
Vol.:(0123456789)

https://doi.org/10.1007/s10958-022-05872-2

ALMOST ABELIAN LIE GROUPS, SUBGROUPS AND QUOTIENTS

Marcelo Almora Rios1 · Zhirayr Avetisyan2,3 · Katalin Berlow4 · Isaac Martin5 · Gautam Rakholia2 · Kelley Yang6 · 
Hanwen Zhang2 · Zishuo Zhao2

Accepted: 28 September 2021 
© Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
An almost Abelian Lie group is a non-Abelian Lie group with a codimension 1 Abelian normal subgroup. 
The majority of 3-dimensional real Lie groups are almost Abelian, and they appear in all parts of physics 
that deal with anisotropic media—cosmology, crystallography etc. In theoretical physics and differential 
geometry, almost Abelian Lie groups and their homogeneous spaces provide some of the simplest solvmani-
folds on which a variety of geometric structures, such as symplectic, Kähler, spin etc., are currently studied 
in explicit terms. Recently, almost Abelian Lie algebras were classified and studied in details. However, a 
systematic investigation of almost Abelian Lie groups has not been carried out yet, and the present paper is 
devoted to an explicit description of properties of this wide and diverse class of groups. The subject of inves-
tigation are real almost Abelian Lie groups with their Lie group theoretical aspects, such as the exponential 
map, faithful matrix representations, discrete and connected subgroups, quotients and automorphisms. The 
emphasis is put on explicit description of all technical details.

1  Introduction

In the present paper, we consider only real Lie groups and Lie algebras. An almost Abelian Lie algebra is a non-Abelian 
Lie algebra L that contains a codimension one Abelian ideal, and an almost Abelian group is a Lie group with an almost 
Abelian Lie algebra. This is equivalent to demanding that the Lie group contains a codimension one Abelian normal 
subgroup. In fact, it can be shown that the existence of a codimension one Abelian Lie subgroup already guarantees the 
existence of a codimension one Abelian normal subgroup.
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In low dimensions, almost Abelian Lie groups are well-represented. The only 2-dimensional non-Abelian Lie group is 
almost Abelian, while 6 out of 9 classes (after Bianchi) of 3-dimensional real Lie algebras/groups are almost Abelian. 
At the same time, since most physical systems are n = 1,2,3 dimensional, in absence of rotational symmetries a homo-
geneous (anisotropic) system is described by a low dimensional Lie group. It is thus only natural that almost Abelian 
Lie groups are widely used in cosmology, where they represent the symmetries of the universe at large scale ([12], 
[23], [26], [28], [3] and many others), or crystallography, where they model the symmetries of an ideal solid ([25] 
and references therein). As far as applications in pure mathematics are concerned, one particular almost Abelian Lie 
group is distinguished—the 3-dimensional Heisenberg group (higher dimensional Heisenberg groups are not almost 
Abelian). Thorough studies of the Heisenberg group can be found, for instance, in [16] and [31]. Taking roots in the 
foundations of quantum mechanics, this group has become the classical setting for non-commutative analysis. We refer 
to [15] for recently developed theory of quantization and pseudodifferential calculus on the Heisenberg group (among 
other nilpotent groups). It is therefore desirable to try and extend these results to general almost Abelian groups, but 
that has to wait until a comprehensive study of almost Abelian Lie groups is available.
Higher dimensional almost Abelian Lie groups have gained in popularity in the last two decades, with at least a dozen 
papers dealing with the subject written in the last 2 years only. One context of interest is compact solvmanifolds. 
A solvmanifold is a homogeneous space G/N with G a simply connected solvable Lie group and N ⊂ G a discrete 
subgroup. Almost Abelian groups G are special in that, together with nilpotent groups, these are the only solvable 
Lie groups for which there is a practically useful necessary and sufficient condition for the solvmanifold G/N to be 
compact [9]. More generally, almost Abelian groups are unique in their explicit tractability combined with diversity 
of properties they can possess. A plethora of work in differential geometry and theoretical physics has been devoted 
to various geometrical constructions on almost Abelian solvmanifolds such as symplectic, Kähler, spin, G2 or SU(3) 
structures, various flows etc. [17], [1], [2], [10], [22],[19], [24], [29], [14], [13], [8], [6], [18], [7]. In spite of this 
wide spectrum of interest and applications, to the date, there is no comprehensive study of almost Abelian Lie groups 
in the literature. In the recent papers [4] and [5], almost Abelian Lie algebras were studied and their structure was 
explicitly described. The next step is the study of almost Abelian groups from the Lie group theory perspective, which 
the present work is mainly devoted to. The far-reaching objective of studying almost Abelian groups systematically 
is building a variety of well-understood “lighthouses” in the sea of solvable Lie groups, as as possible, in order to 
facilitate the development of methods and tools applicable to a wide range of groups.
The following results are obtained in this paper. Let G stand for an almost Abelian group. The exponential map exp on 
a simply connected G is described explicitly, and two conditions are given which are equivalent to the injectivity of 
exp (exponentiality of G). Two faithful matrix representations are introduced for simply connected G, and the centre 
Z(G) is described. The full automorphism group Aut(G) and the inner automorphism group Inn(G) are given explicitly 
for a connected G. Discrete normal subgroups of a simply connected G are studied, and conditions are found for two 
discrete normal subgroups to be related by an automorphism of G. This provides a necessary and sufficient condition 
for two connected G with the same Lie algebra to be isomorphic, and thus a full classification of connected almost 
Abelian groups. A necessary and sufficient condition is found for a connected G to admit a faithful matrix representa-
tion, and one such representation is given explicitly whenever such exists. Connected subgroups H ⊂ G of connected 
G are described, and a condition is established that is equivalent to the closedness of H in G.

2 � Matrix representations of simply connected almost Abelian groups

A real finite-dimensional almost Abelian Lie algebra is a semidirect product ℝd ⋊ℝ , and is completely determined 
by the operator ade0 ∈ End(ℝd) , where e0 = (0, 1) ∈ ℝ

d ⋊ℝ . It was shown in [5] that every such algebra is isomor-
phic to a representative aA

ℝ
(ℵ) for which ade0 = J(ℵ) , where J(ℵ) is a (real) Jordan canonical form with its spectral 

structure encoded in the so-called multiplicity function ℵ ∶ ℂ × ℕ → ℕ0 (here �
ℝ
≃ ℂ is the set of monic irreducible 

polynomials over ℝ as identified with the corresponding roots). So let us consider the real finite-dimensional almost 
Abelian Lie algebra aA(ℵ) = aA

ℝ
(ℵ) corresponding to a finite dimensional multiplicity function ℵ given in its faithful 

matrix representation
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It is straightforward to check that

and

give further faithful matrix representations of aA(ℵ) . In this section we will establish faithful matrix representations for 
the simply connected almost Abelian groups corresponding to the Lie algebras aA(ℵ).
Following [5], we identify �

ℝ
 with ℂ in the following way. Every monic irreducible polynomial p ∈ �

ℝ
 is identified 

with its unique real root xp if it is first order, and with one of the conjugate pair of complex roots xp and x̄p (say, the 
one in the upper half-plane) if it is second order. Denote

 In the next section, we will obtain an explicit description of the set Tℵ. At this point, we are mainly interested in matrix 
representations.

Proposition 1  For a finite multiplicity function ℵ let

 Then, G is a connected Lie group with Lie algebra aA(ℵ) , and it is simply connected if and only if Tℵ = {0}.

Proof  That G is a connected Lie group is clear from the definition. For ∀(u, s) ∈ ℝ
d ⊕ℝ let

 be a smooth curve with

 Then,

 which proves that aA(ℵ) is the Lie algebra of G. Finally, by construction G is diffeomorphic to ℝd × (ℝ∕Tℵ) , which is 
simply connected if Tℵ is trivial. □

(1)aA(ℵ) ≃ ℝ
d
⋊ℝ ∋ (v, t) ↦

(
0 0

v tJ(ℵ)

)
∈ End(ℝd+1).

(2)aA(ℵ) ∋

�
0 0

v tJ(ℵ)

�
↦

⎛
⎜⎜⎝

0 0 0

v tJ(ℵ) 0

0 0 t

⎞
⎟⎟⎠

(3)aA(ℵ) ∋

�
0 0

v tJ(ℵ)

�
↦

⎛
⎜⎜⎝

0 0 0

v tJ(ℵ) 0

t 0 0

⎞
⎟⎟⎠

(4)Tℵ ≐
{
t ∈ ℝ|| etJ(ℵ) = �

}
⊂ ℝ,

Xℵ ≐
{
𝜔 ∈ ℝ|| suppℵ ⊂ 𝚤𝜔ℤ

}
.

G ≐

{(
1 0

v etJ(ℵ)

)||| (v, t) ∈ ℝ
d ⊕ℝ

}
.

(−1, 1) ∋ 𝜏 ↦

(
1 0

v(𝜏) et(𝜏)J(ℵ)

)
∈ G

(v(0), t(0)) = (0, 0), (v�(0), t�(0)) = (u, s).

d

d𝜏

(
1 0

v(𝜏) et(𝜏)J(ℵ)

)|||||𝜏=0
=

(
0 0

u sJ(ℵ)

)
∈ a

A(ℵ),
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If the Lie group in Proposition 1 is simply connected, then it is a faithful matrix representation for the simply connected almost 
Abelian Lie group with Lie algebra aA(ℵ) . But there is a simple modification that yields a faithful matrix representation for 
every simply connected almost Abelian Lie group.

Proposition 2  For a finite multiplicity function ℵ let

 Then, both GI and GII are simply connected Lie groups with Lie algebras isomorphic to aA(ℵ).

