Calcolo (2022) 59:48
https://doi.org/10.1007/510092-022-00483-4

™

Check for
updates

On why using DL (P) for the symmetric polynomial
eigenvalue problem might need to be reconsidered

M. 1. Bueno' - J. Pérez?® . S. Rogers®

Received: 6 April 2021 / Revised: 25 July 2022 / Accepted: 19 September 2022 /
Published online: 14 November 2022
© The Author(s) under exclusive licence to Istituto di Informatica e Telematica (IT) 2022

Abstract

In the literature it is common to use the first and last pencils D, (A, P) and D, (A, P) in
the “standard basis” for the vector space DL(P) of block-symmetric pencils to solve
the symmetric/Hermitian polynomial eigenvalue problem P(A)x = 0. When the pol-
ynomial P(A) has odd degree, it was proven in recent years that the use of an alterna-
tive linearization 7, is more convenient because it has better numerical properties
and its use is more universal since 7, is a strong linearization of any matrix polyno-
mial P()), while D,(A;P) and D,(\;P) are not. However, 7, is not defined for even
degree matrix polynomials. In this paper we consider the case when P()\) has even
degree. It is believed that the eigenpair backward errors for the linearization D, (A;P)
and D, (A;P) cannot differ much from the backward error of the original problem. We
show that this is not the case, even when the polynomial P()) is well-scaled because
of the ill-conditioning of the eigenvectors of D;(A;P) and D,(\;P). We introduce two
block-symmetric linearizations for even degree matrix polynomials that overcome
this problem and become an appropriate alternative to the traditional use of D;(A;P)
and D, (\;P).
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1 Introduction

A square matrix polynomial takes the form
PN =MNA + - +M, +A4), Ag, ..., AL € F, (1.1)

where F denotes any field. In this paper, we consider the field of real or complex
numbers. We say that P(A) has degree k if A, # 0 and we say that P(A) has grade k,
otherwise. In this work, we are interested in symmetric and Hermitian matrix poly-
nomials. We say that P()) is symmetric if Al.T =A;, fori=0,1,...,k, and we say that
P(\) is Hermitian if F = C and A;.“ =A; fori=0,1,...,k, where (-)* denotes the
complex conjugate transpose operation.

Throughout this paper, we assume that the matrix polynomial P(A) in (1.1) is
regular, this is, the scalar polynomial det P(A) is not the zero polynomial. We also
assume A, # 0 and A, # 0 in order to avoid some trivialities. The polynomial eigen-
value problem (PEP) associated with a regular matrix polynomial P(A) consists in
finding scalars A, for which the equations

POyx=0 and y*P(y) =0 (1.2)

have nontrivial solutions x,y € F". The scalar A, is called an eigenvalue of P()), and
the vectors x and y are associated right and left eigenvectors. The set of all eigenval-
ues of the matrix polynomial P()) is called the spectrum of P(M). The eigenvalue/
eigenvector pair (A, x) (resp. (v, Ay)) is called a right (resp. left) eigenpair of P(A).
When the matrix polynomial P()) is symmetric (resp. Hermitian), we refer to (1.2)
as the symmetric (resp. Hermitian) polynomial eigenvalue problem. When P()) is
symmetric or Hermitian, the sets of left and right eigenvectors coincide.

Structured PEPs, that is, PEP in which the matrix coefficients of the matrix poly-
nomial present some type of structure, arise from many applications. For instance,
symmetric and Hermitian PEPs arise in the classical problem of vibration analysis
[9, 16, 24]. When solving numerically a structured PEP it is well-recognized the
importance of using structure preserving eigenvalue algorithms [14]. For example,
symmetric or Hermitian matrix polynomials have a spectrum that is symmetric with
respect to the real axis. In a finite precision environment, an algorithm that ignores
the structure of the polynomial may lose this symmetry [17]. For this reason, one
of the most common approaches for numerically solving structured PEPs is to use
structure-preserving linearizations (see Sect. 2.1 for the definition of linearization).
This process replaces the original structured PEP with a generalized eigenvalue
problem with the same structure. Standard methods for structured generalized eigen-
value problems can then be applied; see, e.g., [12] and the references therein.

The landmark paper [17] introduced a family of candidate linearizations for
matrix polynomials as in (1.1), the so-called DL(P) vector space. It was proved in
[17] that almost all matrix pencils in DL(P) are linearizations of the matrix polyno-
mial P(A), and that DL(P) is a rich source of structure-preserving linearizations for
structured matrix polynomials. Moreover, among all the linearizations in DL(P), the
pencils D;(A;P) and D,(A;P) [(see (4.1) and (4.2)] were identified in [10, 11] as those
with almost optimal numerical properties (in terms of eigenvalue conditioning and

@ Springer



On why using DL (P) for the symmetric polynomial eigenvalue prob... Page30f46 48

backward errors). These optimality results have led several authors to propose the
use of D,(A;P) and D, (A;P) (or small variations of D;(A;P) and D,(A;P)) in the task
of solving numerically structured PEPs from applications. These structure-preserving
linearizations have been used, for example, to solve palindromic and even PEPs [15],
Hamiltonian (alternating) PEPs [19], to solve complex-symmetric PEPs [8], to solve
symmetric or Hermitian rational eigenvalue problems [25], as the starting point to
build trimmed linearizations for structured matrix polynomials [6], to develop a back-
ward stable algorithm for symmetric or Hermitian quadratic eigenvalue problems
[26], to estimate the distance to uncontrollability of higher order dynamical systems
[21], to compute the H_ norm [3], and to solve nonlinear eigenvalue problems by
using the infinity Lanczos method [20], to name some recent works.

Although the numerical properties of D;(A;P) and D,(A;P) are good enough for
certain applications, one of the key findings of this work is the extreme sensitivity
of the eigenvectors of D,(A;P) and D,(A;P) to small perturbations. Hence, the com-
putation of accurate eigenvalues and eigenvectors of structured matrix polynomials
requires to find structure-preserving linearizations with better numerical properties.
Steps in this direction can be found in [4], where the authors compare the numeri-
cal properties of D,(A;P) and D, (A;P) with the block-tridiagonal linearization intro-
duced in [2], in the case when the matrix polynomial has odd degree. Their analysis
reveals that the block-symmetric linearization from [2] has much better numeri-
cal properties than the linearizations in DL(P). In this work, we address the case
when the matrix polynomial has even degree. This case is different from the odd
degree case because there are symmetric (resp. Hermitian) matrix polynomials of
even degree that do not have symmetric (resp. Hermitian) linearizations while they
always exist for odd degree polynomials. To guarantee the existence of structure-
preserving linearizations for even degree matrix polynomials, one has to impose
some conditions on the matrix polynomial coefficients. For example, symmetric and
Hermitian matrix polynomials with nonsingular leading and/or trailing matrix coef-
ficients always have structure-preserving linearizations. These conditions make the
numerical analysis more challenging.

In this paper we analyze different strategies for solving PEPs associated with
even-degree structured matrix polynomials and propose the combined use of two
linearizations Hﬁ" and fo introduced in (5.6) and (5.9) (using S = A;) as an alterna-
tive to the use of the linearizations D,(A;P) and D, (A;P) because it is numerically
superior and avoids the problem with the sensitivity of the eigenvectors.

The structure of the paper is as follows: In Sect. 2 we introduce the mathemati-
cal background necessary for the rest of the paper. In Sect. 3 we recall the definition
of (normwise) eigenvalue condition number and backward error of an eigenpair of
a matrix polynomial as well as convenient formulas to compute these quantities. In
Sect. 4, we recall the definition and properties of D;(A;P) and D, (A;P) and provide
theoretical and numerical evidence of the sensitivity of the eigenvectors of these
pencils to small perturbations in the coefficients of the polynomial P(A). In Sect. 5,
we show how to use the pencil 7,(A) to construct a family of pencils Hf; (resp. QISJ)
that are strong linearizations of an even degree matrix polynomial P(A) as in (1.1)
with nonsingular A, (resp. A,). In Sects. 6 and 7, we provide a numerical analysis
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of the eigenvalue condition number and backward errors of the pencils in the fami-
lies Hf) and g;, and show that optimal behavior is attained when S = A,. Finally, in
Sect. 8, we present the proofs of the main results in Sects. 6 and 7.

2 Definitions and technical results

We review in this section the notions of linearization and strong linearization of a
matrix polynomial. For a more detailed introduction on these concepts, we refer the
reader to the classical book [9] and to the more recent reference [7].

Additionally, we present some technical results that will be used in the proofs of
the main theorems of this manuscript.

2.1 Linearizations of matrix polynomials

A matrix polynomial U(MA) is said to be unimodular if det U(\) is a nonzero con-
stant (i.e., independent of A). A grade-1 matrix polynomial L(A) = AB + A is called
a matrix pencil, or pencil for short. A matrix pencil L(A) = AB + A is called a lin-
earization of a matrix polynomial P(2) if there exist unimodular matrix polynomials
U(\) and V()\) such that

L0 = UG [f) P&)] Ve,

for some s, where I, denotes the s X s identity matrix. Linearizations preserve the
finite eigenvalues of the polynomial P()\) and their multiplicities.

Given a matrix polynomial P(A) as in (1.1), its reversal matrix polynomial is
defined by

revP(\) = VPO = MA  + - + M + AL

We say that P(\) has an eigenvalue at infinity if O is an eigenvalue of revP(A). A
linearization L(A) of P()\) is said to be strong if rev(L) is a linearization of rev(P).
Strong linearizations preserve both the finite and infinite eigenvalues of P(A) and
their multiplicities.

2.2 Some auxiliary results

If a and b are two positive integers such that a < b, we denote
a.b:=aa+1,...,b.

The following result is an immediate consequence of the Cauchy-Schwarz inequality
when the standard inner product is considered in C".

Lemma 2.1 Let m be a positive integer and let a be a positive real number. Then,
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m 2 m
(Za’) <(m+ 1)Za2f.

j=0 j=0

Next we provide an upper and lower bound on the norm of a block-matrix in
terms of the norms of its blocks.

Proposition 2.1 [11, Lemma 3.5] For any complex ¢ X m block-matrix B = (B;) we
have

max 1B;ll, < IBll, < VEZm max 1Bl 2.1

Some of our main results require the systematic use of the Horner shifts of a
matrix polynomial P()).

