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The implementation of automation will enable Advanced Air Mobility (AAM), which could alter the human’s 
responsibilities from those of an active controller to a passive monitor of vehicles. Mature AAM operations 
will likely rely on both experienced and novice operators to supervise multiple aircraft. As AAM constitutes 
a complex and increasingly autonomous system, the human operator’s set of responsibilities will transition 
from those of a controller, to a manager, and eventually to an assistant to highly automated systems. The 
development of AAM will require system designers to characterize these three sets of human responsibilities. 
The present work proposes different human responsibilities across various roles (i.e., pilot in command, 
system operator, system assistant) in the context of AAM along with pertinent attention-related constructs 
that could contribute to each of the three identified roles of AAM operators including situation awareness, 
workload, complacency, and vigilance.  
 
 

The emerging concept of Advanced Air Mobility (AAM) 
envisions safe, reliable, and accessible aerial transportation of 
passengers and goods within and between rural and urban 
areas (National Academies of Sciences, Engineering, and 
Medicine, 2020). Moreover, AAM will rely upon increasingly 
autonomous aircraft that will require automated systems to 
perform multiple tasks, altering the human’s role (Chancey, et 
al., 2021; Pritchett et al., 2018). The successful maturation of 
AAM will likely require detailed characterization of human 
interactions with air vehicles leveraging various levels of 
automation (LOA), where lower levels indicate more human 
involvement and higher levels indicate more automation 
involvement in task completion (see Parasuraman et al., 2000 
for description of LOA). Parasuraman et al. (2000), suggested 
that automation is often designed to support human 
information-processing stages at LOAs required by a task 
environment to sustain adequate performance levels for a 
given function. Mature Urban Air Mobility (UAM) operations 
(i.e., air taxies), a subset of AAM, envisage many aircraft 
operating over a single metropolitan area (Goodrich & 
Theodore, 2021), which may deplete the attentional resources 
of a human operator responsible for multiple vehicles (see 
Wickens & McCarley, 2008 for a review of attention 
research). To alleviate this, automation likely will be 
leveraged to support human sensory processing and 
perception/working memory stages by assuming information 
acquisition and analysis functions, respectively (Parasuraman 
et al., 2000). When the task requires operators supervise many 
vehicles, in addition to simplifying piloted operations, higher 
levels of automation could further support human decision 
making and response selection by assuming decision selection 
and action implementation functions, respectively 
(Parasuraman et al., 2000). However, how do span of 
influence, vehicle LOA, and task demand interact to impact 
operator performance? The present work proposes three sets 
of responsibilities that could emerge as a result of increasing 
LOA to support the expanding number of vehicles operating in 
AAM ecosystems: controller, manager, and assistant (cf. 

Mutzenich et al., 2021). Furthermore, we identify 
psychological constructs that are related to human attention 
systems for the identified roles.   

 
Overview of AAM  

The concept of AAM emerged in response to emerging 
needs to efficiently transport goods and people in fast-
evolving markets of logistics and aviation. The technological 
advancement of electric propulsion, computer systems, 
sensors, and advanced automation collectively established the 
foundation for realizing the AAM concept. This emerging 
AAM environment involves the operation of either crewed or 
uncrewed air vehicles with varying sizes and missions. The 
subsets of AAM include, but are not limited to, UAM 
(National Academies of Sciences, Engineering, and Medicine, 
2020) and a complimentary subset sometimes referred to as 
regional air mobility (Antcliff et al., 2021). Indeed, UAM will 
likely transition human influence over vehicles from direct 
control (e.g., simplified vehicle operations and/or remotely 
piloted aircraft), to management (e.g., remote supervisory 
operations), and then to a human offering assistance as needed 
(see Goodrich & Theodore, 2021 for description of UAM 
Maturity Levels). This transition presents critical human 
factors-related problems that can be posed in the following 
research question: How can we ensure successful human-
automation interactions as fewer humans are tasked with 
controlling, managing, and assisting more vehicles? 
 