Proof  That GI and GII are Lie groups is clear from the definitions. The map

 is a diffeomorphism, which proves that GII is simply connected. For ∀(u, s) ∈ ℝ
d ⊕ℝ let

 be a smooth curve with

 Then,

 which through faithful representation (3) shows the isomorphism between aA(ℵ) and the Lie algebra of GII. Finally, the 
map

 is easily checked to be a Lie group isomorphism, which shows that the above statements hold for the Lie group GI as 
well. □

Thus, a simply connected almost Abelian Lie group is a semidirect product G = ℝ
d ⋊ℝ , which is consistent with the Lie alge-

bra being a semidirect product aA(ℵ) = ℝ
d ⋊ℝ . In order to notationally distinguish between a Lie algebra element in ℝd ⋊ℝ 

and a Lie group element in ℝd ⋊ℝ we will use (v, t) ∈ ℝ
d ⋊ℝ for the former and [v, t] ∈ ℝ

d ⋊ℝ for the latter, respectively.

GI ≐

⎧
⎪⎨⎪⎩

⎛
⎜⎜⎝

1 0 0

v etJ(ℵ) 0

0 0 et

⎞
⎟⎟⎠
��� (v, t) ∈ ℝ

d ⊕ℝ

⎫
⎪⎬⎪⎭
, GII ≐

⎧
⎪⎨⎪⎩

⎛
⎜⎜⎝

1 0 0

v etJ(ℵ) 0

t 0 1

⎞
⎟⎟⎠
��� (v, t) ∈ ℝ

d ⊕ℝ

⎫
⎪⎬⎪⎭
.

ℝ
d ⊕ℝ ∋ (v, t) ↦

⎛⎜⎜⎝

1 0 0

v etJ(ℵ) 0

t 0 1

⎞⎟⎟⎠
∈ GII

(−1, 1) ∋ 𝜏 ↦

⎛⎜⎜⎝

1 0 0

v(𝜏) et(𝜏)J(ℵ) 0

t(𝜏) 0 1

⎞⎟⎟⎠
∈ GII

(v(0), t(0)) = (0, 0), (v�(0), t�(0)) = (u, s).

d

d𝜏

⎛⎜⎜⎝

1 0 0

v(𝜏) et(𝜏)J(ℵ) 0

t(𝜏) 0 1

⎞⎟⎟⎠

�����𝜏=0
=

⎛⎜⎜⎝

0 0 0

u sJ(ℵ) 0

s 0 0

⎞⎟⎟⎠
,

GI ∋

⎛⎜⎜⎝

1 0 0

v etJ(ℵ) 0

0 0 et

⎞⎟⎟⎠
↦

⎛⎜⎜⎝

1 0 0

v etJ(ℵ) 0

t 0 1

⎞⎟⎟⎠
∈ GII
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3 � Properties of the exponential map

We continue working with a real finite-dimensional almost Abelian Lie algebra aA(ℵ) and the associated simply connected 
almost Abelian Lie group G. Below we will establish technical facts that will together yield the necessary and sufficient con-
dition for the exponential map on G to be a diffeomorphism. It is well known that a solvable real simply connected Lie group 
fails to be exponential if and only if it contains a copy of Ẽ+(2)—the universal cover of the identity component of the Euclidean 
motion group in ℝ2 . Here, we will reestablish this fact in a much more explicit way for the particular case of an almost Abelian 
simply connected Lie group, and find an equivalent condition in terms of the spectrum of the adjoint representation ade0 = J(ℵ).
In order to describe the exponential map of the simply connected almost Abelian group G in terms of matrix exponentials, 
we need to carefully choose faithful matrix representations for the group G and the Lie algebra aA(ℵ) . Namely, we will 
choose the algebra representation (2) for the group representation GI, and the algebra representation (3) for the group 
representation GII, respectively (in terms of Proposition 2).

Lemma 1  The exponential map of the simply connected almost Abelian group G corresponding to the almost Abelian 
Lie algebra aA(ℵ) can be given by

 or

Proof  It is sufficient to perform matrix exponentiation, which we will do only for GII, since for GI it is very similar. We 
first observe that

by mathematical induction on n. Then, by series expansion of the exponential, we see that

gives us the desired result. □

Note that Lemma 1 can now be written as

Remark 1  It follows that on the Abelian Lie subalgebra ker J(ℵ)⊕ℝ the exponential map is

exp

⎛
⎜⎜⎝

0 0 0

v tJ(ℵ) 0

0 0 t

⎞
⎟⎟⎠

=

⎛⎜⎜⎜⎝

1 0 0
etJ(ℵ)−�

tJ(ℵ)
v etJ(ℵ) 0

0 0 et

⎞⎟⎟⎟⎠
∈ GI

exp

⎛
⎜⎜⎝

0 0 0

v tJ(ℵ) 0

t 0 0

⎞
⎟⎟⎠

=

⎛⎜⎜⎜⎝

1 0 0
etJ(ℵ)−�

tJ(ℵ)
v etJ(ℵ) 0

t 0 1

⎞⎟⎟⎟⎠
∈ GII.

(5)
⎛⎜⎜⎝

0 0 0

v tJ(ℵ) 0

t 0 0

⎞⎟⎟⎠

n

=

⎛⎜⎜⎝

0 0 0

[tJ(ℵ)]n−1v [tJ(ℵ)]n 0

0 0 0

⎞⎟⎟⎠
, ∀n > 1,

(6)

exp

⎛
⎜⎜⎝

0 0 0

v tJ(ℵ) 0

t 0 0

⎞
⎟⎟⎠
=

∞∑
n=0

1

n!

⎛
⎜⎜⎝

0 0 0

v tJ(ℵ) 0

t 0 0

⎞
⎟⎟⎠

n

= � +

⎛⎜⎜⎝

0 0 0

v tJ(ℵ) 0

t 0 0

⎞
⎟⎟⎠
+

∞∑
n=2

1

n!

⎛
⎜⎜⎝

0 0 0

[tJ(ℵ)]n−1v [tJ(ℵ)]n 0

0 0 0

⎞
⎟⎟⎠
=

⎛
⎜⎜⎜⎝

1 0 0
etJ(ℵ)−�

tJ(ℵ)
v etJ(ℵ) 0

t 0 1

⎞
⎟⎟⎟⎠

exp(v, t) =

[
etJ(ℵ) − �

tJ(ℵ)
v, t

]
, ∀(v, t) ∈ aA(ℵ).
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For the next fact, note that the Lie algebra of E+(2) is aA(1 × �1).

Lemma 2  If the almost Abelian Lie algebra aA(ℵ) contains a subalgebra � ⊆ aA(ℵ) isomorphic to aA(1 × �1) , then the 
corresponding simply connected almost Abelian Lie group G is not exponential.

Proof  Let � ∶ aA(1 × �1) → � be a Lie algebra isomorphism, and let H ⊂ G be the connected Lie subgroup with associ-
ated Lie algebra L as given by Theorem 5.20 in [21]. Let exp1 ∶ aA(1 × �1) → Ẽ+(2) be the exponential map on Ẽ+(2) , 
and exp2 ∶ � → H be the exponential map on H. Assume towards a contradiction that exp2 is injective. Since exp2 is 
injective, H is simply connected. Thus, since H and Ẽ+(2) are both simply connected, by Theorem 5.6 in [21], there is 
a Lie group isomorphism Φ ∶ Ẽ+(2) → H such that Φ(exp1(X)) = exp2(�(X)) for all X ∈ aA(1 × �1) . Since we know 
that exp1 ∶ aA(1 × �1) → Ẽ+(2) is not injective, let X, Y ∈ aA(1 × �1) such that X≠Y and exp1(X) = exp1(Y) . Then, 
Φ(exp1(X)) = Φ(exp1(Y)) and therefore exp2(�(X)) = exp2(�(Y)) . Since exp2 is injective, this implies that φ(X) = φ(Y ) 
in spite of X≠Y, thus contradicting the assumption of φ being an isomorphism. This contradiction proves that exp1 and 
therefore also exp ∶ aA(ℵ) → G cannot be injective, and G is not exponential. □

Lemma 3  The simply connected Lie group G with almost Abelian Lie algebra aA(ℵ) fails to be exponential if and only 
if suppℵ contains a polynomial p with non-zero imaginary root xp.

Proof  Let us perform some preliminary computations first. From [5]

Thus, the exponential of the Jordan canonical form above can similarly be decomposed as

Now, G is not exponential if

From Lemma 1, we see that exp(v1, t1) = exp(v2, t2) if and only if t1 = t2 ≐ t and

Therefore, (9) is equivalent to

 From (7) we find that

 Thus, (9) is equivalent to

exp(v, t) = [v, t], ∀(v, t) ∈ ker J(ℵ)⊕ℝ.

(7)J(ℵ) =
⨁

p∈suppℵ

∞⨁
n−1

⨁
ℵ(p,n)

J(p, n).

(8)etJ(ℵ) =
⨁

p∈suppℵ

∞⨁
n−1

⨁
ℵ(p,n)

etJ(p,n).

(9)∃(v1, t1), (v2, t2) ∈
aA(ℵ) s.t. (v1, t1) ≠ (v2, t2), exp(v1, t1) = exp(v2, t2).

(10)
etJ(ℵ) − �

tJ(ℵ)
(v1 − v2) = 0.

∃t ∈ ℝ s.t. det

[
etJ(ℵ) − �

tJ(ℵ)

]
= 0.

det

[
etJ(ℵ) − �

tJ(ℵ)

]
=

∏
p∈suppℵ

∞∏
n=1

det

[
etJ(p,n) − �

tJ(p, n)

]ℵ(p,n)
.

∃t ∈ ℝ, ∃p ∈ suppℵ, ∃n ∈ ℕ s.t. ℵ(p, n) > 0 ∧ det

[
etJ(p,n) − �

tJ(p, n)

]
= 0.
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 If xp ∈ ℝ , then

 whereas if xp = a + �b ∉ ℝ , then

 Therefore,

 Thus, (9) is equivalent to

 exactly as in the statement of the lemma. □

Lemma 4  If suppℵ contains a polynomial p with non-zero imaginary root xp, then there exists a Lie subalgebra � ⊂ aA(ℵ) 
which is isomorphic to aA(1 × �1).

