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Abstract

The present study examined how task priority influences operators’ scanning patterns and trust ratings toward imperfect
automation. Previous research demonstrated that participants display lower trust and fixate less frequently toward a visual
display for the secondary task assisted with imperfect automation when the primary task demanded more attention. One
account for this phenomenon is that the increased primary task demand induced the participants to prioritize the primary
task than the secondary task. The present study asked participants to perform a tracking task, system monitoring task, and
resource management task simultaneously using the Multi-Attribute Task Battery (MATB) II. Automation assisted the
system monitoring task with 70% reliability. Task load was manipulated via difficulty of the tracking task. Participants were
explicitly instructed to either prioritize the tracking task over all other tasks (tracking priority condition) or reduce tracking
performance (equal priority condition). The results demonstrate the effects of task load on attention distribution, task perfor-
mance and trust ratings. Furthermore, participants under the equal priority condition reported lower performance-based trust
when the tracking task required more frequent manual input (tracking condition), while no effect of task load was observed
under the tracking priority condition. Task priority can modulate automation trust by eliminating the adverse effect of task

load in a dynamic multitasking environment.
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1 Introduction

Many professional tasks such as controlling an aircraft (e.g.,
Billings 1997), a robotic arm (e.g., Li et al. 2014), and an air
traffic control system (e.g., Loft et al. 2016) require opera-
tors to perform multiple concurrent tasks. A human operator,
as often conceptualized as a limited-capacity information
processor (Neisser 1980), is assumed to allocate attentional
resources to meet the demand of each task by systemati-
cally adjusting resource allocation policy (Kahneman 1973;
Wickens et al. 2015; Yamani and Horrey 2018). However,
modern applied tasks often impose heavy computational
and processing demands, necessitating the use of auto-
mation to successfully and efficiently execute its mission.
Automation is often defined as a technological system that
performs functions that can or cannot be accomplished by
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human operators (Bainbridge 1983; Parasuraman et al. 2000)
and hypothesized to systematically reduce the attentional
demand of the required task at various human information-
processing stages including sensory processing, perception/
working memory, decision making, and response selection
(Yamani and Horrey 2018).

The proliferating use of automation has shifted the opera-
tor’s role from actively controlling the system to passively
monitoring system behavior (Bainbridge 1983). Unfortu-
nately, research has demonstrated that humans are particu-
larly poor at monitoring performance for a period of time
(e.g., vigilance decrement; Mackworth 1948; Molloy and
Parasuraman 1996; Warm et al. 2008; McCarley and Yamani
2021). To aid with this task, practitioners developed alerted-
monitor systems to present the state of an automated system
at every moment and help direct the operators’ attention to
system errors. However, alerted-monitor systems can pro-
duce signaling errors (i.e., false alarms and miss events)
due to the system’s threshold setting (Getty et al. 1995).
Such signaling errors from an automated system could influ-
ence an operator’s trust toward the automated system (e.g.,
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Chancey et al. 2017), delaying human response (Breznitz
1984; Getty et al. 1995; Sorkin 1988) and increasing work-
load (Dixon and Wickens 2006).

Trust is a critical factor for successful human—automation
interaction (Hoff and Bashir 2015; Lee and Moray 1992; Lee
et al. 2021; Long et al. 2022; Lyons and Stokes 2012; Muir
1994; Muir and Moray 1996; Schaefer et al. 2016; Paras-
uraman and Riley 1997; Yamani et al. 2020). Human—auto-
mation trust refers to “an attitude that an agent will help
achieve an individual’s goals in a situation characterized by
uncertainty and vulnerability” (Lee and See 2004, pp. 51).
Though human—automation trust has been linked with opera-
tors’ strategies for using automation (Chancey et al. 2017;
Karpinsky et al. 2018), the psychological mechanism that
underlies human—automation trust is unknown. Established
upon previous frameworks of interpersonal trust (Rempel
et al. 1985; Barber 1983) and Muir’s work (Muir 1987,
1994; Muir and Moray 1996), human—automation trust has
been theorized to arise from three separate informational
sources, including performance (i.e., what the automation is
doing), process (i.e., how the automation works), and pur-
pose (i.e., the designer’s intent for developing the automa-
tion; Lee and Moray 1992). Empirical evidence suggests
that the three dimensions capture different trajectories of
human-automation trust (Chancey et al. 2017; Karpinsky
et al. 2018; Long et al. 2020; Sato et al. 2020). For example,
in a study that manipulated perceived risk and task load,
only performance-based but not process- or purpose-based
trust was reliably modulated when the participants interacted
with a novel alerted-monitor system for the first time (Sato
et al. 2020).

