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Abstract
In the literature it is common to use the first and last pencils D1(λ,P) and D

k
(λ,P) in 

the “standard basis” for the vector space ��(P) of block-symmetric pencils to solve 
the symmetric/Hermitian polynomial eigenvalue problem P(λ)x = 0 . When the pol-
ynomial P(λ) has odd degree, it was proven in recent years that the use of an alterna-
tive linearization T

P
 is more convenient because it has better numerical properties 

and its use is more universal since T
P
 is a strong linearization of any matrix polyno-

mial P(λ) , while D1(λ;P) and D
k
(λ;P) are not. However, T

P
 is not defined for even 

degree matrix polynomials. In this paper we consider the case when P(λ) has even 
degree. It is believed that the eigenpair backward errors for the linearization D1(λ;P) 
and D

k
(λ;P) cannot differ much from the backward error of the original problem. We 

show that this is not the case, even when the polynomial P(λ) is well-scaled because 
of the ill-conditioning of the eigenvectors of D1(λ;P) and D

k
(λ;P) . We introduce two 

block-symmetric linearizations for even degree matrix polynomials that overcome 
this problem and become an appropriate alternative to the traditional use of D1(λ;P) 
and D

k
(λ;P).
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1  Introduction

A square matrix polynomial takes the form

where �  denotes any field. In this paper, we consider the field of real or complex 
numbers. We say that P(λ) has degree k if Ak ≠ 0 and we say that P(λ) has grade k, 
otherwise. In this work, we are interested in symmetric and Hermitian matrix poly-
nomials. We say that P(λ) is symmetric if AT

i
= Ai , for i = 0, 1,… , k , and we say that 

P(λ) is Hermitian if 𝔽 = ℂ and A∗
i
= Ai , for i = 0, 1,… , k , where (⋅)∗ denotes the 

complex conjugate transpose operation.
Throughout this paper, we assume that the matrix polynomial P(λ) in (1.1) is 

regular, this is, the scalar polynomial detP(λ) is not the zero polynomial. We also 
assume Ak ≠ 0 and A0 ≠ 0 in order to avoid some trivialities. The polynomial eigen-
value problem (PEP) associated with a regular matrix polynomial P(λ) consists in 
finding scalars λ0 for which the equations

have nontrivial solutions x, y ∈ �
n . The scalar λ0 is called an eigenvalue of P(λ) , and 

the vectors x and y are associated right and left eigenvectors. The set of all eigenval-
ues of the matrix polynomial P(λ) is called the spectrum of P(λ) . The eigenvalue/
eigenvector pair (λ0, x) (resp. (y, λ0) ) is called a right (resp. left) eigenpair of P(λ) . 
When the matrix polynomial P(λ) is symmetric (resp. Hermitian), we refer to (1.2) 
as the symmetric (resp. Hermitian) polynomial eigenvalue problem. When P(λ) is 
symmetric or Hermitian, the sets of left and right eigenvectors coincide.

Structured PEPs, that is, PEP in which the matrix coefficients of the matrix poly-
nomial present some type of structure, arise from many applications. For instance, 
symmetric and Hermitian PEPs arise in the classical problem of vibration analysis 
[9, 16, 24]. When solving numerically a structured PEP it is well-recognized the 
importance of using structure preserving eigenvalue algorithms [14]. For example, 
symmetric or Hermitian matrix polynomials have a spectrum that is symmetric with 
respect to the real axis. In a finite precision environment, an algorithm that ignores 
the structure of the polynomial may lose this symmetry [17]. For this reason, one 
of the most common approaches for numerically solving structured PEPs is to use 
structure-preserving linearizations (see Sect. 2.1 for the definition of linearization). 
This process replaces the original structured PEP with a generalized eigenvalue 
problem with the same structure. Standard methods for structured generalized eigen-
value problems can then be applied; see, e.g., [12] and the references therein.

The landmark paper [17] introduced a family of candidate linearizations for 
matrix polynomials as in (1.1), the so-called ��(P) vector space. It was proved in 
[17] that almost all matrix pencils in ��(P) are linearizations of the matrix polyno-
mial P(λ) , and that ��(P) is a rich source of structure-preserving linearizations for 
structured matrix polynomials. Moreover, among all the linearizations in ��(P) , the 
pencils D1(λ;P) and Dk(λ;P) [(see (4.1) and (4.2)] were identified in [10, 11] as those 
with almost optimal numerical properties (in terms of eigenvalue conditioning and 

(1.1)P(λ) = λkAk +⋯ + λA1 + A0, A0,… ,Ak ∈ �
n×n,

(1.2)P(λ0)x = 0 and y∗P(λ0) = 0
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backward errors). These optimality results have led several authors to propose the 
use of D1(λ;P) and Dk(λ;P) (or small variations of D1(λ;P) and Dk(λ;P) ) in the task 
of solving numerically structured PEPs from applications. These structure-preserving 
linearizations have been used, for example, to solve palindromic and even PEPs [15], 
Hamiltonian (alternating) PEPs [19], to solve complex-symmetric PEPs [8], to solve 
symmetric or Hermitian rational eigenvalue problems [25], as the starting point to 
build trimmed linearizations for structured matrix polynomials [6], to develop a back-
ward stable algorithm for symmetric or Hermitian quadratic eigenvalue problems 
[26], to estimate the distance to uncontrollability of higher order dynamical systems 
[21], to compute the H∞ norm [3], and to solve nonlinear eigenvalue problems by 
using the infinity Lanczos method [20], to name some recent works.

Although the numerical properties of D1(λ;P) and Dk(λ;P) are good enough for 
certain applications, one of the key findings of this work is the extreme sensitivity 
of the eigenvectors of D1(λ;P) and Dk(λ;P) to small perturbations. Hence, the com-
putation of accurate eigenvalues and eigenvectors of structured matrix polynomials 
requires to find structure-preserving linearizations with better numerical properties. 
Steps in this direction can be found in [4], where the authors compare the numeri-
cal properties of D1(λ;P) and Dk(λ;P) with the block-tridiagonal linearization intro-
duced in [2], in the case when the matrix polynomial has odd degree. Their analysis 
reveals that the block-symmetric linearization from [2] has much better numeri-
cal properties than the linearizations in ��(P) . In this work, we address the case 
when the matrix polynomial has even degree. This case is different from the odd 
degree case because there are symmetric (resp. Hermitian) matrix polynomials of 
even degree that do not have symmetric (resp. Hermitian) linearizations while they 
always exist for odd degree polynomials. To guarantee the existence of structure-
preserving linearizations for even degree matrix polynomials, one has to impose 
some conditions on the matrix polynomial coefficients. For example, symmetric and 
Hermitian matrix polynomials with nonsingular leading and/or trailing matrix coef-
ficients always have structure-preserving linearizations. These conditions make the 
numerical analysis more challenging.

In this paper we analyze different strategies for solving PEPs associated with 
even-degree structured matrix polynomials and propose the combined use of two 
linearizations HAk

P
 and GAk

P
 introduced in (5.6) and (5.9) (using S = Ak ) as an alterna-

tive to the use of the linearizations D1(λ;P) and Dk(λ;P) because it is numerically 
superior and avoids the problem with the sensitivity of the eigenvectors.

The structure of the paper is as follows: In Sect. 2 we introduce the mathemati-
cal background necessary for the rest of the paper. In Sect. 3 we recall the definition 
of (normwise) eigenvalue condition number and backward error of an eigenpair of 
a matrix polynomial as well as convenient formulas to compute these quantities. In 
Sect. 4, we recall the definition and properties of D1(λ;P) and Dk(λ;P) and provide 
theoretical and numerical evidence of the sensitivity of the eigenvectors of these 
pencils to small perturbations in the coefficients of the polynomial P(λ) . In Sect. 5, 
we show how to use the pencil TP(λ) to construct a family of pencils HS

P
 (resp. GS

P
 ) 

that are strong linearizations of an even degree matrix polynomial P(λ) as in (1.1) 
with nonsingular Ak (resp. A0 ). In Sects. 6 and 7, we provide a numerical analysis 
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of the eigenvalue condition number and backward errors of the pencils in the fami-
lies HS

P
 and GS

P
 , and show that optimal behavior is attained when S = Ak . Finally, in 

Sect. 8, we present the proofs of the main results in Sects. 6 and 7.

2 � Definitions and technical results

We review in this section the notions of linearization and strong linearization of a 
matrix polynomial. For a more detailed introduction on these concepts, we refer the 
reader to the classical book [9] and to the more recent reference [7].

Additionally, we present some technical results that will be used in the proofs of 
the main theorems of this manuscript.

2.1 � Linearizations of matrix polynomials

A matrix polynomial U(λ) is said to be unimodular if detU(λ) is a nonzero con-
stant (i.e., independent of λ ). A grade-1 matrix polynomial L(λ) = λB + A is called 
a matrix pencil, or pencil for short. A matrix pencil L(λ) = λB + A is called a lin-
earization of a matrix polynomial P(λ) if there exist unimodular matrix polynomials 
U(λ) and V(λ) such that

for some s, where Is denotes the s × s identity matrix. Linearizations preserve the 
finite eigenvalues of the polynomial P(λ) and their multiplicities.

Given a matrix polynomial P(λ) as in (1.1), its reversal matrix polynomial is 
defined by

We say that P(λ) has an eigenvalue at infinity if 0 is an eigenvalue of revP(λ) . A 
linearization L(λ) of P(λ) is said to be strong if rev(L) is a linearization of rev(P) . 
Strong linearizations preserve both the finite and infinite eigenvalues of P(λ) and 
their multiplicities.

2.2 � Some auxiliary results

If a and b are two positive integers such that a ≤ b , we denote

The following result is an immediate consequence of the Cauchy-Schwarz inequality 
when the standard inner product is considered in ℂn.

Lemma 2.1  Let m be a positive integer and let a be a positive real number. Then,

L(λ) = U(λ)

[
Is 0

0 P(λ)

]
V(λ),

revP(λ) = λkP(λ−1) = λkA0 +⋯ + λAk−1 + Ak.

a ∶ b ∶= a, a + 1,… , b.
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Next we provide an upper and lower bound on the norm of a block-matrix in 
terms of the norms of its blocks.

Proposition 2.1  [11, Lemma 3.5] For any complex � × m block-matrix B = (Bij) we 
have

Some of our main results require the systematic use of the Horner shifts of a 
matrix polynomial P(λ).

Definition 2.1  (Horner shifts) Given a matrix polynomial P(λ) of degree k as in 
(1.1), the ith Horner shift of P(λ) , for i = 0 ∶ k , is given by

Notice that P0(λ) = Ak and Pk(λ) = P(λ) . Moreover, Horner shifts satisfy the recur-
rence relation

We also denote

Notice that P0(λ) = A0 and Pk(λ) = P(λ) . Furthermore, the two families of polyno-
mials (2.2) and (2.4) are related as follows

Lemma 2.2 provides another relation between the two families of Horner 
shifts.

Lemma 2.2  [4, Lemma 3.2] Let P(λ) be a regular matrix polynomial of degree k as 
in (1.1). Let Pi(λ) and Pi(λ) , i = 0 ∶ k , be the matrix polynomials defined in (2.2) 
and (2.4), respectively. Let λ0 be a nonzero and finite eigenvalue of P(λ) , and let 
x and y be, respectively, a right and a left eigenvector of P(λ) associated with λ0 . 
Then, for i = 0 ∶ k − 1,

The proof of Lemma 2.3 can be easily verified.

(
m∑
j=0

aj

)2

≤ (m + 1)

m∑
j=0

a2j.

(2.1)max
i,j

‖Bij‖2 ≤ ‖B‖2 ≤
√
�m max

i,j
‖Bij‖2.

(2.2)Pi(λ) ∶= λiAk + λi−1Ak−1 +⋯ + λAk−i+1 + Ak−i.

(2.3)Pi+1(λ) − Ak−i−1 = λPi(λ), for i = 0 ∶ k − 1.

(2.4)Pi(λ) ∶= λiAi +⋯ + λA1 + A0, for i = 0 ∶ k.

(2.5)P(λ) = λk−iPi(λ) + Pk−i−1(λ), i = 0 ∶ k − 1.

Pi(λ0)x = −λi−k
0

Pk−i−1(λ0)x and y∗Pi(λ0) = −λi−k
0

y∗Pk−i−1(λ0).
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Lemma 2.3  Let P(λ) be a matrix polynomial of degree k as in (1.1), let λ0 ∈ ℂ , and 
let Pi(λ) and Pi(λ) , i = 0 ∶ k , be the matrix polynomials defined in (2.2) and (2.4), 
respectively. Then, for any n × n matrix M and for i = 0 ∶ k , we have

3 � Eigenvalue condition numbers and backward errors 
of approximate eigenpairs

In this section, we review the notions of relative eigenvalue condition number and 
backward error of approximate eigenpairs of a matrix polynomial, and state some 
of their basic properties.