Proof  Suppose that ∃p ∈suppℵ such that xp = ıb with 0 ≠ b ∈ ℝ and ℵ(p,n) > 0 for some n ∈ ℕ . Fix an α ∈ℵ(p,n) and 
let {�i

�
(p, n)}n

i=1
 be the standard basis in the Jordan block (p,n,α) as in [5]. Let � = ℂ{�1

�
(p, n)} as an ℝ-vector space. By 

Corollary 3 in [5], W is an ade0-invariant subspace, and the restriction ade0 |� = xp = �b , which is ℝ-projectively similar 
to ı on ℂ . Thus, the Lie subalgebra �⋊ℝe0 ⊂

aA(ℵ) is nothing else but aA(1 × �b1) , which by Proposition 11 in [4] is 
isomorphic to aA(1 × �1) . □

Finally, we are ready to formulate the main result of this section.

Proposition 3  A simply connected almost Abelian Lie group with Lie algebra aA(ℵ) fails to be exponential if and only if 
suppℵ contains a non-zero purely imaginary number, which is equivalent to the existence of a Lie subalgebra isomorphic 
to aA(1 × �1).

Proof  Follows directly by combining Lemma 2, Lemma 3 and Lemma 4. □

In our further studies, we will need a precise description of the set Tℵ defined in (4).

Lemma 5  For a given finite real multiplicity function ℵ, we have Tℵ≠{0} if and only if ℵ(p,n) = 0 for all p ∈suppℵ and 
n > 1 and Xℵ ≠ ∅ , in which case

Proof  We recall from [5] that J(p,n) = xp1 + Nn understood over the field ℝ(xp) ⊂ End(ℝdeg p) . Continuing from (8) we 
find that

 whence

det

[
etJ(p,n) − �

tJ(p, n)

]
=

(
etxp − �

txp

)n

> 0,

det

[
etJ(p,n) − �

tJ(p, n)

]
=

(
(eta cos(tb) − 1)2 + (eta sin(tb))2

t2(a2 + b2)

)n

.

det

[
etJ(ℵ) − �

tJ(ℵ)

]
= 0 ⇔ ∃p ∈ suppℵ s.t.

txp

2𝜋
∈ 𝚤ℤ.

∃p ∈ suppℵ s.t. 0 ≠ xp ∈ 𝚤ℝ,

Tℵ =
2𝜋

𝜔0

ℤ, 𝜔0 ∈ Xℵ, |𝜔0| = max
{
|𝜔|||| 𝜔 ∈ Xℵ

}
.

etJ(ℵ) =
⨁

p∈suppℵ

∞⨁
n−1

⨁
ℵ(p,n)

etxp
(
� + tNn +

1

2
t2N2

n
+…

)
,
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 which means that

 Let us show that provided ℵ(p,n) = 0,∀p ∈suppℵ,∀n > 1, we have

 Indeed, if t≠ 0, then the condition e�tbp = 1 can be written as

 which implies that

 Conversely, let 0 ≠ 𝜔 ∈ Xℵ . The possibility ω = 0 is excluded, since in that case suppℵ = {0}, which together with n 
= 1 would imply that J(ℵ) = 0, i.e., that the Lie algebra is Abelian. Thus, ω≠ 0, and setting t = 2π/ω we check that et J(ℵ) 
= 1, i.e., t ∈ Tℵ.

Finally, Tℵ ⊂ ℝ is the kernel of the homomorphism ℝ ∋ t ↦ etJ(ℵ) ∈ Aut(ℝd) , and is therefore a discrete subgroup of 
the form

 Since 0 ≠ 𝜔 ∈ Xℵ is equivalent to 2π/ω ∈ Tℵ, we have that

 which completes the proof. □

4 � Discrete normal subgroups and quotients of simply connected almost Abelian groups

In this section, we will describe explicitly the discrete normal subgroups N of a simply connected almost Abelian 
Lie group G. Then, we will derive a necessary and sufficient condition for two quotient groups G/N to be isomorphic.
We start by describing the centre of a simply connected almost Abelian Lie group. Recall from [4] and [5] that the 
centre of an almost Abelian Lie algebra aA(ℵ) is

 and denote

Proposition 4  The centre of the simply connected almost Abelian Lie group G with Lie algebra aA(ℵ) is given by

etJ(ℵ) = � ⇔

[
t = 0 or ∀p ∈ suppℵ, xp = 𝚤bp ∈ 𝚤ℝ, e𝚤tbp = 1,ℵ(p, n) = 0,∀n > 1

]
,

Tℵ ≠ {0} ⇔ ∃t ≠ 0 s.t. ∀p ∈ suppℵ, xp = 𝚤bp ∈ 𝚤ℝ, e𝚤tbp = 1,ℵ(p, n) = 0,∀n > 1.

∃t ≠ 0 s.t. ∀p ∈ suppℵ, xp = 𝚤bp ∈ 𝚤ℝ, e𝚤tbp = 1 ⇔ Xℵ ≠ �.

xp ∈ 𝚤
2𝜋

t
ℤ, ∀p ∈ suppℵ,

2𝜋

t
∈ Xℵ.

Tℵ = t0ℤ, |t0| = min
{|t||| 0 ≠ t ∈ Tℵ

}
.

t0 =
2𝜋

𝜔0

, |𝜔0| = max
{
|𝜔|||| 𝜔 ∈ Xℵ

}
,

Z( aA(ℵ)) = ker J(ℵ),

Tℵ ≐
{
t ∈ ℝ|| etJ(ℵ) = �

}
⊂ ℝ.

Z(G) = exp [Z( aA(ℵ))] × Tℵ = exp
[
Z( aA(ℵ)) × Tℵ

]
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 The preimage of the identity component of the centre through the exponential map is

Proof  Let us use the faithful matrix representation

 provided by Proposition 2. Suppose that [u,s] ∈Z(G). Then, the following must be satisfied,

 This is equivalent to v + et J(ℵ)u = u + es J(ℵ)v or

 Setting v = 0 we have that (et J(ℵ) −1)u = 0 which forces J(ℵ)u = 0 or u ∈ ker J(ℵ) , as desired. But if u is such, then (es 

J(ℵ) −1)v = 0 for all v, which means that es J(ℵ) = 1. The first statement of the proposition now follows from Remark 1. If 
exp(v, t) = [u, s] ∈ Z(G)0 , then t = s = 0 and v = u, as desired. □

Now, let us proceed to the discrete normal subgroups N ⊂ G of a simply connected almost Abelian Lie group.

Proposition 5  Every discrete normal subgroup N ⊂ G of a simply connected almost Abelian Lie group G with Lie algebra 
aA(ℵ) is a free group of rank k ≤ dim ker J(ℵ) + 1 generated by ℝ-linearly independent elements

Proof  It is well known that every discrete normal subgroup of a connected Lie group is in fact central (e.g., [21]). Thus, 
it suffices to find discrete subgroups of Z(G). Notice that for every [v,t],[u,s] ∈Z(G), [v,t][u,s] = [v + u,t + s], so that the 
restriction of the obvious homeomorphism f ∶ G → ℝ

d+1 to Z(G) is also an injective Lie group homomorphism

 Therefore, every discrete subgroup N ⊂Z(G) is mapped to a discrete subgroup f (N) ⊂ ℝ
d+1 . As a discrete subgroup of 

ℝ
d+1 , f(N) is a free Abelian group generated by ℝ-linearly independent elements �1,… , �k ∈ ℝ

d+1 , and their span satisfies

 which implies that

 Setting [vi, ti] ≐ f −1(�i) for i = 1,…,k completes the proof. □

=
{
[u, s] ∈ ℝ

d
⋊ℝ|| u ∈ ker J(ℵ), esJ(ℵ) = �

}
.

exp−1
[
Z(G)0

]
= Z( aA(ℵ)).

G = ℝ
n
⋊ℝ ∋ [v, t] =

⎛
⎜⎜⎝

1 0 0

v etJ(ℵ) 0

t 0 1

⎞
⎟⎟⎠

[v, t][u, s] =

⎛⎜⎜⎝

1 0 0

v etJ(ℵ) 0

t 0 1

⎞⎟⎟⎠

⎛⎜⎜⎝

1 0 0

u esJ(ℵ) 0

s 0 1

⎞⎟⎟⎠
=

⎛⎜⎜⎝

1 0 0

v + etJ(ℵ)u e(t+s)J(ℵ) 0

t + s 0 1

⎞⎟⎟⎠

=

⎛⎜⎜⎝

1 0 0

u + esJ(ℵ)v e(t+s)J(ℵ) 0

t + s 0 1

⎞⎟⎟⎠
=

⎛⎜⎜⎝

1 0 0

u esJ(ℵ) 0

s 0 1

⎞⎟⎟⎠

⎛⎜⎜⎝

1 0 0

v etJ(ℵ) 0

t 0 1

⎞⎟⎟⎠
= [u, s][v, t], ∀(v, t) ∈ G.

(
etJ(ℵ) − �

)
u =

(
esJ(ℵ) − �

)
v, ∀[v, t] ∈ G.

[v1, t1],… , [vk, tk] ∈ Z(G) ⊂ G = ℝ
d
⋊ℝ.

f |Z(G) ∶ Z(G) → ℝ
d+1.

ℝ{𝜈i}
k
i=1

⊂ ℝ{f (Z(G))},

k ≤ dimℝ{f (Z(G))} ≤ dim ker J(ℵ) + 1.
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Now that we have a description of discrete normal subgroups N ⊆ G of a simply connected almost Abelian Lie group, 
and since every connected almost Abelian Lie group can be written as a quotient G/N for a corresponding N, we have 
effectively covered all connected almost Abelian Lie groups. Next, we want to know for which distinct discrete normal 
subgroups N,M ⊂ G the quotient groups G/N and G/M are isomorphic. Below is a pretty quantitative answer to this ques-
tion. Denote by qN : G → G/N and qM : G → G/M the canonical quotient homomorphisms, and by Hom*(G/N,G/M) the 
set of all Lie group isomorphisms G/N → G/M.