Several researchers have examined the influence of task
load on human-automation trust in multitasking environ-
ments (Bailey and Scerbo 2007; Karpinsky et al. 2018; Sato
et al. 2020). For example, Karpinsky et al. (2018) examined
the effect of task load on human—automation trust in a low-
fidelity simulator. They asked undergraduate participants to
concurrently perform a tracking task manually and a system
monitoring task assisted by an imperfect signaling system
with 70% reliability in the Multi-Attribute Task Battery
(MATB-II; Santiago-Espada et al. 2011). Task load was
manipulated via difficulty levels of the tracking task. Results
indicated that the participants rated lower performance- and
process-based trust toward the signaling system under the
high task load condition than the low task load condition.
Karpinsky et al.’s (2018) analysis of trust revealed that the
participants’ ratings reflected their perception of the automa-
tion’s behavior and mechanism. A more recent study demon-
strated that this adverse effect of workload on performance-
based trust only arises when operators perceive high risk
(Sato et al. 2020). Additionally, analysis of eye movement
showed less fixation on a task monitored by the signaling
system (i.e., system monitoring task) under the high task
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load condition than the low task load condition, suggesting
that attention allocation is a critical factor that influences
human—automation trust in a dynamic multitasking environ-
ment assisted with imperfect automation. Specifically, their
results are consistent with the view that human—automation
trust depends on the extent to which attentional resources
are allocated to scan the behavior of the automation. Yet,
the causal relationships among attention allocation and trust
remain largely unknown.

What factors potentially influenced the participants’ trust
and their scanning strategies in high task load conditions?
A possible account for lower trust rating and fewer fixations
on the automated task in the high task load condition is that
operators placed a higher priority on the tracking task. The
high task load condition demanded more frequent manual
input with more force than the low task load condition in the
tracking task, which could have encouraged the participants
to attend to the tracking task more. This change in task prior-
ity might have caused participants to reduce their sampling
of behaviors of the signaling system. Consequently, partici-
pants will not have enough information to assess the capability
of the signaling system, lowering trust toward the signaling
system. Task priority is conceptualized as the value of a task
(Gutzwiller et al. 2014; Gutzwiller and Stizman 2017; Wick-
ens et al. 2016). Freed (2002) suggested that task priority is
influenced by various information sources including urgency,
importance, task duration, and interruption cost. Several pre-
vious studies have attempted to directly examine the effect
of task priority in multitasking environments and provided
mixed results (Gilbert and Wickens 2017; Gopher et al. 1982;
Gutzwiller et al. 2014; Gutzwiller and Sitzman 2017; Wickens
et al. 2016). For example, Gopher et al. (1982) successfully
manipulated task priority by providing continuous feedback
on the participant’s tracking performance and instructing them
to prioritize the tracking task at a certain level (i.e., 30%, 50%,
and 70%). Additionally, the researchers presented a desired
performance line which denotes the target performance level
of the tracking task and serves as an index of the participant’s
tracking performance. However, more recent works demon-
strated a minimal effect of task priority (Gilbert and Wickens
2017; Gutzwiller et al. 2014; Gutzwiller and Sitzman 2017,
Wickens et al. 2016). In these recent studies, participants were
verbally instructed to prioritize the tracking task or prioritize
all tasks equally without specifying the target performance
level, which could be responsible for the lack of the reliable
effect of task priority manipulation. Gutzwiller and Sitzman
(2017) suggested that the lack of effect is not due to the task
load, but it was due to the participants sequentially performing
the task. Additionally, Gilbert and Wickens (2017) suggested
that the magnitude of the effect depends on the participant’s
evaluation of the task’s priority. Based on Yamani and Hor-
rey’s (2018) theoretical model of human—automation interac-
tion, we speculated that participants were not able to update
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their resource allocation policy, since they could not evaluate
their performance without objective target performance level.

