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The implementation of automation will enable Advanced Air Mobility (AAM), which could alter the human’s
responsibilities from those of an active controller to a passive monitor of vehicles. Mature AAM operations
will likely rely on both experienced and novice operators to supervise multiple aircraft. As AAM constitutes
a complex and increasingly autonomous system, the human operator’s set of responsibilities will transition
from those of a controller, to a manager, and eventually to an assistant to highly automated systems. The
development of AAM will require system designers to characterize these three sets of human responsibilities.
The present work proposes different human responsibilities across various roles (i.e., pilot in command,
system operator, system assistant) in the context of AAM along with pertinent attention-related constructs
that could contribute to each of the three identified roles of AAM operators including situation awareness,

workload, complacency, and vigilance.

The emerging concept of Advanced Air Mobility (AAM)
envisions safe, reliable, and accessible aerial transportation of
passengers and goods within and between rural and urban
areas (National Academies of Sciences, Engineering, and
Medicine, 2020). Moreover, AAM will rely upon increasingly
autonomous aircraft that will require automated systems to
perform multiple tasks, altering the human’s role (Chancey, et
al., 2021; Pritchett et al., 2018). The successful maturation of
AAM will likely require detailed characterization of human
interactions with air vehicles leveraging various levels of
automation (LOA), where lower levels indicate more human
involvement and higher levels indicate more automation
involvement in task completion (see Parasuraman et al., 2000
for description of LOA). Parasuraman et al. (2000), suggested
that automation is often designed to support human
information-processing stages at LOAs required by a task
environment to sustain adequate performance levels for a
given function. Mature Urban Air Mobility (UAM) operations
(i.e., air taxies), a subset of AAM, envisage many aircraft
operating over a single metropolitan area (Goodrich &
Theodore, 2021), which may deplete the attentional resources
of a human operator responsible for multiple vehicles (see
Wickens & McCarley, 2008 for a review of attention
research). To alleviate this, automation likely will be
leveraged to support human sensory processing and
perception/working memory stages by assuming information
acquisition and analysis functions, respectively (Parasuraman
et al., 2000). When the task requires operators supervise many
vehicles, in addition to simplifying piloted operations, higher
levels of automation could further support human decision
making and response selection by assuming decision selection
and action implementation functions, respectively
(Parasuraman et al., 2000). However, how do span of
influence, vehicle LOA, and task demand interact to impact
operator performance? The present work proposes three sets
of responsibilities that could emerge as a result of increasing
LOA to support the expanding number of vehicles operating in
AAM ecosystems: controller, manager, and assistant (cf.

Mutzenich et al., 2021). Furthermore, we identify
psychological constructs that are related to human attention
systems for the identified roles.

Overview of AAM

The concept of AAM emerged in response to emerging
needs to efficiently transport goods and people in fast-
evolving markets of logistics and aviation. The technological
advancement of electric propulsion, computer systems,
sensors, and advanced automation collectively established the
foundation for realizing the AAM concept. This emerging
AAM environment involves the operation of either crewed or
uncrewed air vehicles with varying sizes and missions. The
subsets of AAM include, but are not limited to, UAM
(National Academies of Sciences, Engineering, and Medicine,
2020) and a complimentary subset sometimes referred to as
regional air mobility (Antcliff et al., 2021). Indeed, UAM will
likely transition human influence over vehicles from direct
control (e.g., simplified vehicle operations and/or remotely
piloted aircraft), to management (e.g., remote supervisory
operations), and then to a human offering assistance as needed
(see Goodrich & Theodore, 2021 for description of UAM
Maturity Levels). This transition presents critical human
factors-related problems that can be posed in the following
research question: How can we ensure successful human-
automation interactions as fewer humans are tasked with
controlling, managing, and assisting more vehicles?

Levels of Automation and Locus of Responsibility

In many domains, automation has played a critical role in
mitigating, and unexpectedly, contributing to human error and
workload (Lee & Seppelt, 2012). Automation is typically
defined as a technology that replaces, to a varying degree, a
function that was previously performed by a human operator
(Parasuraman et al., 2000). In the AAM domain, aerial
transportation will likely be supported by increasingly
autonomous systems, which exceed the capabilities of
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traditionally defined automation (Chancey et al., 2021;
Holbrook et al., 2020).