Levels of Automation and Locus of Responsibility  

In many domains, automation has played a critical role in 
mitigating, and unexpectedly, contributing to human error and 
workload (Lee & Seppelt, 2012). Automation is typically 
defined as a technology that replaces, to a varying degree, a 
function that was previously performed by a human operator 
(Parasuraman et al., 2000). In the AAM domain, aerial 
transportation will likely be supported by increasingly 
autonomous systems, which exceed the capabilities of 
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traditionally defined automation (Chancey et al., 2021; 
Holbrook et al., 2020).  

A myriad of studies on human-automation interaction 
report that the implementation of automation will alter human 
responsibility in ways that system designers cannot always 
anticipate (Billings, 1997; Parasuraman, 2000; Sarter & 
Amalberti, 2000). Indeed, humans in the AAM ecosystem will 
likely assume different responsibilities depending on the 
degree of automation authority. That is, automation can take 
over control of a human’s responsibilities depending on the 
LOA (Parasuraman et al., 2000). Importantly, the change in 
LOA accommodates the changes in the locus of responsibility 
between the human and the automation (Sheridan, 2011). 
Several frameworks have conceptualized the relationship 
between the LOA and the locus of responsibility (Endsley, 
1987; Parasuraman et al., 2000; Sheridan & Verplank, 1978). 
For example, Sheridan and Verplank (1978) suggested that 
humans can directly intervene in the automated system’s task 
at lower LOAs, whereas automated systems allow less human 
intervention at higher LOAs. Furthermore, the LOA and locus 
of responsibility will likely vary across UAM Maturity Level 
(Goodrich & Theodore, 2021). Therefore, the human 
responsibilities (i.e., control, manage, assist) vary at different 
LOAs (however, see Roth et al., 2019 for alternative 
approaches to LOA). 
 

METHOD OF HUMAN INFLUENCE 
 

Various occupational domains have described human 
responsibilities differently (e.g., Endsley, 2017; Kaber & 
Endsley, 2004; Metzger & Parasuraman, 2001; van de Merwe 
et al., 2012), presumably due to different capabilities of the 
automated systems in each domain. In AAM, human 
responsibilities will likely vary as a function of the LOA 
required to accommodate increasingly complex, dense, and 
high tempo airspaces. The following sections will describe 
each category of human responsibility and identify relevant 
psychological constructs that may influence human-
automation performance in AAM operations (see Table 1 for 
summary). Note that this list of psychological constructs is not 
meant to be exhaustive, and the constructs are perhaps not 
mutually exclusive to each human responsibility depending on 
specific task demands and requirements.       

 
Table 1. Summary of role, associated responsibilities, and estimated span of 
influence for each human responsibility in AAM. 

 
Control 

Similar to current operations, a human pilot controls an 
aircraft if the human provides direct intent or goal setting for 
the aircraft and possesses the ability to execute the intent or 

goal by actively making changes on control surfaces. Pilots 
will be tasked to control an aerial vehicle when operations 
involve relatively lower LOA (in comparison to manage or 
assist), and the locus of responsibility is with the pilot. A pilot 
is responsible for controlling a single aerial vehicle with basic 
and advanced automation capabilities, to include control 
mediated by fly-by-wire and flight management systems. 
Thus, an active controller’s span of influence is 1:1, meaning 
that a single pilot can only operate a single vehicle.  

 
Manage  

In air traffic control, Metzger and Parasuraman (1999; 
2001; 2005) characterized the term “manage” to describe the 
navigation of multiple aircraft flight paths. Specifically, the air 
traffic controllers assign pilots’ flight paths to prevent 
collisions. Similarly, in the context of AAM, operators may be 
tasked to manage aircraft when the LOA increases, and human 
involvement reciprocally decreases due to the increasing 
capabilities of the automation. That is, operators will assign a 
flight path to highly automated aircraft, but they will not 
directly control the aircraft. Therefore, a human operator 
manages aircraft if the operator actively sets a goal or 
intention of the aircraft but does not have the ability to directly 
control the aircraft. Based on previous work investigating 
human performance with managing multiple vehicles, we 
anticipate that a single operator could manage approximately 
10-15 vehicles (Cummings et al., 2014; Galster et al., 2001). 
However, we note that this number is an estimate based on 
existing tasks that approximate envisioned AAM operations.  
 