The present study examined the effect of task priority on
attention allocation and trust toward an imperfect signaling
system in a simulated environment using the MATB-II. The
participants performed three concurrent tasks (i.e., tracking
task, system monitoring task, and resource management task)
in the MATB environment. We measured attention allocation
via eye movements, specifically percent dwell time (PDT)
on area of interests (AOIs) within the displays for the three
tasks. Previous research used PDT as a measure of attentional
resources in applied settings (Horrey et al. 2006; Schriver et al.
2017; Wickens et al. 2003) which is applicable to the current
experiment. We used the trust questionnaires developed in Jian
et al. (2000) and in Chancey et al. (2017) to measure trust
in automation. In brief, these two questionnaires have been
implicated to measure two separate constructs as the one gen-
erated by Jian et al. (2000) was determined empirically while
the other generated by Chancey et al. (2017) was theoretically
grounded based on Lee and See’s (2004) triadic model of auto-
mation trust. In addition to task load as in Karpinsky et al.
(2018), task priority was manipulated based on Gopher et al.’s
(1982) work. In Gopher et al.’s (1982) study, participants in
the tracking priority condition were encouraged to improve
their tracking performance by 20 percent more over their own
baseline performance level, while those in the equal priority
condition were encouraged to perform the tracking task 20
percent less than the baseline. The present study goes beyond
prior works (Gilbert and Wickens 2017; Gutzwiller et al. 2014;
Gutzwiller and Sitzman 2017; Wickens et al. 2016) by demon-
strating an effect of task priority using Gopher et al.’s (1982)
method. We predicted that participants would display lower
trust and fixate less frequently toward an imperfect signaling
system in the high task load condition than the low task load
condition, as observed in the previous studies (Karpinsky et al.
2018; Sato et al. 2020). Furthermore, we predicted that the
effect of task load on attention allocation and trust would be
diminished when participants equally prioritized the tracking
task in high task load condition. Specifically, participants in
high task load condition would present similar trust ratings
and eye movements to previous studies (Karpinsky et al. 2018;
Sato et al. 2020) when the tracking task is prioritized. How-
ever, trust ratings and eye movements would be comparable
between the task load conditions when participants equally
prioritized all the tasks.

2 Methods
2.1 Participants

Forty participants (31 females and 9 males; M =21.05 years,
SD =6.25) were recruited from Old Dominion University

(ODU). All participants had a normal or corrected-to-nor-
mal vision and normal color perception. Participants were
compensated with research credits for their participation.
This research complied with the American Psychological
Association Code of Ethics and was approved by the College
of Sciences Institutional Review Board at ODU. Informed
consent was obtained from each participant.

2.2 Apparatus

A Samsung T24C550 23.6” LED monitor (1920 % 1080)
with a frame rate of 75 Hz was used for the study. The moni-
tor was placed 80 cm away from the chin rest. MATB-II
(Santiago-Espada et al. 2011) was run on Windows 7 (Dell
OptiPlex 9020). EyeLink II (SR Research, Mississauga,
Ontario, Canada) was used to record the participant’s eye
movement with a sampling rate of 250 Hz. The experiment
took place in a quiet room with dimmed light.

2.3 MATB-Il tasks

MATB-II (Santiago-Espada et al. 2011) is a software devel-
oped by NASA Langley Research Center, Hampton, VA,
designed to assess human performance in a simulated envi-
ronment that hosts flight-related tasks. Participants in the
present study performed the tracking task, system monitor-
ing task, and resource management task. Figure 1 presents
a sample display of the MATB-II task.

2.3.1 Tracking task

In the compensatory tracking task, participants controlled
the joystick to keep the moving circular target within the
dotted square. The circular target depicts the direction in
which the aircraft moves, while the dotted square reflects
the designated route. In the experimental session, the cir-
cular target deviated from the dotted square by setting the
frequency of the force function to either 0.12 Hz or 0.06 Hz
(i.e., high or low task load condition, respectively). In the
practice session, the frequency of the force function was set
to 0.09 Hz. The program computed the root mean squared
error (RMSE) by sampling the participant’s input in the XY
dimension at 20 Hz. The average RMSE was computed for
each block to assess tracking performance.

2.3.2 System monitoring task

Participants monitored the four vertical gauges and cor-
rected the vertical fluctuating pointer at the lower or upper
extremity. The four vertical gauges represent the tem-
perature and pressure of the aircraft’s two engines. The
rectangular box (i.e., signaling system) above the gauges
presents the engine’s state (i.e., normal or warning). The
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Fig.1 Sample display of MATB-II. System monitoring (top left), tracking task (top center), and resource management task (bottom center)

engine is in “normal” state when a green rectangular box
is illuminated. A green rectangular box illuminates when
the vertical pointer fluctuates between the center of the
vertical gauge. The engine is in a “warning” state when a
red rectangular box is illuminated. A red rectangular box
illuminates when the vertical pointer hits the extremity
of the vertical gauge. For each block, 28 hit events and
12 false alarm (FA) events occurred randomly (70% reli-
ability). The present study excluded miss events, because
task performance and trust did not differ between miss and
FA event in the Karpinsky et al. (2018) study. During a hit
event, the vertical fluctuating pointer hits either extremity
of the vertical gauge turning the green rectangular box
off and illuminating the red rectangular box. In this case,
participants were asked to respond to the signaling system
and correct the vertical fluctuating pointer using a mouse.
Specifically, participants clicked the red rectangular box,
green rectangular box, and the corresponding gauge
labeled F1-F4. During a FA event, the green rectangular
box turns off, and the red rectangular box illuminates even
though the vertical fluctuating pointer did not hit either
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extremity of the vertical gauge. In this case, participants
were asked to respond only to the signaling system.