A myriad of studies on human-automation interaction
report that the implementation of automation will alter human
responsibility in ways that system designers cannot always
anticipate (Billings, 1997; Parasuraman, 2000; Sarter &
Amalberti, 2000). Indeed, humans in the AAM ecosystem will
likely assume different responsibilities depending on the
degree of automation authority. That is, automation can take
over control of a human’s responsibilities depending on the
LOA (Parasuraman et al., 2000). Importantly, the change in
LOA accommodates the changes in the locus of responsibility
between the human and the automation (Sheridan, 2011).
Several frameworks have conceptualized the relationship
between the LOA and the locus of responsibility (Endsley,
1987; Parasuraman et al., 2000; Sheridan & Verplank, 1978).
For example, Sheridan and Verplank (1978) suggested that
humans can directly intervene in the automated system’s task
at lower LOAs, whereas automated systems allow less human
intervention at higher LOAs. Furthermore, the LOA and locus
of responsibility will likely vary across UAM Maturity Level
(Goodrich & Theodore, 2021). Therefore, the human
responsibilities (i.e., control, manage, assist) vary at different
LOAs (however, see Roth et al., 2019 for alternative
approaches to LOA).

METHOD OF HUMAN INFLUENCE

Various occupational domains have described human
responsibilities differently (e.g., Endsley, 2017; Kaber &
Endsley, 2004; Metzger & Parasuraman, 2001; van de Merwe
et al., 2012), presumably due to different capabilities of the
automated systems in each domain. In AAM, human
responsibilities will likely vary as a function of the LOA
required to accommodate increasingly complex, dense, and
high tempo airspaces. The following sections will describe
each category of human responsibility and identify relevant
psychological constructs that may influence human-
automation performance in AAM operations (see Table 1 for
summary). Note that this list of psychological constructs is not
meant to be exhaustive, and the constructs are perhaps not
mutually exclusive to each human responsibility depending on
specific task demands and requirements.

Table 1. Summary of role, associated responsibilities, and estimated span of
influence for each human responsibility in AAM.

Responsibility Role Span of Influence

Control Pilot in Command 1 human: 1 vehicle

Manage System Operator 1 human: 10+ vehicles

Assist System Assistant Vehicles are highly
automated, and direct human
influence is significantly
diminished due to cognitive
limitations

Control

Similar to current operations, a human pilot controls an
aircraft if the human provides direct intent or goal setting for
the aircraft and possesses the ability to execute the intent or

goal by actively making changes on control surfaces. Pilots
will be tasked to control an aerial vehicle when operations

involve relatively lower LOA (in comparison to manage or
assist), and the locus of responsibility is with the pilot. A pilot
is responsible for controlling a single aerial vehicle with basic
and advanced automation capabilities, to include control
mediated by fly-by-wire and flight management systems.
Thus, an active controller’s span of influence is 1:1, meaning
that a single pilot can only operate a single vehicle.

Manage

In air traffic control, Metzger and Parasuraman (1999;
2001; 2005) characterized the term “manage” to describe the
navigation of multiple aircraft flight paths. Specifically, the air
traffic controllers assign pilots’ flight paths to prevent
collisions. Similarly, in the context of AAM, operators may be
tasked to manage aircraft when the LOA increases, and human
involvement reciprocally decreases due to the increasing
capabilities of the automation. That is, operators will assign a
flight path to highly automated aircraft, but they will not
directly control the aircraft. Therefore, a human operator
manages aircraft if the operator actively sets a goal or
intention of the aircraft but does not have the ability to directly
control the aircraft. Based on previous work investigating
human performance with managing multiple vehicles, we
anticipate that a single operator could manage approximately
10-15 vehicles (Cummings et al., 2014; Galster et al., 2001).
However, we note that this number is an estimate based on
existing tasks that approximate envisioned AAM operations.

Assist

As levels of automation increase, researchers suggest that
the human’s role may shift to a passive monitor that
supervises highly automated systems (Bainbridge, 1983;
Dekker & Woods, 2002). Furthermore, passive monitors are
tasked to intervene in the automation’s task when it fails
(Bainbridge, 1983). Indeed, at the highest level of maturity of
AAM, humans will not likely be directly controlling or even
managing the aircraft. Instead, human influence may be
limited to providing the goals for essentially autonomous
aircraft (e.g., “fill these 20 deliveries”; see Hancock, 2017 for
discussion on ‘autonomous’ systems). The automation will
develop tactical plans (e.g., travel at 50 mph) and directly
control the aircraft to achieve human-set goals. While the
automation controls the aircraft, a human will supervise the
automation and assist during system failure. Therefore, a
human assists multiple aircraft without active control or
management, with an expectation that they intervene in off-
nominal scenarios such as critical system failure or passenger
emergency. Importantly, the locus of responsibility for
executing safe and reliable operations is with the automation
and not a human.

