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Abstract

An almost Abelian Lie group is a non-Abelian Lie group with a codimension 1 Abelian normal subgroup.
The majority of 3-dimensional real Lie groups are almost Abelian, and they appear in all parts of physics
that deal with anisotropic media—cosmology, crystallography etc. In theoretical physics and differential
geometry, almost Abelian Lie groups and their homogeneous spaces provide some of the simplest solvmani-
folds on which a variety of geometric structures, such as symplectic, Kéhler, spin etc., are currently studied
in explicit terms. Recently, almost Abelian Lie algebras were classified and studied in details. However, a
systematic investigation of almost Abelian Lie groups has not been carried out yet, and the present paper is
devoted to an explicit description of properties of this wide and diverse class of groups. The subject of inves-
tigation are real almost Abelian Lie groups with their Lie group theoretical aspects, such as the exponential
map, faithful matrix representations, discrete and connected subgroups, quotients and automorphisms. The
emphasis is put on explicit description of all technical details.

1 Introduction

In the present paper, we consider only real Lie groups and Lie algebras. An almost Abelian Lie algebra is a non-Abelian
Lie algebra L that contains a codimension one Abelian ideal, and an almost Abelian group is a Lie group with an almost
Abelian Lie algebra. This is equivalent to demanding that the Lie group contains a codimension one Abelian normal
subgroup. In fact, it can be shown that the existence of a codimension one Abelian Lie subgroup already guarantees the
existence of a codimension one Abelian normal subgroup.
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In low dimensions, almost Abelian Lie groups are well-represented. The only 2-dimensional non-Abelian Lie group is
almost Abelian, while 6 out of 9 classes (after Bianchi) of 3-dimensional real Lie algebras/groups are almost Abelian.
At the same time, since most physical systems are n = 1,2,3 dimensional, in absence of rotational symmetries a homo-
geneous (anisotropic) system is described by a low dimensional Lie group. It is thus only natural that almost Abelian
Lie groups are widely used in cosmology, where they represent the symmetries of the universe at large scale ([12],
[23], [26], [28], [3] and many others), or crystallography, where they model the symmetries of an ideal solid ([25]
and references therein). As far as applications in pure mathematics are concerned, one particular almost Abelian Lie
group is distinguished—the 3-dimensional Heisenberg group (higher dimensional Heisenberg groups are not almost
Abelian). Thorough studies of the Heisenberg group can be found, for instance, in [16] and [31]. Taking roots in the
foundations of quantum mechanics, this group has become the classical setting for non-commutative analysis. We refer
to [15] for recently developed theory of quantization and pseudodifferential calculus on the Heisenberg group (among
other nilpotent groups). It is therefore desirable to try and extend these results to general almost Abelian groups, but
that has to wait until a comprehensive study of almost Abelian Lie groups is available.

Higher dimensional almost Abelian Lie groups have gained in popularity in the last two decades, with at least a dozen
papers dealing with the subject written in the last 2 years only. One context of interest is compact solvmanifolds.
A solvmanifold is a homogeneous space G/N with G a simply connected solvable Lie group and N C G a discrete
subgroup. Almost Abelian groups G are special in that, together with nilpotent groups, these are the only solvable
Lie groups for which there is a practically useful necessary and sufficient condition for the solvmanifold G/N to be
compact [9]. More generally, almost Abelian groups are unique in their explicit tractability combined with diversity
of properties they can possess. A plethora of work in differential geometry and theoretical physics has been devoted
to various geometrical constructions on almost Abelian solvmanifolds such as symplectic, Kéhler, spin, G, or SU(3)
structures, various flows etc. [17], [1], [2], [10], [22],[19], [24], [29], [14], [13], [8], [6], [18], [7]. In spite of this
wide spectrum of interest and applications, to the date, there is no comprehensive study of almost Abelian Lie groups
in the literature. In the recent papers [4] and [5], almost Abelian Lie algebras were studied and their structure was
explicitly described. The next step is the study of almost Abelian groups from the Lie group theory perspective, which
the present work is mainly devoted to. The far-reaching objective of studying almost Abelian groups systematically
is building a variety of well-understood “lighthouses” in the sea of solvable Lie groups, as as possible, in order to
facilitate the development of methods and tools applicable to a wide range of groups.