2.3.3 Resource management task

Participants maintained fuel in Tank A and Tank B,
located next to letters A and B, respectively. The depletion
rate of Tank A was set to 1,000 units per minute, while
Tank B was set to 500 units per minute. When the tank’s
volume is below 2,500 units, participants transferred fuel
from lower supply tanks, located next to letter C—F. Fuel
can be transferred using a mouse to click the correspond-
ing pumps, labeled with numbers from 1 to 8. The flow
rate of the pump was set to 900 units per minute. Each
block included eight pump failure events where a pump
deactivates for 10 s. The pump presents three different
states represented by colors. A green pump indicates that
the pump is activating. A white pump indicates that the
pump is deactivated but can be activated anytime. A red
pump indicates a pump failure event.
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2.4 Design

The present study employed a 2 X2 mixed design with Task
Priority (equal vs. tracking) as a between-subjects factor
and Task Load (low vs. high) as a within-subjects factor.
Dependent variables were subjective workload, trust, atten-
tion allocation, tracking performance, system monitoring
performance, and resource management performance.

2.5 Dependent variables
2.5.1 Subjective workload

A modified version of NASA-TLX (Hart and Staveland
1988) was administered to measure subjective workload
without pair-wise comparison (Hart 2006). The question-
naire consisted of 6 items, each representing 6 subscales
(mental demand, physical demand, temporal demand,
performance, effort, and frustration), on a 21-point gradi-
ent scale ranging from very low to very high (minimum
score =6, maximum score = 126).

2.5.2 Trust

Chancey et al.’s (2017) and Jian et al.’s (2000) trust ques-
tionnaires were administered to measure human—automation
trust (see Appendix A and B). Chancey et al.’s (2017) trust
questionnaire included 13 items on a 12-point Likert scale
ranging from (1) not descriptive to (12) very descriptive
(minimum score = 13, maximum score = 156). The items
were categorized into one of three subscales (i.e., perfor-
mance, process, and purpose). Jian et al.’s (2000) trust ques-
tionnaire included 12 items on a 7-point Likert scale ranging
from (1) not at all to (7) extremely (minimum score=12,
maximum score = 84).

2.5.3 Attention allocation

For each area of interest (AOI), percentage dwell time (PDT)
were computed by calculating the proportion of time that
the participants fixated on an AOIL. AOI is defined as the
areas within which the participants’ fixations was analyzed
to examine PDT. The AOI was defined for each of the track-
ing, system monitoring and resource management displays.

2.5.4 MATB-II performance

The mean RMSE for each block measured tracking perfor-
mance. System monitoring performance was measured by
the mean error rate and response time (RT) for their first
response in each block separately for hit and FA events.
Error rates are the proportion of events that participants exe-
cuted incorrectly. RT is the time interval between the onset

of an event and the participant’s initial response. Resource
management performance was assessed by the mean vol-
umes for Tank A and Tank B.

2.6 Procedures

Participants completed an informed consent and demograph-
ics form. Then, participants were screened for color percep-
tion and visual acuity using the Ishihara color blindness test
and the Snellen chart. Participants were randomly assigned
to either the tracking or equal priority condition. Following
Gopher et al.’s (1982) procedure, participants in the equal
priority condition were asked to prioritize the tracking task
at a priority level of 30%. That is, participants performed the
tracking task at a level better than the lowest 30% of their
own baseline level performance. Alternatively, participants
in the tracking priority condition were asked to prioritize
the tracking task at a priority level of 70%. In the practice
session, participants performed the MATB-II task separately
for a total of 9 min (part-task training) and simultaneously
for 3 min (whole-task training). Upon completion of the
practice session, participants received their average RMSE
reflecting their baseline performance of the tracking task
during the whole-task training and a target value unique to
each participant based on their own baseline performance.
In the equal priority condition, target value was computed
by adding one standard deviation to average RMSE. In the
tracking priority condition, target value was computed by
subtracting one standard deviation from the average RMSE.
Participants were instructed to aim for the target value dur-
ing the experimental session. In the experimental session,
participants completed two 20-min blocks, which differed
in the difficulty of the tracking task. The two blocks were
counterbalanced to reduce order effects. After each block,
participants completed two human—automation trust ques-
tionnaires (Chancey et al. 2017; Jian et al. 2000) and the
NASA-TLX (Hart and Staveland 1988). Participants were
provided with research credit for the efforts.