Definition 3.1  (Eigenvalue condition number) [23] Let P(λ) be a regular matrix pol-
ynomial of degree k as in (1.1). If λ0 is a simple, finite, nonzero eigenvalue of P(λ) 
with corresponding right eigenvector x, then the relative condition number of λ0 is 
defined by

where �i are some previously selected nonnegative weights.

Definition 3.2  (Backward error of an approximate eigenpair) [23] Let P(λ) be a reg-
ular matrix polynomial of degree k as in (1.1). For a given approximate right eigen-
pair (̃λ0, x̃) of P(λ) , the backward error of (̃λ0, x̃) is

where �i are some previously selected nonnegative weights.

Explicit formulas for the condition number �r (λ0;P) and the backward error 
�(̃λ0, x̃;P) were obtained in [23].

‖MPi(λ0)‖2 ≤ max
j=0∶k

{‖MAj‖2}
i�

j=0

�λ0�j,

‖MPi(λ0)‖2 ≤ max
j=0∶k

{‖MAj‖2}
i�

j=0

�λ0�j, and

‖Pi(λ0)‖2 ≥ max
j=0∶i

{�λ0�j‖Aj‖2}.

�r (λ0;P) ∶= lim
�→0

sup

���λ0�
��λ0� ∶

�
P(λ0 + �λ0) + �P(λ0 + �λ0)

�
(x + �x) = 0,

with ‖�Ai‖2 ≤ ��i, for i = 0 ∶ k
�
,

�(̃λ0, x̃;P) ∶= min
�
� ∶ (P(̃λ0) + �P(̃λ0))̃x = 0, with ‖�Ai‖2 ≤ � �i,

for i = 0 ∶ k, },
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Theorem 3.1  [23, Theorem 5] Let P(λ) be a regular matrix polynomial of degree k 
as in (1.1). If λ0 is a simple, finite, nonzero eigenvalue of P(λ) with corresponding 
right and left eigenvectors x and y, then

where P�(λ) denotes the derivative of P(λ) with respect to λ.

Theorem  3.2  [23, Theorem  1] Let P(λ) be a regular matrix polynomial of degree 
k as in (1.1). For a given approximate right eigenpair (̃λ0, x̃) of P(λ) , the backward 
error of (̃λ0, x̃) is given by

The following two lemmas will be useful in later sections. Before stating them, 
we recall that if λ0 is a simple, finite, nonzero eigenvalue of a matrix polyno-
mial P(λ) with associated right eigenvector x, then λ−1

0
 is a simple eigenvalue of 

revP(λ) with associated right eigenvector x.
The immediate proofs of Lemmas 3.1 and 3.2 are omitted.

Lemma 3.1  Let P(λ) be a regular matrix polynomial of degree k as in (1.1). Let λ0 be 
a simple, finite, nonzero eigenvalue of P(λ) . Then, �r (λ0;P) = �r (λ

−1
0
; revP) , when 

the weights used for revP(λ) are equal to those used for P(λ) but in reversed order.

Lemma 3.2  Let P(λ) be a regular matrix polynomial of degree k as in (1.1). Let 
(̃λ0, x̃) be an approximate right eigenpair of P(λ) . If we consider (̃λ−1

0
, x̃) as an 

approximate eigenpair of revP(λ) , then we have �(̃λ0, x̃;P) = �(̃λ−1
0
, x̃; revP) , when 

the weights used for revP(λ) are those used for P(λ) but in reversed order.

The nonnegative weights �i in the definitions of �r(λ0;P) and �(λ0, x;P) allow 
flexibility in how perturbations of P(λ) are measured. Typically, one is interested 
in either coefficient-wise or norm-wise perturbations of P(λ) . Norm-wise pertur-
bations are obtained by choosing

Coefficient-wise perturbations are obtained by choosing

In this work, we study both norm-wise and coefficient-wise perturbations. When 
norm-wise perturbations are considered, we write

(3.1)�r (λ0;P) =

�∑k

i=0
�λ0�i�i

�
‖y‖2‖x‖2

�λ0� ⋅ �y∗P�(λ0)x� ,

(3.2)�(̃λ0, x̃;P) =
‖P(̃λ0 )̃x‖2�∑k

i=0
�̃λ0�i�i

�
‖x̃‖2

.

�i ∶= max
j=0∶k

{‖Aj‖2} for i = 0 ∶ k.

�i ∶= ‖Ai‖2 for i = 0 ∶ k.
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and refer to �ra(λ0;P) and �ra(̃λ0, x̃;P) , respectively, as the relative-absolute eigen-
value condition number and backward error. When coefficient-wise perturbations 
are considered, we write

and refer to �rr (λ0;P) and �rr (̃λ0, x̃;P) , respectively, as the relative-relative eigen-
value condition number and backward error.

Remark 3.1  When the matrix polynomial P(λ) is symmetric (resp. Hermitian), it 
is natural to consider symmetric (resp. Hermitian) perturbations in the definition 
of condition numbers and backward errors. This leads to the notions of structured 
condition numbers and structured backward errors. However, as it has been shown 
in [1], the structured and unstructured condition numbers and backward errors are 
nearly the same. This is why we only focus on the unstructured ones.

3.1 � Sensitivity of the eigenvectors of a matrix pencil

In the next section we will explore the sensitivity of the eigenvectors of the block-
symmetric linearizations D1(λ;P) and Dk(λ;P) to small perturbations of their matrix 
coefficients. Theorem  3.3 in this section will be used to provide some intuition 
behind the fact that the eigenvectors of these two linearizations can be very ill-con-
ditioned even when the corresponding eigenvalue is well-conditioned.

We first introduce an auxiliary lemma that generalizes a well-known result for 
eigenvectors of matrices.

Lemma 3.3  Let L(λ) = λB − A be a regular matrix pencil. Let λ1 and λ2 be two dis-
tinct finite eigenvalues of L(λ) and let z1 and w2 be a right and a left eigenvector of 
L(λ) associated with λ1 and λ2 , respectively. Then, w∗

2
Bz1 = 0.

Proof  By definition of right and left eigenvector, we have

�ra(λ0;P) ∶=
maxi=0∶k{‖Ai‖2}

�∑k

i=0
�λ0�i

�
‖x‖2‖y‖2

�λ0� �y∗P�(λ0)x� , and

�ra(̃λ0, x̃;P) ∶=
‖P(̃λ0 )̃x‖2

maxi=0∶k{‖Ai‖2}
�∑k

i=0
�̃λ0�i

�
‖x̃‖2

,

�rr (λ0;P) ∶=

�∑k

i=0
�λ0�i‖Ai‖2

�
‖x‖2‖y‖2

�λ0� �y∗P�(λ0)x� , and

�rr (̃λ0, x̃;P) ∶=
‖P(̃λ0 )̃x‖2�∑k

i=0
�̃λ0�i‖Ai‖2

�
‖x̃‖2

,
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Multiplying the first equality by w∗
2
 on the left, multiplying the second equality by 

z1 on the right and subtracting both expressions, we get (λ1 − λ2)w
∗
2
Bz1 = 0 . Since 

λ1 ≠ λ2 , the result follows. 	�  ◻

Theorem  3.3  Let L(λ) = λB − A and L(λ) + �L(λ) = λ(B + �B) − (A + �A) be two 
m × m regular matrix pencils, where ‖�B‖ ≤ �‖B‖2 and ‖�A‖ ≤ �‖A‖2 for some 
𝜖 > 0 so that L and �L have the same number of eigenvalues. Assume that all the 
eigenvalues of L(λ) are simple and finite. Let λ1,… , λm denote the eigenvalues of 
L(λ) , and, for i = 1 ∶ m , let zi be a right eigenvector associated with the eigen-
value λi . Let λ1 + �λ1,… , λm + �λm denote the eigenvalues of L(λ) + �L(λ) . If 
z̃i = zi + �zi denotes a right eigenvector of L(λ) + �L(λ) associated with λi + �λi , 
then, to first order in � , we have

where dist denotes the Euclidean distance, and �ra(λ�; L) denotes the relative-abso-
lute eigenvalue condition number of λ�.

Proof  Since the vectors z1,… , zm form a basis for �
m (where 𝔽 = ℝ or 

𝔽 = ℂ , we have z̃i = zi +
∑m

�=1
c�z� , for some constants c� . Then, notice that 

dist
�̃
zi, span{zi}

�
≤ ‖̃zi − v‖2 , for any vector v ∈ span{zi} . Hence, taking 

v = zi + cizi , we get

To finish the proof, we need to bound the scalars |c�| . By Lemma 3.3, denoting by 
w� a left eigenvector of L(λ) associated with λ�,

The B-orthogonality of left and right eigenvectors implies that the scalars c� are 
given by

where w∗

�
Bz� ≠ 0 because the eigenvalues of L(λ) are simple.

Expanding to first order in � the equality

we find

λ1Bz1 = Az1 and w∗
2
λ2B = w∗

2
A.

(3.3)dist
�̃
zi, span{zi}

�
≤

�
�
�
�≠i

�λ��
1 + �λ��

1 + �λi�
�λi − λ���ra(λ�; L)

�
‖zi‖2,

(3.4)dist
�̃
zi, span{zi}

�
≤

������
�
�≠i

c�z�

������2
≤
�
�≠i

�c�� ‖z�‖2.

w∗

�
Bzi = 0 for � ≠ i.

c� =
w∗

�
B�zi

w∗

�
Bz�

for � = 1 ∶ m,

(λi + �λi)(B + �B)(zi + �zi) = (A + �A)(zi + �zi),
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Multiplying (3.5) on the left by w∗

�
 , with � ≠ i , and taking into account that 

w∗

�
A = λ�w

∗

�
B and w∗

�
Bzi = 0 , yields

Hence,

and, so,

Plugging (3.6) into (3.4), taking norms, using the triangle inequality, and using 
‖�B‖ ≤ �‖B‖2 and ‖�A‖ ≤ �‖A‖2 , we get

The result now readily follows from the formula for the relative-absolute condition 
number �ra(λ�; L) taking into account that

	�  ◻

Remark 3.2  We note that Theorem 3.3 implies that the relative error

in the eigenvector zi associated with the eigenvalue λi can potentially be large when 
λi is close to be a multiple eigenvalue or if any of the eigenvalues other than λi is 
ill-conditioned. It is well-known that the eigenvalues of D1(λ;P) (resp. Dk(λ;P) ) 
with small modulus (resp. large modulus) tend to be very ill-conditioned which can 
potentially be a reason why, as we will show numerically in the next section, the 
eigenvectors of D1(λ;P) (resp. Dk(λ;P) ) associated with eigenvalues of large modu-
lus (resp. small modulus) can be very ill-conditioned.

We would like to mention that there have been other attempts in the litera-
ture to study the sensitivity of the eigenvectors of a matrix polynomial to small 
changes in its matrix coefficients. See for example [22].

(3.5)�λiBzi + λi�Bzi + λiB�zi = A�zi + �Azi.

λiw
∗

�
�Bzi + λiw

∗

�
B�zi = λ�w

∗

�
B�zi + w∗

�
�Azi.

w∗

�
B�zi =

λiw
∗

�
�Bzi − w∗

�
�Azi

λ� − λi
,

(3.6)
w∗

�
B�zi

w∗

�
Bz�

=
1

λ� − λi

λiw
∗

�
�Bzi − w∗

�
�Azi

w∗

�
Bz�

.

�
�≠i

�c�� ‖z�‖2 ≤ �
�
�≠i

1

�λ� − λi�
‖w�‖2‖z�‖2‖zi‖(�λi� ‖B‖2 + ‖A‖2)

�w∗

�
Bz�� .

(�λi� ‖B‖2 + ‖A‖2)
max{‖A‖2, ‖B‖2}(1 + �λ��) ≤

1 + �λi�
1 + �λ�� .

dist
�̃
zi, span{zi}

�
‖zi‖2
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4 �  Using the linearizations D1(λ; P) and Dk(λ; P).

In this section we debunk the common belief that the pencils D1(λ;P) and Dk(λ;P) 
in the vector space ��(P) [17] given by

and

are “good” linearizations of a symmetric (resp. Hermitian) matrix polynomial 
P(λ) as in (1.1). This belief is based on the following two results for the relative-
absolute conditioning of eigenvalues and backward errors of approximate eigenpairs, 
as well as on analogous results for the relative-relative case that can be obtained just 
multiplying the bounds in Theorems 4.1 and 4.2 by the constant

Theorem 4.1  (Conditioning of D1(λ;P) and Dk(λ;P) ) [4, Theorem 6.1] Let P(λ) be 
a regular matrix polynomial of degree k as in (1.1). Assume λ0 is a simple, finite, 
nonzero eigenvalue of P(λ) . Let � ∈ {1, k} and suppose that A0 is nonsingular if 
� = 1 , and Ak is nonsingular if � = k . Then,

Remark 4.1  As we mentioned in Remark 3.2, the eigenvalues of D1(λ;P) (resp. 
Dk(λ;P) ) with small modulus (resp. large modulus) tend to be very ill-conditioned. 
The previous theorem shows that if |λ0| < 1 , then

and if |λ0| > 1 , then

(4.3)� ∶=
maxi=0∶k{‖Ai‖2}

min{‖A0‖2, ‖Ak‖2} .

max{1, |λ0|k−1}, if � = k

max{1, |λ0|1−k}, if � = 1

}
≤

�ra(λ0;D�)

�ra(λ0;P)
≤

{
k2 max{1, |λ0|k−1}, if � = k

k2 max{1, |λ0|1−k}, if � = 1.