Proposition 6  Let G be a simply connected Lie group and N,M ⊂ G two discrete normal subgroups. Then,

Proof  We first prove that

Let ΦN M as above be given. Then,

 whence Φ(n) ∈ M, ∀n ∈ N, and thus Φ(N) ⊂ M. But also

 so that Φ− 1(m) ∈ N, ∀m ∈ M, and thus Φ− 1(M) ⊂ N. We conclude that Φ(N) = M. Conversely, assume that Φ(N) = M. 
Then,

 so that ΦNM ≐ qM◦Φ◦q−1
N

∶ G∕N → G∕M is well defined. This completes the proof of (11). It remains to show that every 
isomorphism Ψ ∈Hom*(G/N,G/M) arises as Ψ = ΦN M for a unique Φ ∈Aut(G). To see this, let dΨ be the corresponding 
Lie algebra automorphism (say, Theorem 3.28 in [21]). Then, since G is simply connected and has the same Lie algebra as 
G/N and G/M, there exists a unique Φ ∈Aut(G) such that dΦ = dΨ. Consider the following two Lie group homomorphisms,

 By Proposition 3.30 in [21],

 But then by uniqueness in Theorem 5.6 of [21], it follows that Ψ ∘qN = qM ∘Φ, and that Φ is unique with this property. 
The assertion is proven. □

In particular, two quotient groups G/N and G/M are isomorphic if and only if Hom*(G/N,G/M)≠∅.

5 � Automorphisms of almost Abelian Lie groups

In this section, we will find an explicit description of the automorphism group Aut(G) of a connected almost Abelian 
Lie group G, with each automorphism given as a diffeomorphism in global group coordinates. For this purpose we will 
first combine Proposition 7, Proposition 8, Proposition 9 and Proposition 10 from [4] into a single convenient description 
of automorphisms of an almost Abelian Lie algebra.

Proposition 7  The automorphism group Aut( aA(ℵ)) ⊂ End(ℝd ⋊ℝ) of a real almost Abelian Lie algebra aA(ℵ) = ℝ
d ⋊ℝ 

takes the form

Hom∗(G∕N,G∕M) =
{
ΦNM = qM◦Φ◦q−1

N
|| Φ ∈ Aut(G), Φ(N) = M

}
.

(11)
[
∃ΦNM ∈ Hom∗(G∕N,G∕M) s.t. ΦNM◦qN = qM◦Φ

]
⇔ Φ(N) = M, ∀Φ ∈ Aut(G).

qM◦Φ(n) = ΦNM◦qN(n) = �, ∀n ∈ N,

qN(Φ
−1(m)) = Φ−1

NM
◦qM◦Φ

(
Φ−1(m)

)
= Φ−1

NM
◦qM(m) = �, ∀m ∈ M,

qM◦Φ(q−1
N
(�)) = qM(Φ(N)) = qM(M) = �,

Ψ◦qN ∶ G → G∕N, qM◦Φ ∶ G → G∕M.

d
(
Ψ◦qN

)
= dΨ◦dqN = dΨ = dΦ = dqM◦dΦ = d

(
qM◦Φ

)
.
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if aA(ℵ) = �⊕ℝ
d−2 is a central extension of the Heisenberg algebra and

otherwise.

Remark 2  If we apply formula (13) to the Lie algebra �⊕ℝ
d−2 , then we will obtain only the subgroup consisting of 

those automorphisms corresponding to β2 = 0 in formula (12).

We begin with the case of a simply connected G, where there is a bijective correspondence between Lie algebra auto-
morphisms and Lie group automorphisms. On several occasions, we will make use of the following elementary fact.

Remark 3  If A, B and C are square matrices such that AB = BC, then for every entire holomorphic function F ∈ Hol(ℂ) 
one has F(A)B = BF(C).

This can be easily checked term by term in the Taylor expansion.
Let H = exp(�) stand for the Heisenberg group.

Proposition 8  If G is a simply connected almost Abelian Lie group with Lie algebra aA(ℵ) , then

if G = H ×ℝ
d−2 is a central extension of the Heisenberg group and

otherwise.

Proof  Central extensions of the Heisenberg group are exponential, and we can use the bijectivity of the exponential map 
to switch from Lie algebra automorphisms to Lie group automorphisms. Namely, if

 then

(12)Aut( aA(ℵ)) =

⎧⎪⎨⎪⎩

⎛⎜⎜⎜⎝

x

y

t

w

⎞⎟⎟⎟⎠
⟼

⎛⎜⎜⎜⎝

𝛼Δ22 − 𝛽2𝛾2 Δ12 𝛾1 𝜙01

0 Δ22 𝛾2 0

0 𝛽2 𝛼 0

0 𝜂 𝜌 𝜙11

⎞⎟⎟⎟⎠

⎛⎜⎜⎜⎝

x

y

t

w

⎞⎟⎟⎟⎠

���������

𝛼, 𝛽2, 𝛾1, 𝛾2,Δ12,Δ22 ∈ ℝ,

𝛼Δ22 − 𝛽2𝛾2 ≠ 0, 𝜂, 𝜌 ∈ ℝ
d−2,

𝜙01 ∈ Hom(ℝd−2,ℝ),

𝜙11 ∈ Aut(ℝd−2)

⎫⎪⎬⎪⎭

(13)Aut( aA(ℵ)) =

{(
Δ 𝛾

0 𝛼

)||| 𝛼 ∈ Dil(ℵ), 𝛾 ∈ ℝ
d, Δ ∈ Aut(ℝd), ΔJ(ℵ) = 𝛼J(ℵ)Δ

}

(14)

Aut(G) =

⎧
⎪⎪⎨⎪⎪⎩

⎡⎢⎢⎢⎣

x

y

t

w

⎤⎥⎥⎥⎦

Φ
⟼

⎡⎢⎢⎢⎢⎣

�
𝛼Δ22 − 𝛽2𝛾2

�
x + Δ12y + 𝛾1t + 𝛽2𝛾2ty +

1

2
𝛼𝛾2t

2 +
1

2
Δ22𝛽2y

2 + 𝜙01(w)

Δ22y + 𝛾2t

𝛽2y + 𝛼t

𝜂y + 𝜌t + 𝜙11(w)

⎤⎥⎥⎥⎥⎦

����������

dΦ��(0,0) =
⎛⎜⎜⎜⎝

𝛼Δ22 − 𝛽2𝛾2 Δ12 𝛾1 𝜙01

0 Δ22 𝛾2 0

0 𝛽2 𝛼 0

0 𝜂 𝜌 𝜙11

⎞⎟⎟⎟⎠
∈ Aut( aA(ℵ))

⎫⎪⎬⎪⎭

(15)Aut(G) =

{
[v, t]

Φ
⟼

[
e𝛼tJ(ℵ) − �

𝛼J(ℵ)
𝛾 + Δv, 𝛼t

]||| dΦ||(0,0) =
(
Δ 𝛾

0 𝛼

)
∈ Aut( aA(ℵ))

}

dΦ

⎛⎜⎜⎜⎝

x

y

t

w

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝

�
�Δ22 − �2�2

�
x + Δ12y + �1t + �01(w)

Δ22y + �2t

�2y + �t

�y + �t + �11(w)

⎞⎟⎟⎟⎠
,
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 which yields the desired assertion. For the generic case let us first show that the map

 is bijective by checking that its inverse is given by

 Indeed,

 where we used α J(ℵ)Δ = ΔJ(ℵ) and Remark 3. Next, we establish that the same map is a Lie group homomorphism,

 Finally, for every (u, s) ∈ ℝ
d ⋊ℝ = aA(ℵ) let (− 1,1) ∋ τ↦[v(τ),t(τ)] ∈ G be a smooth curve such that [v(0),t(0)] = [0,0] 

and (v�(0, t�(0)) = (u, s) . Then,

 which completes the proof. □

Remark 4  Again, if we apply formula (15) to a central extension G = H ×ℝ
d−2 of the Heisenberg group, then we will 

exactly recover those automorphisms with β2 = 0 in formula (14).

The normal subgroup Inn(G) ⊂Aut(G) of inner automorphisms contains Φg ∈Aut(G) such that Φg(h) = ghg− 1 for 
some g ∈ G and all h ∈ G.

Φ

⎛
⎜⎜⎜⎝
exp

⎛
⎜⎜⎜⎝

0 0 0 0

x 0 t 0

y 0 0 0

w 0 0 0

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠
= Φ

⎛
⎜⎜⎜⎝

1 0 0 0

x +
yt

2
1 t 0

y 0 1 0

w 0 0 1

⎞
⎟⎟⎟⎠

= exp

⎛⎜⎜⎜⎝

0 0 0 0�
�Δ22 − �2�2

�
x + Δ12y + �1t + �01(w) 0 �2y + �t 0

Δ22y + �2t 0 0 0

�y + �t + �11(w) 0 0 0

⎞⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎝

1 0 0 0�
�Δ22 − �2�2

�
x + Δ12y + �1t + �01(w) +

[Δ22y+�2t][�2y+�t]
2

1 �2y + �t 0

Δ22y + �2t 0 1 0

�y + �t + �11(w) 0 0 1

⎞⎟⎟⎟⎟⎠
,

[v, t]
Φ

⟼

[
e𝛼tJ(ℵ) − �

𝛼J(ℵ)
𝛾 + Δv, 𝛼t

]

[v, t]
Φ−1

⟼

[
−
etJ(ℵ) − �

J(ℵ)
Δ−1𝛾 + Δ−1v,

t

𝛼

]
.