Definition 2.1 (Horner shifts) Given a matrix polynomial P(\) of degree k as in
(1.1), the ith Horner shift of P(A), fori =0 : k, is given by

PN i= NA N A+ o+ My A (2.2)

Notice that Py(A) = A; and P,(A) = P()A). Moreover, Horner shifts satisfy the recur-
rence relation

P (M) —=A i =AP(), for i=0:k-1 (2.3)
We also denote
PV :=NA; + - +M, +A, for i=0:*k (2.4)

Notice that P°(\) = A, and P¥(A) = P()\). Furthermore, the two families of polyno-
mials (2.2) and (2.4) are related as follows

POV =MTP0)+ P, i=0: k- 1. (2.5)

Lemma 2.2 provides another relation between the two families of Horner
shifts.

Lemma 2.2 [4, Lemma 3.2] Let P(\) be a regular matrix polynomial of degree k as
in (1.1). Let P;(\) and PV, i =0 : k, be the matrix polynomials defined in (2.2)
and (2.4), respectively. Let Ay be a nonzero and finite eigenvalue of P(\), and let
x and y be, respectively, a right and a left eigenvector of P(A) associated with \,.
Then, fori=0 : k-1,

P(h)x = =N P 0)x and y* P (M) = —AEy PR ().

The proof of Lemma 2.3 can be easily verified.
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Lemma 2.3 Let P(\) be a matrix polynomial of degree k as in (1.1), let A, € C, and
let P;(\) and PV, i =0 : k, be the matrix polynomials defined in (2.2) and (2.4),
respectively. Then, for any n X n matrix M and fori =0 : k, we have

IMP, (o)l < max{IIMA; .} jz(; ol

IMPG)l, < max{[1M4;]],) ,20 o, and

1P;(A)ll> = ?2181?%{ |7\o|j||A.i”2}-

3 Eigenvalue condition numbers and backward errors
of approximate eigenpairs

In this section, we review the notions of relative eigenvalue condition number and
backward error of approximate eigenpairs of a matrix polynomial, and state some
of their basic properties.

Definition 3.1 (Eigenvalue condition number) [23] Let P(A) be a regular matrix pol-
ynomial of degree k as in (1.1). If A is a simple, finite, nonzero eigenvalue of P())
with corresponding right eigenvector x, then the relative condition number of A is
defined by

|4y
€l

k(M3 P) = Lin(l) sup { © (Py + Ahg) + AP(N + Ahg)) (x + Ax) = 0,
with [|44,]l, < ew;, fori=0: k},

where w; are some previously selected nonnegative weights.

Definition 3.2 (Backward error of an approximate eigenpair) [23] Let P()A) be a reg-
ular matrix polynomial of degree k as in (1.1). For a given approximate right eigen-
pair (Ay, %) of P(A), the backward error of (Ay, %) is

(k. %: P) := min {e : (P(hy) + AP(y))X = 0, with [|4A,]|, < € o,
fori=0:k},

where w; are some previously selected nonnegative weights.

_Explicit formulas for the condition number . (Ay; P) and the backward error
n(\g, X; P) were obtained in [23].
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Theorem 3.1 [23, Theorem 5] Let P(\) be a regular matrix polynomial of degree k
as in (1.1). If Ay is a simple, finite, nonzero eigenvalue of P(\) with corresponding
right and left eigenvectors x and y, then

(Zho 1ol ) Il
ol - 7P G

K.(Ag; P) = G.D

3

where P'()\) denotes the derivative of P(\) with respect to \.

Theorem 3.2 [23, Theorem 1] Let P(\) be a regular matrix polynomial of degree
k as in (1.1). For a given approximate right eigenpair (A, X) of P(\), the backward
error of (A, X) is given by

IPGo)l,
(ZLy Foliw, ) I

The following two lemmas will be useful in later sections. Before stating them,
we recall that if A, is a simple, finite, nonzero eigenvalue of a matrix polyno-
mial P(A) with associated right eigenvector x, then A; l'is a simple eigenvalue of
revP(\) with associated right eigenvector x.

The immediate proofs of Lemmas 3.1 and 3.2 are omitted.

’1(’7\'09}; P) =

3.2)

Lemma 3.1 Let P(M) be a regular matrix polynomial of degree k as in (1.1). Let Ay be
a simple, finite, nonzero eigenvalue of P(\). Then, k.(Ay; P) = Kr(}»_l;revP), when
the weights used for revP(\) are equal to those used for P(M) but in reversed order.

Lemma 3.2 Let P(M) be a regular matrix polynomial of degree k as_in (1.1). Let
(Mo, X) be an approximate right eigenpair of P(A). If we consider LX) as an

approximate eigenpair of revP(\), then we have 11(7»0,%; P) = 11(7\5',3?; revP), when
the weights used for revP(\) are those used for P(\) but in reversed order.

The nonnegative weights w; in the definitions of x,(Ay; P) and n(A, x; P) allow
flexibility in how perturbations of P(A) are measured. Typically, one is interested
in either coefficient-wise or norm-wise perturbations of P(A). Norm-wise pertur-
bations are obtained by choosing

; :=.}251:)]§{||Aj||2} fori=0: k.

Coefficient-wise perturbations are obtained by choosing
w; :=||All, fori=0:k.

In this work, we study both norm-wise and coefficient-wise perturbations. When
norm-wise perturbations are considered, we write

@ Springer



48 Page 8 of 46 M. 1. Bueno et al.

max,_g: AL} Zig Pl il 1
Rl P G
1Pl

max,_g: 1Al S ol 171,

Ka(Ag; P) i=

, and

nra(’.;\'()v}; P) =

and refer to x,,(Ay; P) and 5,,(A,, X; P), respectively, as the relative-absolute eigen-
value condition number and backward error. When coefficient-wise perturbations
are considered, we write

(o ol AL ) el vl
Pal PO
PGl

(Lo ol A,y ) Il

K (A3 P) 1= and

rlrr(}\'09z; P) =

and refer to x,.(Ay; P) and ’7”(7\032 P), respectively, as the relative-relative eigen-
value condition number and backward error.

Remark 3.1 When the matrix polynomial P(A) is symmetric (resp. Hermitian), it
is natural to consider symmetric (resp. Hermitian) perturbations in the definition
of condition numbers and backward errors. This leads to the notions of structured
condition numbers and structured backward errors. However, as it has been shown
in [1], the structured and unstructured condition numbers and backward errors are
nearly the same. This is why we only focus on the unstructured ones.

3.1 Sensitivity of the eigenvectors of a matrix pencil

In the next section we will explore the sensitivity of the eigenvectors of the block-
symmetric linearizations D, (A; P) and D, (A; P) to small perturbations of their matrix
coefficients. Theorem 3.3 in this section will be used to provide some intuition
behind the fact that the eigenvectors of these two linearizations can be very ill-con-
ditioned even when the corresponding eigenvalue is well-conditioned.

We first introduce an auxiliary lemma that generalizes a well-known result for
eigenvectors of matrices.

Lemma 3.3 Let L(A) = AB — A be a regular matrix pencil. Let A, and A, be two dis-
tinct finite eigenvalues of L(\) and let z; and w, be a right and a left eigenvector of

L(M) associated with A and \,, respectively. Then, w;Bz; = 0.

Proof By definition of right and left eigenvector, we have
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MBz; =Az; and wikh,B = wiA.

Multiplying the first equality by w} on the left, multiplying the second equality by
z; on the right and subtracting both expressions, we get (A; — A,)w;Bz; = 0. Since
A # A, the result follows. O

Theorem 3.3 Let L(A) = AB — A and L(\) + AL(A) = MB + AB) — (A + 4A) be two
m X m regular matrix pencils, where ||AB|| < €||B||, and ||4A|| < €||Al|, for some
€ > 0 so that L and AL have the same number of eigenvalues. Assume that all the
eigenvalues of L()\) are simple and finite. Let \,, ..., M\, denote the eigenvalues of
L(N), and, for i =1 : m, let z; be a right eigenvector associated with the eigen-
value N, Let M + ANy, ..., A, + A\, denote the eigenvalues of L(\)+ AL(L). If
Z; = z; + Az; denotes a right eigenvector of L(\) + AL(\) associated with \; + Ak,
then, to first order in €, we have

Aol 14N
62 e — kD [ Dzl (3.3)

dist(Z;, span{z;}) <
( ) L+ [l A = Agl

C#I

where dist denotes the Euclidean distance, and k,,(\,; L) denotes the relative-abso-
lute eigenvalue condition number of \,.

Proof Since the vectors z,...,z, form a basis for F” (where F =R or
F=C, we have Z; =2+ ),_, ¢s2,, for some constants c,. Then, notice that

dist (Z, span{z,-}) <|Z;=vll,, for any vector v € span{z;}. Hence, taking
v =z + ¢;z;, we get

dist(Z;, span{z;}) <

2 v

C#i

< D lecl Nzl (3.4

2 C#i

To finish the proof, we need to bound the scalars |c,|. By Lemma 3.3, denoting by
w, a left eigenvector of L(A) associated with A,

wyBz; =0 for? #i.

The B-orthogonality of left and right eigenvectors implies that the scalars ¢, are
given by
W;BAZI‘

*
WfBZ5

cp = for =1 :m,

where wi Bz, # 0 because the eigenvalues of L(A) are simple.
Expanding to first order in e the equality

(}\‘i + A}\,l)(B + AB)(Z, + AZi) =A+ AA)(Z,‘ + AZ,‘),

we find
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ANMBz; + MABz; + MBAz; = Adz; + AAz,. (3.5)

Multiplying (3.5) on the left by w7, with # # i, and taking into account that
wyA = h,wiBand wiBz; = 0, yields

MWy ABz; + MwyBAz; = N ,wyBAz; + wi AAz;.

Hence,
MwiABz; — wi AAz;
*BAz; = s
WeR A =N
and, so,
wyBAz, 1 MwyABz; — wi AAz, 26
wiBz,  h, =N wyBz, ’ (3.6

Plugging (3.6) into (3.4), taking norms, using the triangle inequality, and using
14B|| < el|Bl|, and [|AA|| < €]|A]l,, we get

1 Iwellallze Nzl 2] 1Bl + [1ATL)
Dlecllizell<e ), .

i i I}\f - }\‘zl IW;BZKI

The result now readily follows from the formula for the relative-absolute condition
number k,,(A,; L) taking into account that

(N1 1Bl + 11A1l) < 1+ Al
max{[|All, Bl }(1 + A ) = T4+ |

Remark 3.2 'We note that Theorem 3.3 implies that the relative error

dist(Z;, span{z;})
llzill

in the eigenvector z; associated with the eigenvalue A; can potentially be large when
A; is close to be a multiple eigenvalue or if any of the eigenvalues other than A; is
ill-conditioned. It is well-known that the eigenvalues of D,(A; P) (resp. D, (A; P))
with small modulus (resp. large modulus) tend to be very ill-conditioned which can
potentially be a reason why, as we will show numerically in the next section, the
eigenvectors of D (A; P) (resp. D, (A; P)) associated with eigenvalues of large modu-
lus (resp. small modulus) can be very ill-conditioned.