Assist 

As levels of automation increase, researchers suggest that 
the human’s role may shift to a passive monitor that 
supervises highly automated systems (Bainbridge, 1983; 
Dekker & Woods, 2002). Furthermore, passive monitors are 
tasked to intervene in the automation’s task when it fails 
(Bainbridge, 1983). Indeed, at the highest level of maturity of 
AAM, humans will not likely be directly controlling or even 
managing the aircraft. Instead, human influence may be 
limited to providing the goals for essentially autonomous 
aircraft (e.g., “fill these 20 deliveries”; see Hancock, 2017 for 
discussion on ‘autonomous’ systems). The automation will 
develop tactical plans (e.g., travel at 50 mph) and directly 
control the aircraft to achieve human-set goals. While the 
automation controls the aircraft, a human will supervise the 
automation and assist during system failure. Therefore, a 
human assists multiple aircraft without active control or 
management, with an expectation that they intervene in off-
nominal scenarios such as critical system failure or passenger 
emergency. Importantly, the locus of responsibility for 
executing safe and reliable operations is with the automation 
and not a human.  
 

PERTINENT PSYCHOLOGICAL CONSTRUCTS 
 
Situation Awareness  

Situation awareness (SA) is defined as the ability to 
perceive objects in an immediate environment (Level 1 SA), 
understand the meaning and arrangement of the objects (Level 

Responsibility Role Span of Influence 
Control Pilot in Command 1 human: 1 vehicle 

Manage System Operator 1 human: 10+ vehicles 

Assist System Assistant  Vehicles are highly 
automated, and direct human 
influence is significantly 
diminished due to cognitive 
limitations 
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2 SA), and project the future state of the environment (Level 3 
SA; Endsley, 1995). In the context of aviation, failure to 
maintain SA can result in the pilot failing to detect system 
errors, despite being supported by the automation, known as 
the out-of-the-loop problem (Endsley & Kiris, 1995). The out-
of-the-loop problem will less likely occur when a pilot in 
command is required to control a single aircraft. Furthermore, 
the out-of-the-loop problem may be avoided by implementing 
an aiding system that supports the operator’s decision making. 
For example, Endsley (1997) asked participants to control a 
flight simulator to examine the effect of a SA-aiding system 
on the pilot’s performance (measured as root mean squared 
error and time spent during pop-up threats). Results indicated 
that presenting displays that aid SA improved pilots’ flight 
performance.   

When managing multiple aerial vehicles, the detrimental 
effect of inadequate SA on performance could become more 
prominent. Endsley and Kaber (1999) examined each level of 
SA at various LOAs by employing a dynamic control task that 
required participants and/or automation to develop a strategy 
and eliminate target items. Results indicated that level 2 SA 
increased at intermediate-to-upper LOAs (i.e., humans and 
automation jointly make decisions). Furthermore, level 3 SA 
decreased at low LOAs in which decisions were generated 
solely by the human. Translating these results to AAM 
operations, operators managing multiple vehicles could 
possibly possess an adequate understanding of the aircraft’s 
behaviors but make poor predictions of the aircraft’s 
trajectory. In later work, Kaber and Endsley (2004) examined 
each level of SA at various LOAs using adaptive automation 
(i.e., automation allocation cycle time). Results indicated high 
level 2 SA at an intermediate LOA (i.e., involved human 
decision making) when the task was automated at low and 
medium time intervals.   