Φ−1
◦Φ[v, t] =

[
−
etJ(ℵ) − �

J(ℵ)
Δ−1𝛾 + Δ−1

[
e𝛼tJ(ℵ) − �

𝛼J(ℵ)
𝛾 + Δv

]
,
𝛼t

𝛼

]
= [v, t],

Φ[v, t] ⋅Φ[u, s] =

[
e𝛼tJ(ℵ) − �

𝛼J(ℵ)
𝛾 + Δv, 𝛼t

]
⋅

[
e𝛼sJ(ℵ) − �

𝛼J(ℵ)
𝛾 + Δu, 𝛼s

]

=

[
e𝛼(t+s)J(ℵ) − �

𝛼J(ℵ)
𝛾 + Δ

[
v + etJ(ℵ)u

]
, 𝛼(t + s)

]
= Φ[v + etJ(ℵ)u, t + s] = Φ([v, t] ⋅ [u, s]).

dΦ(u, s) =
d

d𝜏
Φ[v(𝜏), t(𝜏)]|𝜏=0 = d

d𝜏

[
e𝛼tJ(ℵ) − �

𝛼J(ℵ)
𝛾 + Δv(𝜏), 𝛼t(𝜏)

]|||||𝜏=0
= (Δu + s𝛾 , 𝛼s),
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Corollary 1  If G is a simply connected almost Abelian Lie group with Lie algebra aA(ℵ) , then

Proof  That Φg ∈Inn(G) means that Φg(h) = ghg− 1, for g ∈ G, ∀h ∈ G. Let g = [u,s] and h = [v,t], so that

 where

 precisely as asserted. □

We turn now to the case of more general connected almost Abelian Lie group G/N where G is simply connected and 
N ⊂ G is a discrete central subgroup. Denote by qN : G → G/N the canonical quotient homomorphism. By Proposi-
tion 6 we know that

 We will describe the condition Φ(N) = N more explicitly using Proposition 8. The following simple fact will come in 
handy.

Lemma 6  If et J(ℵ) = 1, then aA(ℵ) = �0 ⊕� where L0 is indecomposable and � = ker J(ℵ) , and

Proof  Note that

 If t = 0, then

 and the assertion is clear. If t≠ 0, then t ∈ Tℵ≠∅, and by Lemma 5

 as desired. □

Now, fix a central discrete subgroup N ⊂ G and let by Proposition 5 N be generated by {[xi, 0, 0,wi]}
k
i=1

 if G = H ×ℝ
d−2 

and {[vi, ti]}ki=1 otherwise.

Proposition 9  In terminology of Proposition 8, an automorphism Φ ∈Aut(G) satisfies Φ(N) = N if and only if

Inn(G) =

{
[v, t]

Φ
⟼

[
etJ(ℵ) − �

J(ℵ)
𝛾 + Δv, t

]||| 𝛾 ∈ J(ℵ)
(
ℝ

d
)
, Δ = esJ(ℵ), s ∈ ℝ

}
.

Φ[u,s][v, t] = [u, s][v, t][u, s]−1 =
[
esJ(ℵ)v −

(
etJ(ℵ) − �

)
u, t

]
=

[
etJ(ℵ) − �

J(ℵ)
𝛾 + Δv, t

]
,

Δ = esJ(ℵ), 𝛾 = −J(ℵ)u,

Aut(G∕N) =
{
ΦN = qN◦Φ◦q−1

N
|| Φ ∈ Aut(G), Φ(N) = N

}
.

e𝛼tJ(ℵ) − �

𝛼J(ℵ)
= t

[
0
�0

⊕ �
�

]
, ∀𝛼 ∈ Dil(ℵ).

e𝛼tJ(ℵ) − �

𝛼J(ℵ)
= t

e𝛼tJ(ℵ) − �

𝛼tJ(ℵ)
.

e𝛼tJ(ℵ) − �

𝛼tJ(ℵ)
= �

e𝛼tJ(ℵ) − �

𝛼tJ(ℵ)
=

⨁
p∈suppℵ

⨁
ℵ(p,1)

e𝛼txp − �

𝛼txp
=

[ ⨁
X≠p∈suppℵ

⨁
ℵ(p,1)

e𝛼txp − �

𝛼txp

]⨁[⨁
ℵ(X,1)

e𝛼txp − �

𝛼txp

]

=
[
0
�0

⊕ �
�

]
,
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for G = H ×ℝ
d−2 and

otherwise. Here, 𝛾
�

=
[
0
�0

⊕ �
�

]
𝛾 as per Lemma 6.

Proof  If G = H ×ℝ
d−2 , then for every Φ ∈Aut(G) the condition Φ(N) ⊂ N can be expressed as the statement that for 

every fixed 1 ≤ i0 ≤ k, the image Φ([xi0 , 0, 0,wi0
] is an integer linear combination of {[xi, 0, 0,wi]}

k
i=1

 . In matrix language 
of Proposition 8, this can be written as

 Combining these statements for all i0 = 1,…,k we obtain the formula (16) with A being a k × k matrix with integer entries. 
Following the same logic for Φ− 1(N) ⊂ N we will obtain a similar formula where the matrix A− 1 figures and is supposed 
to have integer coefficients. But Φ(N) = N is equivalent to Φ(N) ⊂ N and Φ− 1(N) ⊂ N, which holds if and only if both A 
and A− 1 have integer entries, i.e., A ∈ GL(ℤ, k) , as desired. If G ≠ H ×ℝ

d−2 , then by Proposition 4 we see that etiJ(ℵ) = � 
for all i = 1,…,k. Thus, by Proposition 8 and Lemma 6, the condition Φ(N) ⊂ N becomes

 Combining these statements for all i0 = 1,…,k we obtain the formula (17) with A being a k × k matrix with integer entries. 
The rest of the argument follows as before. □

Remark 5  Let N ⊂ G be a discrete central subgroup. Since all Φ ∈Inn(G) act trivially on N ⊂Z(G), it follows that Φ(N) 
= N is satisfied automatically.

6 � Discrete normal subgroups and quotients of simply connected almost Abelian groups 
revisited

Pursuant to the aims of Proposition 6, in this section, we want to derive necessary and sufficient conditions for two 
discrete central subgroups N,M ⊂ G to be related by an automorphism Φ ∈Aut(G) of the simply connected almost 
Abelian Lie group G. We begin with preparatory steps with a discrete central subgroup N ⊂ G given in terms of a 
set of generators [v1,t1],…,[vk,tk] according to Proposition 5. Every other set of generators [u1,s1],…,[uk,sk] of N is 
related to the original one by

(16)
(
�Δ22 − �2�2 �01

0 �11

)(
x1 … xk
w1 … wk

)
=

(
x1 … xk
w1 … wk

)
⋅ A, A ∈ GL(ℤ, k)

(17)
(
Δ �

�

0 �

)(
v1 … vk
t1 … tk

)
=

(
v1 … vk
t1 … tk

)
⋅ A, A ∈ GL(ℤ, k)

Φ

⎡
⎢⎢⎢⎣

xi0
0

0

wi0

⎤
⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎣

�
�Δ22 − �2�2

�
xi0 + �01(wi0

)

0

0

�11(wi0
)

⎤
⎥⎥⎥⎦
=

⎛
⎜⎜⎜⎝

�Δ22 − �2�2 0 0 �01

0 0 0 0

0 0 0 0

0 0 0 �11

⎞
⎟⎟⎟⎠

⎡
⎢⎢⎢⎣

xi0
0

0

wi0

⎤⎥⎥⎥⎦

=

⎛⎜⎜⎜⎝

x1 … xk
0 … 0

0 … 0

w1 … wk

⎞⎟⎟⎟⎠

⎡
⎢⎢⎣

A1i0

…

Aki0

⎤
⎥⎥⎦
, Aii0

∈ ℤ, i = 1,… , k.

Φ

�
vi0
ti0

�
=

�
e
𝛼ti0

J(ℵ)

𝛼J
𝛾 + Δvi0
𝛼ti0

�
=

�
Δ 𝛾

�

0 𝛼

��
vi0
ti0

�
=

�
v1 … vk
t1 … tk

�⎡⎢⎢⎣

A1i0

…

Aki0

⎤⎥⎥⎦
, Aii0

∈ ℤ, i = 1,… , k.
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 According to Lemma 5, there exists t0 ∈ Tℵ and n1,… , nk ∈ ℤ such that ti = nit0, i = 1,…,k.

Lemma 7  There exists a change of generators A ∈ GL(ℤ, k) such that

Proof  This can be achieved easily by column operations justified with Bezout’s identity. See Appendix Appendix. 

In what follows, we will assume that a discrete central subgroup N ⊂ G is given by a set of generators in the more 
economic form [v1,t1],[v2,0],…,[vk,0]. In terminology of formula (16) in [5],

 or in other words, the vectors v1,… , vk ∈ ℝ
d written in the standard basis em

�
(p, n) may have non-zero entries only 

in the rows corresponding to the topmost elements of the Jordan blocks with eigenvalue zero. Let ṽ1,… , ṽk ∈ ℝ
q , 

q ≐ dim ker J(ℵ) , be the vectors obtained by picking only these significant rows. We have seen in Proposition 8 that 
operators Δ ∈ Aut(ℝd) with [Δ,J(ℵ)] = 0 play a prominent role in the structure of automorphisms of G. Such an operator 
Δ preserves the invariant subspace ker J(ℵ) , and we denote the restriction of Δ to ker J(ℵ) by Δ̃ ∈ Aut(ℝq) . Let us now 
assume that Jordan blocks in J(ℵ) are ordered by non-decreasing block dimension n. Applying Proposition 7 and Lemma 
2 from [5], we see that Δ = Δ̃⊕ 0 (i.e., the matrix Δ beyond the submatrix Δ̃ is identically zero) and Δ̃ is an arbitrary real 
invertible block-upper-triangular matrix with blocks corresponding to constant Jordan block dimension n. That means,

 The following simple observation will be useful in what follows.

Remark 6  In terminology of [5], Dil(ℵ) ⊂ ℝ
∗ is a finite multiplicative subgroup and therefore Dil(ℵ) ⊂ ℤ2 . If suppℵ ⊂ 𝚤ℝ , 

which by Lemma 5 is the case when Tℵ≠{0}, then necessarily Dil(ℵ) = ℤ2.

Proposition 10  Two discrete central subgroups N and M given in terms of generators [v1,t1],[v2,0],…,[vk,0] and 
[u1,s1],[u2,0],…,[uk,0], respectively, are related by an automorphism of G if and only if t1 = ±s1 and there exist Δ̃ as 
above and an A ∈ GL(ℤ, k) such that

 and

 where w̃ ∈ ℝ
q can be chosen arbitrarily.

(
u1 … uk
s1 … sk

)
=

(
v1 … vk
t1 … tk

)
⋅ A, A ∈ GL(ℤ, k).