The following results are obtained in this paper. Let G stand for an almost Abelian group. The exponential map exp on
a simply connected G is described explicitly, and two conditions are given which are equivalent to the injectivity of
exp (exponentiality of G). Two faithful matrix representations are introduced for simply connected G, and the centre
Z(G) is described. The full automorphism group Aut(G) and the inner automorphism group Inn(G) are given explicitly
for a connected G. Discrete normal subgroups of a simply connected G are studied, and conditions are found for two
discrete normal subgroups to be related by an automorphism of G. This provides a necessary and sufficient condition
for two connected G with the same Lie algebra to be isomorphic, and thus a full classification of connected almost
Abelian groups. A necessary and sufficient condition is found for a connected G to admit a faithful matrix representa-
tion, and one such representation is given explicitly whenever such exists. Connected subgroups H C G of connected
G are described, and a condition is established that is equivalent to the closedness of H in G.

2 Matrix representations of simply connected almost Abelian groups

A real finite-dimensional almost Abelian Lie algebra is a semidirect product R? X R, and is completely determined
by the operator ad, € End(RY), where ¢, = (0, 1) € R¢ X R. It was shown in [5] that every such algebra is isomor-
phic to a representative Y, (N) for which ade() = J(N), where J(X) is a (real) Jordan canonical form with its spectral
structure encoded in the so-called multiplicity function X : C X N — N, (here o ~ C is the set of monic irreducible
polynomials over R as identified with the corresponding roots). So let us consider the real finite-dimensional almost
Abelian Lie algebra YAR) = Ui (N) corresponding to a finite dimensional multiplicity function & given in its faithful
matrix representation
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0 0
a ~ R4 d+1
AR) 2R X R > (n,t) + (v rJ(N)) € End(R“™). 6))
It is straightforward to check that
0 0 0 0 O
ANR) D (v tJ(N)) v IR0 2)
0 0 ¢
and
0 0 0 0 O
AN) o v AdR) 0 3)
v tJ(N) £ 0 0

give further faithful matrix representations of A(R). In this section we will establish faithful matrix representations for
the simply connected almost Abelian groups corresponding to the Lie algebras %A(N).

Following [5], we identify o with C in the following way. Every monic irreducible polynomial p € oy is identified
with its unique real root x,, if it is first order, and with one of the conjugate pair of complex roots x, and X, (say, the
one in the upper half-plane) if it is second order. Denote

Ty ={teR| '™ =1} cR, )

Xy ={w€eR| suppR CiwZ}.

In the next section, we will obtain an explicit description of the set Ty. At this point, we are mainly interested in matrix
representations.

Proposition 1 For a finite multiplicity function N let

({1 0
G:{(V e’J(N)>’ (v,t)ERdeaR}.

Then, G is a connected Lie group with Lie algebra 2A(RX), and it is simply connected if and only if Ty = {0}.

Proof That G is a connected Lie group is clear from the definition. For V(u, s) € R? @ R let

(—1,1)91’»—>< ! 0 >EG

W(z) eI
be a smooth curve with

(1(0),1(0)) = (0,0),  (v'(0),7(0)) = (u,s).
Then,

a1t 0 (0 0 .
E( v(r) eI > ‘1:0 - < u sJ(N) > € AMX),

which proves that %4(R) is the Lie algebra of G. Finally, by construction G is diffeomorphic to R? x (R/Ty), which is
simply connected if Ty is trivial. O]
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If the Lie group in Proposition 1 is simply connected, then it is a faithful matrix representation for the simply connected almost
Abelian Lie group with Lie algebra ¢4(RX). But there is a simple modification that yields a faithful matrix representation for
every simply connected almost Abelian Lie group.

Proposition 2 For a finite multiplicity function X let

1 0 0 1 00
G =1|ve'™ o0 wmHeER'OR, Gy=1lve™ol| neR'@R.
0 0 ¢ r 0 1

Then, both G; and Gy; are simply connected Lie groups with Lie algebras isomorphic to YA(N).

Proof That G, and Gy; are Lie groups is clear from the definitions. The map

1 0 O
[Rd @ R > (V, t) =1V etJ(N) 0]e GH
r 0 1

is a diffeomorphism, which proves that Gy is simply connected. For V(u, s) € R? @ R let

1 0 0
(-LD) 27| vr) N0 e Gy
r)y 0 1

be a smooth curve with

(v(0),1(0)) = (0,0), (V'(0),7(0)) = (u, 5).
Then,

d 1 0 0 0
—| v(z) @ =|usIN) 0|,

tl iy 0 1l |s 0 o0

which through faithful representation (3) shows the isomorphism between %4(RX) and the Lie algebra of Gy;. Finally, the
map

1 0 O 1 0 0
G o|ve'™ o0 B | ve'™®o|eGy
0 0 ¢ r 0 1

is easily checked to be a Lie group isomorphism, which shows that the above statements hold for the Lie group Gj as
well. O