�ra(λ0;D1) ≥ |λ0|1−k�ra(λ0;P)
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Thus, even if the condition number of λ0 as an eigenvalue of P is relatively small, 
the condition number of λ0 as an eigenvalue of D1(λ;P) (resp. Dk(λ;P) ) can grow 
significantly.

Theorem  4.2  (Backward errors of D1(λ;P) and Dk(λ;P) ) [4, Theorem  6.2] Let 
P(λ) be a regular matrix polynomial of degree k as in (1.1). Let � ∈ {1, k} and 
suppose that A0 is nonsingular if � = 1 , and Ak is nonsingular if � = k . Let (̃λ0, z̃) 
be an approximate right eigenpair of D�(λ,P) , with λ̃0 nonzero and finite, and let 
�z� ∶= (eT

�
⊗ In)�z  . If (̃λ0, z̃�) is considered an approximate right eigenpair for P(λ) , 

then

Remark 4.2  It is well-known that any (right) eigenvector of D1(λ;P) or Dk(λ;P) 
associated with λ0 is of the form

for some (right) eigenvector x of P(λ) associated with λ0 . This implies that for exact 
z and z� , we get

Assuming that (4.5) holds for the computed eigenpairs in Theorem 4.2, we get the 
following upper bounds

which are in accordance with the conditioning results in Theorem 4.1.

Based on the ideas discussed in Remark 4.2, the following strategy for comput-
ing eigenpairs of a matrix polynomial P(λ) with small backward errors (at least in 
the relative-absolute sense, or in the relative-relative sense when the polynomial 
is well-scaled, i.e., � ≈ 1 ) has been proposed. 

1.	 Apply a backward stable eigenvalue algorithm, like the QZ algorithm, to the 
linearizations D1(λ;P) and Dk(λ;P).

2.	 For the computed eigenvalues with modulus less than or equal to one, recover 
the eigenvectors of P(λ) from the kth block zk of the corresponding eigenvectors 
of Dk(λ;P).

�ra(λ0;Dk) ≥ |λ0|k−1�ra(λ0;P).

�ra(̃λ0, z̃�;P)

�ra(̃λ0, z̃;D�)
≤ k3∕2

‖̃z‖2
‖̃z�‖2

.

(4.4)z =
[
λk−1
0

⋯ λ0 1
]T

x,

(4.5)
‖z‖2
‖z�‖2 ≤

�√
kmax{1, �λ0�1−k} if � = 1, and√
kmax{1, �λ0�k−1} if � = k.

�ra(λ0, z�;P)

�ra(λ0, z;D�)
≤

{
k5∕2 max{1, |λ0|k−1} if � = k, and

k5∕2 max{1, |λ0|1−k} if � = 1.
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3.	 For the computed eigenvalues with modulus greater than one, recover the eigen-
vectors of P(λ) from the first block z1 of the corresponding eigenvectors of 
D1(λ;P).

Next, we argue that this strategy does not always guarantee small backward errors 
due to the extreme sensitivity of the eigenvectors of D1(λ;P) and Dk(λ;P) to small 
perturbations of the coefficients of these pencils. Our explanation focuses on 
Dk(λ;P) (since similar comments can be made for D1(λ;P) ). We will also illus-
trate these facts with numerical experiments.

Let us assume that a polynomial eigenvalue problem associated with a sym-
metric/Hermitian matrix polynomial P(λ) is solved by using the linearization 
Dk(λ;P) = λB − A . Assume P(λ) has been scaled so that maxi=0∶k{‖Ai‖2} = 1 . 
Theorem 4.2 and Remark 4.2 suggest that, if |λ0| ≤ 1 , one should be able to com-
pute an approximate eigenpair (̃λ0, z̃k) of P(λ) from a computed eigenpair (̃λ0, z̃) 
of Dk(λ;P) with a small backward error �ra(̃λ0, z̃k;P) . However, in the numerical 
examples that we show next, we will see that this is not necessarily true. This 
does not imply that there is something wrong with the results in Theorem 4.2 and 
Remark 4.2. The problem is that, in floating point arithmetic, we cannot assume 
that the ratio ‖̃z‖2∕‖̃zk‖2 is bounded by a moderate constant, the reason being the 
potentially large sensitivity of the eigenvectors of Dk(λ;P) to small perturbations 
in the coefficients of the linearization. We give an intuitive explanation for this 
sensitivity to perturbations as follows. Let z and zk denote, respectively, the exact 
eigenvector of Dk(λ0;P) associated with the eigenvalue λ0 and its kth block. Let z̃  
denote the computed eigenvector of Dk(λ;P) associated with the computed eigen-
value λ̃0 . Then, there exists a positive constant � such that

where the last inequality follows from (4.5).
As the numerical experiments will show, the ratio � ∶=

‖zk‖2
‖̃zk‖2 is very large for 

some eigenvectors and, surprisingly, it is a very accurate predictor of �ra (̃λ0,̃zk;P)
�ra (̃λ0,̃z;D�)

 
when |λ0| ≤ 1 . We must point out that both zk and z̃k in our experiments are the 
eigenvectors computed by Matlab. The exact eigenvector was computed trans-
forming the constructed matrix polynomial to a symbolic object. Moreover, we 
have observed that, in the cases when the ratio � is very large, z̃k is very close to 
0.

This implies that the small backward errors introduced by the QZ algorithm 
may destroy the exact structure (4.4) of the eigenvectors of Dk(λ;P) . Conclu-
sively, in floating point arithmetic we cannot assume computed eigenvectors of 
the form (4.4) and, thus, we cannot assume that ‖̃z‖2‖̃zk‖2 is small.

Next we present two numerical examples illustrating that the strategy of solv-
ing a PEP with the combined use of D1(λ;P) and Dk(λ;P) is potentially unsta-
ble. In particular, we show that using Dk(λ;P) for computing the eigenvalues with 

(4.6)
�ra(̃λ0, z̃k;P)

�ra(̃λ0, z̃;Dk)
≤ k3∕2

‖̃z‖2
‖̃zk‖2

≤ k3∕2�
‖z‖2
‖̃zk‖2

≤ �k2
‖zk‖2
‖̃zk‖2

,
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modulus less than 1 can increase the backward error of a computed eigenpair up 
to the point in which most of the accuracy is lost.

In the first numerical experiment, we consider a random matrix polynomial of 
degree 4 and size n = 20 . The matrix polynomial is constructed in MATLAB as 
follows:

and then, we computed A�
i
∶= Ai + AT

i
 so that the matrix polynomial is symmetric. 

This matrix polynomial has 60 out of its 80 eigenvalues with modulus between 1 
and 10−2 while the rest of the eigenvalues have modulus larger than 102 . Moreo-
ver, the eigenvalues with modulus larger than one have condition number larger than 
1023 (recall Remark 3.2). We show in Figs. 1 and 2, respectively, the modulus of the 

(4.7)

A0 = ��� ∗ (�����(�) + ����(−�) ∗ �����(�));

A1 = ��� ∗ (�����(�) + ����(−�) ∗ �����(�));

A2 = ��� ∗ (�����(�) + ����(−�) ∗ �����(�));

A3 = ��� ∗ (�����(�) + ����(−�) ∗ �����(�));

A4 = ��� ∗ (�����(�) + ����(−�) ∗ �����(�));

0 10 20 30 40 50 60 70 80
10-2

100

102

104

106

Fig. 1   Modulus of the eigenvalues of the matrix polynomial P(λ) with coefficients as in (4.8)

0 10 20 30 40 50 60 70 80
105

1010

1015

1020

1025

1030
P
Dk

Fig. 2   Relative-absolute condition number of the eigenvalues of the matrix polynomial P(λ) with coef-
ficients as in (4.8) and the linearization D

k
(λ)
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eigenvalues of P(λ) , and the relative-absolute condition number of the eigenvalues 
of P(λ) and Dk(λ) (with eigenvalues ordered in increasing order of modulus).

In Fig. 3, we plot the ratio of backward errors �ra (̃λ0,̃zk;P)
�ra (̃λ0,̃z;Dk)

 for all the eigenvalues λ0 
of P(λ) ordered in increasing order of modulus. This graph is denoted by “Pk/Dk” in 
the legend of the figure. We also plot the ratio ‖zk‖2‖̃zk‖2 , denoted by “Ratio” in the leg-
end. We observe that the exact ratio of backward errors for the eigenvalues of modu-
lus less than 1 range between 107 and 1013 . Moreover, we observe that the 
function“Ratio” fully predicts the values of these ratios. This indicates that, in the 
computation of the right eigenvectors of P(λ) associated with the “small” eigenval-
ues, the norm of the last block of the exact eigenvector is very sensitive to changes 
in the coefficients of P(λ) and therefore, using Dk(λ;P) to compute these eigenvalues 
is not a good strategy.

In Fig. 4, we plot the backward errors �ra(̃λ0, z̃k;P) and �ra(̃λ0, z̃;Dk) separately. 
Notice that, while the eigenpairs of the linearization Dk(λ) are all computed with 
small backward errors, none of the recovered eigenpairs for the matrix polynomial 
P(λ) is computed with a small backward error.

The problems in the backward errors observed in this numerical experiment 
could be attributed to the fact that the polynomial P(λ) is not well scaled. In our 
second numerical experiment, we show that this problem can be observed also in 
the case in which P(λ) is well scaled although in this case fewer eigenvalues have 
large ratio of backward errors. In this example, we consider again a random matrix 

0 10 20 30 40 50 60 70 80
108

1010

1012

1014

1016

1018
Ratio
Pk/Dk

Fig. 3   Relative-absolute ratio of backward errors using D
k
(λ;P) and bound when P is not well scaled

0 10 20 30 40 50 60 70 80
10-20

10-10

100
Pk
Dk

Fig. 4   Relative-absolute backward errors for the linearization D
k
(λ;P) and the matrix polynomial P 
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polynomial of degree 4 and size n = 20 . The matrix polynomial is constructed in 
MATLAB as follows:

and then, we computed A�
i
∶= Ai + AT

i
 so that the matrix polynomial is symmetric. 

Moreover, we changed the singular values of A′
0
 and A′

k
 so that these two matrix 

coefficients keep their norm but so that the matrix polynomial has 6 eigenvalues 
with modulus between 10−7 and 10−5 . The first 46 eigenvalues have modulus less 
than or equal to 1 and all the eigenvalues have modulus less than 10. In this case, 
six of the eigenvalues with modulus larger than 1 have condition number larger than 
1021.

In Fig. 5, we plot the functions “Pk/Dk”, and “Ratio” as we did in the first numer-
ical experiment. We observe that, for some of the eigenvalues with modulus less 
than one, the ratio of backward errors is of order 1015 and that the behavior of the 
ratio of backward errors can also be fully predicted by the value of the ratio ‖zk‖2‖̃zk‖2 , as 
happened in the first experiment. We must point out that this behavior is not unique 
to the two numerical experiments presented here but that it was observed in a multi-
tude of different numerical experiments.

(4.8)

A0 = (�����(�) + ����(−�) ∗ �����(�));

A1 = (�����(�) + ����(−�) ∗ �����(�));

A2 = (�����(�) + ����(−�) ∗ �����(�));

A3 = (�����(�) + ����(−�) ∗ �����(�));

A4 = (�����(�) + ����(−�) ∗ �����(�));

0 10 20 30 40 50 60 70 80
100

105

1010

1015

Pk/Dk
Ratio

Fig. 5   Relative-absolute ratio of backward errors using D
k
(λ;P) and bound when P is well scaled
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In conclusion, we cannot guarantee that the eigenpairs associated with eigen-
values of small modulus of a matrix polynomial can be computed accurately 
from Dk(λ;P) , specially when P(λ) is not well scaled. Similar conclusions can 
be obtained for eigenvalues of large modulus when the linearization D1(λ;P) is 
used.

We also want to point out that, when Dk(λ;P) (resp. D1(λ;P) ) does not com-
pute eigenpairs associated with small (resp. large) modulus eigenvalues accu-
rately, D1(λ;P) (resp. Dk(λ;P) ), in general, does not either, as we show next. In 
Figs. 6 and 7 we present two examples in which the ratio of backward errors is 
plotted when D1(λ;P) is used as a linearization of a matrix polynomial P(λ) (blue 
graph) and when Dk(λ;P) is used as a linearization of P(λ) (red graph). In both 
cases, there are eigenvalues that are not accurately computed by neither D1(λ;P) 
nor by Dk(λ;P) . In Fig. 6, the eigenvalues of small modulus are not accurately 
computed while in Fig.  7, the eigenvalues of large modulus are not accurately 
computed.