(
u1 u2 … uk
s1 0 … 0

)
=

(
v1 v2 … vk
t1 t2 … tk

)
⋅ A.

ker J(ℵ) =

∞⨁
n−1

⨁
ℵ(X,n)

ℝe1
𝛼
(X, n),

Δ̃ =

⎛⎜⎜⎜⎜⎝

Δ̃n1n1
Δ̃n1n2

… Δ̃n1ns

0 Δ̃n2n2
… Δ̃n2ns

… … … …

0 0 … Δ̃nsns

⎞
⎟⎟⎟⎟⎠
, Δ̃ninj

∈ Hom(ℝqj ,ℝqi ), ℵ(X, ni) = qi, i, j = 1,… , s,

q1 +…+ qs = q, ni > ni+1, i = 1,… , s − 1.

Δ̃ ⋅
(
ṽ1ṽ2 … ṽk

)
=
(
ũ1ũ2 … ũk

)
⋅ A if t1 = 0

Δ̃ ⋅
(
w̃ṽ2 … ṽk

)
=
(
ũ1ũ2 … ũk

)
⋅ A if t1 ≠ 0,
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Proof  The subgroup N is mapped to the subgroup M by an automorphism Φ ∈Aut(G) if and only if the generators 
[v1,t1],[v2,0],…,[vk,0] are mapped to any set of generators of M, which must be related to the original generators 
[u1,s1],[u2,0],…,[uk,0] through a matrix A ∈ GL(ℤ, k) , i.e.,

 By Proposition 8 this amounts to

 since even for H ×ℝ
d−2 the coefficient β2 has no effect in acting on vectors from ker J(ℵ) . By Remark 6 we have α = ± 1 

so that t1 = ±s1. Furthermore,

 where the choice of � ∈ ℝ
d is completely arbitrary. The assertion now follows by restricting the above equation to 

ker J(ℵ) . □

Finding algebraic criteria under which the above conditions are satisfied is a hard problem which we will not pursue here.
As a simple side result, the structure of a discrete central subgroup N ⊂ G can be simplified further using automorphisms. 
In the above economic form of the basis for N, the element v1 is arbitrary, and it need not be possible to kill v1 by any further 
right GL(ℤ, k) action. Instead, we can use automorphisms of G to achieve that simplification.

Proposition 11  For every discrete central subgroup N ⊂ G of a simply connected almost Abelian group G = ℝ
d ⋊ℝ 

with Lie algebra aA(ℵ) , there exists an automorphism Φ ∈Aut(G) such that the discrete central subgroup M = Φ(N) satis-
fies M = (M ∩ ker J(ℵ)) × (M ∩ Tℵ).

Proof  Let N be given in terms of the generators [v1,t1],[v2,0],…,[vk,0]. If t1 = 0, then N ⊂ ker J(ℵ) and the assertion is 
trivial. Assume that t1≠ 0, so that by Lemma 5 we have suppℵ ⊂ 𝚤ℝ , and therefore Dil(ℵ) = ℤ2 [5]. Choose Φ according 
to Proposition 8 with α = sgnt1, Δ = 1 and � = −

1

t1
v1 . Then, M = Φ(N) is given by the set of generators

 whence the statement of the proposition follows. □

7 � Connected almost Abelian groups

The goal of this section is to describe connected (not necessarily simply connected) almost Abelian groups in terms of 
faithful matrix representations whenever the latter exist. Recall that a connected almost Abelian group can be written as G/N 
where the universal cover G is a simply connected almost Abelian group and N ⊂ G is a discrete central subgroup. Regardless 
of whether G/N is a matrix group, the matrix representation of G can be used to produce a natural (almost global) coordinate 
chart on G/N as follows. Consider a modification of the second faithful matrix representation of G from Proposition 2 as a 
faithful “quotient-matrix” representation of G/N,

Φ

(
v1 v2 … vk
t1 0 … 0

)
=

(
u1 u2 … uk
s1 0 … 0

)
⋅ A.

(
Δ �

0 �

)
⋅

(
v1 v2 … vk
t1 0 … 0

)
=

(
u1 u2 … uk
s1 0 … 0

)
⋅ A,

Δ ⋅ (v1, v2,…, vk) + (t1� , 0,…, 0) = (v1, v2,…vk) ⋅ A,

(
� −

1

t1
v1

0 sgnt1

)
⋅

(
v1 v2 … vk
t1 0 … 0

)
=

(
0 v2 … vk
|t1| 0 … 0

)
,

G∕N ∋ [v, t] mod N ↦

⎛⎜⎜⎝

1�
v

t

�

mod N

0 0

etJ(ℵ) 0

0 1

⎞⎟⎟⎠
∈ End(ℝd+2).
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 This representation is algebraically convenient since by Proposition 5 we know that N can be seen as an additive subrgoup 
of ℝd+1 , and [v,t] mod N is easy to compute. In a neighbourhood of the identity the above representation coincides with 
the true faithful matrix representation of G.
Let us now turn to proper faithful matrix representations. The following provides an explicit faithful matrix represen-
tation for a quotient group G/N under certain assumptions on N. Let

 be a decomposition of aA(ℵ) as in [Ave16] where ℝd0 ⋊ℝ is indecomposable. Then, the simply connected group decom-
poses as G = G0 ×ℝ

d−d0 . The first faithful representation of G from Proposition 2, upon substitution of the decomposition 
ℝ

d ∋ u ↦ v⊕ w ∈ ℝ
d0 ⊕ℝ

d−d0 , gives

 If we denote by diagw the (d − d0)-dimensional diagonal matrix composed of components of w, then it can be easily 
checked that

is a matrix Lie group isomorphism, and therefore the right hand side is another faithful matrix representation of G.
Assume now that the discrete central subgroup satisfies N ⊂ ℝ

d−d0 × Tℵ , i.e., per Proposition 5, is generated by

 The representation on the right hand side of (18) is convenient in that it allows to reshuffle the last d − d0 + 1 dimensions 
in way to separate the generators of N. Namely, complete arbitrarily the above generators of N to a basis in ℝd−d0 ⊕ℝ,

 and consider the inverse P ∈ End(ℝd−d0+1) of the matrix with columns being elements of this basis,

Let P∥ ∈ Hom(ℝd−d0+1,ℝk) represent the first k rows of P, and P
⟂
∈ Hom(ℝd−d0+1,ℝd−d0+1−k) the remaining rows.

Proposition 12  If the discrete central subgroup satisfies N ⊂ ℝ
d−d0 × Tℵ , then the map

 is a faithful matrix representation of G/N.

Proof  In view of (18) being a faithful representation of G, it suffices to show that the map

aA(ℵ) = ℝ
d0 ⋊ℝ⊕ℝ

d−d0

G = ℝ
d0 ⋊ℝ ×ℝ

d−d0 ∋ [v, t,w] ↦

⎛⎜⎜⎜⎝

1 0 0 0

v etJ(ℵ0) 0 0

w 0 � 0

0 0 0 et

⎞⎟⎟⎟⎠
∈ End(ℝd+1).

(18)

⎛⎜⎜⎜⎝

1 0 0 0

v etJ(ℵ0) 0 0

w 0 � 0

0 0 0 et

⎞⎟⎟⎟⎠
↦

⎛⎜⎜⎜⎝

1 0 0 0

v etJ(ℵ0) 0 0

0 0 ediagw 0

0 0 0 et

⎞⎟⎟⎟⎠

[w1, t1],… , [wk, tk] ∈ ℝ
d−d0 × Tℵ, 0 ≤ k ≤ d − d0 + 1.

[w1, t1],… , [wd−d0+1
, td−d0+1] ∈ ℝ

d−d0 ⊕ℝ,

(19)P ≐

(
w1 … wd−d0+1

t1 … td−d0+1

)−1

.

G∕N ∋ [v, t,w] mod N ↦

⎛⎜⎜⎜⎝

1 0 0 0

v etJ(ℵ0) 0 0

0 0 ediag2𝜋𝚤P∥[w,t]
⊤

0

0 0 0 ediagP⟂[w,t]
⊤

⎞⎟⎟⎟⎠
∈ End(ℝd+2)
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 is a Lie group homomorphism with kernel N. Checking that this is a Lie group homomorphism is straightforward. Now, 
let [v, t,w] ∈ ℝ

d0 ⋊ℝ ×ℝ
d−d0 = G . Then,

 if

 The latter two conditions can be combined into P[w, t]⊤ ∈ ℤ
k ⊕ 0 , which in view of (19) can be written as

 which is equivalent to [w,t] being generated by [w1,t1],…,[wk,tk] over ℤ . Thus, [v,t,w] is in the kernel if [v,t,w] ∈ N, which 
completes the proof. □

Below we establish a necessary and sufficient condition for G/N to be a matrix group in terms of the subgroup N. We 
start with a little lemma.

Lemma 8  Let X, Y , Z ∈ End(ℂn) be such that

 Then, Z = 0.

Proof  Since Z is anti-Hermitean, by the spectral theorem for Hermitean matrices it is unitarily diagonalizable with purely 
imaginary spectrum. Assume without loss of generality that

 Then, by Proposition 7 in [Ave18], the matrices X and Y are of the form

 Thus, [Xi, Yi] = �i�ni and therefore tr[Xi,Yi] = 0 = λi, i = 1,…,q, which shows that Z = 0. □

Proposition 13  Let G = ℝ
d ⋊ℝ be a simply connected almost Abelian group with Lie algebra � = ℝ

d ⋊ℝ = aA(ℵ) , and 
let N ⊂ G be a discrete central subgroup with generators [v1,t1],…,[vk,tk]. Then, the following two statements are equivalent:

•	  ℝ
{
(v1, t1),… , (vk, tk)

}
∩ [�,�] = 0

•	 G/N has a faithful (real or complex) matrix representation

Proof  2. ⇒ 1. Assume towards a contradiction that condition 1. is not satisfied,

⎛
⎜⎜⎜⎝

1 0 0 0

v etJ(ℵ0) 0 0

0 0 ediagw 0

0 0 0 et

⎞
⎟⎟⎟⎠

↦

⎛
⎜⎜⎜⎝

1 0 0 0

v etJ(ℵ0) 0 0

0 0 ediag2𝜋𝚤P∥[w,t]
⊤

0

0 0 0 ediagP⟂[w,t]
⊤

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0 0

v etJ(ℵ0) 0 0

0 0 ediag2𝜋𝚤P∥[w,t]
⊤

0

0 0 0 ediagP⟂[w,t]
⊤

⎞
⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎝

1 0 0 0

0 � 0 0

0 0 � 0

0 0 0 �

⎞
⎟⎟⎟⎠

v = 0, t ∈ Tℵ, P∥[w, t]
⊤ ∈ ℤ

k, P
⟂
[w, t]⊤ = 0.