Endsley and Kaber’s (1999) work also suggests that 
system operators could present high level 2 SA and low level 
3 SA at the highest level of automation, where the human is 
tasked to monitor the automation. Also, Kaber and Endsley 
(2004) demonstrated that level 2 SA was high even when the 
control task was fully automated and when the automation 
allocation cycle time was high. Generalizing these findings to 
AAM operations, if humans are tasked to passively monitor 
many aircraft, implementing adaptive automation may allow 
operators to maintain adequate SA. Additional research will be 
required to examine if the results from these studies translate 
well to environments envisioned in complex AAM-like 
operations. 

 
Mental Workload 

Mental workload is another important construct that will 
likely influence human performance in AAM operations. 
Workload is a hypothetical construct that represents the cost 
incurred by a human operator to accomplish mission 
requirements (Hart, 2006). Workload has been extensively 
studied in flight simulation environments aided by automated 
systems (Hancock et al., 1995; Hancock & Scallen, 1997; 
Karpinsky et al., 2018; Sato et al, 2020; Tiwari et al., 2009). 
Harris et al. (1995) measured the effect of automation on 
workload and performance in a multitasking environment 

involving the tracking, resource management, and multiple 
monitoring subtasks of the Multi-Attribute Task Battery 
(Comstock & Arnegard, 1992). When automation was 
engaged for the tracking task, participants reported lower 
levels of subjective workload and executed slower but more 
accurate monitoring and resource management performance. 
These results indicate participants effectively reallocated 
resources from the automated task to the manual tasks. 
Importantly, in a second experiment, Harris et al. showed that 
when participants were given volitional control to toggle 
automated control, their multitasking performance was better 
than under the fixed automation control condition. Translating 
these results to possible implications for AAM operations, a 
pilot could experience increased workload with a low LOA 
due to cognitive resource limits in the multitasking 
environment. Yet discretionary control of automated systems 
may offer the flexibility to effectively and dynamically 
allocate their cognitive resources to relevant tasks during 
operations.  

Workload can also greatly influence an operator’s ability 
to manage multiple vehicles (e.g., Cummings et al., 2014; 
Galster et al., 2001). Endsley and Kaber (1999) examined 
workload in conjunction with the impact of LOA on workload 
and performance recovery following automation failure in a 
dynamic control task. Analyses indicated that participants 
rated lower workload when the dynamic control task involved 
high LOA. Also, task performance increased as a function of 
increased LOA when automation operated normally. 
However, when the LOA was lowered due to automation 
failure, performance recovery was slower when the control 
task involved intermediate-to-high LOA than low LOA. An 
operator's workload could decrease as a function of increasing 
LOA. However, a potential caveat for increasing LOA is that 
the ability to recover from automation failure can degrade.   

When AAM operations involve managing multiple air 
vehicles, performance could be affected by the amount of 
workload imposed by the task. Some studies have measured 
workload when monitoring multiple unmanned vehicles. For 
example, Parasuraman et al. (2009) compared workload 
between manual performance, performance involving static 
automation, and performance involving adaptive automation. 
They asked participants to manage multiple air and ground 
vehicles with the aid of automation while concurrently 
performing communication and change detection tasks. 
Results indicated that participants rated high workload when 
managing multiple unmanned vehicles without the automated 
aid. Furthermore, participants’ workload declined when 
employing adaptive automation compared to when performing 
manually or with static automation. Based on these findings, 
managing multiple air vehicles could increase workload. 
However, adaptive or static automation could be employed to 
reduce the operator’s workload (however see Kaber & Prinzel, 
2006 for review of adaptive and adaptable automation 
research in aviation settings). 
 
Complacency 

The Aviation Safety Reporting System defines 
complacency as “self-satisfaction that may result in non-
vigilance based on an unjustified assumption of satisfactory 

C
op

yr
ig

ht
 2

02
2 

by
 H

um
an

 F
ac

to
rs

 a
nd

 E
rg

on
om

ic
s 

So
ci

et
y.