PERTINENT PSYCHOLOGICAL CONSTRUCTS

Situation Awareness

Situation awareness (SA) is defined as the ability to
perceive objects in an immediate environment (Level 1 SA),
understand the meaning and arrangement of the objects (Level
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2 SA), and project the future state of the environment (Level 3
SA; Endsley, 1995). In the context of aviation, failure to
maintain SA can result in the pilot failing to detect system
errors, despite being supported by the automation, known as
the out-of-the-loop problem (Endsley & Kiris, 1995). The out-
of-the-loop problem will less likely occur when a pilot in
command is required to control a single aircraft. Furthermore,
the out-of-the-loop problem may be avoided by implementing
an aiding system that supports the operator’s decision making.
For example, Endsley (1997) asked participants to control a
flight simulator to examine the effect of a SA-aiding system
on the pilot’s performance (measured as root mean squared
error and time spent during pop-up threats). Results indicated
that presenting displays that aid SA improved pilots’ flight
performance.

When managing multiple aerial vehicles, the detrimental
effect of inadequate SA on performance could become more
prominent. Endsley and Kaber (1999) examined each level of
SA at various LOAs by employing a dynamic control task that
required participants and/or automation to develop a strategy
and eliminate target items. Results indicated that level 2 SA
increased at intermediate-to-upper LOAs (i.e., humans and
automation jointly make decisions). Furthermore, level 3 SA
decreased at low LOAs in which decisions were generated
solely by the human. Translating these results to AAM
operations, operators managing multiple vehicles could
possibly possess an adequate understanding of the aircraft’s
behaviors but make poor predictions of the aircraft’s
trajectory. In later work, Kaber and Endsley (2004) examined
each level of SA at various LOAs using adaptive automation
(i.e., automation allocation cycle time). Results indicated high
level 2 SA at an intermediate LOA (i.e., involved human
decision making) when the task was automated at low and
medium time intervals.

Endsley and Kaber’s (1999) work also suggests that
system operators could present high level 2 SA and low level
3 SA at the highest level of automation, where the human is
tasked to monitor the automation. Also, Kaber and Endsley
(2004) demonstrated that level 2 SA was high even when the
control task was fully automated and when the automation
allocation cycle time was high. Generalizing these findings to
AAM operations, if humans are tasked to passively monitor
many aircraft, implementing adaptive automation may allow
operators to maintain adequate SA. Additional research will be
required to examine if the results from these studies translate
well to environments envisioned in complex AAM-like
operations.

Mental Workload

Mental workload is another important construct that will
likely influence human performance in AAM operations.
Workload is a hypothetical construct that represents the cost
incurred by a human operator to accomplish mission
requirements (Hart, 2006). Workload has been extensively
studied in flight simulation environments aided by automated
systems (Hancock et al., 1995; Hancock & Scallen, 1997;
Karpinsky et al., 2018; Sato et al, 2020; Tiwari et al., 2009).
Harris et al. (1995) measured the effect of automation on
workload and performance in a multitasking environment

involving the tracking, resource management, and multiple
monitoring subtasks of the Multi-Attribute Task Battery
(Comstock & Arnegard, 1992). When automation was
engaged for the tracking task, participants reported lower
levels of subjective workload and executed slower but more
accurate monitoring and resource management performance.
These results indicate participants effectively reallocated
resources from the automated task to the manual tasks.
Importantly, in a second experiment, Harris et al. showed that
when participants were given volitional control to toggle
automated control, their multitasking performance was better
than under the fixed automation control condition. Translating
these results to possible implications for AAM operations, a
pilot could experience increased workload with a low LOA
due to cognitive resource limits in the multitasking
environment. Yet discretionary control of automated systems
may offer the flexibility to effectively and dynamically
allocate their cognitive resources to relevant tasks during
operations.

Workload can also greatly influence an operator’s ability
to manage multiple vehicles (e.g., Cummings et al., 2014;
Galster et al., 2001). Endsley and Kaber (1999) examined
workload in conjunction with the impact of LOA on workload
and performance recovery following automation failure in a
dynamic control task. Analyses indicated that participants
rated lower workload when the dynamic control task involved
high LOA. Also, task performance increased as a function of
increased LOA when automation operated normally.
However, when the LOA was lowered due to automation
failure, performance recovery was slower when the control
task involved intermediate-to-high LOA than low LOA. An
operator's workload could decrease as a function of increasing
LOA. However, a potential caveat for increasing LOA is that
the ability to recover from automation failure can degrade.

