the algebra of n x n matrices with real entries, and a
closed convex cone K C R", the eigenvalue complementarity problem consists of finding a scalar A € R and
a nonzero vector x € R™ such that

re K, Ax— A xe K", xT(A—)\In)xzo,

where
K :={yeR":2Ty>0, Vo € K}

denotes the (positive) dual cone of K. If K = R", then the eigenvalue complementarity problem reduces to
the usual eigenvalue problem for the matrix A.

The eigenvalue complementarity problem originally arose in the solution of a contact problem in me-
chanics and has since been used in other applications in physics, economics, and engineering, including, for
example, the stability of dynamical systems [4].

In this work, we consider the complementarity eigenvalue problem associated with the Lorentz cone,
defined, for n > 2, by
K™= {(z,2,) ER" ' xR : ||z|| < z,},
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also known as the ice-cream cone. By ||x|| we denote the 2-norm of z. If n is clear from the context, we may
simply write KC instead of K™. The Lorentz cone is widely used in optimization theory as an instance of a
second-order cone, which has special importance in linear and quadratic programming [1].

It is well known that the Lorentz cone is self-dual, that is, (KX™)* = K™. Therefore, for A € M,,, the
eigenvalue complementarity problem relative to K™ consists of finding a scalar A € R and a nonzero vector
x € R™ such that

(1.1) rekK", (A-ADzecK", z'(A—-A)z =0,

where, here and throughout, I denotes the identity matrix of the appropriate order. By Corollary 2.1 in [5],
it is guaranteed that (1.1) always admits a solution.

If a scalar A and a nonzero vector z satisfy (1.1), we call A a Lorentz eigenvalue of A and = an associated
Lorentz eigenvector of A. We call the set of all Lorentz eigenvalues of A the Lorentz spectrum of A and denote
it by oxc(A). For brevity, we write L-eigenvalue, L-eigenvector, and L-spectrum instead of Lorentz eigenvalue,
Lorentz eigenvector, and Lorentz spectrum, respectively. We classify the L-eigenvalues of a matrix A € M,
by whether they correspond to L-eigenvectors in the interior or on the boundary of the Lorentz cone. In the
first case, we call them interior L-eigenvalues, and in the second case, we call them boundary L-eigenvalues.
We denote the set of interior L-eigenvalues by o**(A) and the set of boundary L-eigenvalues by op¢(A).

The roots of the characteristic polynomial of a matrix A € M,, will be called the standard eigenvalues
of A, to distinguish them from the L-eigenvalues.

In [3] the authors focused on the problem of studying the linear maps ¢ : W,, — W,, that preserve the
L-spectrum, that is, such that oxc(#(A)) = ox(A), for all A € W,,, where W, is a subspace of M,, and n > 3.
The authors started by characterizing such maps ¢ for the following subspaces W,, of M,,: the subspace of
diagonal matrices; the subspace of block-diagonal matrices Ao [a], where Ae M, ,is symmetric; and the
subspace of block-diagonal matrices Ao [a], where Ae M, is a generic matrix. In each of these cases, it
was shown that the maps should be what were called standard maps, that is, maps of the form ¢(A) = PAQ
for all A € W, or ¢(A) = PATQ for all A € W,,, for some matrices P,Q € M,,. However, when W,, is either
M,, or the subspace S, of symmetric matrices in M,,, just the standard linear maps ¢ : W,, — W, that
preserve the L-spectrum were described, and it was conjectured that linear maps that are not standard do
not preserve the L-spectrum. (See also the recent paper [7] in which the linear preservers ¢ : M,, — M,, are
investigated.)

The goal of this paper is to consider the case n = 2. The main differentiating feature between the cases
n > 3 and n = 2 is that the Lorentz cone in R? is polyhedral, i.e., it can be expressed as the intersection of a
finite number of half-spaces. This implies that the L-spectrum of a matrix in M, is always finite, contrary
to what happens for matrices of order n > 3, which can have infinite L-spectrum.

To our knowledge, the only polyhedral cone whose spectral linear preservers on M, have been studied
in depth in the literature is the Pareto cone [2]. It can be easily verified that, for n = 2, the Pareto cone is
a clockwise rotation of the Lorentz cone by an angle of 7. So, a description of the L-spectrum preservers on
M follows from the one of the Pareto spectrum preservers on M,, given in [2], taking n = 2, and reciprocally.