(
w

t

)
=

(
w1 … wd−d0+1

t1 … td−d0+1

)(
m

0

)
, m ∈ ℤ

k,

[X, Y] = Z, [X, Z] = [Y , Z] = 0, Z + Z∗ = 0.

Z = �

q⨁
i=1

�i�ni , �i ∈ ℝ, n1 +…+ nq = n.

X =

q⨁
i=1

Xi, Y =

q⨁
i=1

Yi, Xi, Yi ∈ End (ℂni).
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 and let � ∶ G∕N → Aut(ℂn) be a faithful representation with d� ∶ � → End(ℂn) being its derivative. Because exp |Z(�) = � 
we have that exp(vi, ti) = [vi, ti] and thus �[vi, ti] = ed�(vi,ti) = � , which implies by Lemma 5 that dσ(vi,ti) is diagonalizable 
with spectrum in 2��ℤ . Moreover, since [dσ(vi,ti),dσ(vj,tj)] = 0 for all i,j = 1,…,k, there is an invertible P ∈ Aut(ℂn) such 
that

 Denote

 Then, the assumptions of Lemma 8 are satisfied, implying that

 which contradicts the fact that σ is faithful.
1. ⇒ 2. Let now condition 1. be satisfied. By Lemma 7 we can assume without loss of generality that t2 = t3 = … = tk 

= 0. If � = ℝ
d0 ⋊ℝ⊕ℝ

d−d0 is the decomposition as before, then condition 1. implies that v2,… , vk ∈ ℝ
d−d0 . If t1 = 0, then 

condition 1. also requires that v1 ∈ ℝ
d−d0 , which shows that N ⊂ ℝ

d−d0 , and by Proposition 12 the quotient group G/N has 
a faithful matrix representation. If t1≠ 0, then applying the automorphism Φ ∈Aut(G) from Proposition 11 we obtain the 
discrete central subgroup Φ(N) with generators [0,t1],[v2,0],…,[vk,0], which now satisfies Φ(N) ⊂ ℝ

d−d0 × Tℵ . Thus, by 
Proposition 12, the quotient group G/Φ(N) has a faithful matrix representation. But then by Proposition 6, the automor-
phism Φ induces an isomorphism between G/N and G/Φ(N), proving that G/N has a faithful matrix representation, too. □

8 � Connected subgroups of a connected almost Abelian Lie group

The goal of this section is describing all connected Lie subgroups of a connected almost Abelian Lie group. A connected 
almost Abelian group can be identified with the quotient group G/N where G is a simply connected almost Abelian Lie 
group and N ⊂ G is a discrete normal subgroup (see Proposition 5). The canonical quotient map qN : G → G/N is a Lie 
group homomorphism, and its derivative d qN is an isomorphism of Lie algebras. Thus, we can assume without loss of 
generality that the Lie algebras of both G and G/N are aA(ℵ) . By the Lattice Isomorphism Theorem (Theorem 20 in [11]) 
subgroups HN ⊂ G/N are exactly the quotients H/N of subgroups H ⊂ G with N ⊂ H ⊂ G. However, the complete preimage 
qN(HN) ⊂ G may not be a closed subgroup, and we may have to choose a different H with H/N = HN.
We will start from a simply connected almost Abelian Lie group G with Lie algebra aA(ℵ) = ℝ

d ⋊ℝ . By Theorem 5.20 
in [21] to every Lie subalgebra � ⊂ aA(ℵ) there exists a unique connected Lie subgroup HL ⊂ G for which it is the Lie 
algebra, and conversely, all connected Lie subgroups of G arise in this way.

Remark 7  By Proposition 4 in [4], either of the following two possibilities occurs:

•	  � = � ⊂ ℝ
d is an Abelian Lie subalgebra.

•	 L is of the form

 where v0 ∈ ℝ
d is a fixed element and � ⊂ ℝ

d is an ad-invariant vector subspace. In this case L is Abelian if and only 
if � ⊂ Z( aA(ℵ)).

[(0, 1), (u, 0)] =

k∑
i=1

�i(vi, ti) ≠ 0, u ∈ ℝ
d, �i ∈ ℝ, i = 1,… , k,

P−1d�(vi, ti)P = �Di, D∗
i
= Di, i = 1,… , k.

X ≐ P−1d�(0, 1)P, Y ≐ P−1d�(0, u)P, Z ≐ �

k∑
i=1

Di.

Z = d�([(0, 1), (u, 0)]) = 0, [(0, 1), (u, 0)] ≠ 0,

� =
{
(w + tv0, t) ∈ ℝ

d
⋊ℝ|| w ∈ �, t ∈ ℝ

}
,
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Accordingly, the corresponding connected Lie subgroups HL fall into two categories.

Proposition 14  The connected Lie subgroup HL ⊂ G of the simply connected almost Abelian Lie group G with Lie 
algebra L as in Remark 7 is given by either of the following two forms, accordingly:

•	

•	
In the second case

Proof  That HL is indeed a Lie subgroup in both cases can be checked directly using, say, the faithful matrix representation 
I of Proposition 2. In Case 1, the exponential map from Lemma 1 delivers the desired result immediately. For Case 2, pick 
an arbitrary (w0 + t0v0,t0) ∈L and let (−1, 1) ∋ 𝜏 ↦ (w(𝜏), t(𝜏)) ∈ �⊕ℝ be a smooth curve with

 Then, we have

 showing that the Lie algebra of HL is L. Finally, an automorphism with α = 1, Δ = 1 and γ = v0 from Proposition 8 can 
be used to establish the isomorphism between HL and exp(�) ⋅ℝ . □

Remark 8  Proposition 14 easily implies, in particular, that all connected subgroups of a simply connected almost Abelian 
group are simply connected and closed.

Remark 9  By Proposition 11 in [4], two almost Abelian Lie subalgebras �1,�2 ⊂
aA(ℵ) corresponding to ad-invariant 

vector subspaces �1,�2 ⊂ ℝ
d are isomorphic if and only if J(ℵ)|

�1
 and J(ℵ)|

�1
 are projectively similar. Since both H

�1
 

and H
�2

 are simply connected, we have that H
�1

≃ H
�1

 if and only if �1 ≃ �2.

Remark 10  By Corollary 5.7 in [21], two connected subgroups H
�1
,H

�2
⊂ G of a simply connected almost Abelian 

group G, associated with Lie algebras �1,�2 ⊂
aA(ℵ) , respectively, are related by an automorphism Φ ∈Aut(G) if and 

only if the Lie algebras are related by the automorphism dΠ ∈ Aut( aA(ℵ)).

Let us now consider subgroups HN ⊂ G/N of connected almost Abelian groups G/N.

Lemma 9  Let G be a Lie group and N ⊂ G a normal subgroup. Then, every connected subgroup HN ⊂ G/N is the projec-
tion HN = H/N of a unique connected Lie subgroup H ⊂ G.

Proof  The quotient map qN : G → G/N is a surjective Lie group homomorphism, and its derivative d qN : LG :→LG/N is 
a surjective Lie algebra homomorphism. The preimage dq−1�HN

 of the Lie algebra of HN is a Lie subalgebra of LG, and 
thus is the Lie algebra of a unique connected subgroup H ⊂ G (Theorem 5.20 in [21] or Proposition 5.6.5 in [27]). The 
image qN(H) ⊂ G/N is a connected subgroup with Lie algebra �HN

 , which by uniqueness must be qN(H) = HN. Finally, if 
H′ ⊂ G is another connected subgroup with qN(H�) = HN , then �H� = �H , so that again by uniqueness H� = H . □

H
�
=
{
[w, 0] ∈ ℝ

d
⋊ℝ|| w ∈ �

}
= exp(�)

H
�
=

{[
w +

etJ(ℵ) − �

J(ℵ)
v0, t

]
∈ ℝ

d
⋊ℝ|| w ∈ �, t ∈ ℝ

}
≃ exp(�) ⋅ℝ

exp(�) ⋅ℝ =

{
exp(�) ×ℝ if � ⊂ Z( aA(ℵ)),

exp(�)⋊ℝ else.

(w(0), t(0)) = (0, 0), (w�(0), t�(0)) = (w0, t0) ∈ �⊕ℝ.

d

d𝜏

[
w(𝜏) +

et(𝜏)J(ℵ) − �

J(ℵ)
v0, t(𝜏)

]|||||𝜏=0
= (w0 + t0v0, t0),
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Remark 11  Since the projection H/N of a connected subgroup H ⊂ G is a connected subgroup H/N ⊂ G, we conclude that 
connected subgroups of G/N are exactly images H/N of connected subgroups H ⊂ G, which were already classified above.

It remains to find when a given connected subgroup H/N ⊂ G/N is closed. For this purpose, we will first establish a 
simple fact regarding the relative structure of H and N.

Lemma 10  Let G be a simply connected almost Abelian group, N ⊂ G a discrete normal subgroup and H ⊂ G a connected 
subgroup. Then, there exists a subgroup B ⊂ N such that N = (N ∩ H) × B.