We would like to mention that there have been other attempts in the litera-

ture to study the sensitivity of the eigenvectors of a matrix polynomial to small
changes in its matrix coefficients. See for example [22].
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4 Using the linearizations D,(); P) and D, (2; P).

In this section we debunk the common belief that the pencils D, (A; P) and D, (A; P)
in the vector space DL(P) [17] given by

A, 0 e 0 Ap—1 Ap—_o -+ A1 Ag

0 —Ag_92 —Ap_3 -+ —Ao Ag—2 -+ A1 Ao O
Di(\MP):=X| 0 —Apz -+ —Ag O |4+ | 7 o774

: : ST Ay Ay 0 0

0 —Ag 0 0 Ao 0 v .- 0
and

0o -+ -+ 0 A 0o .- 0 —A; 0

U 0 Ap Ap . . : :
D\ P):=X| 0 ) 4.2
k(A P) 1) A Ay (4.2)

0 Ak Ak_l-u AQ —Ak —A3 —A2 0

Ap Ap_1 -+ As A 0o - ... 0 Ao

are “good” linearizations of a symmetric (resp. Hermitian) matrix polynomial
P()\) as in (1.1). This belief is based on the following two results for the relative-
absolute conditioning of eigenvalues and backward errors of approximate eigenpairs,
as well as on analogous results for the relative-relative case that can be obtained just
multiplying the bounds in Theorems 4.1 and 4.2 by the constant

o max_o.,. {1415}
min{||Agll,, A}

(4.3)

Theorem 4.1 (Conditioning of D,(A; P) and D,(\; P)) [4, Theorem 6.1] Let P(\) be
a regular matrix polynomial of degree k as in (1.1). Assume A, is a simple, finite,
nonzero eigenvalue of P(A). Let ¢ € {1,k} and suppose that A, is nonsingular if
¢ =1, and A, is nonsingular if ¢ = k. Then,

max {1, |A ¥}, if£ =k <z<m(7»0;Df)< K max{1, ||}, if£ =k
max{1, |[Ay|' ¥}, if£=1 [~ K, (i P) k> max{1, |A|'7*}, if £ = 1.

Remark 4.1 As we mentioned in Remark 3.2, the eigenvalues of D (A;P) (resp.
D, (A; P)) with small modulus (resp. large modulus) tend to be very ill-conditioned.
The previous theorem shows that if |A,| < 1, then

Kra(hoi D1) > Aol iy (Mgi P)

and if |Ay| > 1, then
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Krahos D) 2 Ao i, (g3 P).

Thus, even if the condition number of A, as an eigenvalue of P is relatively small,
the condition number of A, as an eigenvalue of D, (A; P) (resp. D,(A; P)) can grow
significantly.

Theorem 4.2 (Backward errors of D;(\;P) and D,(\; P)) [4, Theorem 6.2] Let
P(\) be a regular matrix polynomial of degree k as in (1.1). Let £ € {1,k} and
suppose that A is nonsingular if ¢ = 1, and A, is nonsingular if ¢ = k. Let (A,?)
be an approximate right eigenpair of D,(h, P), with A, nonzero and finite, and let
2y = (e; ® 1)Z. If (Ay,Z,) is considered an approximate right eigenpair for P(\),
then

Mra(ho % D) Iz 112

Remark 4.2 1t is well-known that any (right) eigenvector of D,(A; P) or D,(A; P)
associated with A is of the form

2= Mg 1] 4.4)

for some (right) eigenvector x of P(A) associated with A,. This implies that for exact
zand z,, we get

lzll { Vikmax{1, |A|'"¥} if £ =1, and “5)

lzell, = | Vikmax{1, |A|1} if £ = k.

Assuming that (4.5) holds for the computed eigenpairs in Theorem 4.2, we get the
following upper bounds

MaCo 273 P) [ K52 max{1, o1} if £ = k, and
1Oz Dp) = K2 max{1, [h|' ) if £ = 1.

which are in accordance with the conditioning results in Theorem 4.1.

Based on the ideas discussed in Remark 4.2, the following strategy for comput-
ing eigenpairs of a matrix polynomial P(\) with small backward errors (at least in
the relative-absolute sense, or in the relative-relative sense when the polynomial
is well-scaled, i.e., p = 1) has been proposed.

1. Apply a backward stable eigenvalue algorithm, like the QZ algorithm, to the
linearizations D, (A; P) and D,(A; P).

2. For the computed eigenvalues with modulus less than or equal to one, recover
the eigenvectors of P(A) from the kth block z, of the corresponding eigenvectors
of D, (\; P).
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3. For the computed eigenvalues with modulus greater than one, recover the eigen-
vectors of P(A) from the first block z; of the corresponding eigenvectors of
D,(\; P).

Next, we argue that this strategy does not always guarantee small backward errors
due to the extreme sensitivity of the eigenvectors of D,(A; P) and D, (A; P) to small
perturbations of the coefficients of these pencils. Our explanation focuses on
D, (\; P) (since similar comments can be made for D,(A; P)). We will also illus-
trate these facts with numerical experiments.

Let us assume that a polynomial eigenvalue problem associated with a sym-
metric/Hermitian matrix polynomial P(A) is solved by using the linearization
D,(\; P) =AB —A. Assume P(M) has been scaled so that max,_,..{||A;ll,} = 1.
Theorem 4.2 and Remark 4.2 suggest that, if |A,| < 1, one should be able to com-
pute an approximate eigenpair (Ay,7;) of P(A) from a computed eigenpair (A,7)

of D,(A; P) with a small backward error nra@O,Ek;P). However, in the numerical
examples that we show next, we will see that this is not necessarily true. This
does not imply that there is something wrong with the results in Theorem 4.2 and
Remark 4.2. The problem is that, in floating point arithmetic, we cannot assume
that the ratio [[Z]|,/[[Z;]l, is bounded by a moderate constant, the reason being the
potentially large sensitivity of the eigenvectors of D,(A; P) to small perturbations
in the coefficients of the linearization. We give an intuitive explanation for this
sensitivity to perturbations as follows. Let z and z;, denote, respectively, the exact
eigenvector of D, (A,; P) associated with the eigenvalue A and its kth block. Let Z
denote the computed eigenvector of D,(); P) associated with the computed eigen-
value A. Then, there exists a positive constant a such that

(Mo % P Z z Z
a0 %iP) o Bl il ol
Mea(ro» 2, Dy) 1z 1l 1z Il 1z 1l

(4.6)

where the last inequality follows from (4.5).

As the numerical experiments will show, the ratio y := A

R [EA

some eigenvectors and, surprisingly, it is a very accurate predictor o

is very large for
£ Wra(z\(]’zk;P)

fra(ho,% Dy)
when |Ay| < 1. We must point out that both z; and Z, in our experiments are the

eigenvectors computed by Matlab. The exact eigenvector was computed trans-
forming the constructed matrix polynomial to a symbolic object. Moreover, we
have observed that, in the cases when the ratio y is very large, 7, is very close to
0.

This implies that the small backward errors introduced by the QZ algorithm
may destroy the exact structure (4.4) of the eigenvectors of D, (A; P). Conclu-
sively, in floating point arithmetic we cannot assume computed eigenvectors of

the form (4.4) and, thus, we cannot assume that |:|ZZ|:|2 is small.
k12

Next we present two numerical examples illustrating that the strategy of solv-
ing a PEP with the combined use of D,;(A; P) and D, ()A; P) is potentially unsta-
ble. In particular, we show that using D, (A; P) for computing the eigenvalues with
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Fig. 1 Modulus of the eigenvalues of the matrix polynomial P(A) with coefficients as in (4.8)
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Fig. 2 Relative-absolute condition number of the eigenvalues of the matrix polynomial P(\) with coef-
ficients as in (4.8) and the linearization D, (})

modulus less than 1 can increase the backward error of a computed eigenpair up
to the point in which most of the accuracy is lost.

In the first numerical experiment, we consider a random matrix polynomial of
degree 4 and size n = 20. The matrix polynomial is constructed in MATLAB as
follows:

Ay = 1le2 x (randn(n) + sqrt(—1) * randn(n));

A, = lel * (randn(n) + sqrt(—1) * randn(n));

A, = 1le2 * (randn(n) + sqrt(—1) * randn(n)); 4.7

A; = le7 * (randn(n) + sqrt(—1) * randn(n));

A, = lel * (randn(n) + sqrt(—1) * randn(n));
and then, we computed A} 1= A; +Al.T so that the matrix polynomial is symmetric.
This matrix polynomial has 60 out of its 80 eigenvalues with modulus between 1
and 1072 while the rest of the eigenvalues have modulus larger than 10?. Moreo-

ver, the eigenvalues with modulus larger than one have condition number larger than
10% (recall Remark 3.2). We show in Figs. 1 and 2, respectively, the modulus of the
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Fig. 3 Relative-absolute ratio of backward errors using D, (A; P) and bound when P is not well scaled
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Fig.4 Relative-absolute backward errors for the linearization D, (A;P) and the matrix polynomial P

eigenvalues of P()), and the relative-absolute condition number of the eigenvalues
of P(\) and D, (}) (with eigenvalues ordered in increasing order of modulus).

In Fig. 3, we plot the ratio of backward errors M for all the eigenvalues A,

My (Ag>25 Dy

of P(\) ordered in increasing order of modulus. This graph is denoted by “Pk/Dk” in
the legend of the figure. We also plot the ratio M, denoted by “Ratio” in the leg-

A
end. We observe that the exact ratio of backward errors for the eigenvalues of modu-

lus less than 1 range between 107 and 10'3. Moreover, we observe that the
function“Ratio” fully predicts the values of these ratios. This indicates that, in the
computation of the right eigenvectors of P()) associated with the “small” eigenval-
ues, the norm of the last block of the exact eigenvector is very sensitive to changes
in the coefficients of P(A) and therefore, using D, (A; P) to compute these eigenvalues
is not a good strategy. _ _

In Fig. 4, we plot the backward errors #,,(Ag, Z;; P) and #5,,(\y, Z; D) separately.
Notice that, while the eigenpairs of the linearization D, (A) are all computed with
small backward errors, none of the recovered eigenpairs for the matrix polynomial
P()\) is computed with a small backward error.