In this paper, we give an independent proof of the characterization of the linear maps ¢ : Wy — W5 that
preserve the L-spectrum when Wy = Ms and, in addition, consider the new case W5 = S5, the subspace of
M> of symmetric matrices. Also, for both cases of Ws, we show that the nature of the L-eigenvalues (being
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associated with L-eigenvectors in the interior or on the boundary of the Lorentz cone) is not changed by
the L-spectrum preservers. To prove our results, we introduce techniques that explore the knowledge of the
Lorentz spectrum of matrices in My and hope that the ideas behind our proofs can be extended to complete
the study of the L-spectrum preservers studied in [3] for matrices in M, with n > 3, in which case no
connection exists with the Pareto cone. It follows from our characterization that such preservers on My are
standard and that, in the case Wa = Ms, their form is less restrictive than the one for n > 3. (See Theorem
2.4 where the result for n > 3 is recalled.)

We next give the main results of this paper. Recall that Ms denotes the space of 2 x 2 real matrices and
S denotes the subspace of My of symmetric matrices.

THEOREM 1.1. Let ¢ : Wo — Wy be a linear map, with Wy € {Ms, Sa}. Then, ¢ preserves the L-
spectrum if and only if ¢(A) = PAP™L for all A € Wy, or ¢(A) = QAQ ™! for all A € Wy, where

(1.2) P:[g g} and Q:[;‘ aﬂ},

for some a, B €R with a® — B2 =1, and B =0 if Wy = Ss.
COROLLARY 1.2. Let ¢ : Wo — Ws be a linear map. If ¢ preserves the L-spectrum, then, for all A € Ws,

ol (A) = o) (6(A))  and  o¥!(A) = o (4(A)).

The paper is organized as follows. In Section 2, we introduce some known results in the literature
regarding the L-spectrum of a matrix A € M, and its linear preservers. In Section 3, we obtain a description
of the L-eigenvalues of a generic matrix in My and give some related results that will be helpful in the proof
of Theorem 1.1. In Section 4, we deduce some conditions that should be satisfied by the images of matrices
in certain bases for Sy and Mo, respectively, under an L-spectrum linear preserver. Finally, in Section 5, we
prove Theorem 1.1 and Corollary 1.2. We conclude the paper with some final remarks in Section 6.

2. Background. In this section, we present some results known in the literature concerning the char-
acterization of the L-spectrum of a matrix in M, and properties of linear preservers of the L-spectrum. We
also introduce some related useful concepts and notation.

2.1. L-spectrum of a matrix. We first observe that
_ _int bd
ox(A) = o (A) Uok'(4),

where this union is not necessarily disjoint. (Recall the definitions of interior and boundary eigenvalues in
the introduction.)

We also note that any L-eigenvector [z xn]T of A € M,, with z,, € R, can be normalized to have
Zn, = 1 while remaining in the Lorentz cone. Such a normalized L-eigenvector corresponds to an interior
L-eigenvalue if ||z|| < 1 and to a boundary L-eigenvalue if ||z|| = 1.

The next characterization of interior and boundary L-eigenvalues of a matrix A € M, is known [6].

PROPOSITION 2.1. Let A € M,,. Then,

1. X is an interior L-eigenvalue of A if and only if \ is a standard eigenvalue of A associated with an
eigenvector in the interior of K™.
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2. X\ is a boundary L-eigenvalue of A if and only if there is some s > 0 and a vector x € R"~1, with
l|lz|]| = 1, such that
T —x
A— NI = .

From Proposition 2.1, we have the following useful observation.

COROLLARY 2.2. Let A € M,,. Then, X\ € oi*(A) if and only if —\ € o} (—A).

In contrast with interior L-eigenvalues, a boundary L-eigenvalue may or may not be a standard eigen-
value. A surprising fact, compared with the classical eigenvalue problem, is that a matrix may have infinitely
many boundary L-eigenvalues, though this does not occur in the 2 x 2 case since the Lorentz cone for n = 2
is a polyhedral cone. (See [6] for a proof that there are only finitely many complementarity eigenvalues
relative to a polyhedral cone.)

2.2. Linear preservers of the L-spectrum. In [3] the following important result was shown for
matrices of size n > 3, although the presented proof is also valid for 2 x 2 matrices. By W,, we denote any
of the spaces M,, or S,, the subspace of symmetric matrices.

PRrROPOSITION 2.3 ([3]). Letn > 2. If ¢ : W,, = W, is a linear map preserving the L-spectrum, then ¢
is bijective and ¢(I) = I.

An immediate consequence of Proposition 2.3 is that if ¢ : W,, — W,, is a linear map preserving the
L-spectrum, then ¢! also preserves the L-spectrum.