2.7 Statistical analysis

Bayesian analyses were employed instead of null-hypothesis
significance tests (NHSTs). Unlike the p value in NHSTs,
Bayesian analyses provide evidence for or against the effect
of interest. Specifically, in the default Bayesian framework
(Rouder and Morey, 2012), Bayes factor, denoted as B,
represents a likelihood ratio between statistical evidence for
a model including an effect of interest to that excluding the
effect. Thus, its magnitude provides direct information about
the strength of statistical evidence for or against the presence
of an effect (Wetzels et al. 2011). Bayes factors were inter-
preted following Jeffrey’s (1961) descriptive term.
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3 Results

A 2x2 mixed Bayesian analysis of variance (ANOVA)
was employed with Task Load (low vs. high) as a within-
subject factor and Task Priority (equal vs. tracking) as
a between-subject factor for each dependent variable. To
examine whether the manipulation of Task Priority was
successful, Bayesian paired-samples ¢ tests were employed
to compare the participant’s RMSE for each block with
the assigned target value computed from the participant’s
RMSE in the practice session. Two participants were
removed from the analysis since their system monitoring
performance was below the inclusion criteria (perfor-
mance accuracy of 50%). Additionally, three participants
were removed from the analysis due to technical issues
with the eye tracker. One participant withdrew from the
study, because the participant felt sick. Thus, a total of
34 participants (27 females and 7 males; M =21.06 years,
SD =5.83) were included in the analysis.

3.1 Manipulation check

Equal priority condition. When participants were
instructed to reduce tracking performance, tracking RMSE
was close to the target value in the high task load condi-
tion [paired-samples #(16) = —1.88, B;;=1.04, d=0.55].
However, tracking RMSE was decisively lower than the
target value in the low task load condition [paired-samples
1(16)=06.78, B;;=4.60 X 103, d=1.77]. Figure 2 presents

the average tracking RMSE and the target value for each
condition.

Tracking priority condition. When participants were
instructed to prioritize the tracking task over the other two
tasks, tracking RMSE decisively exceeded the target value in
the high task load condition [paired-samples #(16) = —7.90
B ,=2.62x 10*, d=2.04], suggesting that participants’ path
deviated from the center more than required by the priority
instruction. On the other hand, tracking RMSE was substan-
tially below the target value in the low task load condition
[paired-samples #(16)=3.18 B;,=8.43, d=0.66].

3.2 Subjective workload

Participants’ subjective workload was decisively higher for
the high task load condition than the low task load con-
dition, demonstrating successful manipulation of Task
Load [M =77.00 vs. 66.00 for the high and low task load
condition, respectively; F(1, 32)=20.70, B;,=376.00,
nZG =0.10]. However, data gave no substantial evidence for
the main effect of Task Priority [F <1, B,,=1/2.80] and the
interaction effect [F< 1, B|;=1/2.19].

3.3 Chancey et al’s (2017) trust scale

The three subscales in Chancey et al.’s (2017) trust scale
were analyzed separately. Figures 3, 4, and 5 present the
mean trust ratings for performance-, process-, and purpose-
based trust, respectively. Participants showed substan-
tially lower performance-based trust in the high task load
condition than the low task load condition [M =44.18 vs.

Fig.2 Mean tracking RMSE as

a function of the task priority 801
conditions and task load. Hori-
zontal bar represents the mean
target value
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41.62, respectively; F(1, 32)=6.50, B,;=3.24, ’72c;= 0.01],
replicating the result of the previous study (Karpinsky
et al. 2018). The main effect of Task Load was qualified
by the two-way interaction [F(1, 32)=6.50, B;,=3.46,
7120:0.01], indicating that the effect was stronger in the
equal priority condition [M =40.41 vs. 45.53; paired-sam-
ples #(16) = —3.56, B;,=16.64, d=0.39] than in the track-
ing priority condition [M =42.82 vs. 42.82; paired-samples
1(16)=0, B;,=1/4.00]. Data gave no evidence for the
main effect of Task Priority [FF<1, B;;=1/1.67]. Between
Task Load conditions, data pattern for process-based trust

ratings was similar to performance-based trust ratings [F(1,
32)=11.58, B,;,=22.86, nZG =0.03]. However, data indi-
cated no substantial evidence for the main effect of Task
Priority [F <1, B;;=1/1.40] and the interaction effect [FF <1,
B,,=1/2.61]. Finally, purpose-based trust did not substan-
tially vary between the conditions [1/1.59 < B, < 1.62].

3.4 Jian et al’s (2000) trust scale

Data indicated no substantial evidence for any of the effects
[1/2.02<B,,< 1/1.10].

Fig.3 Mean scores for
performance-based trust as a
function of the task priority
conditions and task load. Error
bars represent 95% confidence
intervals
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Fig.5 Mean scores for purpose-
based trust as a function of the
task priority conditions and task
load. Error bars represent 95%
confidence intervals
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3.5 Attention allocation

PDT on the tracking, system monitoring, and resource
management tasks were analyzed separately. Data gave
strong evidence that the participants made more frequent
fixations on the tracking task when the tracking task
required more frequent corrections [M =0.46 vs. 0.32 for
the high task load and low task load, respectively; F(1,
32)=45.16, B,,=6.85x 10*, #°;=0.16]. Furthermore,
when the tracking task required more frequent input,
participants spent less time fixating the system monitor-
ing task [M=0.11 vs. 0.13 for the high task load and low
task load, respectively; F(1, 32)=11.05, B,,=15.22,
n2G= 0.04] and the resource management task [M=0.36
vs. 0.45 for the high task load condition and low task load
condition, respectively; F(1, 32)=34.52, B;;=7.30X 103,
n°=0.09].