For Fig. 6, we constructed a matrix polynomial using the same strategy as in 
the first experiment but using the coefficients:

(4.9)

A0 = ��� ∗ (�����(�) + ����(−�) ∗ �����(�));

A1 = ��� ∗ (�����(�) + ����(−�) ∗ �����(�));

A2 = �� − � ∗ (�����(�) + ����(−�) ∗ �����(�));

A3 = ��� ∗ (�����(�) + ����(−�) ∗ �����(�));

A4 = ��� ∗ (�����(�) + ����(−�) ∗ �����(�));

0 10 20 30 40 50 60 70 80
10-2

100

102

104

106

108

1010

1012

1014

Pk/Dk
P1/D1

Fig. 6   Relative-absolute ratio of backward errors using D
k
 and D1 , and small eigenvalues cannot be accu-

rately computed
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For Fig. 7, we used the coefficients

We have not observed such pathological behavior from the alternative lineari-
zations that we propose in this work. As an illustration, we show in Figs. 8 and 9 
the relative-absolute backward error ratios for the linearizations Dk(λ;P) , D1(λ;P) 
and the linearizations that we denote for now as DH and DG but we formally 
introduce in (5.7) and (5.9), with S = Ak . The two experiments are the same as 
those presented in Figs. 6 and 7 but adding now the ratios for DH and DG. Note 
that the combined use of the linearizations DH and DG allow to compute all 
eigenpairs accurately.

5 �  Using TP(λ) for even‑degree matrix polynomials.

A well-known block-symmetric strong linearization for odd degree matrix poly-
nomials P(λ) as in (1.1) is the pencil

(4.10)

A0 = ��� ∗ (�����(�) + ����(−�) ∗ �����(�));

A1 = ���� ∗ (�����(�) + ����(−�) ∗ �����(�));

A2 = ���� ∗ (�����(�) + ����(−�) ∗ �����(�));

A3 = ���� ∗ (�����(�) + ����(−�) ∗ �����(�));

A4 = ���� ∗ (�����(�) + ����(−�) ∗ �����(�));

0 10 20 30 40 50 60 70 80
10-10

10-5

100

105

1010

1015

Pk/Dk
P1/D1

Fig. 7   Relative-absolute ratio of backward errors using D
k
 and D1 , and large eigenvalues cannot be accu-

rately computed
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0 10 20 30 40 50 60 70 80
10-4

10-2

100

102

104

106

108

1010

1012

1014

Pk/Dk
P1/D1
PH/DH
PG/DG

Fig. 8   Relative-absolute ratio of backward errors using D
k
 , D1 , DH and DG 
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Fig. 9   Relative-absolute ratio of backward errors using D
k
 , D1 , DH and DG 
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introduced in [2]. The missing blocks in this matrix and in any other matrices in 
the sequel, as usual, represent zero blocks. The pencil Tk

P
(λ) was proven to enjoy 

excellent numerical properties in terms of conditioning of eigenvalues and backward 
errors in [4]. Our goal in this paper is to find structured linearizations of even-degree 
matrix polynomials and, unfortunately, this pencil cannot be used as a linearization 
of such matrix polynomials since its structure requires odd degree.

One possible strategy to construct a (symmetric or Hermitian) strong lineariza-
tion of an even-degree (symmetric or Hermitian) matrix polynomial and, at the same 
time, try to take advantage of the good numerical properties of Tk

P
 is to transform our 

matrix polynomial of even degree k into an odd grade matrix polynomial by adding 
the term 0 ⋅ λk+1 , that is, to consider the matrix polynomial

By applying the linearization (5.1) to P̃(λ) , we obtain the pencil

which is a strong linearization of the matrix polynomial P(λ) when seen as a poly-
nomial of grade k + 1 . We must observe though that the linearization (5.2) has n 
eigenvalues at infinity that were not present in the original polynomial eigenvalue 
problem. Therefore, before we try to compute the eigenvalues of P(λ) from Tk+1

P
(λ) , 

it is necessary to deflate the n extra eigenvalues at infinitiy. In the following section, 
we show how the deflation can be done.

5.1 � Deflating the spurious eigenvalues of H
P
(λ)

Next we show how to deflate the n spurious eigenvalues at infinity of HP(λ) , assum-
ing that Ak is nonsingular and symmetric/Hermitian. In Sect. 5.2 we present an alter-
native to HP(λ) when Ak is singular but A0 is not.

(5.1)T
k
P
(λ) ∶=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

λAk + Ak−1 − In
−In 0 λIn

λIn λAk−2 + Ak−3 − In
− In 0

⋱

0 λIn
λIn λA1 + A0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

P̃(λ) = 0 ⋅ λk+1 + λkAk +⋯ + λA1 + A0.

(5.2)HP(λ) ∶= T
k+1
P

(λ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Ak − In
−In 0 λIn

λIn λAk−1 + Ak−2 − In
− In 0

⋱

0 λIn
λIn λA1 + A0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,
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In order to deflate the n spurious eigenvalues of HP(λ) while preserving the sym-
metric or Hermitian structure, we need to find a nonsingular matrix U such that

where H1(λ) is a pencil whose eigenvalues are exactly the n extra eigenvalues at 
infinity, (recall that, for any matrix A, A∗ denotes the conjugate transpose of A). Note 
that, since HP(λ) and U∗HP(λ)U are strictly equivalent, both matrices have the same 
eigenvalues. Thus, H2(λ) is a pencil with the same eigenvalues as P(λ) . Moreover, 
since HP(λ) and U∗HP(λ)U are congruent, one of these pencils is symmetric (resp. 
Hermitian) if and only if the other is.

As we will show, in order to construct the nonsingular matrix U, we only need to 
find a matrix whose columns form a basis for the nullspace of

Notice that dim(null(M)) = n because M has full row rank. Obvious choices for 
matrices whose columns span the nullspace of M are

Another alternative for constructing a basis for the nullspace of M is via a rank 
revealing factorization of M (via the QR factorization with column pivoting or the 
SVD, for example).

As 
[
In
Ak

]
 is a matrix whose columns span the nullspace of M (see (5.3)), each 2n × n 

matrix V =

[
T

S

]
 whose columns span the nullspace of M has the form

where Z is an n × n singular matrix. This shows that, for each V, the matrices T and 
S are nonsingular.

Hence, the following pencil is strictly equivalent and congruent to HP(λ) , and there-
fore, has the same eigenvalues as HP(λ):

Moreover, since AkT − S = 0 and T∗Ak − S∗ = 0 , the pencil in (5.4) can be 
expressed as

U∗
HP(λ)U =

[
H1(λ) 0

0 H2(λ)

]
,

M =
[
Ak −In

]
.

(5.3)
[
In
Ak

]
or

[
A−1
k

In

]
.

[
In
Ak

]
Z =

[
Z

AkZ

]
,

(5.4)
⎡⎢⎢⎣

In 0

T∗ S∗

I(k−1)n

⎤⎥⎥⎦
HP(λ)

⎡⎢⎢⎣

In T

0 S

I(k−1)n

⎤⎥⎥⎦
.
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We note that the pencil Ak = 0 ⋅ λ + Ak has exactly n eigenvalues at infinity since 
rev1(Ak) = Akλ + 0 has n zero eigenvalues. Conclusively, the deflation of the spuri-
ous eigenvalues at infinity produces the pencil

for any nonsingular matrix S.

Remark 5.1  When any of the matrices in (5.3) are employed in the deflation proce-
dure (i.e. when we choose T = In and S = Ak , or when we choose T = A−1

k
 and 

S = In ), the corresponding pencil HS
P
 has already appeared in the literature. More 

precisely, for V =

[
In
Ak

]
 , we get

which is a permuted version of the extended block Kronecker pencil EP
2
(λ) in [5, 

Sect. 4.4]. For V =

[
A−1
k

In

]
 , we get

which was originally introduced in [2].

(5.5)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Ak

− S∗A−1
k
S λS∗

λS λAk−1 + Ak−2 − In
− In 0

⋱

0 λIn
λIn λA1 + A0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

(5.6)H
S
P
(λ) ∶=

⎡
⎢⎢⎢⎢⎢⎢⎣

−S∗A−1
k
S λS∗

λS λAk−1 + Ak−2 − In
− In 0

⋱

0 λIn
λIn λA1 + A0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

(5.7)H
Ak

P
=

⎡
⎢⎢⎢⎢⎢⎢⎣

−Ak λAk

λAk λAk−1 + Ak−2 − In
− In 0

⋱

0 λIn
λIn λA1 + A0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

H
In
P
(λ) =

⎡
⎢⎢⎢⎢⎢⎢⎣

−A−1
k

λIn
λIn λAk−1 + Ak−2 − In

− In 0

⋱

0 λIn
λIn λA1 + A0

⎤
⎥⎥⎥⎥⎥⎥⎦

,
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Remark 5.2  When V is chosen so that its columns are an orthonormal basis for the 
nullspace of 

[
Ak −In

]
 , we refer to the resulting matrix S as SMX . The reason for this is 

that our structured deflation procedure coincides with the structured deflation proce-
dure proposed by Mehrmann and Xu [18] when their method is applied to the pencil 
HP(λ) . See Appendix A for more details.

Theorem 5.1  Let P(λ) be an even-degree regular matrix polynomial as in (1.1) with 
nonsingular Ak and let S be a nonsingular matrix. Then, the pencil HS

P
(λ) as in (5.6) 

is a strong linearization of P(λ).

Proof  First, we note that the pencil HAk

P
(λ) is permutationally equivalent to the pen-

cil EP
2
(λ) defined in [5, Sect. 4.4]. More precisely, there exists a block permutation 

matrix

such that HAk

P
(λ) = �1E

P
2
(λ)�B

1
 . Since the pencil EP

2
(λ) is a strong linearization of 

P(λ) if Ak is nonsingular (see [5, Theorem 4.15]), we deduce that HAk

P
(λ) is a strong 

linearization of P(λ) as well. Second, observe that

Since both Ak and S are nonsingular, this is an equivalence transformation. Thus, the 
pencil HS

P
(λ) is a strong linearization of P(λ) . 	�  ◻

Theorem  5.2 establishes two right-sided factorizations of the linearization 
H

S
P
(λ) . These factorizations will be key for studying the numerical properties 

(conditioning and backward errors) of this pencil.

Theorem 5.2  Let P(λ) be an even degree matrix polynomial as in (1.1), let S be an 
n × n nonsingular matrix, let HS

P
(λ) be as in (5.6), and let Pi(λ) and Pi(λ) , i = 0 ∶ k , 

be the matrix polynomials defined in (2.2) and (2.4). Define the kn × n matrix 
polynomials

Then, the following right-sided factorizations hold

�1 ∶= �
(1,2,

k

2
+2,3,

k

2
+3,…,

k

2
,k,

k

2
+1)

H
S
P
(λ) =

[
S∗A−1

k
0

0 In(k−1)

]
H

Ak

P
(λ)

[
A−1
k
S 0

0 In(k−1)

]
.

(5.8)�1(λ) ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ
k

2 S−1Ak

λ
k−2

2 In

λ
k−4

2 P2(λ)

⋮

λ2Pk−4(λ)

λIn
λPk−2(λ)

In

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and �2(λ) ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λk−1S−1Ak

λk−2In
−Pk−3(λ)

λk−3In
−λPk−5(λ)

⋮

λ
k−4

2 P1(λ)

λ
k−2

2 In

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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where ei denotes the ith column of the k × k identity matrix.

Proof  For simplicity, we omit the dependence on λ in the Horner polynomials Pi(λ) 
and Pi(λ) . Let HS

P
(λ) =∶ λH1 −H0 . A direct computation shows that

It is clear that the first claim follows for the block entries of HS
P
(λ)�1(λ) in odd posi-

tions. In order to prove that the claim also follows for the block entries in even posi-
tions, we notice that, for i = 0, 2,… , k − 2,

where the second and fourth equalities follow from λPi + Ak−i−1 = Pi+1 , 
i = 0 ∶ k − 1 . Recall that Ak = P0 . Moreover, for the kth block-entry of HS

P
�1 we 

have

which proves the first claim. The second claims can be proven similarly. 	�  ◻

Theorem  5.3 provides explicit formulas for the eigenvectors of the pencil 
H

S
P
(λ) in terms of the eigenvectors of the matrix polynomial P(λ) . Its proof is 

similar to the proof of [4, Theorem 4.1], so we omit it.

Theorem 5.3  Let P(λ) be a regular matrix polynomial of even degree k as in (1.1) 
whose leading coefficient Ak is nonsingular, and let S be a nonsingular n × n matrix. 
Let λ0 be a finite eigenvalue of P(λ) . Then, v is a right eigenvector of HS

P
(λ) with 

eigenvalue λ0 if and only if v = �1(λ0)x , for some right eigenvector x of P(λ) with 
eigenvalue λ0.