For completeness and for purpose of comparison with our main result, Theorem 1.1, we next state the
characterization obtained in [3] of the standard linear maps ¢ : W,, — W,, that preserve the L-spectum,
when n > 3.

THEOREM 2.4 ([3]). Letn > 3 and let ¢ : W,, — W, be a standard map. Then, ¢ preserves the
L-spectrum if and only if there exists an orthogonal matriz Q € M,,_1 such that

¢(A) = (@& 1)AQ" & [1]),

for all A e W,.

3. L-spectrum of 2 x 2 matrices. In the next theorem, we present a characterization of the L-
eigenvalues of 2 x 2 matrices and then we give some related properties.

THEOREM 3.1. Let
(3.3) A= {“ b} € M.

Then,

1. a is an interior L-eigenvalue of A if and only if b =0 and either a =d or |a — d| < |¢|;
2. X e R\ {a} is an interior L-eigenvalue of A if and only if
) e J atdEy/(azd)m4dbe \/(‘12_d)2+4bc} CR and |b| < |a— \|;

3. X is a boundary L-eigenvalue of A if and only if one of the following holds:
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(a) /\:%;(HC) and a —d < c—b,
(b) A= D0 gpga —d<b—ec.

Proof. Conditions 1 and 2 follow immediately from the fact that, by Proposition 2.1, A is an interior
L-eigenvalue of A if and only if there is some = € R, with |z| < 1, such that

(3.4) 0= (A— ) [ : ] - [ i‘;;’(\c)le;)’ ] .

Now we show Condition 3. By Proposition 2.1, we have that A is a boundary L-eigenvalue of A if and only
if there is some s > 0 and x € {—1,1} such that

SN R B Er ey

When x = 1, this is equivalent to

A=atbts for some s > 0,
A=c+d—s
that is,
)\:W and a—-d<c-—-0b.
When x = —1, we get
A=a—b+s
>
{)\—d—c—s for some s > 0,
that is,
at+d—b—c
A:f and a—d<b-c 0O

Based on the characterization of the boundary L-eigenvalues of a matrix in M, given in Theorem 3.1,
we introduce the following definitions.

DEFINITION 3.2. Let A € My. We say that A is a type + boundary L-eigenvalue of A (resp. a type —
boundary L-eigenvalue of A) if Condition 3a (resp. Condition 3b) in Theorem 3.1 holds.

Moreover, we say that a boundary L-eigenvalue A of A is strict if A is of type + and a —d < ¢ —b, or if
Ais of type — and a —d < b—c. If A is a boundary L-eigenvalue of both type + and type —, then X is strict
if at least one of the previous strict inequalities holds.

We next present some immediate consequences of Theorem 3.1. We first introduce two useful concepts.

DEFINITION 3.3. Let A € My be as in (3.3). The trace of A, denoted by tr(A), is the sum of the diagonal
entries of A, that is, tr(A) = a+d. The anti-trace of A, denoted by antitr(A), is the sum of the antidiagonal
entries of A, that is, antitr(A) = b+ c.

COROLLARY 3.4. Let A € My. If A has a type + boundary L-eigenvalue A1 and a type — boundary
L-eigenvalue X, then

1. )\1 + AQ = tI‘(A)
2. |\ — Ao| = | antitr(A)|.
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COROLLARY 3.5. Let A € My be as in (3.3) and let A be a boundary L-eigenvalue of A. Then, A is a
standard eigenvalue of A if and only if A has a non-strict boundary L-eigenvalue.

Proof. By Theorem 3.1, if A is a type 4+ boundary L-eigenvalue of A, then

)\:% and a—d<c-—b,
and if A is a type — boundary L-eigenvalue of A, then
A:% and a—d<b—ec.
An elementary calculation shows that, in any case,
1

det(A — \I) = 1 (b=0c)*=(a—d)?),
which is zero if and only if |a — d| = |b — ¢|. Thus, the claim follows. |

The next result says that if we change the signs of both b and ¢ in a matrix A as in (3.3), then the
interior and the boundary L-eigenvalues of A get preserved.

COROLLARY 3.6. Let A € Ms and B = T AT, where
(3.5) T=[-1a[1].

Then A and B have the same L-spectrum. Moreover, we have oi**(A) = o(B) and o¥d(A) = o¥(B).
Additionally, \ is a type + boundary L-eigenvalue of A if and only if X is a type — boundary L-eigenvalue
of B.

By using Theorem 3.1, we next give the explicit L-spectrum of the matrices in a basis of My and Sy,
which will be used in the characterization of the linear maps preserving the L-spectrum. In each case,
the L-spectrum is presented as the union of two sets, namely, oi**(A) U 04¢(A). Here and throughout, for
i,j € {1,2}, E;; denotes the 2 x 2 matrix with all entries 0 except the one in position (¢, j) which is 1.