When AAM operations involve managing multiple air
vehicles, performance could be affected by the amount of
workload imposed by the task. Some studies have measured
workload when monitoring multiple unmanned vehicles. For
example, Parasuraman et al. (2009) compared workload
between manual performance, performance involving static
automation, and performance involving adaptive automation.
They asked participants to manage multiple air and ground
vehicles with the aid of automation while concurrently
performing communication and change detection tasks.
Results indicated that participants rated high workload when
managing multiple unmanned vehicles without the automated
aid. Furthermore, participants’ workload declined when
employing adaptive automation compared to when performing
manually or with static automation. Based on these findings,
managing multiple air vehicles could increase workload.
However, adaptive or static automation could be employed to
reduce the operator’s workload (however see Kaber & Prinzel,
2006 for review of adaptive and adaptable automation
research in aviation settings).

Complacency

The Aviation Safety Reporting System defines
complacency as “self-satisfaction that may result in non-
vigilance based on an unjustified assumption of satisfactory
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system state” (Billings et al., 1976, p. 23). Parasuraman and
Manzey (2010) characterized complacency as an attitude that
influences operators’ monitoring strategies of system
environments, further modulated by several factors including
system properties such as LOA, reliability, consistency, and
task context such as concurrent tasks and workload.
Parasuraman et al. (1993) examined performance
consequences of complacency at different variations of
automation reliability in a low-fidelity flight simulation
environment. Results demonstrated that keeping the reliability
of the automation consistent and high induced complacency.
Furthermore, the authors suggested that complacency can arise
in multitasking environments. Indeed, human’s functioning in
an “assistant” role may be susceptible to complacency if
tasked to passively monitor multiple highly automated aircraft.
Also, complacency can be influenced by the temporal
exposure of automation failure (i.e., first failure effect).
Specifically, Roviera et al. (2007) reported that complacency
increased, and in turn performance degraded, at the initial
exposure of automation failure. During subsequent automation
failures, complacency decreased and performance improved,
perhaps due to the calibration of trust towards the automation.
To this point, Parasuraman and Manzey (2010) suggested that
complacency is associated with trust and attention allocation.
That is, the visual sampling of the automated task is
influenced by the human monitor’s attention allocation
strategy which is influenced by trust toward the automated
system.

Vigilance

The mature AAM environment may require humans to
monitor multiple highly automated aircraft over prolonged
periods of time, inviting a classic issue of human performance,
the vigilance decrement. Vigilance can be defined as the
ability to sustain attention to an onset of a critical stimulus for
an extended time (Warm et al., 2008). Research showed that
operators’ detection performance can drop over the course of
30 minutes or less (Mackworth, 1948), highlighting the
temporally limited capacity of a human to function as a system
monitor. Several models of sustained attention have been
proposed. One popular perspective is the resource depletion
model, which states that the task demands gradually exhaust
attentional resources (Warm et al., 1996, 2008). Other models
propose that attentional resources are drifted away from the
task to task-unrelated thoughts due to failures of executive
control of attention (Thomson et al., 2015) or mind-wandering
(McVay & Kane, 2012). Modern automation technologies are
designed to either replace or augment human functions and
improve human-system performance, with the intention to
alleviate human workload. Unfortunately, however, such
technologies often shift human responsibility from an active
controller to a passive monitor of even more complex
technical systems, making their task more subject to vigilance
decrement. Critically, if an AAM operational environment
demands high working memory load, stimulus complexity,
and sensory and cognitive processing, then vigilance
decrements are more likely to occur.

CONCLUSION

The present work characterized different human
responsibilities (i.e., control, manage, or assist) and explored
attention-related factors that may support each role of a human
operator as they relate to envisioned AAM operations. The
high-level review conducted in this work indicates that human
responsibilities vary depending on the LOA and the
information processing load involved. For example, increasing
the LOA may reduce human responsibility, transitioning the
human’s role from an active controller to a passive monitor.
However, if the task requires the operator to manage multiple
vehicles, then, depending on the LOA, the human
responsibility may increase because of the net increase of task
demand. Relying upon increasingly autonomous vehicles, a
human may be tasked with supervising many aircraft in
mature AAM operations. A plausible challenge with this
paradigm is not whether automated systems to support such
AAM operations can be developed, but whether human
operators can adequately and safely execute such tasks given
inherent limits of information processing.

The present work explored attention-related constructs
that could influence human performance in envisioned AAM
operations. These constructs included, but are not limited to,
SA, workload, complacency, and vigilance. It is likely that
human operators in future AAM operational environments will
show similar performance characteristics due to these factors.
However, rigorous and systematic experimentation in
representative settings is necessary to obtain empirical data
that more accurately represent human performance in
envisioned AAM operations.
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