H
S
P
(λ)𝛥1(λ) = ek ⊗ P(λ) and H

S
P
(λ)𝛥2(λ) = e2 ⊗ P(λ),

H1�1(λ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ
k−2

2 S∗

λ
k

2Ak + λ
k−2

2 Ak−1

λ
k−4

2 In

λ
k−2

2 P2 + λ
k−4

2 Ak−3

⋮

In
λPk−2 + A1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

and H0�1(λ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−λ
k

2 S∗

λ
k−2

2 Ak−2 − λ
k−2

2 P2 λ
k−2

2 In

λ
k−4

2 Ak−4 − λ
k−4

2 P4

⋮

−λIn
A0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

λ[λ
k−i

2 Pi + λ
k−i−2

2 Ak−i−1] + λ
k−i−2

2 Ak−i−2 − λ
k−i−2

2 Pi+2] =

λ
k−i

2 [λPi + Ak−i−1] + λ
k−i−2

2 [Ak−i−2 − Pi+2] =

λ
k−i

2 Pi+1 + λ
k−i−2

2 [Ak−i−2 − Pi+2] =

λ
k−i−2

2 [λPi+1 + Ak−i−2 − Pi+2] = 0,

λ(λPk−2 + A1) + A0 = λPk−1 + A0 = Pk = P(λ).
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5.2 � The case when A
k
 is singular but A

0
 is not

In Sect. 5.1, we assumed in all our discussions that the leading coefficient Ak of 
P(λ) was nonsingular. In this section we consider the case in which A0 is nonsin-
gular. The case when both Ak and A0 are singular is an open question.

As an alternative to the linearization HS
P
(λ) in (5.6), we can consider the pencil 

G
S
P
(λ) ∶= revHS

revP
(λ) , which takes the form

Theorem 5.4  Let P(λ) be an even-degree matrix polynomial as in (1.1) with nonsin-
gular matrix coefficient A0 , and let S be a nonsingular matrix. Then, the pencil GS

P
(λ) 

as in (5.9) is a strong linearization of P(λ).

Proof  Noticing that the pencil GS
P
(λ) when S = A0 is permutationally equivalent 

to the pencil EP
1
(λ) defined in [5, Sect. 4.3], the proof is identical to that of Theo-

rem 5.1. 	� ◻

The following lemma is easy to prove. Note that the claim follows from the 
definition of GS

P
(λ) and the definition of reversal of a matrix polynomial.

Lemma 5.1  Let P(λ) be an even degree regular matrix polynomial as in (1.1) with 
nonsingular A0 . Let S be a nonsingular matrix. If λ0 is a nonzero eigenvalue of P(λ) , 
then the vectors z and w are, respectively, right and left eigenvectors of GS

P
(λ) associ-

ated with λ0 if and only if z and w are, respectively, right and left eigenvectors of 
H

S
revP

(λ) associated with 1
λ0
.

6 � Eigenvalue condition numbers ratio bounds

In this section, we compare the eigenvalue condition numbers of a matrix poly-
nomial P(λ) and its linearization HS

P
(λ) for different nonsingular matrices S. The 

comparison is done by providing upper and lower bounds on the ratios of the two 
condition numbers. In all our results, we assume that the leading coefficient Ak of 
P(λ) is nonsingular as this condition guarantees that HS

P
(λ) is a strong lineariza-

tion of P(λ) . We also assume that P(λ) is symmetric/Hermitian, although many of 
our results don’t require this assumption, for simplicity.

(5.9)G
S
P
(λ) ∶=

⎡
⎢⎢⎢⎢⎢⎢⎣

−λS∗A−1
0
S S∗

S λA2 + A1 − λIn
− λIn 0

⋱

0 In
In λAk + Ak−1

⎤
⎥⎥⎥⎥⎥⎥⎦

.
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Theorem 6.1 will allow us to address the case when Ak is singular but A0 is 
nonsingular, by translating all the results obtained for HS

P
(λ) to GS

P
(λ) just by 

replacing P(λ) by revP(λ) and λ0 by 1
λ0

.

Theorem 6.1  [4, Lemmas 2.1 and 2.2] Let P(λ) be an even degree regular matrix 
polynomial as in (1.1) and let λ0 be a finite, nonzero, and simple eigenvalue of P(λ) . 
Assume that A0 is nonsingular. Then,

Moreover, if (̃z, λ̃0) is an approximate right eigenpair of GS
P
(λ) , then (̃z, 1

λ̃0
) is an 

approximate eigenpair of HS
revP

(λ) and

In what follows we will use the following notation

Next we include the main result of this section. Its proof will be presented in Sect. 8 
since it is very involved.

Theorem  6.2  (Relative-absolute conditioning bounds) Let P(λ) be a regular n × n 
symmetric/Hermitian matrix polynomial of even degree k as in (1.1) with nonsin-
gular Ak and maxi=0∶k{‖Ai‖2} = 1 . Assume that λ0 is a simple, finite, and nonzero 
eigenvalue of P(λ) . Let S be an n × n nonsingular matrix and let HS

P
(λ) be as in (5.6). 

	 (i)	 If |λ0| ≤ 1 , then 

 Moreover, if |λ0| is close to 0, then 

�ra(λ0;G
S
P
) = �ra

(
1

λ0
;HS

revP

)
and �rr (λ0;G

S
P
) = �rr

(
1

λ0
;HS

revP

)
.

�ra(̃z, λ̃0;G
S
P
) = �ra(̃z,

1

λ̃0

;HS
revP

) and �rr (̃z, λ̃0;G
S
P
) = �rr (̃z,

1

λ̃0

;HS
revP

).

(6.1)� ∶= max{1, ‖S‖2, ‖S∗A−1
k
S‖2},

(6.2)�a ∶= � max{1, ‖S−1Ak‖22},

(6.3)�b ∶= � min{1, ‖A−1
k
S‖−2

2
}, and

(6.4)�c ∶= � max{1,max
i=0∶k

{‖S−1Ai‖22}}.

max

{
�b,

�

2

}
≤

�ra(λ0;H
S
P
)

�ra(λ0;P)
≤ k3�a;
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	 (ii)	 If |λ0| > 1 , then 

where the constants � , �a , �b and �c have been defined in (6.1)–(6.4).
We note that, for HS

P
(λ) to be a “good” linearization of P(λ) in terms of condition-

ing, we would like the upper bounds on the ratios of condition numbers provided 
in Theorem  6.2 to be “small”. This will happen if �a and �c are “small”. Notice 
that these constants depend on our selection of the matrix S. Next we consider the 
particular cases S = Ak , S = In and S = SMX , where SMX is the matrix from the Mehr-
mann-Xu deflation process discussed in Remark 5.2. As in Theorem 6.2, the factor 
k3 in the upper bounds for the ratios of condition numbers can be replaced by k when 
|λ0| is close to zero.

Theorem 6.3  Let P(λ) be a regular n × n symmetric/Hermitian matrix polynomial of 
even degree k as in (1.1) with nonsingular Ak and maxi=0∶k{‖Ai‖2} = 1 . Assume that 
λ0 is a simple, finite, and nonzero eigenvalue of P(λ) . 

	 (i)	 If S = Ak , then 

	 (ii)	 If S = In , then 

	 (iii)	 If S = SMX , then 

Proof  Observe that �a = �b = 1 when S = Ak since ‖Ak‖2 ≤ 1 , and 
� = �a = �c = max{1, ‖A−1

k
‖2} when S = In . Then, when S = Ak or S = In , the lower 

and upper bounds follow immediately from Theorem 6.2.

max

{
�b,

�

2

}
≤

�ra(λ0;H
S
P
)

�ra(λ0;P)
⪅ k�a.

max

{(
1 +

|λ0|
k + 1

)
�b,

�

2|λ0|
}

≤
�ra(λ0;H

S
P
)

�ra(λ0;P)
≤ 4min

{
k3

3
|λ0|�a,

2k3

|λ0|�c

}
;

1 if |λ0| ≤ 1

1 +
|λ0|
k+1

if |λ0| > 1

}
≤

𝜅ra(λ0;H
S
P
)

𝜅ra(λ0;P)
≤

{
k3 if |λ0| ≤ 1
4

3
k3|λ0| if |λ0| > 1.

max{1,‖A−1
k
‖2}

2
if �λ0� ≤ 1

max{1,‖A−1
k
‖2}

2�λ0� if �λ0� > 1

⎫⎪⎬⎪⎭
≤

𝜅ra(λ0;H
S
P
)

𝜅ra(λ0;P)
≤

�
k3 max{1, ‖A−1

k
‖2} if �λ0� ≤ 1

8k3
max{1,‖A−1

k
‖2}

�λ0� if �λ0� > 1.

1 if |λ0| ≤ 1

1 +
|λ0|
k+1

if |λ0| > 1

}
≤

𝜅ra(λ0;H
S
P
)

𝜅ra(λ0;P)
≤

{
2k3 if |λ0| ≤ 1
8

3
k3|λ0| if |λ0| > 1.
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Next, we obtain the bounds when S = SMX . Recall that this matrix is obtained 

from an orthonormal basis for the nullspace of M =
[
Ak −In

]
 . Let V =

[
T

SMX

]
 be one 

such basis. From MV = 0 , we obtain AkT = SMX . Since Ak is nonsingular, we have 
A−1
k
SMX = T  . Hence,

Since V has orthonormal columns, we have ‖T‖2 ≤ 1 , ‖SMX‖2 ≤ 1 , and ‖S∗
MX

T‖2 ≤ 1 . 
This readily implies �b = 1 . Then, observe that

where (In + A2
k
)1∕2 denotes the unique positive definite square root of In + A2

k
 , 

is another orthonormal basis for the nullspace of M =
[
Ak −In

]
 . Thus, 

V = WU , for some n × n unitary matrix U. Hence, T = (In + A2
k
)−1∕2U and, so, 

T−1 = U∗(In + A2
k
)1∕2 . Finally, notice

which implies

Conclusively, if S = SMX , then �a ≤ 2 and �b = 1 , and, thus, the bounds readily fol-
low from Theorem 6.2.	�  ◻

Remark 6.1  From the previous theorem, we conclude that, from the relative-absolute 
condition number point of view, HAk

P
 and HSMX

P
 are comparable and have an optimal 

behavior for matrix polynomials P(λ) with “small” degree and for eigenvalues λ0 
with “small” modulus.

The optimality in this context means that the sensitivity of λ0 as an eigenvalue of 
P is approximately the same as the sensitivity of λ0 as an eigenvalue of HS

P
.

Note that the lower bounds for these two linearizations show that if |λ0| ≫ 1 , then 
neither of the two linearizations will be a good choice.

If Ak is a matrix whose absolute condition number ‖A−1
k
‖2 is “small”, then HIn

P
 has 

optimal condition number regardless of the modulus of λ0 for moderate k. Nonethe-
less, every eigenvalue of P(λ) satisfies

see [13, Lemma 2.2]. Hence, if ‖A−1
k
‖2 is moderate, then P(λ) does not have eigen-

values with large modulus and, so, HAk

P
 and HSMX

P
 also have optimal condition num-

bers for all eigenvalues of P(λ).

�b = max{1, ‖SMX‖2, ‖S∗MX
T‖2}min{1, ‖T‖−2

2
}.

(6.5)W =

[
In
Ak

]
(In + A2

k
)−1∕2,

‖T−1‖2 = ‖(In + A2
k
)‖1∕2

2
≤
√
2max{1, ‖Ak‖2} =

√
2,

�a = max{1, ‖SMX‖2, ‖S∗MX
T‖2}max{1, ‖T−1‖2

2
} ≤ 2.

�λ0� ≤ 1 + ‖A−1
k
‖2

k−1�
i=0

‖Ai‖2 ≤ 1 + k‖A−1
k
‖2,
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Now, using Theorem 6.1, we can also conclude that, when A0 is nonsingular, GAk

P
 

and GSMX

P
 are comparable and have an optimal behavior for matrix polynomials P(λ) 

with “small” degree and for eigenvalues with “large” modulus. Thus, if P(λ) is a 
matrix polynomial with Ak and A0 nonsingular, in order to compute all the eigen-
values accurately, the use of two linearizations ( HAk

P
 and GAk

P
 , for example) would be 

necessary. This strategy is similar to the one used in the literature with the lineariza-
tions D1(λ;P) and Dk(λ;P) given in (4.1) and (4.2), respectively. We note that the 
linearizations DH and DG used in the numerical experiments in Sect. 4 are precisely 
the linearizations HAk

P
 and GAk

P
 , respectively, discussed here.