COROLLARY 3.7. We have

4. Images of matrices in a basis of W5, under an L-spectrum preserver. Let us consider a linear
map ¢ : Wo — Wy preserving the L-spectrum, with W € {Ms, Sa}. In this section, we obtain a generic form
that ¢(A) should have when A is a matrix in a specific basis of Wa, namely, the basis {E11, F22, F12 + Ea1}
if Wy = So, and the basis {E11, Eos, Eo1, E12 + Eo1} if Wy = My, For Ejo + Eo, the possible images under
¢ are exactly determined.

We begin with a result which shows that under certain conditions, a linear preserver of the L-spectrum
preserves the interior and boundary L-eigenvalues. This will be key in proving the remaining results.

LEMMA 4.1. Let ¢ : Wy — Wy be a linear map that preserves the L-spectrum. If A € Wy has two distinct
strict boundary L-eigenvalues, then

(4.6) ol (A) = o (G(A) #0  and o (A) = o} (H(A)).
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Proof. Let A be as in (3.3). Since A has two distinct strict boundary L-eigenvalues, say A1 and Aa, by
Theorem 3.1 we have a —d < ¢ — b and a — d < b — ¢. This implies that —A does not have any boundary
L-eigenvalues and, consequently, has at least one interior L-eigenvalue since every matrix has a nonempty
L-spectrum. Hence, we have

ol (A) = A de}, o(=A) £0, and o}f(-A) = 0.

Taking into account Corollary 2.2 and the fact that, by Corollary 3.5, A\; and Ay are not standard eigenvalues

of A, we have
ol (A) = —ot(—A), oA £0, and o(A) N {1, A} = 0.

Since ¢ preserves the L-spectrum, for i € {1,2} we should have \; € o%4(¢(A)), as otherwise \; € o (4(A)),
which implies, by Corollary 2.2, that —\; € o (¢(—A)), a contradiction since —); is not an L-eigenvalue
of —A. Then, since ¢(A) has two boundary L-eigenvalues, which are the boundary L-eigenvalues of A, it
follows that the interior L-eigenvalues of A are also interior L-eigenvalues of ¢(A). ]

Before we fulfill the main purpose of this section, we state a simple consequence of Lemma 4.1 that will
be used in the proof of Theorem 1.1 in the next section.

LEMMA 4.2. Let ¢ : Wo — Wy be a linear map that preserves the L-spectrum. Then, ¢(E11 + Ea1) is
singular.

Proof. Let € > 0 and A. := (—1 — ¢)E1; — F21. The matrix A, has two distinct strict boundary L-
eigenvalues, implying, by Lemma 4.1, that ¢(A.) has the same interior L-eigenvalues as A.. Since 0 is an
interior L-eigenvalue of A., ¢(A.) is singular. By continuity, ¢(—FE1; — Ea1) is singular, and hence, so is
d(F11 + Ea). a

4.1. Necessary forms for the images of a basis.

LEMMA 4.3. Let ¢ : Wy — Wy be a linear map that preserves the L-spectrum. Then,

B 1—a FvaZ—a B a +Vva? —a
d)(Ell) - :t\/m a :| ) ¢(E22) - |::F\/m 1701 9

for some a <0, and

(B + Eo1) = {:ﬁ: 9 Cn} ;

for some m,r € R. In particular, if Wy = Ss, then
¢(Er11) = By,  ¢(E22) = Ea,

and
¢(Era+ Ea) = {T: " } ,

-m
for some m € R and r € {—1,1}.
Proof. For e € R\ {0}, let G. := Ea3 + £(E12 + E91), whose standard eigenvalues are (1 £ 1 + 4e2)/2.

By Theorem 3.1,
in 14+ V14 4e? 1
o (G) = {2} and 024(G.) = {2 ie},
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and both boundary L-eigenvalues are strict. Thus, by Lemma 4.1, (4.6) holds with A replaced by G.. Let

$(Esp) = [i Z} and ¢(Ers + Fa1) = B;‘ ;]

Then, by Corollary 3.4 applied to ¢(G.),
at+d+em+q)=1, b+c+e(r+p) ==+2e.
Since ¢ # 0 is arbitrary, we have
a+d=1, m+q=0, b+c=0, r+p==+2

Hence,
a b

P(Ea2) = [—b I—a

] and ¢(Ei2+ Eg) = [_:1 5 _Tm} -

From the obtained form of ¢(FEss), we conclude, by Theorem 3.1, that 1 is not a boundary L-eigenvalue of
@(Fa2). Since ox(Pp(Ea2)) = oxc(Eaz) = {1,1/2}, it follows that 1 is an interior L-eigenvalue of ¢(FE22). This
implies that

det(¢p(Eg) —I) =b* —a® +a=0.