The problems in the backward errors observed in this numerical experiment
could be attributed to the fact that the polynomial P(A) is not well scaled. In our
second numerical experiment, we show that this problem can be observed also in
the case in which P()A) is well scaled although in this case fewer eigenvalues have
large ratio of backward errors. In this example, we consider again a random matrix
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polynomial of degree 4 and size n = 20. The matrix polynomial is constructed in
MATLARB as follows:

Ay = (randn(n) + sqrt(—1) * randn(n));
A, = (randn(n) + sqrt(—1) * randn(n));
A, = (randn(n) + sqrt(—1) * randn(n)); 4.8)
A; = (randn(n) + sqrt(—1) * randn(n));
A, = (randn(n) + sqrt(—1) * randn(n));

and then, we computed A; =A; +AiT so that the matrix polynomial is symmetric.
Moreover, we changed the singular values of A6 and A; so that these two matrix
coefficients keep their norm but so that the matrix polynomial has 6 eigenvalues
with modulus between 10~ and 1073, The first 46 eigenvalues have modulus less
than or equal to 1 and all the eigenvalues have modulus less than 10. In this case,
six of the eigenvalues with modulus larger than 1 have condition number larger than
1021,

In Fig. 5, we plot the functions “Pk/Dk”, and “Ratio” as we did in the first numer-
ical experiment. We observe that, for some of the eigenvalues with modulus less
than one, the ratio of backward errors is of order 10" and that the behavior of the

ratio of backward errors can also be fully predicted by the value of the ratio ::?::2, as
k112

happened in the first experiment. We must point out that this behavior is not unique
to the two numerical experiments presented here but that it was observed in a multi-
tude of different numerical experiments.

1015 ™ T T
+ X X PK/Dk
* N
* +  Ratio
X
1010k * ]
105 - * 1
x
+ot * X X x%‘*xix XX xi X X X, X Fokk
* +x X X X ¥
= *ﬁﬁ‘zﬁi i T R ﬁﬁﬁ* e ﬁ G
1 00 L L L L L L L
0 10 20 30 40 50 60 70 80

Fig.5 Relative-absolute ratio of backward errors using D, (A; P) and bound when P is well scaled
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In conclusion, we cannot guarantee that the eigenpairs associated with eigen-
values of small modulus of a matrix polynomial can be computed accurately
from D,(A; P), specially when P(A) is not well scaled. Similar conclusions can
be obtained for eigenvalues of large modulus when the linearization D,(A; P) is
used.

We also want to point out that, when D, (A; P) (resp. D,(A; P)) does not com-
pute eigenpairs associated with small (resp. large) modulus eigenvalues accu-
rately, D,(A; P) (resp. D,(A; P)), in general, does not either, as we show next. In
Figs. 6 and 7 we present two examples in which the ratio of backward errors is
plotted when D, (A; P) is used as a linearization of a matrix polynomial P(A) (blue
graph) and when D,(A; P) is used as a linearization of P(A) (red graph). In both
cases, there are eigenvalues that are not accurately computed by neither D, (A; P)
nor by D.(A; P). In Fig. 6, the eigenvalues of small modulus are not accurately
computed while in Fig. 7, the eigenvalues of large modulus are not accurately
computed.

For Fig. 6, we constructed a matrix polynomial using the same strategy as in
the first experiment but using the coefficients:

Ay = lel * (randn(n) + sqrt(—1) * randn(n));
A, = 1le2 x (randn(n) + sqrt(—1) * randn(n));
A, = le — 1 * (randn(n) + sqrt(—1) * randn(n)); “4.9)
A; = 1e8 * (randn(n) + sqrt(—1) * randn(n));
A, = lel % (randn(n) + sqrt(—1) * randn(n));

10™4 % T

wx X PK/Dk
X x|+ P1D1

102k XXX 1
Xyex
XX
x
XX

1010k x 4

XXX, Xye XXX X X XXy %

8 L7 XXX XXX X x X
10 X x Xy X
X x

Xx

XXX K X 1

X
XX XXXy

Fr
6L T ~
10 e 4+
F +
O Rl et b
+

s
Lt
o
10% E
100k + L
10-2 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80

Fig.6 Relative-absolute ratio of backward errors using D, and D, and small eigenvalues cannot be accu-
rately computed
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Fig.7 Relative-absolute ratio of backward errors using D, and D, and large eigenvalues cannot be accu-

rately computed

For Fig. 7, we used the coefficients

Ay = lel * (randn(n) + sqrt(—1) * randn(n));

A, =1lell * (randn(n) + sqrt(—1) * randn(n));
A, = 1el8 * (randn(n) + sqrt(—1) * randn(n));
A; = 1el10 * (randn(n) + sqrt(—1) * randn(n));
A, = 1el2 % (randn(n) + sqrt(—1) * randn(n));

(4.10)

We have not observed such pathological behavior from the alternative lineari-
zations that we propose in this work. As an illustration, we show in Figs. 8 and 9
the relative-absolute backward error ratios for the linearizations D,(A; P), D,(A; P)
and the linearizations that we denote for now as DH and DG but we formally
introduce in (5.7) and (5.9), with S = A,. The two experiments are the same as
those presented in Figs. 6 and 7 but adding now the ratios for DH and DG. Note
that the combined use of the linearizations DH and DG allow to compute all

eigenpairs accurately.

5 Using 7,(\) for even-degree matrix polynomials.

A well-known block-symmetric strong linearization for odd degree matrix poly-
nomials P(A) as in (1.1) is the pencil
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Fig.9 Relative-absolute ratio of backward errors using D, D, DH and DG
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-1, 0 A,
M, My, +As —1,
M) = -1, 0 RENERY)
0 A,
M, M| + A, |

introduced in [2]. The missing blocks in this matrix and in any other matrices in
the sequel, as usual, represent zero blocks. The pencil T;,(?\) was proven to enjoy
excellent numerical properties in terms of conditioning of eigenvalues and backward
errors in [4]. Our goal in this paper is to find structured linearizations of even-degree
matrix polynomials and, unfortunately, this pencil cannot be used as a linearization
of such matrix polynomials since its structure requires odd degree.

One possible strategy to construct a (symmetric or Hermitian) strong lineariza-
tion of an even-degree (symmetric or Hermitian) matrix polynomial and, at the same
time, try to take advantage of the good numerical properties of T}‘, is to transform our
matrix polynomial of even degree k into an odd grade matrix polynomial by adding
the term O - M¥*1, that is, to consider the matrix polynomial

PO =0 404, + o + M4, + A,
By applying the linearization (5.1) to f’(?»), we obtain the pencil

_Ak _In

-1, 0 A

n

M, M, +A4,, —1

n

Hp(W) 1= T () =

-1, 0 :

0

M

(5.2)

n

| M, M| + A, |
which is a strong linearization of the matrix polynomial P(A) when seen as a poly-
nomial of grade k + 1. We must observe though that the linearization (5.2) has n
eigenvalues at infinity that were not present in the original polynomial eigenvalue
problem. Therefore, before we try to compute the eigenvalues of P(A) from ’Z’;“(k),
it is necessary to deflate the n extra eigenvalues at infinitiy. In the following section,
we show how the deflation can be done.

5.1 Deflating the spurious eigenvalues of H,(\)
Next we show how to deflate the n spurious eigenvalues at infinity of Hp(A), assum-

ing that A, is nonsingular and symmetric/Hermitian. In Sect. 5.2 we present an alter-
native to Hp(A) when A, is singular but A is not.
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In order to deflate the n spurious eigenvalues of Hp(A) while preserving the sym-
metric or Hermitian structure, we need to find a nonsingular matrix U such that

U*HP(X)U=[H'(M 0 ]

0 H,M)

where H; () is a pencil whose eigenvalues are exactly the n extra eigenvalues at
infinity, (recall that, for any matrix A, A* denotes the conjugate transpose of A). Note
that, since Hp(A) and U*Hp(A)U are strictly equivalent, both matrices have the same
eigenvalues. Thus, H,()A) is a pencil with the same eigenvalues as P(A). Moreover,
since Hp(A) and U*H p(M)U are congruent, one of these pencils is symmetric (resp.
Hermitian) if and only if the other is.

As we will show, in order to construct the nonsingular matrix U, we only need to
find a matrix whose columns form a basis for the nullspace of

M=[A, —1,].

Notice that dim(null(M)) = n because M has full row rank. Obvious choices for
matrices whose columns span the nullspace of M are

I, A
Al o Ik (5.3)
Another alternative for constructing a basis for the nullspace of M is via a rank

revealing factorization of M (via the QR factorization with column pivoting or the
SVD, for example).

As Z\n is a matrix whose columns span the nullspace of M (see (5.3)), each 2n X n
k

matrix V = [T

S] whose columns span the nullspace of M has the form

i)o=1i%)

where Z is an n X n singular matrix. This shows that, for each V, the matrices T and
S are nonsingular.

Hence, the following pencil is strictly equivalent and congruent to H ,(A), and there-
fore, has the same eigenvalues as H p(A):

(5.4)

Moreover, since A,7 —S=0 and T*A, —S* =0, the pencil in (5.4) can be
expressed as
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Ak
—SATS S
AT My + A, —1,
-1, 0 (5.5)
0 A,
M, M, +4, |

We note that the pencil A, =0 - A+ A, has exactly n eigenvalues at infinity since
rev;(4;) = A;A + 0 has n zero eigenvalues. Conclusively, the deflation of the spuri-
ous eigenvalues at infinity produces the pencil

[—s*ACls s
AS M AL —,
Hy ) 1= ~h 0 , (5.6)
0 A,
M, M| + A,

for any nonsingular matrix S.

Remark 5.1 When any of the matrices in (5.3) are employed in the deflation proce-
dure (i.e. when we choose T'=1, and § = A, or when we choose T =A]:1 and

S=1), the corres[yonding pencil H,SJ has already appeared in the literature. More
I

precisely, for V = A" , we get

k
—Ay My
My M+ A, 1,

, -1, 0

My = : (5.7)
0 M,
M, M, + A,

which is a permuted version of the extended block Kronecker pencil 5;3 (M) in [5,

—17
Sect. 4.4]. ForV = [Alk , we get
n |
-A7! M,
I, -1, 0
Ha() = :
0 M,
M, M+ Ay

which was originally introduced in [2].
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Remark 5.2 When V is chosen so that its columns are an orthonormal basis for the
nullspace of [Ak - ] we refer to the resulting matrix S as S;,y. The reason for this is
that our structured deflation procedure coincides with the structured deflation proce-
dure proposed by Mehrmann and Xu [18] when their method is applied to the pencil
Hp(A). See Appendix A for more details.

Theorem 5.1 Let P()\) be an even-degree regular matrix polynomial as in (1.1) with
nonsingular A, and let S be a nonsingular matrix. Then, the pencil HS »(M) as in (5.6)
is a strong linearization of P(M).