Thus, a simply connected almost Abelian Lie group is a semidirect product G = R¢ X R, which is consistent with the Lie alge-
bra being a semidirect product “4(R) = R X R. In order to notationally distinguish between a Lie algebra element in R? x R
and a Lie group element in R? X R we will use (v, £) € R? X R for the former and [v, t] € R? X R for the latter, respectively.
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3 Properties of the exponential map

We continue working with a real finite-dimensional almost Abelian Lie algebra %4(R) and the associated simply connected
almost Abelian Lie group G. Below we will establish technical facts that will together yield the necessary and sufficient con-
dition for the exponential map on G to be a diffeomorphism. It is well known that a solvable real simply connected Lie group
fails to be exponential if and only if it contains a copy of E (2)—the universal cover of the identity component of the Euclidean
motion group in R?. Here, we will reestablish this fact in a much more explicit way for the particular case of an almost Abelian
simply connected Lie group, and find an equivalent condition in terms of the spectrum of the adjoint representation ad, = J().
In order to describe the exponential map of the simply connected almost Abelian group G in terms of matrix exponentials,
we need to carefully choose faithful matrix representations for the group G and the Lie algebra 4(RX). Namely, we will
choose the algebra representation (2) for the group representation Gy, and the algebra representation (3) for the group
representation Gy, respectively (in terms of Proposition 2).

Lemma 1 The exponential map of the simply connected almost Abelian group G corresponding to the almost Abelian
Lie algebra 9A4(N) can be given by

0O 0 0 1 0 0
exp| vy 0| = ﬁv '™ 0 |eg,
0 0 ¢ 0 0 ¢
or
0 0 0 Wl 0 0
exp[vaA®) 0| = etJ(—N_)lv '™ 0 | e Gy
t 0 O ¢ 0 1

Proof 1t is sufficient to perform matrix exponentiation, which we will do only for Gy, since for G it is very similar. We
first observe that

0 0 0 0o o0
va®) 0| =] [ Y [ 0|, Va>1, 5)
0 0 0 0 o0

by mathematical induction on n. Then, by series expansion of the exponential, we see that

00 0 « (0 0 0
exp| v J(R) 0 =Z;v T(N) 0
t 0 O n=0 t 0 O

00 0) & 0 0 0 Lo ©
—1+|vaI®) 0 +nz2 (A Y ([ 0 [ = [ S5ty e 0
t 0 0 0 0o 0 t 0 1

gives us the desired result. O

Note that Lemma 1 can now be written as

) _
¢ L r], Y, 1) € AR).

exp(v, t) = [W

Remark 1 It follows that on the Abelian Lie subalgebra ker J(X) @ R the exponential map is
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exp(v,t) = [v, 1], V(v 1) € kerJ(X) ® R.

For the next fact, note that the Lie algebra of E_(2) is 24(1 x .

Lemma 2 If the almost Abelian Lie algebra %4(X) contains a subalgebra L € %4(X) isomorphic to A(1 x i), then the
corresponding simply connected almost Abelian Lie group G is not exponential.

Proof Letg : “A(1 x1') — L be a Lie algebra isomorphism, and let H C G be the connected Lie subgroup with associ-
ated Lie algebra L as given by Theorem 5.20 in [21]. Letexp, : (1 x1') - E +(2) be the exponential map on E +(2)
and exp, : L - H be the exponential map on H. Assume towards a contradiction that exp, is injective. Since exp, is
injective, H is simply connected. Thus, since H and E +(2) are both simply connected, by Theorem 5.6 in [21], there is
a Lie group 1som0rphlsm o : E+(2) — H such that ®(exp,(X)) = expz((p(X)) for all X € %4(1 x1'). Since we know
that exp; : (1 x:i') - E,(2) is not injective, let X,Y € (1 x ') such that X#Y and exp,(X) = exp,(Y). Then,
®(exp; (X)) = P(exp;(Y)) and therefore exp,(@(X)) = exp,(@(Y)). Since exp, is injective, this implies that p(X) = (Y)
in spite of X#Y, thus contradicting the assumption of ¢ being an isomorphism. This contradiction proves that exp,; and
therefore also exp : 2A(R) — G cannot be injective, and G is not exponential. O

Lemma 3 The simply connected Lie group G with almost Abelian Lie algebra 4(R) fails to be exponential if and only
if supp® contains a polynomial p with non-zero imaginary root X,