By Theorem 3.1, b # 0. Moreover, |b| < |a — 1], i.e., ¥* < (a — 1)2. Since b* = a(a — 1) > 0, we get a < 0,

a +Vva? —a
¢(Bn) = L:m {T] , and
(4.7) ¢(Er1) = ¢(I — Enn) =1 — ¢(Ex2) = L;\l/% :F\/Lii_a} ’

where the second equality in (4.7) follows from Proposition 2.3.

The particular claim in the statement for Wy = Sy follows since ¢(F11) and ¢(E12 + Eo;1) are symmetric
and a < 0. O

Notice that, if ¢ : W — W5 is a linear map preserving the L-spectrum, by Lemma 4.3, ¢ preserves the
trace of E11, E9o, and E19 + E9q, and therefore it preserves the trace of all matrices in S>. Also, observe that
¢ preserves the modulus of the anti-trace of F11, Fos, and E15 + Fo1. Moreover, if ¢ preserves the anti-trace
of F1o + Ea1, then ¢ preserves the anti-trace of all matrices in Sy; otherwise, the anti-traces of A and ¢(A)
have opposite signs for all A € S5. These results are contained in the following corollary and extended to
the case ¢ : My — Ms.

COROLLARY 4.4. Let ¢ : Wo — Wy be a linear map that preserves the L-spectrum. Then,
tr(A) = tr(p(A)) for all A € Wo,

and either
antitr(A) = antitr(¢(4)) for all A € W,

or
antitr(A) = — antitr(¢(A)) for all A € Whs.
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Proof. Let A be as in (3.3) and let
H(A) = [ b } :
Let 6 be an arbitrary real number such that
a—d<d+c—b a—-d<d+b—c, and b+cF#20.

Let As = A+ 0F2s — §(F12 + Es1). Notice that As has two strict boundary L-eigenvalues, namely

a+d+b+c—90 a+d—b—c+30
(4.8) A= 5 and  Ag = 5 )

which are distinct since b 4+ ¢ # 24. Thus, by Lemma 4.1, A\; and As are also boundary L-eigenvalues of
¢(As). Taking into account the form of ¢(dEse — §(F12 + Ea21)) that follows from Lemma 4.3, the boundary
L-eigenvalues of ¢(As) are

r+q+s+p—9 r+q¢—s5—p+36

(49) B]- = 9 ) 62 = 2 ’
if antitr(¢(F12 + E921)) = 2, and

r+q+s+p+36 r+q—s—p—>9
(4.10) g =114 p By =14 p

2 ’ 2 ’

if antitr(d)(Elg + E21)) =—-2. As {)\1, )\2} = {517ﬁ2}, we have
A1+ A2 = B1 + Bo,

and
M—d=0F—pF2 or A —X=—(b—p).

Since \{ + Ao =a+d+dand S1+ B =r+q+9, we get a+d=r+q. We also have Ay — Ay = b+ c— 26.
Moreover, 81 — B2 = s +p — 2§ if (4.9) holds, and 81 — B2 = s + p + 26 if (4.10) holds. In the first case,
M — X2 = —(B1 — f32) only for § = AL Thys, for § # ISP we have \; — Ay = 81 — Bo, implying
b+ ¢ = s+ p. In the second case, \; — Ao = 31 — (B2 only for § = Hcf%. Thus, for § # b“f%, we have
A1 — Ay = —(B1 — B2), implying b+ ¢ = —(s + p). Since 0 is an arbitrary number satisfying (4.8), it ranges
over an infinite set, and hence the claim follows. ]

We next describe the generic structure of the image of Fo; under a linear map preserving the L-spectrum.

LEMMA 4.5. Let ¢ : My — Ms be a linear map that preserves the L-spectrum. Then,

+V02 +b Fb ]

b>0.
tb+1) FV2+0b 0

¢(Ean) = {

Proof. By Corollary 4.4,

¢(E21) = [ —bcitl _ba } ;

for some a,b € R. By Theorem 3.1, this implies 02¢(¢(F21)) € {—1/2,1/2}. On the other hand, by Corollary
3.7, ox(E21) = {0,1/2} . Thus, since ¢ preserves the L-spectrum, 0 is an interior L-eigenvalue of ¢(Es1).
Hence, by Theorem 3.1, either a = b = 0, or |b] < |a] (i.e., b* < a?). Since ¢(Fa1) is singular, we also have
a? = b2 Fb. Thus, a®> = b? + b if b > 0 and a? = b — b if b < 0, implying the claim. a0
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4.2. Explicit image of E15+ E2;. The following two lemmas will be used in determining ¢(FEq2+ Eo1)
under a linear L-spectrum preserver ¢. By || - || we denote the Frobenius norm of a matrix.