Proof First, we note that the pencil HA » () is permutationally equivalent to the pen-
cil EP (A) defined in [5, Sect. 4.4]. More precisely, there exists a block permutation
matrlx

, := H(1,2,§+2,3,§+3,...,g,k,§+1)

such that H’ » W) =11, EP MII7. B Since the pencil 5 () is a strong hneanzatlon of
PV if A, is nonsmgular (see [5 Theorem 4.15]), we deduce that H » (M) is a strong
linearization of P(A) as well. Second, observe that

S*A7L 0 A A7lS 0
) 0 Ly r®M Ly

Since both A, and S are nonsingular, this is an equivalence transformation. Thus, the
pencil Hi()\) is a strong linearization of P(M). O

Theorem 5.2 establishes two right-sided factorizations of the linearization
HISDO»). These factorizations will be key for studying the numerical properties
(conditioning and backward errors) of this pencil.

Theorem 5.2 Let P(\) be an even degree matrix polynomial as in (1.1), let S be an
n X n nonsingular matrix, let Hf,(?») be as in (5.6), and let P;(\) and P'(A),i =0 : k,
be the matrix polynomials defined in (2.2) and (2.4). Define the kn X n matrix
polynomials

(225714, | (215714, ]

AT I,

it n —Pk_3(7\)
A2 Py(M) Ak-3]

AQ) = 2 and 4,0 :=|_yp-sy |- (5.8)
7\'2Pk—4(}\') .
My AT PO

}\Pk—Z(}\) nkfz ( )

A | A2, |

Then, the following right-sided factorizations hold
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Hy(WA (W) = e, ® P(L) and HI WA, = e; @ P(V),

where e; denotes the ith column of the k X k identity matrix.

Proof For simplicity, we omit the dependence on A in the Horner polynomials P;(\)
and P'()A). Let Hf,O\) =: MH, — H,. A direct computation shows that

R i Ais* ]
= —A\2
K%Ak + }\¥Ak—1 k=2 k=2 k-2
s AT A, —NT P AT
}\Tln k4 k=4 "
A =3 2p 4354, | 24 HohW) = A Ak_4:—x P,
: -,
I, 4,
AP o +A - i

It is clear that the first claim follows for the block entries of Hf,(?x)Al(?\) in odd posi-
tions. In order to prove that the claim also follows for the block entries in even posi-
tions, we notice that, fori = 0,2, ...,k —2,

k=i=2

MATP AN T A 1+ A T Ay =N 5 Pyl =
A7 AP, + A1+ A [Ami = Piyol =

;\?PHl FAT (A, - Pl =

APy + Ay — Prya] = 0,

where the second and fourth equalities follow from AP, +A,_; |, =P,
i=0: k-1 Recall that A, = P,. Moreover, for the kth block-entry of Hf,Al we
have

MAP, _, +A)) + Ay = AP, +A, = P, = P()).

which proves the first claim. The second claims can be proven similarly. O

Theorem 5.3 provides explicit formulas for the eigenvectors of the pencil
HIS,O\) in terms of the eigenvectors of the matrix polynomial P(A). Its proof is
similar to the proof of [4, Theorem 4.1], so we omit it.

Theorem 5.3 Let P(\) be a regular matrix polynomial of even degree k as in (1.1)
whose leading coefficient A, is nonsingular, and let S be a nonsingular n X n matrix.
Let )\ be a finite eigenvalue of P(M). Then, v is a right eigenvector of Hf,(?») with
eigenvalue A if and only if v = A,(\y)x, for some right eigenvector x of P(\) with
eigenvalue M.
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5.2 The case when A, is singular but A, is not

In Sect. 5.1, we assumed in all our discussions that the leading coefficient A, of
P()\) was nonsingular. In this section we consider the case in which A is nonsin-
gular. The case when both A, and A, are singular is an open question.

As an alternative to the linearization Hf,(?\) in (5.6), we can consider the pencil
Gy(\) :=revHS (M), which takes the form

revP
[—As*A;ls s |
S M,+4, —M,
-M, 0
Gp() = o (5.9)
0o I,
I, Mg+ A |

Theorem 5.4 Let P()\) be an even-degree matrix polynomial as in (1.1) with nonsin-
gular matrix coefficient A, and let S be a nonsingular matrix. Then, the pencil Q}i(?»)
as in (5.9) is a strong linearization of P(\).

Proof Noticing that the pencil Qf,(}») when S = A, is permutationally equivalent
to the pencil 5113 (M) defined in [5, Sect. 4.3], the proof is identical to that of Theo-
rem 5.1. O

The following lemma is easy to prove. Note that the claim follows from the
definition of gf,(x) and the definition of reversal of a matrix polynomial.

Lemma 5.1 Let P(\) be an even degree regular matrix polynomial as in (1.1) with
nonsingular A. Let S be a nonsingular matrix. If A, is a nonzero eigenvalue of P(\),
then the vectors z and w are, respectively, right and left eigenvectors of Qf,(}») associ-
ated with ) if and only if z and w are, respectively, right and left eigenvectors of
erv »(M) associated with t

6 Eigenvalue condition numbers ratio bounds

In this section, we compare the eigenvalue condition numbers of a matrix poly-
nomial P(A) and its linearization Hf,(?») for different nonsingular matrices S. The
comparison is done by providing upper and lower bounds on the ratios of the two
condition numbers. In all our results, we assume that the leading coefficient A, of
P(}) is nonsingular as this condition guarantees that Hf,(}») is a strong lineariza-
tion of P(A). We also assume that P(A) is symmetric/Hermitian, although many of
our results don’t require this assumption, for simplicity.
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Theorem 6.1 will allow us to address the case when A, is singular but A, is
nonsingular, by translating all the results obtained for HS(X) to QS(K) just by
replacing P(A) by revP(A) and A, by —

Theorem 6.1 [4, Lemmas 2.1 and 2.2] Let P(\) be an even degree regular matrix
polynomial as in (1.1) and let A, be a finite, nonzero, and simple eigenvalue of P()).
Assume that A is nonsingular. Then,

Kra(}"o; gi) = Kra< ervP) and Krr(}\o; gf’) = Ky < ervP)

Moreover, if (2, )»0) is an approximate right eigenpair of QIS,O\) then Z, = ) is an
approximate eigenpair of 'HS pM) and

nraC }\O’ g ) - '7rc1(~’7M ’ ervp and ’7”@7\0? gi) = nrrC’X s ervp
0 0

In what follows we will use the following notation

¢ :=max{L, [IS|l,. IS*A ' SII, ). 6.1)
p, 1= ¢ max{1,[|ST'A,]13}, (6.2)
Hp 2= ¢ min{1,[|A;'S]5%},  and (6.3)
e 1= ¢ max{1, max{[|57"A;[13}}. (6.4)

Next we include the main result of this section. Its proof will be presented in Sect. 8
since it is very involved.

Theorem 6.2 (Relative-absolute conditioning bounds) Let P(\) be a regular n X n
symmetric/Hermitian matrix polynomial of even degree k as in (1.1) with nonsin-

gular A, and max,_y..{||A;|l,} = 1. Assume that A is a simple, finite, and nonzero
eigenvalue of P(\). Let S be an n X n nonsingular matrix and let Hf,(?») be as in (5.6).

@) Iflrg] £ 1, then

S
C Kra(}\’O;HP) 3
5 S e Sk
= {Mb 2 } Kra(}‘O;P) Ha

Moreover, if || is close to 0, then
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Ky (g H

2= Tk 0qp) B

(i) IfIhy| > 1, then

%ol ¢ Kra (o3 Hp) (3 243
1+ ) < <4 — A, — ;
max {( K+ 1)1 20y O Py = rmin g Tl holue: perme

where the constants {, u,, u, and u_ have been defined in (6.1)—(6.4).

We note that, for Hf,(?\) to be a “good” linearization of P(A) in terms of condition-
ing, we would like the upper bounds on the ratios of condition numbers provided
in Theorem 6.2 to be “small”. This will happen if u, and u. are “small”. Notice
that these constants depend on our selection of the matrix S. Next we consider the
particular cases S = A, S = [, and S = Sy, where S,y is the matrix from the Mehr-
mann-Xu deflation process discussed in Remark 5.2. As in Theorem 6.2, the factor
k3 in the upper bounds for the ratios of condition numbers can be replaced by k when
|A|1s close to zero.

Theorem 6.3 Let P(\) be a regular n X n symmetric/Hermitian matrix polynomial of
even degree k as in (1.1) with nonsingular A, and max;_,.,{||A;|l,} = 1. Assume that
A is a simple, finite, and nonzero eigenvalue of P()).

(1) IfS=A,, then

1 if|x0|gl} Kra(hos H3) {k3 if Ao <1

Dol - S———F-<14 4 .
1+ Bl ) > 1 k(g3 P) 2ol i (2] > 1.

(i) IfS=1, then

max{L[IA7"]1,)

max(LjIA{'11,)
20

8]{3 max {

if [Ag] <1 . Kra(hos H3) < {k3 max{1, [|A;"]l,} if A <1
Ihol

, <——< LA 1) .
if [Ag| > 1 Kea(hos P) —_— if [Ao| > 1.

(i) IfS = Sy, then

1 if|x0|s1}<,<m(x0;ﬂf,) {2k3 if o] < 1

L2t gl > 1 f = T 00 P) L SRRl i 1] > 1.

k+1

Proof Observe that yu,=pu,=1 when S=A4, since |[4],<1 and
¢ =mp, =p, =max{l, ||A;1||2} when § = [,,. Then, when § = A, or § = [, the lower
and upper bounds follow immediately from Theorem 6.2.
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Next, we obtain the bounds when S = S,,y. Recall that this matrix is obtained
from an orthonormal basis for the nullspace of M = [Ak —In]. LetV = ST be one
MX
such basis. From MV = 0, we obtain A, T = S;,x. Since A, is nonsingular, we have
A7'Syx = T. Hence,

ty, = max {1, Syl 1S5, Tll, } min{1, || T]1;%}.

Since V has orthonormal columns, we have |||, < 1,{[Syxll, < 1, and|[S},, Tll, < 1.
This readily implies y;, = 1. Then, observe that

In 2\—-1/2
W= [Ak] U, + A2, (6.5)
where (I, +Ai)1/ 2 denotes the unique positive definite square root of I, + A2,

is another orthonormal basis for the nullspace of M = [Ak —I,,]. Thus,

V = WU, for some n X n unitary matrix U. Hence, T = (I, +Ai)‘1/2U and, so,
T~! = U*(I, + A2)!/2. Finally, notice

_ 1/2
1Tl = I, + ADIY? < V2max{1, [14.]l,} = V2,
which implies
sy = max{ 1, [1Syllos 1S5 Tllod max{1, | 77112} < 2.