 A
ll 

rig
ht

s 
re

se
rv

ed
. 1

0.
11

77
/1

07
11

81
32

26
61

18
4

Proceedings of the 2022 HFES 66th International Annual Meeting 30



system state” (Billings et al., 1976, p. 23). Parasuraman and 
Manzey (2010) characterized complacency as an attitude that 
influences operators’ monitoring strategies of system 
environments, further modulated by several factors including 
system properties such as LOA, reliability, consistency, and 
task context such as concurrent tasks and workload. 
Parasuraman et al. (1993) examined performance 
consequences of complacency at different variations of 
automation reliability in a low-fidelity flight simulation 
environment. Results demonstrated that keeping the reliability 
of the automation consistent and high induced complacency. 
Furthermore, the authors suggested that complacency can arise 
in multitasking environments. Indeed, human’s functioning in 
an “assistant” role may be susceptible to complacency if 
tasked to passively monitor multiple highly automated aircraft. 
Also, complacency can be influenced by the temporal 
exposure of automation failure (i.e., first failure effect). 
Specifically, Roviera et al. (2007) reported that complacency 
increased, and in turn performance degraded, at the initial 
exposure of automation failure. During subsequent automation 
failures, complacency decreased and performance improved, 
perhaps due to the calibration of trust towards the automation. 
To this point, Parasuraman and Manzey (2010) suggested that 
complacency is associated with trust and attention allocation. 
That is, the visual sampling of the automated task is 
influenced by the human monitor’s attention allocation 
strategy which is influenced by trust toward the automated 
system.  
 
Vigilance 

The mature AAM environment may require humans to 
monitor multiple highly automated aircraft over prolonged 
periods of time, inviting a classic issue of human performance, 
the vigilance decrement. Vigilance can be defined as the 
ability to sustain attention to an onset of a critical stimulus for 
an extended time (Warm et al., 2008). Research showed that 
operators’ detection performance can drop over the course of 
30 minutes or less (Mackworth, 1948), highlighting the 
temporally limited capacity of a human to function as a system 
monitor. Several models of sustained attention have been 
proposed. One popular perspective is the resource depletion 
model, which states that the task demands gradually exhaust 
attentional resources (Warm et al., 1996, 2008). Other models 
propose that attentional resources are drifted away from the 
task to task-unrelated thoughts due to failures of executive 
control of attention (Thomson et al., 2015) or mind-wandering 
(McVay & Kane, 2012). Modern automation technologies are 
designed to either replace or augment human functions and 
improve human-system performance, with the intention to 
alleviate human workload. Unfortunately, however, such 
technologies often shift human responsibility from an active 
controller to a passive monitor of even more complex 
technical systems, making their task more subject to vigilance 
decrement. Critically, if an AAM operational environment 
demands high working memory load, stimulus complexity, 
and sensory and cognitive processing, then vigilance 
decrements are more likely to occur.  
 

CONCLUSION 

 
The present work characterized different human 

responsibilities (i.e., control, manage, or assist) and explored 
attention-related factors that may support each role of a human 
operator as they relate to envisioned AAM operations. The 
high-level review conducted in this work indicates that human 
responsibilities vary depending on the LOA and the 
information processing load involved. For example, increasing 
the LOA may reduce human responsibility, transitioning the 
human’s role from an active controller to a passive monitor. 
However, if the task requires the operator to manage multiple 
vehicles, then, depending on the LOA, the human 
responsibility may increase because of the net increase of task 
demand. Relying upon increasingly autonomous vehicles, a 
human may be tasked with supervising many aircraft in 
mature AAM operations. A plausible challenge with this 
paradigm is not whether automated systems to support such 
AAM operations can be developed, but whether human 
operators can adequately and safely execute such tasks given 
inherent limits of information processing.  

The present work explored attention-related constructs 
that could influence human performance in envisioned AAM 
operations. These constructs included, but are not limited to, 
SA, workload, complacency, and vigilance. It is likely that 
human operators in future AAM operational environments will 
show similar performance characteristics due to these factors. 
However, rigorous and systematic experimentation in 
representative settings is necessary to obtain empirical data 
that more accurately represent human performance in 
envisioned AAM operations.   
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