Proof Let us perform some preliminary computations first. From [5]
D= P P Piwn. @
pesupp® n—1 N(p,n)
Thus, the exponential of the Jordan canonical form above can similarly be decomposed as
- @ @ ®
pesuppR n—1 N(p,n)
Now, G is not exponential if
AW, 1), (vy, 1) € AR)  sit. (v, 1) # (g, 1), exp(vy, 1)) = exp(vy, 1). 9)
From Lemma 1, we see that exp(v,,#,) = exp(v,,t,) if and only if#;, = ¢, = ¢ and

etJ(N) -1

IJ(N) (Vl - V2) =0. (10)

Therefore, (9) is equivalent to

QI _q
deR st det|———| =0.
St ge [ AR ]

From (7) we find that

S _ el Ao _ 118
det det | ———
© [ A®) ] l_! H © [ () ]
Thus, (9) is equivalent to

Ap.n) _
IreR, TpesuppR, ImeN st Np,n>0 A det [g] =

tI(p,n)
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If x, € R, then

tJ(p.n) _ x, n
det [ =1 _ (=1 o,
tI(p, n) ix,

whereas if x, = a +1b & R, then

det [e’J("’”) - 1] 3 <(e’“ cos(th) — 1)? + (e sin(tb))2>"

J(p,n) 2(a% + b?)
Therefore,
det |1 3 N % ez
t|———| = =S € t. — ez
e eS| p € supp S o 1

Thus, (9) is equivalent to

Jp € supp® st 0#x, €R,
exactly as in the statement of the lemma. O

Lemma 4 If suppX contains a polynomial p with non-zero imaginary root x,» then there exists a Lie subalgebraL. C AN)
which is isomorphic to %A(1 x 1').

Proof Suppose that Ip €supp® such that x, = b with 0 # b € R and R(p,n) >0 for some n € N. Fix an a EX(p,n) and
let {f‘i(p, n)}!_, be the standard basis in the Jordan block (p,n,a) as in [5]. Let W = C{é;(p, n)} as an R-vector space. By
Corollary 3 in [5], W is an ad, -invariant subspace, and the restriction ad, |w = x, = b, which is R-projectively similar
to 1 on C. Thus, the Lie subalgebra L X Re, C 9A(N) is nothing else but %4(1 X 1b"), which by Proposition 11 in [4] is
isomorphic to %(1 x :'). O

Finally, we are ready to formulate the main result of this section.

Proposition 3 A simply connected almost Abelian Lie group with Lie algebra A(R) fails to be exponential if and only if
supp® contains a non-zero purely imaginary number, which is equivalent to the existence of a Lie subalgebra isomorphic
to %A(1 x 11).

Proof Follows directly by combining Lemma 2, Lemma 3 and Lemma 4. O
In our further studies, we will need a precise description of the set Ty defined in (4).
Lemma 5 For a given finite real multiplicity function 8, we have Ty#{0} if and only if (p,n) =0 for all p Esupp® and

n>1 and X # @, in which case

Tsz—ﬂZ, W, € Xy, |a)0|=max{|a)|| a)eXN}.
20

Proof We recall from [5] that J(p,n) = x,1 + N, understood over the field R(x,) C End(R%e”). Continuing from (8) we
find that

QN @ é@efxp<1+th+%t2Ni+...>,

pesuppX n—1 R(p,n)

whence
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I =1 & [t =0 or VpesuppX,x, =1, € R, e = 1,R(p,n) =0,Vn > 1],

which means that

To#{0) &  F#0 st VpesuppRx, =ib, € R, e = 1,R(p,n) = 0,Yn > 1.

Let us show that provided 8(p,n) =0,Vp Esupp®,Vn > 1, we have

3t#0 st Vp€suppR,x, =1b, € R, et =1 = Xp # 0.
Indeed, if #£0, then the condition ¢®» = 1 can be written as

x, € 127”2, Vp € supp¥,

which implies that

= e X,.
¢ N

Conversely, let 0 # w € Xy. The possibility @ =0 is excluded, since in that case supp® = {0}, which together with n
=1 would imply that J(X) =0, i.e., that the Lie algebra is Abelian. Thus, w#0, and setting ¢ =2x/w we check that ¢’ ®

=1,1e.,t€E T&
Finally, Ty C R is the kernel of the homomorphism R 3 7 = ¢?® € Aut(R9), and is therefore a discrete subgroup of

the form

Ty =1,Z, |tol =min{|r]] 0#¢e Ty}

Since 0 # w € & is equivalent to 27/w € Ty, we have that

2

Iy , Ia)0|=max{|a}|| a)eXN},

Wy

which completes the proof. O

4 Discrete normal subgroups and quotients of simply connected almost Abelian groups

In this section, we will describe explicitly the discrete normal subgroups N of a simply connected almost Abelian
Lie group G. Then, we will derive a necessary and sufficient condition for two quotient groups G/N to be isomorphic.
We start by describing the centre of a simply connected almost Abelian Lie group. Recall from [4] and [5] that the
centre of an almost Abelian Lie algebra YA(N) is

Z(AR)) = kerJ(R),

and denote

Ty={teR| "™ =1}cR.