Remark 6.2  So far we have shown that the combined used of HAk

P
 and GAk

P
 ensures 

optimal eigenvalue conditioning for eigenvalues of any modulus. But the same holds 
for Dk(λ;P) and D1(λ;P) . So, what is the advantage of using these two linearizations 
compared to Dk(λ;P) and D1(λ;P) ? In Remark 3.2 we argued that one of the possi-
ble reasons why the eigenvectors of Dk(λ;P) and D1(λ;P) are so sensitive to changes 
in the coefficients of these two pencils is the fact that both linearizations tend to have 
very ill-conditioned eigenvalues. In Remark 4.1 we showed that this is due to the 
fact that the condition number of the eigenvalues λ0 with large (resp. small) modulus 
of Dk(λ;P) (resp. D1(λ;P) ) is bounded below by the product of the corresponding 
condition number when λ0 is seen as an eigenvalue of P(λ) and |λ0|k−1 (resp. |λ0|1−k ). 
Theorems 6.3 and 6.1 show, however, that the condition number of the eigenvalues 
λ0 with large (resp. small) modulus of HAk

P
 (resp. GAk

P
 ) is bounded above by a multiple 

of the product of the corresponding condition number when λ0 is seen as an eigen-
value of P and |λ0| (resp. |λ0|−1 ). Thus, if the eigenvalue is well-conditioned in P(λ) , 
its condition number in the linearization is not much worse as long as |λ0| is mod-
erate. This might be the reason for the good behavior of the backward error ratios 
when HAk

P
 and GAk

P
 were used in the numerical experiments showed in Sect. 4.

The next theorem provides bounds for the relative-relative condition numbers 
ratio. Its proof will also be presented in Sect. 8. We note that, when finding the 
bounds presented in this theorem, our main goal was to obtain bounds as sharp as 
possible. For less tight but easier to interpret bounds, see Remark 6.3.

Theorem  6.4  (Relative-relative conditioning bounds) Let P(λ) be a regular n × n 
symmetric/Hermitian matrix polynomial of even degree k as in (1.1) with nonsin-
gular Ak and maxi=0∶k{‖Ai‖2} = 1 . Assume that λ0 is a simple, finite, and nonzero 
eigenvalue of P(λ) . Let S be an n × n nonsingular matrix and let HS

P
(λ) be as in (5.2). 

	 (i)	 If |λ0| ≤ 1 , then 

max{1, ‖S∗A−1
k
S‖2}

(k + 1)max
i=0∶k

{�λ0�i‖Ai‖2}
≤

�rr (λ0;H
S
P
)

�rr (λ0;P)
≤

2k3�a

max
i=0∶k

{�λ0�i‖Ai‖2}
;
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	 (ii)	 If |λ0| > 1 , then 

 where the constants � , �a , �b and �c are as in (6.1)–(6.4).

As with Theorem 6.2, the upper bounds presented in the previous theorem depend 
on �a and �c . However, in this case, the bounds also depend on the norm of each mono-
mial of the polynomial P(λ). Corollary 6.1 interprets these bounds in the cases when 
S = Ak , S = In , and S = SMX.

Corollary 6.1  Let P(λ) be a regular n × n symmetric/Hermitian matrix polynomial of 
even degree k as in (1.1) with nonsingular Ak and maxi=0∶k{‖Ai‖2} = 1 . Assume that 
λ0 is a simple, finite, and nonzero eigenvalue of P(λ) . 

	 (i)	 If S = Ak , then 

	 (ii)	 If S = In , then 

�λ0�k max
�
1, ‖S‖2

�
max

�
�λ0� ‖A−1

k
S‖−2

2
,

1

�λ0�
�

(k + 1)max
i=0∶k

{�λ0�i‖Ai‖2}
≤

�rr (λ0;H
S
P
)

�rr (λ0;P)
≤

2�λ0�k min
�
k3�λ0��a,

(k+k3)�c

�λ0�
�

max
i=0∶k

{�λ0�i‖Ai‖2}
,

1

(k+1)maxi=0∶k{�λ0�i‖Ai‖2} if �λ0� ≤ 1

�λ0�k+1
(k+1)maxi=0∶k{�λ0�i‖Ai‖2} if �λ0� > 1

�
≤

𝜅rr (λ0;H
S
P
)

𝜅rr (λ0;P)
≤

⎧
⎪⎨⎪⎩

2k3

maxi=0∶k{�λ0�i‖Ai‖2} if �λ0� ≤ 1

2k3�λ0�k+1
maxi=0∶k{�λ0�i‖Ai‖2} if �λ0� > 1.

max{1,‖A−1
k
‖2}

(k+1)maxi=0∶k{�λ0�i‖Ai‖2} if �λ0� ≤ 1

�λ0�k−1
(k+1)maxi=0∶k{�λ0�i‖Ai‖2} if �λ0� > 1

⎫
⎪⎬⎪⎭
≤

𝜅rr (λ0;H
S
P
)

𝜅rr (λ0;P)
≤

⎧
⎪⎨⎪⎩

2k3 max{1,‖A−1
k
‖2}

maxi=0∶k{�λ0�i‖Ai‖2} if �λ0� ≤ 1

2k3�λ0�k−1 max{1,‖A−1
k
‖2}

maxi=0∶k{�λ0�i‖Ai‖2} if �λ0� > 1.
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	 (iii)	 If S = SMX , then 

Proof  Recall from the proof of Theorem  6.3 that �a = �b = 1 when S = Ak , 
�a = �c = max{1, ‖A−1

k
‖2} when S = In , and �a ≤ 2 , ‖A−1

k
S‖2 ≤ 1 and 

‖S∗A−1
k
S‖2 ≤ 1 when S = SMX . All the bounds, then, readily follow from Theo-

rem 6.4. 	� ◻

Remark 6.3  In order to give an easy interpretation of the upper bounds obtained in 
Corollary 6.1, we use the following fact

Then, from Corollary 6.1, we get the following simpler bounds for the relative-rela-
tive condition numbers ratio.

If S = Ak , then

If S = In , then

If S = SMX , then

These bounds are less tight than those in Corollary 6.1 but easier to inter-
pret. From these bounds we conclude that HAk

P
 and HSMX

P
 have also a compara-

ble behavior in terms of relative-relative conditioning. The behavior is optimal 

1

(k+1)maxi=0∶k{�λ0�i‖Ai‖2} if �λ0� ≤ 1

�λ0�k+1
(k+1)maxi=0∶k{�λ0�i‖Ai‖2} if �λ0� > 1

�
≤

𝜅rr (λ0;H
S
P
)

𝜅rr (λ0;P)
≤

⎧
⎪⎨⎪⎩

4k3

maxi=0∶k{�λ0�i‖Ai‖2} if �λ0� ≤ 1

4k3�λ0�k+1
maxi=0∶k{�λ0�i‖Ai‖2} if �λ0� > 1.

max{‖A0‖2, �λ0�k‖Ak‖2} ≤ max
i=0∶k

{�λ0�i‖Ai‖2} ≤

�
1 if �λ0� ≤ 1

�λ0�k if �λ0� > 1.

1

(k+1)
if �λ0� ≤ 1

�λ0�
(k+1)

if �λ0� > 1

�
≤

𝜅rr (λ0;H
S
P
)

𝜅rr (λ0;P)
≤

⎧⎪⎨⎪⎩

2k3

‖A0‖2 if �λ0� ≤ 1

2k3�λ0�
‖Ak‖2 if �λ0� > 1.

max{1,‖A−1
k
‖2}

(k+1)
if �λ0� ≤ 1

1

(k+1)�λ0� if �λ0� > 1

⎫⎪⎬⎪⎭
≤

𝜅rr (λ0;H
S
P
)

𝜅rr (λ0;P)
≤

⎧⎪⎨⎪⎩

2k3 max{1,‖A−1
k
‖2}

‖A0‖2 if �λ0� ≤ 1

2k3 max{1,‖A−1
k
‖2}

�λ0�‖Ak‖2 if �λ0� > 1.

1

(k+1)
if �λ0� ≤ 1

�λ0�
(k+1)

if �λ0� > 1

�
≤

𝜅rr (λ0;H
S
P
)

𝜅rr (λ0;P)
≤

⎧⎪⎨⎪⎩

4k3

‖A0‖2 if �λ0� ≤ 1

4k3�λ0�
‖Ak‖2 if �λ0� > 1.
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if |λ0| ≤ 1 , k is moderate and ‖A0‖2 ≈ 1 (recall that we have scaled P(λ) so that 
maxi=0∶k{‖Ai‖2} = 1 ); or if |λ0| > 1 is moderate, k is moderate, and ‖Ak‖2 ≈ 1 . The 
lower bounds for these two linearizations show that if |λ0| ≫ 1 , then neither of the 
two linearizations will be a good choice. In this case, HIn

P
 could potentially be a good 

choice if both ‖Ak‖2 and ‖A−1
k
‖2 have approximately the same norm. But in this case, 

as we argued in Remark 6.1, P(λ) does not have eigenvalues with large modulus and, 
thus, HAk

P
 , HSMX

P
 and HIn

P
 are all optimally conditioned.

A comment regarding GS
P
 similar to that in Remark 6.1 is appropriate here as well.

7 � Backward errors ratio bounds

In this section, we compare the backward errors of approximate eigenpairs of 
a matrix polynomial P(λ) and its linearization HS

P
(λ) for different nonsingular 

matrices S. The comparison is done by providing upper bounds on the ratio of the 
two backward errors. In all our results, we assume that the leading coefficient Ak 
of P(λ) is nonsingular as this condition guarantees that HS

P
(λ) is a strong lineari-

zation of P(λ).
Theorem 6.1 allows us to address the case when Ak is singular but A0 is nonsin-

gular, by translating all the results obtained for HS
P
(λ) to GS

P
(λ) just by replacing 

P(λ) by revP(λ) and λ0 by 1
λ0

.
The proof of Theorem 7.1 is omitted because it is very involved but similar to 

the proof of Theorems 6.2 and 6.4. It is also similar to the proof of Theorem 5.2 
in [4]. The block-vector �2(λ) defined in Theorem 5.2 would be necessary in this 
case.

Theorem  7.1  (Backward error bounds) Let P(λ) be a regular n × n symmetric/
Hermitian matrix polynomial of even degree k as in (1.1) with nonsingular Ak and 
maxi=0∶k{‖Ai‖2} = 1 . Let S be an n × n nonsingular matrix and let HS

P
(λ) be as in 

(5.6). Let (̃z, λ̃0) be an approximate right eigenpair of HS
P
(λ) , and define the vector

Then,

and

(7.1)�x ∶=

{
(ek ⊗ In)�z if |�λ0| ≤ 1, and

(e2 ⊗ In)�z if |�λ0| > 1.

�ra(̃x, λ̃0;P)

�ra(̃z, λ̃0;H
S
P
)
≤ 4k3∕2 � max{1, ‖S−1Ak‖2}

‖̃z‖2
‖x̃‖2

,

�rr (̃x, λ̃0;P)

�rr (̃z, λ̃0;H
S
P
)
≤ 4k3∕2 � max{1, ‖S−1Ak‖2}

max{1, �̃λ0�k}
maxi=0∶k{�̃λ0�i‖Ai‖2}

‖̃z‖2
‖x̃‖2

,
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where � is as in (6.1).

The following result follows from Theorem  7.1 and the fact that ‖SMX‖2, ‖S∗
MX

A−1
k
SMX‖2 ≤ 1 and ‖S−1

MX
Ak‖2 =

√
2 as shown in the proof of Theorem 6.3.

Corollary 7.1  Let P(λ) be a regular n × n symmetric/Hermitian matrix polynomial of 
even degree k as in (1.1) with nonsingular Ak and maxi=0∶k{‖Ai‖2} = 1 . Let (̃z, λ̃0) 
be an approximate right eigenpair of HS

P
(λ) , and let x̃ be as in (7.1). Then

and

Remark 7.1  From the previous theorem, we conclude that, from the relative-absolute 
backward error point of view, HAk

P
 and HSMX

P
 are comparable and have an optimal 

behavior for matrix polynomials P(λ) with “small” degree and for eigenvalues λ0 
with “small” modulus, as happened with the eigenvalue condition number.

The optimality in this context means that the backward error of approximate 
eigenpairs (̃λ0, x̃) of P is not much worse than the backward error of approximate 
eigenpairs (̃λ0, z̃) of HS

P
 when x̃ is recovered from z̃  as explained in Corollary 7.1.

Moreover, if λ0 (with |λ0| ≤ 1 ) is an exact eigenvalue of HS
P
(λ) with correspond-

ing right eigenvector z, then according to Theorem 5.3, z = �1(λ0)x for some eigen-
vector x of P(λ) . Because of the structure of �1(λ) , we have that x = (ek ⊗ In)z . This 
implies, as we will show in (8.16), that

Thus, for S ∈ {Ak, In, SMX} and |λ0| ≤ 1 , we have

So, if the computed eigenvector z̃  has the same structure as the exact eigenvector z, 
we know that the upper bound for �ra (̃x,̃λ0;P)

�ra (̃z,̃λ0;H
S
P
)
 is moderate for moderate values of k, for 

�ra(̃x, λ̃0;P)

�ra(̃z, λ̃0;H
S
P
)
≤ 4k3∕2

‖̃z‖2
‖x̃‖2

×

⎧
⎪⎨⎪⎩

21∕2 if S = SMX ,

1 if S = Ak,

max{1, ‖A−1
k
‖2} if S = In.