Conclusively, if S = Sy, then u, <2 and u, = 1, and, thus, the bounds readily fol-
low from Theorem 6.2. O

Remark 6.1 From the previous theorem, we conclude that, from the relative-absolute
condition number point of view, Hff and Hf,"“ are comparable and have an optimal
behavior for matrix polynomials P(A) with “small” degree and for eigenvalues A
with “small” modulus.

The optimality in this context means that the sensitivity of A, as an eigenvalue of
P is approximately the same as the sensitivity of A, as an eigenvalue of Hf,.

Note that the lower bounds for these two linearizations show that if |Ay| > 1, then
neither of the two linearizations will be a good choice.

If A, is a matrix whose absolute condition number ||A,:1 I, is “small”, then H;” has
optimal condition number regardless of the modulus of A, for moderate k. Nonethe-
less, every eigenvalue of P(A) satisfies

k-1

ol < T+ A D A, < 1+ KA L,
i=0

see [13, Lemma 2.2]. Hence, if ||A]:1 I, is moderate, then P(A) does not have eigen-

values with large modulus and, so, H/;" and HISJMX also have optimal condition num-
bers for all eigenvalues of P(}).
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Now, using Theorem 6.1, we can also conclude that, when A, is nonsingular, g’?f
and gf,MX are comparable and have an optimal behavior for matrix polynomials P(A)
with “small” degree and for eigenvalues with “large” modulus. Thus, if P(A) is a
matrix polynomial with A, and A, nonsingular, in order to compute all the eigen-
values accurately, the use of two linearizations ( Hff and g‘;;k, for example) would be
necessary. This strategy is similar to the one used in the literature with the lineariza-
tions D, (A; P) and D, (A; P) given in (4.1) and (4.2), respectively. We note that the
linearizations DH and DG used in the numerical experiments in Sect. 4 are precisely
the linearizations H/:,k and gﬁk, respectively, discussed here.

Remark 6.2 So far we have shown that the combined used of Hf,k and gf,k ensures
optimal eigenvalue conditioning for eigenvalues of any modulus. But the same holds
for D, (A; P) and D, (A; P). So, what is the advantage of using these two linearizations
compared to D, (A; P) and D,(A; P)? In Remark 3.2 we argued that one of the possi-
ble reasons why the eigenvectors of D,(A; P) and D, (A; P) are so sensitive to changes
in the coefficients of these two pencils is the fact that both linearizations tend to have
very ill-conditioned eigenvalues. In Remark 4.1 we showed that this is due to the
fact that the condition number of the eigenvalues A, with large (resp. small) modulus
of D, (\; P) (resp. D,(A; P)) is bounded below by the product of the corresponding
condition number when 2, is seen as an eigenvalue of P(1) and |Aq|*~! (resp. |Ay|' 7).
Theorems 6.3 and 6.1 show, however, that the condition number of the eigenvalues
A with large (resp. small) modulus of Hﬁk (resp. gﬁk) is bounded above by a multiple
of the product of the corresponding condition number when A is seen as an eigen-
value of P and |A| (resp. |Ay|~!). Thus, if the eigenvalue is well-conditioned in P(}.),
its condition number in the linearization is not much worse as long as |A,| is mod-
erate. This might be the reason for the good behavior of the backward error ratios
when Hff and g;\f were used in the numerical experiments showed in Sect. 4.

The next theorem provides bounds for the relative-relative condition numbers
ratio. Its proof will also be presented in Sect. 8. We note that, when finding the
bounds presented in this theorem, our main goal was to obtain bounds as sharp as
possible. For less tight but easier to interpret bounds, see Remark 6.3.

Theorem 6.4 (Relative-relative conditioning bounds) Let P(\) be a regular n X n
symmetric/Hermitian matrix polynomial of even degree k as in (1.1) with nonsin-
gular A, and max,_y..{||A;|l,} = 1. Assume that A is a simple, finite, and nonzero
eigenvalue of P(\). Let S be an n X n nonsingular matrix and let Hf,(?») be as in (5.2).

(i) IfIrl < 1, then

max(LISAT'SI) koG M) W,
(k+ Dmax ([l 1A}~ e (h:P) ~ max{ [ A1)
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(i) IflAgl > 1, then

Ihol* max {1, IISllz}maX{|k0| 1A S1? ’w}
(k+ 1y max{[A['lI4; 1}

. Kk+K3)p,
5y 2ol min {2l £ |
L

Krr(}\O; H 2ol

K3 P) — lrg(gg)]i{lkolillAillz}

s

where the constants {, yu,, y, and u_ are as in (6.1)—(6.4).

As with Theorem 6.2, the upper bounds presented in the previous theorem depend
on y, and u.. However, in this case, the bounds also depend on the norm of each mono-
mial of the polynomial P()). Corollary 6.1 interprets these bounds in the cases when
S=A,S=1,and S = Syy.

Corollary 6.1 Let P(\) be a regular n X n symmetric/Hermitian matrix polynomial of
even degree k as in (1.1) with nonsingular A, and max;_,.,{||A;|l,} = 1. Assume that
Ao is a simple, finite, and nonzero eigenvalue of P()).

(1) IfS =A, then

1 .
. if [Ay] <1
(e 1y max,_g (Ao 1A, ) ol < .
Iy !

. if |, 1
D man oty o ol >
.S N SR
Ker (o Hp) s g g A2 i1l <1
K (hos P) T el if 2| > 1.

max_o: ¢ { Aol'll4; 12}

(i) IfS=1, then
max{1,IA;"Il,} .
- if [A] <1

(e Dy max gy { R l14 11} Mol <

[Ao "™ :
. if [Ag] > 1
(k+Dymax,_g. { 2ol 14,1} %l

2 max(LIAC )
A k 2 <
Keoi o) _ | v I L] ifl <1

% }\,P = 263 | Ao |~ maxl||A "Ly o
(o P) max ool L ol > 1.
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(iii) IfS = Sy, then

1 .
_ if A] < 1
(e Dy max, g4 { R l14 11} ol < <
Iy [** =

- if |Ag| > 1
(k1) max;_g. i { 2o lF114; 1} %ol
.S o
K”(}\O’HP) maxy:0:§{|7\0,!i|!Ai||2] if |}L0| =1
—_ 3 +
Kpe (ho3 P) — P a | > 1.

max;_o. . {1201 ll4; 12}

Proof Recall from the proof of Theorem 6.3 that u, =y, =1 when §=A4,,
Uy = M. = max{l, ||A]:1||2} when S=17, and p,<2, ||A]:1S||2 <1 and
||S*A,:1S||2 <1 when S =S,,y. All the bounds, then, readily follow from Theo-
rem 6.4. O

Remark 6.3 In order to give an easy interpretation of the upper bounds obtained in
Corollary 6.1, we use the following fact

| 1t <1
k i 0
max{[|Aglly, [l 1All2} < {2&7}(“7\& 1A 11,3 < { Mol if Aol > 1.

Then, from Corollary 6.1, we get the following simpler bounds for the relative-rela-
tive condition numbers ratio.
If S = A, then

_1 : S 23 . <

T if [l <1 } Kl M) I if [o] <1
0 1 . - .

e Flrol > 1 Ky (hg3 P) T i gl > 1.

IfS =1, then

2k max{L,[1A; ' 1I,)

max{LJIA{ ) . s , B
l(kH; s < Gl ) <3 ”?(I]HIIZA*III } Hals]
— i = k.0 P) T max{LlIA7 .}
G (el > ie(oi F) poiad, Lol > 1.
If‘S = SMX’ then
1 .S 453 . <
T if ] <1 } B K (g H3) § _ﬂfﬂ”ﬁ if 2] < 1
0 1 - . - .
ol > 1 K (hg3 P) T i gl > 1.

These bounds are less tight than those in Corollary 6.1 but easier to inter-
pret. From these bounds we conclude that H?," and Hfj‘“ have also a compara-
ble behavior in terms of relative-relative conditioning. The behavior is optimal
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if |Ag] < 1, k is moderate and ||Ay||, = 1 (recall that we have scaled P(A) so that
max,;_o..{|14;|l,} = D); or if |Ay| > 1is moderate, k is moderate, and ||A.||, ~ 1. The
lower bounds for these two linearizations show that if |Ay| > 1, then neither of the
two linearizations will be a good choice. In this case, Hf; could potentially be a good
choice if both ||A; ||, and ||A_1 |l, have approximately the same norm. But in this case,
as we argued in Remark 6.1, P(A) does not have eigenvalues with large modulus and,
thus, 'HAk HSMX and H are all optimally conditioned.

A comment regardlng gs similar to that in Remark 6.1 is appropriate here as well.

7 Backward errors ratio bounds

In this section, we compare the backward errors of approximate eigenpairs of
a matrix polynomial P(A) and its linearization Hi(k) for different nonsingular
matrices S. The comparison is done by providing upper bounds on the ratio of the
two backward errors. In all our results, we assume that the leading coefficient A,
of P(\) is nonsingular as this condition guarantees that Hi()») is a strong lineari-
zation of P()).

Theorem 6.1 allows us to address the case when A, is singular but A is nonsin-
gular, by translating all the results obtained for HS (M) to QS(?\) just by replacing
P(\) by revP()) and A, by —

The proof of Theorem 7 1 is omitted because it is very involved but similar to
the proof of Theorems 6.2 and 6.4. It is also similar to the proof of Theorem 5.2
in [4]. The block-vector 4,(\) defined in Theorem 5.2 would be necessary in this
case.

Theorem 7.1 (Backward error bounds) Let P(\) be a regular n X n symmetric/
Hermitian matrix polynomial of even degree k as in (1.1) with nonsingular A, and
max;_g.¢ { [|14; ||2} = 1. Let S be an n X n nonsingular matrix and let HS(?») be as in

(5.6). Let (Z, }»0) be an approximate right eigenpair of H> »(M), and define the vector

z:z{(ekczun)z ?f Aol <1, and oD
(e, ® 1)z if |Ag] > 1.
Then,
\ ,7x ;P
IO o2 a1 157 A L2,
Mo G D3 HS) 1%l
and
i P 1, A ¥ 7
—nrr()i 0 3 <43 ¢ max(1, |ST'ALL ) maxt ~| (,)l } ”i”z,
e (2 ho3 Hp) max,_o.i { Aol 1411} X112

@ Springer



On why using DL (P) for the symmetric polynomial eigenvalue prob... Page330f46 48

where { is as in (6.1).

The following result follows from Theorem 7.1 and the fact that ||S,y|l,,
1S3 Ax 18,xll, < 1and ||S Al = \/5 as shown in the proof of Theorem 6.3.