Proof  We use Proposition 14 to write H in the form H = exp(�) or H = exp(�)⋊ℝ (direct or semidirect), with � ⊂ ℝ
d 

a vector subspace. All we need to show is that the N ∩ H ⊂ N is a pure subgroup. Indeed, let [v,t] ∈ N and q ∈ ℕ such that 
[v,t]q = [qv,qt] ∈ N ∩ H. Then, qv ∈W and thus also v ∈W, whence [v,t] ∈ N ∩ H. Then, by Corollary 28.5 in [20], N ∩ 
H is a direct factor. □

Since

 is a bijection, we can introduce its inverse

 For every subset X ⊂ Z(G)0 ×ℝ , we denote by X the connected subgroup

 Thus, X ⊂ G is a minimal Lie subgroup containing the set X.

Proposition 15  Let G be a simply connected almost Abelian group, N ⊂ G a discrete normal subgroup and H ⊂ G a 
connected subgroup. Then, the connected subgroup H/N ⊂ G/N is closed if and only if H ∩ N = H ∩ N.

Proof  First, let us note that

 Indeed, H ∩ N ⊂ N is obvious, while H ∩ N ⊂ H follows from ℝ⟨log(H ∩ N)⟩ ⊂ �H , where LH is the Lie algebra of H. Let by 
Lemma 10 N = (H ∩ N) × B for a subgroup B ⊂ N. Since N is a free Abelian group, we have that ℝ⟨log(H ∩ N)⟩ ∩ℝ⟨log(B)⟩ = 0 , 
and because N is a subgroup of the Abelian Lie group Z(G)0 ×ℝ , it follows that N = H ∩ N × B . Thus,

 By definition of quotient topology, H/N ⊂ G/N is closed if and only if the complete preimage HN ⊂ G is closed. The 
subgroups H and N are connected, and so is their product HN . Since N ⊂ G is central, both HN and HN are subgroups. 
Being a connected subgroup, HN ⊂ G is closed by Proposition 14. Thus, the question is reduced to whether HN ⊂ HN 
is closed or not.

H ∩ B ⊂ B is a closed Lie subgroup; hence, B = H ∩ B × C where C ⊂ B is a closed Lie subgroup. It follows that

exp |Z( aA(ℵ))⊕ℝ
∶ Z( aA(ℵ))⊕ℝ → Z(G)0 ×ℝ

log = [exp |ker J(ℵ)⊕ℝ
]−1 ∶ Z(G)0 ×ℝ → Z(G)0 ×ℝ.

X = exp
�
ℝ⟨log(X)⟩�, ∀X ⊂ Z(G)0 ×ℝ.

H ∩ N ⊂ H ∩ N.

H ∩ N = H ∩ (H ∩ N × B) = H ∩ N × (H ∩ B),

H ∩ N = H ∩ N ⇔ H ∩ B = {�}.

HN = HB = BH, HN = HB = HC = CH,
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 and we want to know whether BH ⊂ CH is closed. Again, by definition of quotient topology, this is equivalent to BH/H 
⊂ CH/H being closed or not. Since B ∩ H = C ∩ H = {1}, the homomorphisms B → BH/H and C → CH/H are isomor-
phisms, therefore rankBH/H = rankB and dimCH∕H = dimC , which implies that rankBH∕H = dimB ≥ dimCH∕H , and 
equality holds if and only if H ∩ B = {�} . If H ∩ B = {�} , then the homomorphism B → BH∕H is an isomorphism, and 
BH∕H ⊂ CH∕H = BH∕H is closed. On the other hand, if H ∩ B ≠ {�} , then dimCH∕H < rankBH∕H ; therefore, BH/H 
⊂ CH/H is dense (see Theorem 6.1 in [30]). □

Appendix: : proof of Lemma 7

Let 1 < k ∈ ℕ and (v1, t1),… , (vk, tk) ∈ ℝ
d ×ℝ such that ti = nit0, ni ∈ ℤ for i = 1,…,k, where t0 ∈ ℝ.

Lemma 7 There exists a change of generators A ∈ GL(ℤ, k) such that

Remark 12  Here, s1 = d*t0, where d∗ = gcd(n1,… , nk).

Proof  The statement amounts to the existence of an A ∈ GL(ℤ, k) such that

 Dividing both sides by d* we reduce the problem to finding an A ∈ GL(ℤ, k) such that

where ñi = ni∕d∗ for i = 1,…,k and gcd(ñ1,… , ñk) = 1 . Denote

 so that ñi = mid1d2…dk∕di for i = 1,…,k and gcd(mi,mj) = 1 for all i≠j.
We will define the auxiliary matrix B ∈ GL(ℤ, k) depending on whether k is even or odd. If k = 2r, then define num-

bers q1,… , qk ∈ ℤ such that, by Bézout’s identity, m2j− 1q2j− 1 + m2jq2j = 1 for j = 1,…,r. Then, B is the following matrix,

 It is easy to see that indeed, | detB| = 1 and

 If on the other hand k = 2r + 3, then we introduce the numbers q1,… , qk−3 ∈ ℤ as before, m2j− 1q2j− 1 + m2jq2j = 1 for j 
= 1,…,r. Then, again powered by Bézout’s identity, we define integers qk−2, qk−1, qk, sk−2, sk ∈ ℤ such that mk− 2qk− 2 + 
mk− 1qk− 1 + mkqk = 1 and mk−2sk2 + mksk = 1 . Now, the matrix B is as follows,

(
u1 u2 … uk
s1 0 … 0

)
=

(
v1 v2 … vk
t1 t2 … tk

)
⋅ A.

(d∗, 0,… , 0) = (n1, n2,… , nk) ⋅ A.

(20)(1, 0,… , 0) = (ñ1, ñ2,… , ñk) ⋅ A,

d1 ≐ gcd(ñ2, ñ3,… , ñk), d2 ≐ gcd(ñ1, ñ3,… , ñk), … , dk ≐ gcd(ñ1, ñ2,… , ñk−1),

m1 ≐
ñ1

d2d3…dk
, m2 ≐

ñ2

d1d3…dk
, … , mk ≐

ñk

d1d2…dk−1
,

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

q1 0 … 0 −m2 0 … 0

q2 0 … 0 m1 0 … 0

0 q3 … 0 0 −m4 … 0

0 q4 … 0 0 m3 … 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 0 … qk−1 0 0 … −mk

0 0 … qk 0 0 … mk−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

(m1,… ,mr|mr+1,… ,mk) ⋅ B = (1,… , 1|0,… , 0).
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 Again, it can be observed that | detB| = 1 and

 For every l ∈ ℕ denote by Cl ∈ GL(ℤ, l) , the matrix

 It can be easily seen that

 where exactly l non-zero entries are on the left-hand side. Finally, we define the auxiliary matrix D ∈ GL(ℤ, k) by 
D = B ⋅

[
Cr ⊕ �r

]
 or D = B ⋅

[
Cr+1 ⊕ �r+2

]
 depending on whether k = 2r or k = 2r + 3, respectively. From what we had 

above, it is clear that

This property of D (as the more general (20)) is remarkable. It means that the first column D*1 is a Bézout tuple for (m1,…
,mk), while the k − 1 other columns D*2,…,D*k span the hyperplane orthogonal to (m1,…,mk). It is clear that any other 
Bézout tuple for (m1,…,mk) is of the form D ⋅ (1,λ2,…,λk)⊤ with (�2,… , �k) ∈ ℤ

k−1 , and replacing the first column D*1 in 
D with any other such tuple will not violate (21).

Remember that gcd(ñ1,… , ñk) = 1 , so that there exists a Bézout tuple (p1,… , pk) ∈ ℤ
k such that ñ1p1 +…+ ñkpk = 1 . 

It follows that

 that is, d1…dk ⋅ (p1/d1,…,pk/dk) is a Bézout tuple for (m1,…,mk), and we can afford setting D*1 = d1…dk ⋅ (p1/d1,…,pk/dk) 
without changing (21) or detD.

The desired matrix A can be constructed as below,

 We check that (20) is true. Indeed, (ñ1,… , ñk) ⋅ (p1,… , pk)
⊤ = 1 by definition, whereas

 follows from (21). Finally,

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q1 0 … 0 0 −m2 0 … 0 0 0

q2 0 … 0 0 m1 0 … 0 0 0

0 q3 … 0 0 0 −m4 … 0 0 0

0 q4 … 0 0 0 m3 … 0 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 0 … qk−4 0 0 0 … −mk−4 0 0

0 0 … qk−3 0 0 0 … mk−3 0 0

0 0 … 0 qk−2 0 0 … 0 mk −mk−1sk−2
0 0 … 0 qk−1 0 0 … 0 0 1

0 0 … 0 qk 0 0 … 0 −mk−2 −mk−1sk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(m1,… ,mr+1|mr+2,… ,mk) ⋅ B = (1,… , 1|0,… , 0).

Cl =

⎛⎜⎜⎜⎝

1 −1 0 … 0

0 1 −1 … 0

⋮ ⋮ ⋮ ⋮ ⋮

0 0 0 … 1

⎞⎟⎟⎟⎠
.

(1,… , 1, 0,… , 0) ⋅
[
Cl ⊕ �k−l

]
= (1, 0,… , 0),

(21)(m1,m2,… ,mk) ⋅ D = (1, 0,… , 0).

m1

d1…dk

d1
p1 +…+ mk

d1…dk

dk
pk = 1,

A =

⎛⎜⎜⎝

p1 D1,2d1 … D1,kd1
⋮ ⋮ ⋮ ⋮

pk Dk,2dk … Dk,kdk

⎞⎟⎟⎠
.

(ñ1,… , ñk) ⋅ (D1,jd1,… ,Dk,jdk)
⊤ = d1…dk ⋅ (m1,… ,mk) ⋅ (D1,j,… ,Dk,j) = 0, j = 2,… , k
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 which proves that A ∈ GL(ℤ, k).
□
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detA =

�������
diag(d1,… , dk) ⋅

⎛
⎜⎜⎝

p1∕d1 D1,2 … D1,k

⋮ ⋮ ⋮ ⋮

pk∕d1 Dk,2 … Dk,k

⎞
⎟⎟⎠

�������
=

|||||||

d1…dkp1∕d1 D1,2 … D1,k

⋮ ⋮ ⋮ ⋮

d1…dkpk∕d1 Dk,2 … Dk,k

|||||||
= detD,
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