When participants prioritized the tracking task, as
expected, participants fixated on the tracking task more
frequently [M=0.51 vs. 0.27 for the tracking priority and
the equal priority condition conditions, respectively; F(1,
32)=22.85, B,;=466.52, n°;=0.38]. In turn, they fixated
the system monitoring task less in the tracking priority con-
dition than the equal priority condition [M =0.10 vs. 0.14;
F(1,32)=7.94, B|;=5.45, 172G=0.1], and the same pattern
of attention allocation was obtained in the resource manage-
ment task [M=0.31 vs. 0.50 for the tracking priority and
the equal priority conditions, respectively; F(1, 32)=15.89,
B,,=53.37, ”;=0.31]. Finally, data indicated no substan-
tial evidence for the interaction effect [1/1.42 < B}, < 1/2.96].
Figures 6 and 7 present the PDT on the system monitoring
display and tracking display, respectively.

@ Springer

Trackingl Priority
Task Priority

3.6 Tracking performance

The RMSE was decisively greater in the high task load
condition compared to the low task load condition
[M=45.14 vs. 24.99; F(1,32)=230.11, B;;=2.90x 10'4,
n°=0.53], suggesting that the cursor deviated more from
the target when the tracking task required more frequent
corrections. Additionally, RMSE was higher when par-
ticipants were asked to reduce tracking performance
[M=41.28 vs. 28.84 for the equal priority and the track-
ing priority conditions, respectively; F(1, 32)=16.16,
B, =71.06, n°;=0.30]. Data indicated no evidence
for the interaction effect [F(1, 32)=2.88, B;,=1/1.12,
n?=0.01].

3.7 System monitoring performance
3.7.1 RTs

There was strong evidence that participants in the low
task load condition compared to the high task load condi-
tion responded faster to both FA [M=3.09 vs. 3.62 s; F(1,
32)=16.23, B;,=63.52, nZG=0.06] and hit events [M =2.83
vs. 3.34 s; F(1, 32)=36.35, B;,=8.97x 10, n?;=0.11].
Furthermore, when tracking task was underprioritized,
participants decisively responded faster to FA [M=2.48
vs. 4.24 s; F(1, 32)=23.02, B,,=430.06, n°;=0.39]
and hit events [M=2.42 vs. 3.75 s; F(1, 32)=31.10,
B,,=3.04x 10°, *;=0.46], compared to the tracking pri-
ority condition. Data gave no evidence for the interaction
effect in both events [1.17 < B, <2.18].
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Fig.6 Mean PDT on the system
monitoring display as a function
of the task priority conditions
and task load. Error bars repre- 015
sent 95% confidence intervals :
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3.7.2 Errorrate

For hit events, participants made substantially more errors
in the high task load condition than the low task load
condition [M=0.09 vs. 0.06; F(1, 32)=6.87, B;,=3.46,
nZG=O.03] and in the tracking priority condition than

Tracking Priority
Task Priority

the equal priority condition [M=0.11 vs. 0.03; F(1,
32)=9.70, B,,=17.40, 1’ ;=0.19]. However, for FA events,
data gave substantial evidence against the main effect of
Task Load [F <1, B;,=1/3.37]. The remaining effects
were not substantial [1/1.05 < B;,<2.18].
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3.8 Resource management performance

Data provided substantial evidence against the main effect
of Task Load on the amount of fuel in Tank A [B,,=1/4.05]
and Tank B [B,,=1/3.34], indicating that resource manage-
ment performance did not differ between Task Load condi-
tions, and the interaction effect for Tank A [B,,=1/3.23].
No remaining effects were substantial [1/2.28 < B, < 1.16].

4 Discussion

Previous works demonstrated that participants exhibit lower
trust toward imperfect automation on the system monitoring
task while frequently fixating on the tracking task (Karpin-
sky et al. 2018; Sato et al. 2020). We speculate that partici-
pants indicate lower trust toward the automation, because
higher priority is set to the tracking task to match their
attentional demand of the tracking task, causing them to
misperceive the signaling system’s performance. The present
study examined whether task priority modulates the effect of
task load on attention allocation and trust toward imperfect
automation. Participants concurrently performed both the
tracking task and the resource management task manually
while completing the system monitoring task with assistance
from a 70% reliable signaling system. Following Gopher
et al.’s (1982) procedure, participants prioritized the track-
ing task by aiming for the objective target value based on
their baseline tracking performance, resulting in a successful
manipulation of task priority.