Corollary 7.1 Let P(A) be a regular n X n symmetric/Hermitian matrix polynomial of
even degree k as in (1.1) with nonsingular A, and max,_y..{||A;|l,} = 1. Let Z, %)
be an approximate right eigenpair of Hf,(?\), and let X be as in (7.1). Then

5 ~ 2172 ifS§=S8
,}\ ;P . MX>
Lﬂgz&ﬂ”ﬁix 1 if S =A,,
M@ o3 H) Xl maxq1, sty it s =1,
and
1, xo,P> o maxtL ko)l
1@ s H max ;. Nl 14,11} ¥l
2172 if S = Sy
1 if S = A,

max {1, IA; I} if S =1,

Remark 7.1 From the previous theorem we, conclude that, from the relative-absolute
backward error point of view, H and H, Sux are comparable and have an optimal

behavior for matrix polynomials P(A) with “small” degree and for eigenvalues A
with “small” modulus, as happened with the eigenvalue condition number.

The optimality in this context means that the backward error of approximate
eigenpairs (7»0,7() of P is not much worse than the backward error of approximate

eigenpairs (7\0,N) of HS when X is recovered from 7 as explained in Corollary 7.1.

Moreover, if A, (with |Ay] < 1) is an exact eigenvalue of HS »(M) with correspond-
ing right eigenvector z, then according to Theorem 5.3,z = A4 (Xo)x for some eigen-
vector x of P(A). Because of the structure of 4,(A), we have that x = (e, ® I,)z. This
implies, as we will show in (8.16), that

A\ 3\ 1/2
”ZHZ ” 1( O)x”2 S <k_> maX{1,||S_1Ak”2}-

llxl2 llxll2

2
Thus, for S € {A;.1,,S)yx} and |A;| < 1, we have

llzlla

<K/,
%Il

So, if the computed eigenvector 7 has the same structure as the exact eigenvector z,
Ay (B M )

= 1s moderate for moderate values of k, for
MralZ 0

we know that the upper bound for 2=+
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eigenvalues |7»0| < 1land for S € {A;,Syx}. Although we cannot guarantee that this
is the case, in all our numerical experiments this seems to be the case, in stark con-
trast with what happened with D;(A; P) and D,(A; P). Recall our comments in
Remark 6.2 for a possible explanation.

As with the eigenvalue condition number, in order to guarantee small backward
errors for |Ay| > 1, it is necessary to assume that A, is also nonsingular and use the

. .. ) S
linearization g‘;* orGg PMX.

8 Proof of the eigenvalue condition bounds
The next lemma is the key result that leads to the proofs of Theorems 6.2 and 6.4.

Lemma 8.1 Let P(A) be a regular n X n symmetric/Hermitian matrix polynomial of
even degree k as in (1.1). Assume that A, is a simple, finite, and nonzero eigenvalue
of P(\) with corresponding right eigenvector x. Let S be an n X n nonsingular matrix
and let Hy(\) =: AH,; — H,. Then,
(Il + Dymax{ I}, o, IHo I} 14; hg)xl13
Aol - 1x* P’ (ho)x]|

(NHIH lly + I Ho [N Ay g)xI13

Aol - ox* P! (hg)x] '

Kra(hos H3) =

Kyr (}\‘0; Hi) =

where A\ (\) is as in (5.8).

Proof By Theorem 5.3, the vector 4,(A,)x is a right eigenvector of Hf,(?») with

eigenvalue . Since P()A) is symmetric, so is HISJ(X). Hence, 4;(Ay)x is also a left

eigenvector of Hf,(?») with eigenvalue Aj. By Theorem 5.2, we have the following
right-sided factorization

HyMA, (M) = ¢, ® P(M).
Differentiating this expression with respect to A, we get
HE W A, (W) + Hy WA (D) = ¢, ® P'(V.

Now, we evaluate this expression at A, and multiply it by x on the right and by
(4,(Ay)x)* on the left. We get

(Al(?\o)x)*Hi(%o)’Al(%O)x = (4;(M)x)* (e, ® P'(Ay))x = x*P'(My)x,

and the results readily follow from the eigenvalue condition number formulas in
Theorem 3.1. O

Next we bound the norm of the matrix coefficients of the linearization ’Hf,(?») in

terms of the norms of the matrix coefficients of the matrix polynomial P(A) and the
marix S.
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Lemma 8.2 Let P(\) be an n X n symmetric/Hermitian matrix polynomial of even
degree k as in (1.1) with max{||4;|l,} = 1, let S be an n X n nonsingular matrix and
let H3(M) =: MM, — H,. Then,

IH,1l; < 2max{1, [IS|l,},
Holl, < 2max{1, IS*A "SIl )

Proof When k = 2, we have
Sy —S*Az‘lS AS* _, [0S S*AEIS 0
Hp) = AS M, +A, =M S A 0 A’

and the result thus follows from Proposition 2.1.

T .. .
Next, assume k > 4. Let z = [le zl] be a nonzero vector partitioned into k

blocks of size n X 1. Then, defining z, := 0, we have

k k=2
2 2
2 2 2 2 2
IH,23 = 1S° 203 + 152 + A 203+ D il + X 2o + Agoaii 2o 13-
i=2 i=1

Using the triangle inequality, we get
IH 205 < WSIG Iz 15+CUS I Nz 1l + 1A 121122 115)°+
k —2

: o2
2 2
Dzl + DNzl + 1Ag it N1z l12)%

2
i=2 i=1

Finally, some simple inequalities and manipulations yield

k

2
2 2 2
I1H,2113 <max{1, [ISI3}| D llzsill3+
i=1

k=2 k=2 k=2
2 2 2
2 2
lzaii 13 + D Mzisall3 +2 D i lallzziaa
i=0 i=0 i=0

k=2

k 2
< max{L, ISI3} 2 D) lz;l3+ 2 ) max{ 2y I3, a3}
i=1 i=0
2 2
< 4max{L, [ISII5}IzIl5,
which implies the result for H,. The result for H,, can be obtained similarly. O
We now need to prove some technical lemmas.
Lemma 8.3 Let P(\) be an n X n symmetric/Hermitian matrix polynomial of even

degree k as in (1.1) with max{||A;||,} = 1, let S be an n X n nonsingular matrix, and
let A\(\) be as in (5.8). Define the following three functions
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‘E( % k—2r
A=Y I+ Y I he—2r+ 1) Y MY, (8.1)
r=0 r=1 j=0
d,(\) = Z IA]> + Z(Zr) Z A%, and (8.2)

i=—r

dy(\) = Z A2+ Z(Zr) Z A2 (8.3)

i=—r

Then, the following inequality holds
14;W)ll; < Ve, ) max{1, IS Al } 8.4

Sfor any M € C. Moreover, if A is a finite eigenvalue of P(\) with corresponding right
eigenvector x, then the following inequalities hold

A, (A
114, Go)xly lu(xﬁzx”z < min{ /@, ), V/dy(hg)} max{ L, IS~ Al (8.5)
—”A‘”(iﬁ)x”z < V&) max{ L max(I~'A,l ). (8.6)
) i=0:

Proof Let x be an arbitrary nonzero vector conformable with 4,(\) for multiplica-
tion. From (5.8), together with the first inequality in Lemma 2.3, we get

k=2 2 k—2
14, )xll3 = IMFIIS Agxll3 + Z IV lxll3 + Z I P, 13
r=0 r=1
k=2
2
< IFISTAB I + ) I 3+
r=0

-2

> k=2r 2
I?»I2’{p(§{>]§{IIAiII§}<Z w) 12 8.7)
=1 e Jj=0

k2

< max{l, IS l1“k||2,11flax{||A 153 I+ Z M7+
r=0

k=2r 2
>»|2’<Z w) Ix[13-

i MNF

Using Lemma 2.1, we obtain
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k
2
14, G5 < max {1, 157 A, I3 max (14;[151)] Y 1M/ +

r=0
k=2
E3 k=2r
DM e =2r+ 1) ) M I3,
r=1 Jj=0

Thus, we have found the upper bound

14, (M)x]l,
[l

which does not depend on x. Since ||4;(M)[|, = max

< Vd, () max(1, 1S AL, max{l|A; 115},

140 - his is also an upper

lIxl2
bound for || 4, (M)]|,, which establishes the inequality (8.4).
Now let us consider an eigenvalue A, of P(A) with corresponding right eigenvec-
tor x. The computations above give

||A1(7\0)x||2
[l

Furthermore, by (8.7) and Lemma 2.2, we also have

< Vdy (o) max{1, | A, |13, max{ |4, 13} }.

k=2 =2
R
sz Sl}\fOIkHS lAk”% + Z |}\‘0|2r + Z |}\‘0| 2r||P2r 1(}\’0)”3 (88)
2 r=0 r=1

From Lemma 2.1 and the second inequality in Lemma 2.3, we thus obtain

k=2
114, )12 . <
———2 <M USTIAIR + D 2l +
IxI13 =
2r-1 2
max {[IA,] }2 I 2’(2 Il )
e 2 r—1
< Pol“IS™' AL + Z ol + max{ 14,113} er D ol
r=1 i=—r

< dy(hg) max{L, ||S~ ‘Akllz,g@{ A1)}

This establishes inequality (8.5).
We now prove inequality (8.6). Recall A, = P,()). Hence, from (8.7) and Lemma
2.2, we get

k=2 k=2
2 2

114, o)xll3 < 1ol KIS P )xll3 + D o 711Xl + D 1o P~ )3
r=0 r=1
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Using the second inequality in Lemma 2.3, we get

114, (o)xll3
[lx113

k-1 2
2 14 112 —k j
_maX{l,lIil&?li{||Ai||2},g1(§ﬂl:7li{{||5 A IS HH ol (Zzo |7\o|j>

k=2
2

hol” + 2 ol 2f<2r21 A |>

Using Lemma 2.1, we finally obtain

~
|1
N}

114, (o)xll3

1 A, 2 _lA. 2 by 2r
I < max {1, max {llA;ll;}, max{[IST Al }}| 2 1Al ™+

r=

k
ﬁZr Z ol

i=—r

<dy(hymax{1, max{||4;113}, max{[|IS"AlI3}},

[=1

which is the desired result. O
Lemma8.4 Let )\, € C be nonzero and let k > 2 be a positive even integer. Let d,(\),

d,(\) and d; () be the functions in (8.1), (8.2) and (8.3).