�rr (̃x, λ̃0;P)

�rr (̃z, λ̃0;H
S
P
)
≤ 4k3∕2

max{1, �̃λ0�k}
maxi=0∶k{�̃λ0�i‖Ai‖2}

‖̃z‖2
‖x̃‖2

×

⎧⎪⎨⎪⎩

21∕2 if S = SMX ,

1 if S = Ak,

max{1, ‖A−1
k
‖2} if S = In.

‖z‖2
‖x‖2 =

‖�1(λ0)x‖2
‖x‖2 ≤

�
k3

2

�1∕2

max{1, ‖S−1Ak‖2}.

‖z‖2
‖x‖2 ≤ k3∕2.
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eigenvalues |̃λ0| ≤ 1 and for S ∈ {Ak, SMX} . Although we cannot guarantee that this 
is the case, in all our numerical experiments this seems to be the case, in stark con-
trast with what happened with D1(λ;P) and Dk(λ;P) . Recall our comments in 
Remark 6.2 for a possible explanation.

As with the eigenvalue condition number, in order to guarantee small backward 
errors for |�λ0| > 1 , it is necessary to assume that A0 is also nonsingular and use the 

linearization GAk

P
 or GSMX

P
.

8 � Proof of the eigenvalue condition bounds

The next lemma is the key result that leads to the proofs of Theorems 6.2 and 6.4.

Lemma 8.1  Let P(λ) be a regular n × n symmetric/Hermitian matrix polynomial of 
even degree k as in (1.1). Assume that λ0 is a simple, finite, and nonzero eigenvalue 
of P(λ) with corresponding right eigenvector x. Let S be an n × n nonsingular matrix 
and let HS

P
(λ) =∶ λH1 −H0 . Then,

where �1(λ) is as in (5.8).

Proof  By Theorem  5.3, the vector �1(λ0)x is a right eigenvector of HS
P
(λ) with 

eigenvalue λ0 . Since P(λ) is symmetric, so is HS
P
(λ) . Hence, �1(λ0)x is also a left 

eigenvector of HS
P
(λ) with eigenvalue λ0 . By Theorem 5.2, we have the following 

right-sided factorization

Differentiating this expression with respect to λ , we get

Now, we evaluate this expression at λ0 and multiply it by x on the right and by 
(�1(λ0)x)

∗ on the left. We get

and the results readily follow from the eigenvalue condition number formulas in 
Theorem 3.1. 	�  ◻

Next we bound the norm of the matrix coefficients of the linearization HS
P
(λ) in 

terms of the norms of the matrix coefficients of the matrix polynomial P(λ) and the 
marix S.

�ra(λ0;H
S
P
) =

(�λ0� + 1)max{‖H1‖2, ‖H0‖2}‖�1(λ0)x‖22
�λ0� ⋅ �x∗P�(λ0)x� and

�rr (λ0;H
S
P
) =

(�λ0�‖H1‖2 + ‖H0‖2)‖�1(λ0)x‖22
�λ0� ⋅ �x∗P�(λ0)x� ,

H
S
P
(λ)𝛥1(λ) = ek ⊗ P(λ).

H
S
P
(λ)�𝛥1(λ) +H

S
P
(λ)𝛥�

1
(λ) = ek ⊗ P�(λ).

(𝛥1(λ0)x)
∗
H

S
P
(λ0)

�𝛥1(λ0)x = (𝛥1(λ0)x)
∗(ek ⊗ P�(λ0))x = x∗P�(λ0)x,
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Lemma 8.2  Let P(λ) be an n × n symmetric/Hermitian matrix polynomial of even 
degree k as in (1.1) with max{‖Ai‖2} = 1 , let S be an n × n nonsingular matrix and 
let HS

P
(λ) =∶ λH1 −H0 . Then,

Proof  When k = 2 , we have

and the result thus follows from Proposition 2.1.
Next, assume k ≥ 4 . Let z =

[
zT
1
⋯ zT

k

]T be a nonzero vector partitioned into k 
blocks of size n × 1 . Then, defining z0 ∶= 0 , we have

Using the triangle inequality, we get

Finally, some simple inequalities and manipulations yield

which implies the result for H1 . The result for H0 can be obtained similarly. 	�  ◻

We now need to prove some technical lemmas.

Lemma 8.3  Let P(λ) be an n × n symmetric/Hermitian matrix polynomial of even 
degree k as in (1.1) with max{‖Ai‖2} = 1 , let S be an n × n nonsingular matrix, and 
let �1(λ) be as in (5.8). Define the following three functions

‖H1‖2 ≤ 2max{1, ‖S‖2},
‖H0‖2 ≤ 2max{1, ‖S∗A−1

k
S‖2}.

H
S
P
(λ) =

[
−S∗A−1

2
S λS∗

λS λA1 + A0

]
= λ

[
0 S∗

S A1

]
−

[
S∗A−1

2
S 0

0 − A0

]
,

‖H1z‖22 = ‖S∗z2‖22 + ‖Sz1 + Ak−1z2‖22 +
k

2�
i=2

‖z2i‖22 +
k−2

2�
i=1

‖z2i+1 + Ak−2i−1z2i+2‖22.

‖H1z‖22 ≤ ‖S‖2
2
‖z2‖22+(‖S‖2‖z1‖2 + ‖Ak−1‖2‖z2‖2)2+

k

2�
i=2

‖z2i‖22 +
k−2

2�
i=1

(‖z2i+1‖2 + ‖Ak−2i−1‖2‖z2i+2‖2)2.

‖H1z‖22 ≤max{1, ‖S‖2
2
}

⎡
⎢⎢⎣

k

2�
i=1

‖z2i‖22+

k−2

2�
i=0

‖z2i+1‖22 +
k−2

2�
i=0

‖z2i+2‖22 + 2

k−2

2�
i=0

‖z2i+1‖2‖z2i+2‖2
⎤⎥⎥⎦

≤ max{1, ‖S‖2
2
}

�
2

k�
i=1

‖zi‖22+ 2

k−2

2�
i=0

max{‖z2i+1‖22, ‖z2i+2‖22}
⎤⎥⎥⎦

≤ 4max{1, ‖S‖2
2
}‖z‖2

2
,
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Then, the following inequality holds

for any λ ∈ ℂ . Moreover, if λ0 is a finite eigenvalue of P(λ) with corresponding right 
eigenvector x, then the following inequalities hold

Proof  Let x be an arbitrary nonzero vector conformable with �1(λ) for multiplica-
tion. From (5.8), together with the first inequality in Lemma 2.3, we get

Using Lemma 2.1, we obtain

(8.1)d1(λ) =

k

2∑
r=0

|λ|2r +
k−2

2∑
r=1

[
|λ|2r(k − 2r + 1)

k−2r∑
j=0

|λ|2j
]
,

(8.2)d2(λ) =

k

2∑
r=0

|λ|2r +
k−2

2∑
r=1

(2r)

r−1∑
i=−r

|λ|2i, and

(8.3)d3(λ) =

k−2

2∑
r=0

|λ|2r +
k

2∑
r=1

(2r)

r−1∑
i=−r

|λ|2i.

(8.4)‖�1(λ)‖2 ≤
√
d1(λ)max{1, ‖S−1Ak‖2, }

(8.5)
‖�1(λ0)x‖2

‖x‖2 ≤ min{
√
d1(λ0),

√
d2(λ0)}max{1, ‖S−1Ak‖2,

(8.6)
‖�1(λ0)x‖2

‖x‖2 ≤
√
d3(λ0)max{1,max

i=0∶k
{‖S−1Ai‖2}.

(8.7)

‖�1(λ)x‖22 = �λ�k‖S−1Akx‖22 +
k−2

2�
r=0

�λ�2r‖x‖2
2
+

k−2

2�
r=1

�λ�2r‖Pk−2r(λ)x‖22

≤ �λ�k‖S−1Ak‖22‖x‖22 +
k−2

2�
r=0

�λ�2r‖x‖2
2
+

k−2

2�
r=1

�λ�2r max
i=0∶k

{‖Ai‖22}
�

k−2r�
j=0

�λ�j
�2

‖x‖2
2

≤ max{1, ‖S−1Ak‖22, max
i=0∶k

{‖Ai‖22}}
⎡⎢⎢⎣
�λ�k +

k−2

2�
r=0

�λ�2r+

k−2

2�
r=1

�λ�2r
�

k−2r�
j=0

�λ�j
�2⎤⎥⎥⎦

‖x‖2
2
.
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Thus, we have found the upper bound

which does not depend on x. Since ‖�1(λ)‖2 = maxx≠0
‖�1(λ)x‖2

‖x‖2  , this is also an upper 
bound for ‖�1(λ)‖2, which establishes the inequality (8.4).

Now let us consider an eigenvalue λ0 of P(λ) with corresponding right eigenvec-
tor x. The computations above give

Furthermore, by (8.7) and Lemma 2.2, we also have

From Lemma 2.1 and the second inequality in Lemma 2.3, we thus obtain

This establishes inequality (8.5).
We now prove inequality (8.6). Recall Ak = P0(λ) . Hence, from (8.7) and Lemma 

2.2, we get

‖�1(λ)x‖22 ≤ max{1, ‖S−1Ak‖22, max
i=0∶k

{‖Ai‖22}}
⎡
⎢⎢⎣

k

2�
r=0

�λ�2r+

k−2

2�
r=1

�λ�2r(k − 2r + 1)

k−2r�
j=0

�λ�2j
⎤⎥⎥⎦
‖x‖2

2
.

‖�1(λ)x‖2
‖x‖2 ≤

√
d1(λ)max{1, ‖S−1Ak‖2, max

i=0∶k
{‖Ai‖2}},

‖�1(λ0)x‖2
‖x‖2 ≤

√
d1(λ0)max{1, ‖S−1Ak‖22, max

i=0∶k
{‖Ai‖22}}.

(8.8)
‖�1(λ0)x‖22

‖x‖2
2

≤�λ0�k‖S−1Ak‖22 +
k−2

2�
r=0

�λ0�2r +

k−2

2�
r=1

�λ0�−2r‖P2r−1(λ0)‖22.

‖�1(λ0)x‖22
‖x‖2

2

≤ �λ0�k‖S−1Ak‖22 +
k−2

2�
r=0

�λ0�2r+

max
i=0∶k

{‖Ai‖22}
k−2

2�
r=1

�λ0�−2r
�

2r−1�
i=0

�λ0�i
�2

≤ �λ0�k‖S−1Ak‖22 +
k−2

2�
r=0

�λ0�2r +max
i=0∶k

{‖Ai‖22}
k−2

2�
r=1

2r

r−1�
i=−r

�λ0�2i

≤ d2(λ0)max{1, ‖S−1Ak‖22, max
i=0∶k

{‖Ai‖22}}.

‖�1(λ0)x‖22 ≤ �λ0�−k‖S−1Pk−1(λ0)x‖22 +
k−2

2�
r=0

�λ0�2r‖x‖22 +
k−2

2�
r=1

�λ0�−2r‖P2r−1(λ0)x‖22.
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Using the second inequality in Lemma 2.3, we get

Using Lemma 2.1, we finally obtain

which is the desired result. 	�  ◻

Lemma 8.4  Let λ0 ∈ ℂ be nonzero and let k ≥ 2 be a positive even integer. Let d1(λ) , 
d2(λ) and d3(λ) be the functions in (8.1), (8.2) and (8.3). 

(a)	� If |λ0| ≤ 1 , then 

(b)	� If |λ0| > 1 , then 

Proof  We first prove inequality (8.9). So, assume |λ0| ≤ 1 . Using |λ0|i ≤ |λ0|j when 
i ≥ j , we get from (8.1)

‖�1(λ0)x‖22
‖x‖2

2

≤max{1,max
i=0∶k

{‖Ai‖22}, max
i=0∶k

{‖S−1Ai‖22}}
⎡
⎢⎢⎣
�λ0�−k

�
k−1�
j=0

�λ0�j
�2

+

k−2

2�
r=0

�λ0�2r +
k−2

2�
r=1

�λ0�−2r
�

2r−1�
i=0

�λ0�i
�2⎤

⎥⎥⎦
.

‖�1(λ0)x‖22
‖x‖2

2

≤max{1,max
i=0∶k

{‖Ai‖22}, max
i=0∶k

{‖S−1Ai‖22}}
⎡
⎢⎢⎣

k−2

2�
r=0

�λ0�2r+

k

2�
r=1

2r

r−1�
i=−r

�λ0�2i
⎤⎥⎥⎦

≤d3(λ)max{1,max
i=0∶k

{‖Ai‖22}, max
i=0∶k

{‖S−1Ai‖22}},

(8.9)d1(λ0) ≤
k + 2

2
+

k(k2 − 1)

6
|λ0|2.

(8.10)d2(λ0) ≤
(
k

2
+ 1

)
|λ0|k + k(k − 1)(k − 2)

6
|λ0|k−4, and

(8.11)d3(λ0) ≤
k(k + 3)2

6
|λ0|k−2.
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where the equality follows from 12 + 32 +⋯ + (2n − 1)2 =
n(2n+1)(2n−1)

3
 , which 

implies (8.9).
Next, assume |λ0| ≥ 1 . Let us prove (8.10) and (8.11). Using |λ0|i ≤ |λ0|j when 

i ≤ j , we get from (8.2)

where the equality follows from

Analogously, from (8.3), we obtain

where the equality follows also from (8.12), which are the desired results.	�  ◻

We are finally in a position to prove Theorems 6.2 and 6.4.