LEMMA 4.6. Let A € My be as in (3.3). Suppose A has two distinct standard real eigenvalues and at
least one of them, say \a, is an interior L-eigenvalue. Moreover, suppose that Ay # a. Then, for any e > 0,
there is some § > 0 such that any B € My with ||B — A||p < 0 has an interior L-eigenvalue \p satisfying
[Aa — Ag| < e. That is, sufficiently small perturbations of A have an interior L-eigenvalue arbitrarily close
to )\A-

Proof. Suppose that A4 is an interior L-eigenvalue of A. By Theorem 3.1, since A4 # a, we have
|b| < |a—Aal, that is, b — (a — X4)? < 0. Since A4 depends continuously on the entries of A, any sufficiently
small perturbation of A, say

has a real eigenvalue A% arbitrarily close to A4 and such that A5 # a. and |b;| < |a. — A% |. Note that, since
A has distinct real eigenvalues, for ¢ sufficiently small, both eigenvalues of A, are also distinct and real. By
Theorem 3.1, A% is an interior L-eigenvalue of A.. d

LEMMA 4.7. Let A € {—1,1}. Then, there is some € > 0 such that, in any neighborhood of E15 + Fo1,
there is a matriz with no L-eigenvalue at distance from A smaller than e.

Proof. Let H := FE15 4+ E3;. For any § € R, the matrices

1 0
(4.11) H(s.—H+6{O _1],

and —Hs have standard eigenvalues 81 = —v/d2 + 1 and 2 = /02 + 1. Notice that, for i € {1,2},
(4.12) 1>(6—6)? & 1-62—p7> 203 < 6 <68,

where the last inequality follows from the second one by noting that 82 = §2 + 1.

Suppose that A = 1 and let § > 0. From (4.12), |1] > |6 — B2/, implying by Theorem 3.1 that B, is
not an interior L-eigenvalue of Hs. On the other hand, Hs has no boundary L-eigenvalues. Hence, the only
L-eigenvalue of Hy is 31 whose distance from 1 is at least 2, regardless of the value of § > 0.

With a similar argument, we can see that, for § < 0, the only L-eigenvalue of —Hy is 82 whose distance
from —1 is at least 2, regardless of the value of § < 0.

Thus, for each A € {1,—1}, there is some § € R such that one of the matrices Hs or —H;s has no
L-eigenvalues arbitrarily close to . 0

LEMMA 4.8. Suppose that ¢ : Wo — Wo is a linear map that preserves the L-spectrum. Then
#(Er2 + E21) = E1a+ Eo1 or ¢(E12 + E21) = —(E12 + Ea1).

Proof. Let H := E13 + Ea1. By Corollary 3.7 and Corollary 3.6, we have oxc(H) = ox(—H) = {-1,1}.

We start by proving that 1 and —1 are not interior L-eigenvalues of ¢(H ). To show this fact, suppose first
that A € {—1,1} is an interior L-eigenvalue of ¢(H). Then, since by Corollary 4.4, tr(¢(H)) = tr(H) = 0,
and interior L-eigenvalues are standard eigenvalues, ¢(H) has distinct standard eigenvalues 1 and —1.
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We first show that the entry in position (1,1) of ¢(H) is different from A. This is clear by Theorem 3.1,
if the entry in position (1,2) of ¢(H) is nonzero. If the entry in position (1,2) of ¢(H) is zero, then ¢(H)
is a lower triangular matrix with main diagonal entries 1 and —1, and the (2,1) entry of ¢(H) has modulus
2 (since by Corollary 4.4, the modulus of the anti-trace is preserved). Then, the entry in position (1,1) of
¢(H) is different from A, as otherwise, by Theorem 3.1, A would not be an interior L-eigenvalue of ¢(H).

By Lemma 4.6, any matrix B in a sufficiently small neighborhood of ¢(H) has an interior L-eigenvalue
arbitrarily close to A. By the continuity of ¢!, and since ¢! preserves the L-spectrum, any matrix in
a sufficiently small neighborhood of H has an L-eigenvalue arbitrarily close to A, which is impossible by
Lemma 4.7.