(a) If|rgl <1, then
k(K> = 1)

k+2
di(h) £ —=+ Aol 8.9)
2 6
() If|A| > L, then
k(k — Dk — 2
dy(hg) < (%‘ + 1)|x0|k + %IMI"“‘, and (8.10)
k(k+3
dy(0y) < gwk 2 8.11)

Proof We first prove inequality (8.9). So, assume |Ay| < 1. Using |Ay|* < |A,} when
i >j, we get from (8.1)
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k=2

k 2
di(ho) < 5 +1+ IAol? Z}(k—2r+ 12
k+2

DL Y

lzk(k2 -1
2

6

where the equality follows from 124324 .- 4+ (2n—1)> = w, which
implies (8.9).

Next, assume |Ay| > 1. Let us prove (8.10) and (8.11). Using [Ay|’ < |Aol when
i <j, we get from (8.2)

L =
drg) <(5+1) ol + hgl~* Y @
r=1

k

K . k= Dk —2)
_<2+1)|x0| JuRz =S

i

where the equality follows from

2n(n+ 1)2n+1)

224+ (20 = 2

(8.12)
Analogously, from (8.3), we obtain
k
kiy k=2 k-2 N 2
dy(hg) < 5 Al + Pl Y 2r)

r=1

k(k+ 1)(k+2)

6 IAol*2,

ki, k-2
==|A +
ol
where the equality follows also from (8.12), which are the desired results. O
We are finally in a position to prove Theorems 6.2 and 6.4.

Proof of Theorem 6.2 By Lemma 8.1 and the definition of x,,(A,, P), we have

K.a(hos HS) ol + 1 114,(p)xll3
P — max{[[Hollys 1H, 5} = 2

Kra(hoi P) Sl i3

(8.13)

where we have used max,_,., {||A;|l,} = 1and x = y in the expression of «,,(A,; P).
We start by proving the relative-absolute upper bounds. Notice that

Aol + 1 I, iflAl <1, and
Y Pl < if [h] > 1. (8.14)
i=0

Moreover, by Lemma 8.2, we have

[Agl1 ’
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max{ || H, llo, 1M1l } < 2¢, (8.15)

where ¢ has been defined in (6.1). Hence, to finish the proof, we need to bound the
square of the ratio || 4, (Ao)x|[,/[Ix]l,.
If|Ay| < 1, by inequalities (8.5) and (8.9), we have

14, (o)l

HE min{d, (Ay), dy(hg)} max{1, [|S~"A,[I3}
2

< d, () max{1, ST ALl13)

k+2  k(k*—1) -
< <T+T|7\o|2 max{1, IS A3}

(8.16)

K 14 12
< =5 max {1, |[ST A5}

We notice that, if || is close to 0, then the previous upper bound is close to

k+2
5 max{1,[|S” 1Ak”%}-

If|Ay| > 1, then, by the inequalities (8.5) and (8.10), we get

1145 (o)1l . _
W < min{d; (Ay), dr(Ay)} max {1, ||§ 1Ak”§}
2

< dy () max{1, [|S™' A3}

k(k—1)(k -2 _ -
( £ )il + D ) a1, Ak

-1k -2
s Jolt ko4 HE=DE=2 max{1, |ST'A,]1%}
2 3
ok “14 112
< ol 5 max (L1154 13).
(8.17)
and, by the inequalities (8.6) and (8.11),
1141 (o)1l
————2 < d;(hp) max{1, max{[|S~'4,[13}}
[lx[15 i=0:k (8.18)

< 26 2o *? max {1, max{[|S~'A;[13)).

Hence, if |Ay| > 1,
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14, (Ao)x]l3
Lzz < ol
lIxI15
K 1 K 1
min 3 — max{1,||S” Ak|| 1 |7¥ |2 max{1, max{||S A; || 1}
(8.19)
The desired upper bounds are obtained by combining the inequalities (8.14), (8.15),
(8.16) and (8.19) with (8.13). O

Now, we prove the relative-absolute lower bounds. First, a direct application of
the lower bound in Proposition 2.1 to H,, and H, yields

max{||Hyllo, IH;1l,} = €. (8.20)
Second, from (5.8), we get
), F 1A xlI2 =2
[14; o)l 2 A IST A & ‘ o
Ll > 2 ol ol = = DR ol + Dol A7 s
[lxI15 0 llx113 i=0

o I

> ) |ho)¥ min{1, JA;'SII52),

f=]

(8.21)

where we have used that ||x||, < ||A™!||,]|Ax||, for any vector x and invertible matrix
A. Hence, combining (8.20) and (8.21) with (8.13) yields

k . .
KuOoiHp) (LoD BLy Mol B Il

- > 1y, - Hp . =
Kralho: P) ol Yo ol

iy if h] < 1, and
(1+ ') if [l > 1,

k+1

where yu, has been defined in (6.3). Furthermore, from the first inequality in (8.21),
we also have (5.8), we also have

k=2

14, (o)xll3 & .

Lzz > Y 2. (8.22)
[l =0

Thus, from (8.13), (8.20) and (8.22), we obtain
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k=2

Kpa(hos 1) L ol + D T o S T Il S

K3 P) S gl YN
% if [Ay| < 1, and
¢ .
if [Ay| > 1,
2l
and the desired lower bounds have been established. O

Proof of Theorem 6.4 By Lemma 8.1 and the definition of x,.(Ay, P), we have

KeeOoi Hp) (Dol lIH Il + o) 1141 (o)x]l3

- = - (8.23)
ki (hg P) T PolllAll, I3
Notice also
k
MANY < NAN, < 1A,

max(hol 1412} < 3 ol Al < (6 Dmax(Pol IA k) 829

Furthermore, from Lemma 8.2, we readily obtain

4¢ if [Ag)] <1, and
Al IH N + THl, < . .

| OI “ 1”2 ” 0”2 {4|}\0|C 1f|7\0| > 1, (8 25)

where ¢ has been defined in (6.1).

When |A,| < 1, the desired upper bound follows by combining (8.16), (8.24), and
(8.25) with (8.23). When |Ay| > 1, the desired upper bound follows by combining
(8.19), (8.24), and (8.25) with (8.23).

Now, we prove the lower bounds. First, from Proposition 2.1, we get

max{1, ||S*A;1S||2} if [A\y| <1, and
|7‘0| ”HIHZ + ”HOHZ 2 { |7\0| max{l, ”5“2} if |;\0| > 1. (8~26)

Then, notice

14, o)xll 1 if |Ag] <1, and
2 L max{gFIALSIE2 1ol 2} if [A] > 1. (8.27)

which readily follows from (5.8). The lower bounds are obtained by combining
(8.24), (8.26) and (8.27) with (8.23). O
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9 Conclusions

In this paper, we propose a new strategy to solve the even degree symmetric/Hermi-
tian polynomial eigenvalue problem. We have shown evidence that, the traditional
approach of using the linearizations D,(A; P) and D,(A; P) is, in many occasions,
risky due to the fact that the eigenvectors of these two linearizations are too sensi-
tive to small perturbations in their matrix coefficients. This sensitivity leads to large
backward errors for the computed eigenpairs. We propose instead the use of the lin-
earizations H?,k (M) and g‘;k(k) introduced in (5.7) and (5.9) (when S is replaced by
A,). We have proven that the condition numbers of the eigenvalues with small (resp.
large) modulus of D,(A; P) (resp. D, (A; P)) and H?f(}\) (resp. Q‘;* ()) are comparable.
But we have also shown that the condition number of the eigenvalues with large
(resp. small) modulus of D, (\; P) (resp. D,(A; P)) is significantly worse than that

of the eigenvalues of H’;"(?\) (resp. gﬁk(?\)), specially for moderate to large values
of the degree k of P(A). In future work we intend to determine if the sensitivity of

the eigenvectors of D, (A; P) and D;(A; P) truly depends on the existence of ill-con-
ditioned eigenvalues or if it depends on any other factors. We would also like to
determine how this sensitivity changes the structure of the computed eigenvectors,
in particular, the structure of the blocks from which the eigenvectors of the poly-
nomial P()) are recovered, and how this change affects the backward errors of the
computed eigenpairs.

Structure preserving deflation

The goal of this section is to prove the claim in Remark 5.2.
We consider the even-degree matrix polynomial (1.1) as an odd-grade matrix pol-
ynomial by adding an extra zero matrix coefficient, that is,

QM) := A0, + P(L). (A.1)

We observe that the pencil ’Z’(‘;l(}\) (see (5.2)) is a “weak” linearization for Q(A),
i.e., it is not a strong linearization, since 7’(‘;1(7\) has n extra spurious eigenvalues at
infinity. Nonetheless, the Kronecker structure of these eigenvalues at infinity is very
simple, as we show in the next lemma.

Lemma A.1 Let P(\) be an n X n even-degree matrix polynomial as in (1.1), and
let Q be as in (A.1). Then, the spectrum of TZHQ) consists of the spectrum of P(\)
together with n eigenvalues at infinity of index one, i.e., with Kronecker blocks of
size 1.

Proof Notice rev,,;Q(A) = Arev,P()). Hence,

det (revy,;O(\)) = V" det (rev, P(M)),

@ Springer



48 Page 44 of 46 M. 1. Bueno et al.

and, so, all the extra n eigenvalues at infinity of Q(\) have algebraic and geometric
multiplicity equal to one. a

Lemma A.l allows us to apply to ’Zz)“(}») the structure preserving deflation
developed by Mehrmann and Xu [18], provided that A, is nonsingular. Hence, we
can deflate the n spurious eigenvalues at infinity of T’gl(x) preserving the sym-
metric structure of the pencil. Surprisingly, the result of applying the deflation
procedure to T’gl(%) is essentially a pencil of the form (5.6). The overall goal of
this section is to prove this fact.

Let \T, -1, := 7’31(}\). The first step of the deflation consists in finding a
unitary matrix U such that

N
UT, =
! 0
where N is of full row rank. Notice that 7| has n zero rows (its first n rows), so the
unitary matrix can be chosen as the permutation matrix.

* Uy ._OIkn
v =[] -

With this choice for U, the resulting N is of full row rank since it contains a kn X kn
nonsingular matrix.

The second step of the deflation procedure consists in finding a unitary matrix
V such that

UsT,V = [Ay =1, 0 - 0] V = [0, M],

where M is nonsingular. We can find such unitary matrix V by using a rank revealing
factorization (via a QR decomposition with partial pivoting or the SVD decomposi-
tion, for example). Let

Vit Vio| _
A 1 [VZI sz] = [0, M].

which implies, in particular, A, V|| = V,,. Then, set

Using MATLAB notation for submatrices, the deflated pencil is the kn X kn pencil
Ve k) T OV T k),

which is permutationally equivalent to
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|00 %
0 9
which equals
=V, Vi VS
Moy My +4A, — 1,
-1, 0 A,
M, M5 +A 4 =M, (M),
M,
| M, M| + A, |
as we wanted to show, where we have used A, V|, = V,,.
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