The present study replicated the effects of task load as
found in Karpinsky et al. (2018). In the high than low task
load condition, participants reported higher subjective work-
load levels, spent less time scanning the system monitoring,
and reported lower performance-based and process-based
trust. Participants were asked to control the moving cursor
with more frequent disturbances which required more fre-
quent monitoring of the target for the tracking task, where
participants experienced higher levels of workload (cf. Van-
derhaegen et al. 2020). As noted above, operators develop
performance-based trust from the current and historical
behaviors of automation observable to them. Operators may
develop process-based trust from the appropriateness of the
algorithm and regulatory mechanisms of the automation’s
behaviors. Then, purpose-based trust refers to trust base on
understanding of the intention of the automation design-
ers. Additionally, when the tracking task required frequent
input, the participant’s PDT on the tracking task elevated
while the participant’s PDT on the system monitoring task
decreased. This reciprocal relationship on PDT illustrates
tradeoffs between the two tasks as the attentional demand
of the tracking task varied. Together, these findings suggest
that participants distributed more attentional resources to
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the tracking task to cope with a greater task demand, while
reducing sampling of the signaling system’s behavior. Con-
sequently, less information about the system’s behavior
could have induced misperception of the system’s reliabil-
ity and lowered performance-based and process-based trust.
Within Lee and See’s (2004) theoretical framework, reduced
trust toward the signaling system could be attributed to a
mismatch between the participant’s perception of the sign-
aling system’s behavior and the actual capability, and its
related regulatory mechanisms, of the signaling system. We
observed differences in the participants’ system monitoring
performance between task load conditions, which were not
observed in Karpinsky et al.’s (2018) study. These differ-
ences could be attributed to the presence of the resource
management task unlike in Karpinsky et al. (2018), presum-
ably degrading system monitoring performance due to the
added attention demand.

Using Gopher et al.’s (1982) technique, we provided
a specific target value for the tracking task based on the
participants’ own baseline performance. Participants were
asked to prioritize the tracking task at a level of 30% in the
equal priority condition (worse performance than their base-
line), while 70% in the tracking priority condition (better
performance than their baseline). The current results show
that task priority can modulate the effect of task load on
automation trust. Contrary to our expectation, participants
in the high task load condition reported lower performance-
based trust in the equal priority condition, but prioritizing
the tracking task over the other tasks in the tracking priority
condition eliminated the effect of task load on automation
trust. One possible explanation is that task priority influ-
enced the mobility of the attention (Yamani and Horrey
2018). Setting higher priority to perform the tracking task
modulated the effect of task load on the attentional resource
capacity, blocking mobilization of attentional resources
to the signaling system (Young and Stanton 2002). More
limited resources allocated to the signaling system then
could have degraded information-processing critical for the
development of performance- and process-based trust. That
is, it is possible that the participants did not possess suffi-
cient attentional resources to allocate to accurately observe
and monitor behaviors of the automation and consider the
regulating algorithms and characteristics (e.g., reliability).
Lastly, none of these effects were observed on trust scores
using Jian et al.’s (2000) questionnaire. This discrepancy
between Jian et al. (2000) and Chancey et al. (2017) ques-
tionnaires may represent the fact that Jian et al.’s question-
naire is empirically developed while Chancey et al.’s ques-
tionnaire is theoretically driven. On one hand, Jian et al.
(2000) questionnaire is based on no pervasive theory but
instead the results of a three-phased study involving elicita-
tion and comparison of words related to trust and distrust.
Chancey et al. (2017) questionnaire, on the other, adapted a
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trust questionnaire on trust during human—computer interac-
tion developed by Madsen and Gregor (2000) to map onto
Lee and See’s (2004) human-automation trust. Our recent
preliminary work (Long et al. 2020; Yamani et al. in prepa-
ration) using multi-level confirmatory factor analysis dem-
onstrated that these two questionnaires measure two separate
constructs, supporting this interpretation.

There exist at least four caveats when interpreting the
data. First, the present study recruited undergraduate stu-
dents who were not familiar with the MATB task. It calls
for future research whether the current results generalize to
trained experts with a better mental model of the task and
the automation compared to novices. Second, the present
study did not manipulate perceived risk even though risk
is a critical factor influencing automation trust (Chancey
et al. 2017; Sato et al. 2020). Elevated levels of perceived
risk may further increase the effects of task load and task
priority, especially in real-world flight environments. Third,
due to the technical constraints, we were not able to pro-
vide moment-to-moment feedback on their tracking per-
formance as in Gopher et al.’s (1982). The effect of task
priority might be stronger than found in the current study,
which requires additional research. Lastly, a more rigorous
and advanced analysis of eye movement and trust data may
reveal the underlying processes responsible for the current
findings. The application of gaze transition entropy analysis
(Krejtz et al. 2015) would allow quantifying randomness
of gaze distribution and characterize complex transitions
among multiple AOIs. These advanced analytic techniques
may reveal specific eye movement processes critical for the
development of automation trust.