Thus, 1 and —1 are not interior L-eigenvalues of ¢(H). By Corollary 2.2, neither 1 nor —1 is an interior
L-eigenvalue of —¢(H). Since oxc(H) = ox(—H) = {1,—1}, we conclude that 1 and —1 are boundary
L-eigenvalues of both ¢(H) and —¢(H). By Corollary 3.4, there are z,y € R such that

1)¢(H){2xy yx} or 2)¢(H){;y yx}

Suppose that Case 1 holds. Then, by Condition 3 of Theorem 3.1, applied to both ¢(H) and —¢(H),
we have

r4+y=—-x+2—y and
r-y=-v-(2-y)),

implying that
r=0and y=1.

A similar argument applied to Case 2 yields x = 0 and y = —1. Thus, the claim follows. ]
5. Proof of the main results.

Theorem 1.1.

Proof. Let ¢ : Wy — W5 be a linear map that preserves the L-spectrum. By Corollary 4.4, either A
and ¢(A) have the same anti-trace for all A € Wa, or A and ¢(A) have opposite anti-traces for all A € W.
When proving Theorem 1.1, we only consider the case in which ¢ preserves the anti-trace. The case when the
anti-trace of A and ¢(A) are opposite for all A € W5 can be obtained by considering the orthogonal similarity
via the matrix T' = [—1] @ [1] . More precisely, assume that A and ¢(A) have opposite anti-traces. Then,
m(A) = TH(A)T, for A € Wo, is a linear map that preserves the anti-trace and symmetry, and, taking into
account Corollary 3.6, 7 preserves the L-spectrum if and only if ¢ does. Hence, by the result that we next
show, 7 preserves the L-spectrum if and only if there is some P € My, as in (1.2), such that 7(A) = PAP~!
for any A € Wy, that is, ¢(A) = (TP)A(TP)~! for any A € Wy. Thus, the claim follows with Q = T P.

Necessity: Suppose that ¢ preserves the anti-trace. For u,v € R, let

P(u,v)::{u “].

vou

Case 1: Assume that Wy = Ss. By Lemmas 4.3 and 4.8, we have ¢(E11) = E11, ¢(Ea2) = Eao, and
¢<E12 + E21> = K15 + F51. Thus, ¢(A) = PAP ! forall Ae Sy, where P = P(LO) =1.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society I I

Volume 38, pp. 317-330, May 2022.

M.I. Bueno et al. 328

Case 2: Assume now that Wy = M>. By Lemma 4.3, for some a < 0, we have

P(En) = {ixl/ﬁ 4[\/?] = [ 2‘; :ng }
= P(a, B)E11 P~ (e, B).

Without loss of generality, we assume a > 0, implying o > 1 since a®> =1 — @ and a < 0.

By Lemma 4.5 and taking into account that ¢ preserves the anti-trace, for some b > 0, we have
6(Bay) = V02 + b —b [ yd =62
T b+l FVEFb R
= P(’Y? §)E21P_1(775)‘

As above, we assume v > 0, implying v > 1.

Then

2 52
¢(E11+E21)[zﬂ Z?]+H§ jé}

_[a2+’y5 —a5—52}
e+t =B |

Since, by Lemma 4.2, ¢(FE11 + Fa1) is singular, we have
det(¢(E11 + Ea1)) = (ay — B9) (By — ad) = 0.

Note that ay — By # 0, as otherwise (ay)? = (85)?, or equivalently, a = 1 + b, a contradiction since a < 0
and 1+ b > 0. Thus,

(5.13) By = ad,

implying
0=(ad)’> = (By)>=(1—a)b+a(l+b)=a+b.

Hence, a = —b which yields @« = «. Since a and « are nonzero, from (5.13) we get 8 = §. Now let
P := P(«, ). Then,
¢(E11) = PE;1 P! and  ¢(E21) = PEy P,

implying

¢(E2) =1—¢(F11)=1— PE; P
=P(I — E)P' = PEp, P71,

Moreover, taking into account Lemma 4.8 and the fact that ¢ preserves the anti-trace, we have
¢(E12 + E21) = E1p + Eg = P(E12 + Ex1) P71
Thus, since ¢(A) = PAP~" for all the matrices A in a basis for My, we have ¢(A) = PAP~! for all A € M.

Sufficiency: Let A € Wy and let P be as in (1.2) with a? — 3% = 1. We assume that a > 0 as, otherwise,
since PAP~1 = (—=P)A(—P)~!, we may consider — P instead of P. It is enough to prove ox(4) C o (p(A)),
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since by applying this result to ¢~1, we get ox(#(A)) C ox(A). (Note that ¢~(A) = P~LAP, where P!
still has the form of P in (1.2), with 3 replaced by —3.)