Proof of Theorem 6.2  By Lemma 8.1 and the definition of �ra(λ0,P) , we have

where we have used maxi=0∶k{‖Ai‖2} = 1 and x = y in the expression of �ra(λ0;P).
We start by proving the relative-absolute upper bounds. Notice that

Moreover, by Lemma 8.2, we have

d1(λ0) ≤
k

2
+ 1 + |λ0|2

k−2

2∑
r=1

(k − 2r + 1)2

=
k + 2

2
+ |λ0|2 k(k

2 − 1)

6

d2(λ0) ≤
(
k

2
+ 1

)
|λ0|k + |λ0|k−4

k−2

2∑
r=1

(2r)2

=

(
k

2
+ 1

)
|λ0|k + k(k − 1)(k − 2)

6
|λ0|k−4.

(8.12)22 +⋯ + (2n)2 =
2n(n + 1)(2n + 1)

3
.

d3(λ0) ≤
k

2
|λ0|k−2 + |λ0|k−2

k

2∑
r=1

(2r)2

=
k

2
|λ0|k−2 + k(k + 1)(k + 2)

6
|λ0|k−2,

(8.13)
�ra(λ0;H

S
P
)

�ra(λ0;P)
= max{‖H0‖2, ‖H1‖2}

�λ0� + 1
∑k

i=0
�λ0�i

‖�1(λ0)x‖22
‖x‖2

2

,

(8.14)
�λ0� + 1
∑k

i=0
�λ0�i

≤

�
1, if �λ0� ≤ 1, and

2

�λ0�k−1 , if �λ0� > 1.
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where � has been defined in (6.1). Hence, to finish the proof, we need to bound the 
square of the ratio ‖�1(λ0)x‖2∕‖x‖2.

If |λ0| ≤ 1 , by inequalities (8.5) and (8.9), we have

We notice that, if |λ0| is close to 0, then the previous upper bound is close to

If |λ0| > 1 , then, by the inequalities (8.5) and (8.10), we get

and, by the inequalities (8.6) and (8.11),

Hence, if |λ0| > 1,

(8.15)max{‖H0‖2, ‖H1‖2} ≤ 2� ,

(8.16)

‖�1(λ0)x‖22
‖x‖2

2

≤ min{d1(λ0), d2(λ0)}max{1, ‖S−1Ak‖22}

≤ d1(λ0)max{1, ‖S−1Ak‖22}
≤

�
k + 2

2
+

k(k2 − 1)

6
�λ0�2

�
max{1, ‖S−1Ak‖22}

≤
k3

2
max{1, ‖S−1Ak‖22}.

k + 2

2
max{1, ‖S−1Ak‖22}.

(8.17)

‖�1(λ0)x‖22
‖x‖2

2

≤ min{d1(λ0), d2(λ0)}max{1, ‖S−1Ak‖22}

≤ d2(λ0)max{1, ‖S−1Ak‖22}
≤

��
k

2
+ 1

�
�λ0�k + k(k − 1)(k − 2)

6
�λ0�k−4

�
max{1, ‖S−1Ak‖22}

≤
�λ0�k
2

�
k + 2 +

k(k − 1)(k − 2)

3

�
max{1, ‖S−1Ak‖22}

≤ �λ0�k k
3

3
max{1, ‖S−1Ak‖22},

(8.18)

‖�1(λ0)x‖22
‖x‖2

2

≤ d3(λ0)max{1,max
i=0∶k

{‖S−1Ai‖22}}

≤ 2k3�λ0�k−2 max{1,max
i=0∶k

{‖S−1Ai‖22}}.
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The desired upper bounds are obtained by combining the inequalities (8.14), (8.15), 
(8.16) and (8.19) with (8.13). 	�  ◻

Now, we prove the relative-absolute lower bounds. First, a direct application of 
the lower bound in Proposition 2.1 to H0 and H1 yields

Second, from (5.8), we get

where we have used that ‖x‖2 ≤ ‖A−1‖2‖Ax‖2 for any vector x and invertible matrix 
A. Hence, combining (8.20) and (8.21) with (8.13) yields

where �b has been defined in (6.3). Furthermore, from the first inequality in (8.21), 
we also have (5.8), we also have

Thus, from (8.13), (8.20) and (8.22), we obtain

(8.19)

‖�1(λ0)x‖22
‖x‖2

2

≤ �λ0�k×

min

�
k3

3
max{1, ‖S−1Ak‖22}, 2k3

�λ0�2
max{1,max

i=0∶k
{‖S−1Ai‖22}}

�
.

(8.20)max{‖H0‖2, ‖H1‖2} ≥ � .

(8.21)

‖�1(λ0)x‖22
‖x‖2

2

≥

k−2

2�
i=0

�λ0�2i + �λ0�k
‖S−1Akx‖22

‖x‖2
2

≥

k−2

2�
i=0

�λ0�2i + �λ0�k‖A−1
k
S‖−2

2
≥

≥

k

2�
i=0

�λ0�2i min{1, ‖A−1
k
S‖−2

2
},

𝜅ra(λ0;H
S
P
)

𝜅ra(λ0;P)
≥𝜇b

(1 + �λ0�)∑
k

2

i=0
�λ0�2i∑k

i=0
�λ0�i

= 𝜇b

∑k+1

i=0
�λ0�i∑k

i=0
�λ0�i

≥

�
𝜇b if �λ0� ≤ 1, and

𝜇b

�
1 +

�λ0�
k+1

�
if �λ0� > 1,

(8.22)
‖�1(λ0)x‖22

‖x‖2
2

≥

k−2

2�
i=0

�λ0�2i.
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and the desired lower bounds have been established. 	�  ◻

Proof of Theorem 6.4  By Lemma 8.1 and the definition of �rr (λ0,P) , we have

Notice also

Furthermore, from Lemma 8.2, we readily obtain

where � has been defined in (6.1).
When |λ0| ≤ 1 , the desired upper bound follows by combining (8.16), (8.24), and 

(8.25) with (8.23). When |λ0| > 1 , the desired upper bound follows by combining 
(8.19), (8.24), and (8.25) with (8.23).

Now, we prove the lower bounds. First, from Proposition 2.1, we get

Then, notice

which readily follows from (5.8). The lower bounds are obtained by combining 
(8.24), (8.26) and (8.27) with (8.23). 	�  ◻

𝜅ra(λ0;H
S
P
)

𝜅ra(λ0;P)
≥𝜁

(�λ0� + 1)
∑ k−2

2

i=0
�λ0�2i∑k

i=0
�λ0�i

≥ 𝜁

∑k−1

i=0
�λ0�i∑k

i=0
�λ0�i

≥

⎧⎪⎨⎪⎩

𝜁

2
if �λ0� ≤ 1, and

𝜁

2�λ0� if �λ0� > 1,

(8.23)
�rr (λ0;H

S
P
)

�rr (λ0;P)
=

(�λ0�‖H1‖2 + ‖H0‖2)∑k

i=0
�λ0�i‖Ai‖2

‖�1(λ0)x‖22
‖x‖2

2

.

(8.24)max
i=0∶k

{�λ0�i‖Ai‖2} ≤

k�
i=0

�λ0�i‖Ai‖2 ≤ (k + 1)max
i=0∶k

{�λ0�i‖Ai‖2}.

(8.25)�λ0� ‖H1‖2 + ‖H0‖2 ≤
�

4𝜁 if �λ0� ≤ 1, and

4�λ0�𝜁 if �λ0� > 1,

(8.26)�λ0� ‖H1‖2 + ‖H0‖2 ≥
�

max{1, ‖S∗A−1
k
S‖2} if �λ0� ≤ 1, and

�λ0�max{1, ‖S‖2} if �λ0� > 1.

(8.27)
‖𝛥1(λ0)x‖2

‖x‖2
2

≥

�
1 if �λ0� ≤ 1, and

max{�λ0�k‖A−1
k
S‖−2

2
, �λ0�k−2} if �λ0� > 1.
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9 � Conclusions

In this paper, we propose a new strategy to solve the even degree symmetric/Hermi-
tian polynomial eigenvalue problem. We have shown evidence that, the traditional 
approach of using the linearizations D1(λ;P) and Dk(λ;P) is, in many occasions, 
risky due to the fact that the eigenvectors of these two linearizations are too sensi-
tive to small perturbations in their matrix coefficients. This sensitivity leads to large 
backward errors for the computed eigenpairs. We propose instead the use of the lin-
earizations HAk

P
(λ) and GAk

P
(λ) introduced in (5.7) and (5.9) (when S is replaced by 

Ak ). We have proven that the condition numbers of the eigenvalues with small (resp. 
large) modulus of Dk(λ;P) (resp. D1(λ;P) ) and HAk

P
(λ) (resp. GAk

P
(λ) ) are comparable. 

But we have also shown that the condition number of the eigenvalues with large 
(resp. small) modulus of Dk(λ;P) (resp. D1(λ;P) ) is significantly worse than that 

of the eigenvalues of HAk

P
(λ) (resp. GAk

P
(λ) ), specially for moderate to large values 

of the degree k of P(λ) . In future work we intend to determine if the sensitivity of 
the eigenvectors of D1(λ;P) and Dk(λ;P) truly depends on the existence of ill-con-
ditioned eigenvalues or if it depends on any other factors. We would also like to 
determine how this sensitivity changes the structure of the computed eigenvectors, 
in particular, the structure of the blocks from which the eigenvectors of the poly-
nomial P(λ) are recovered, and how this change affects the backward errors of the 
computed eigenpairs.

Structure preserving deflation

The goal of this section is to prove the claim in Remark 5.2.
We consider the even-degree matrix polynomial (1.1) as an odd-grade matrix pol-

ynomial by adding an extra zero matrix coefficient, that is,

We observe that the pencil Tk+1
Q

(λ) (see (5.2)) is a “weak” linearization for Q(λ) , 
i.e., it is not a strong linearization, since Tk+1

Q
(λ) has n extra spurious eigenvalues at 

infinity. Nonetheless, the Kronecker structure of these eigenvalues at infinity is very 
simple, as we show in the next lemma.

Lemma A.1  Let P(λ) be an n × n even-degree matrix polynomial as in (1.1), and 
let Q be as in (A.1). Then, the spectrum of Tk+1

Q
(λ) consists of the spectrum of P(λ) 

together with n eigenvalues at infinity of index one, i.e., with Kronecker blocks of 
size 1.

Proof  Notice revk+1Q(λ) = λrevkP(λ) . Hence,

(A.1)Q(λ) ∶= λk+10n + P(λ).

det
(
revk+1Q(λ)

)
= λn det

(
revkP(λ)

)
,
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and, so, all the extra n eigenvalues at infinity of Q(λ) have algebraic and geometric 
multiplicity equal to one. 	�  ◻

Lemma A.1 allows us to apply to Tk+1
Q

(λ) the structure preserving deflation 
developed by Mehrmann and Xu [18], provided that Ak is nonsingular. Hence, we 
can deflate the n spurious eigenvalues at infinity of T k+1

Q
(λ) preserving the sym-

metric structure of the pencil. Surprisingly, the result of applying the deflation 
procedure to T k+1

Q
(λ) is essentially a pencil of the form (5.6). The overall goal of 

this section is to prove this fact.
Let λT 1 − T0 ∶= T

k+1
Q

(λ) . The first step of the deflation consists in finding a 
unitary matrix U such that

where N is of full row rank. Notice that T 1 has n zero rows (its first n rows), so the 
unitary matrix can be chosen as the permutation matrix.

With this choice for U, the resulting N is of full row rank since it contains a kn × kn 
nonsingular matrix.

The second step of the deflation procedure consists in finding a unitary matrix 
V such that

where M is nonsingular. We can find such unitary matrix V by using a rank revealing 
factorization (via a QR decomposition with partial pivoting or the SVD decomposi-
tion, for example). Let

which implies, in particular, AkV11 = V21 . Then, set

Using MATLAB notation for submatrices, the deflated pencil is the kn × kn pencil

which is permutationally equivalent to

U∗
T 1 =

[
N

0

]

U∗ =

[
U∗

1

U∗
2

]
∶=

[
0 Ikn
In 0

]
.

U∗
2
T0V =

[
Ak −In 0 ⋯ 0

]
V =

[
0kn M

]
,

[
Ak −In

] [V11 V12

V21 V22

]
=
[
0n M

]
,

V =

⎡⎢⎢⎣
0

V11 V12

V21 V22

I(k−1)n 0

⎤⎥⎥⎦
.

V(∶, 1 ∶ kn)∗Tk+1
Q

(λ)V(∶, 1 ∶ kn),
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which equals

as we wanted to show, where we have used AkV11 = V21.
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