In conclusion, the current study directly examined the
effect of task priority on eye movements and trust toward
an imperfect signaling system in a simulated dynamic mul-
titasking environment. The results not only replicate the
adverse effect of tracking task demand on trust but also dem-
onstrate that this effect was eliminated when participants
were instructed to prioritize the tracking task over the other
two concurrent tasks. The results imply that operators may
allocate their attentional resources to different tasks based on
their perceived task demand. Additionally, verbal instruction
to prioritize the tracking task can override resource alloca-
tion strategies, impacting their trust toward the signaling
system. Practically, task priority should be considered when
developing training programs involving human-automation
interaction and trust in a multitasking environment. Imple-
menting task priority in training programs can potentially
control an operator’s trust to prevent disuse or misuse of
automation (Parasuraman and Riley 1997).

There are two important avenues for future research. First,
future research should consider examining the interaction
between attentional allocation and working memory resource
consumption (cf. Baddeley and Hitch, 1974). According to

Wickens (2002), signal processing can demand the same
or different resources, impacting operator performance.
For instance, if visual spatial working memory resources
are consumed by the primary tracking task signaling fuel
pump status with a verbal representation might facilitate
dual-task monitoring as it is drawing from an orthogonal
pool of resources (Iani and Wickens 2007; Wickens 2002).
Research examining the interaction between attention allo-
cation and working memory resource consumption might
lead to effective design recommendations. Second, future
research should focus on the effects of task priority on trust
toward and interactions with multiple automated systems.
Advanced Air Mobility (AAM) is an emerging technology
that allows transportation of people and goods in urban and
rural areas via fully automated aerial vehicles (National
Academics of Sciences, Engineering, and Medicine 2020;
Chancey et al. 2021). Human operators responsible for AAM
operations will likely need to monitor and, when necessary,
manually intervene multiple automated aerial vehicles in the
AAM platform. This new transportation technology in an
integrated National Airspace System will impose numer-
ous research questions including development of training
programs involving task priority as a key element for AAM
operators and the mechanism of their trust development
toward a set of automated aerial vehicles.

5 Conclusion

The current results replicate the previous finding that opera-
tors exhibit less trust toward imperfect automation assisting
with the secondary task when the primary task demands
more attention (e.g., Karpinsky et al. 2018). Additionally,
the results indicate that this attenuation effect is reduced or
eliminated by explicitly prioritizing the primary task than
the secondary task assisted by automation. That is, when
their attention was more constrained due to increased task
priority, their trust ratings did not vary with different lev-
els of task load even though their workload increased. In
practice, automation designers should consider task priority
and operators’ attention distribution when designing train-
ing programs for appropriate human—automation trust in
dynamic multitasking workspace.

Appendix A

Scale items from the Chancey et al. (2017) trust question-
naire. (The numbers indicate the order that the items were
presented to the participants when administered).
Performance
2. For me to perform well, I can rely on the automated
aid to function.
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4. The automated aid’s advice reliably helps me perform
well.

5. The automated aid’s advice consistently helps me per-
form well.

12. The automated aid always provides the advice I
require to help me perform well.

13. The automated aid adequately analyzes the system
consistently, to help me perform well.

Process

3. It is easy to follow what the automated aid does to help
me perform well.

6. I understand how the automated aid will help me per-
form well.

8. Although I may not know exactly how the automated
aid works, I know how to use it to perform well.

10. To help me perform well, I recognize what I should
do to get the advice I need from the automated aid the next
time I use it.

11. I will be able to perform well the next time I use the
automated aid because I understand how it behaves.

Purpose

1. Even when the automated aid gives me unusual advice,
I am certain that the aid’s advice will help me to perform
well.

7. Even if I have no reason to expect that the automated
aid will function properly, I still feel certain that it will help
me to perform well.

9. To help me perform well, I believe advice from the
automated aid even when I don’t know for certain that it is
correct.

Appendix B
Scale items from the Jian et al. (2000) trust questionnaire.

1. The system is deceptive.
2. The system behaves in an underhanded manner.
3. Tam suspicious of the system’s intent, action, or out-
puts.
4. Tam wary of the system.
5. The system’s actions will have a harmful or injurious
outcome.
6. Iam confident in the system.
7. The system provides security.
8. The system has integrity.
9. The system is dependable.
10. The system is reliable.
11. TIcan trust the system.
12. I am familiar with the system.
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