We show that if (), z) is an L-eigenpair of A, then (), Px) is an L-eigenpair of ¢(A4) = PAP~!. For this
purpose, we start by proving two facts. First, P preserves the Lorentz cone, that is, if z € K, then Pz € K.
Second, P preserves orthogonality, that is, if 7y = 0, then (Pz)T (Py) = 0, for 2,y € K.

Let = [z1 22]T € K and
(5.14) [21 zz]T = Px = [v1a+ x20, 218 + xga]T.
Then, Px € K if and only if
|z1] = |r10 + 28] < 218 + 2200 = 20.

Since |B] < a and |z1| < @2, it follows that zo = 18 + z2a > 0. Also, because of
(5.15) 222 =22 —22<0,

we get that Pz € K.

Now note that, if x and y are nonzero orthogonal vectors in K, then they lie on the boundary of L. More
specifically, one is a positive multiple of [1 1]7" and the other one is a positive multiple of [~1 1] Since

Pl =[a+B,a+p]" and P[-11]" =[-a+B,a— 8],

are orthogonal, it follows that P also preserves orthogonality.

Suppose that (A, z) is an L-eigenpair of A, that is,
t#0, zek, (A-X)zek, and zT(A—A)z=0.
Since P is invertible, we have Px # 0. Moreover, as P preserves the Lorentz cone, we have y := Px € K and
(¢(A) = X))y = P(A—X)P~'Px = P[(A— \)z] € K.

From the orthogonality of z and (A — Al)x and the fact that P preserves orthogonality, it follows that
yT'(¢(A) — AI)y = 0. Thus, (), Px) is an L-eigenpair of ¢(A). o

Corollary 1.2.

Proof. By Theorem 1.1, and arguing as in its proof, we may assume that ¢ preserves the anti-trace, that
is, ¢(A) = PAP~! for P as in (1.2) with a® — 3% = 1. Moreover, we may assume that a > 0, as otherwise
we consider — P instead of P.

Assume that (\, ) is an L-eigenpair of A, with z = [z1 22]T. Let z = [21 22]T be as in (5.14). It was
shown in the sufficiency part of the proof of Theorem 1.1 that (A, z) is an L-eigenpair of ¢(A). Since by
(5.15), |x1| < m2 if and only if |21]| < 22, it follows that z is an L-eigenvector of ¢(A) in the interior of K if
and only if = is an L-eigenvector of A in the interior of K. Since A and ¢(A) have the same L-spectrum, the
claim follows. 0
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6. Conclusions. Let M, denote the space of n x n real matrices and S, denote the subspace of
M,, formed by the symmetric matrices. In this paper, for Wy € {Ma, So}, we described the linear maps
¢ : Wy — W that preserve the Lorentz spectrum (L-spectrum for short), that is, those maps ¢ for which
A and ¢(A) have the same L-spectrum for all A € W,. We have shown that ¢(A) = PAP~!, where P is a
matrix with a certain structure. In the case Wy = Sy, P is a diagonal orthogonal matrix. In addition, we
proved that such preservers on Wa do not change the nature (interior or boundary) of the L-eigenvalues.

In the case n > 3, the characterization of the linear maps ¢ : W,, — W, that preserve the L-spectrum
and are standard was given in [3]. (See [7] in which the case W,, = M,, was also studied.) Recall that a
linear map ¢ : W,, — W, is said to be standard if there exist matrices P,Q € M,, such that ¢(A) = PAQ
for all A € W, or ¢(A) = PATQ for all A € W,,. In [3], a conjecture was made that all maps ¢ : W,, — W,
that preserve the L-spectrum are, in fact, standard, as has been shown here to happen for n = 2. We also
have seen here that these preservers on Wy = S5 have the same form as the standard ones on S,,, for n > 3.
However, if Wy = M, they have a more general form than those on M,, for n > 3.

Contrary to what happens when n > 3, the Lorentz cone in R™ with n = 2 is a polyhedral cone, which
is a rotation of the Pareto cone. Thus, our characterization of the linear maps ¢ : My — M also follows
from the characterization of the linear maps that preserve the Pareto spectrum [2]. However, we gave here
an independent proof hoping that it gives tools that may be helpful in proving the still open conjecture
stated in [3] that any linear preservers of the L-spectrum on S,, or M,,, for n > 3, are standard maps, which,
together with the results in that reference, would complete the description of such linear preservers.
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