Proposition 4 The centre of the simply connected almost Abelian Lie group G with Lie algebra A(N) is given by

Z(G) = exp [Z( A(R))] X Ty, = exp [Z( ANR)) X TN]
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= {[u,s ERI X R| u€kerI®), '™ =1},
The preimage of the identity component of the centre through the exponential map is
exp~! [Z(G)o] = Z(ANY).

Proof Let us use the faithful matrix representation

1 0 0
G=R"}XR>[v,{] = v e’™ 0
t 0 1

provided by Proposition 2. Suppose that [u,s] €EZ(G). Then, the following must be satisfied,

1 0 0)1 O O 1 0 0
W, 1w, s]=| v e 0 f| u e?® 0 | =] v+’ ®u 90 o
t 0 1)[s O 1 t+s 0 1
1 0 0 1 0 O0)1 0 O
= u+e"®y HNN o 1=y "D 0| v ™ 0 | =[u,s]v,7], YO, 1) e
t+s 0 1 s 0 1Nt O 1
This is equivalent to v + ¢"'®u = u + ¢ I ®y or

(etJ(N) _ l)u = (esJ(N) - l)v, V[v,t] € G.

Setting v =0 we have that (¢’ I® —1)u =0 which forces J(X)u =0 or u € kerJ(R), as desired. But if u is such, then (e’
J® _1)y =0 for all v, which means that ¢*’® = 1. The first statement of the proposition now follows from Remark 1. If
exp(v, 1) = [u, s] € Z(G),, then t =5 =0 and v = u, as desired. O

Now, let us proceed to the discrete normal subgroups N C G of a simply connected almost Abelian Lie group.

Proposition 5 Every discrete normal subgroup N C G of a simply connected almost Abelian Lie group G with Lie algebra
ZA(N) is a free group of rank k£ < dim ker J(N) + 1 generated by R-linearly independent elements

v tls s Vi ] € Z(G) € G = RY X R.

Proof 1t is well known that every discrete normal subgroup of a connected Lie group is in fact central (e.g., [21]). Thus,
it suffices to find discrete subgroups of Z(G). Notice that for every [v,f],[u,s] €EZ(G), [v,f][u,s] = [v + u,t + s], so that the
restriction of the obvious homeomorphism f : G — R%!to Z(G) is also an injective Lie group homomorphism

flze t Z(G) - R

Therefore, every discrete subgroup N CZ(G) is mapped to a discrete subgroup f(N) C R4*!, As a discrete subgroup of
R4+ f(N) is a free Abelian group generated by R-linearly independent elements v;, ..., v, € R4*!, and their span satisfies

R{v,}t, c R{f(Z(G))},
which implies that
k < dimR{f(Z(G))} < dimkerJ(X) + 1.

Setting [v;, t;] if‘l(v,») fori =1,...,k completes the proof. O
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Now that we have a description of discrete normal subgroups N C G of a simply connected almost Abelian Lie group,
and since every connected almost Abelian Lie group can be written as a quotient G/N for a corresponding N, we have
effectively covered all connected almost Abelian Lie groups. Next, we want to know for which distinct discrete normal
subgroups N,M C G the quotient groups G/N and G/M are isomorphic. Below is a pretty quantitative answer to this ques-
tion. Denote by qy : G — G/N and q,, : G — G/M the canonical quotient homomorphisms, and by Hom(G/N,G/M) the
set of all Lie group isomorphisms G/N — G/M.

Proposition 6 Let G be a simply connected Lie group and N,M C G two discrete normal subgroups. Then,
Hom*(G/N,G/M) = {®y, = qy0Poqy!| @ € Aut(G), ®©N)=M}.
Proof We first prove that
[3®\y, € Hom*(G/N,G/M) st. ®y,oqy =qyuo®| & OWN) =M, V® € Aut(G). an
Let ®,,,, as above be given. Then,
quo®m) = ®yoqy(n) =1, VneN,
whence ®(n) € M, Vn € N, and thus ®(N) C M. But also
qu(@7'(m)) = @7,0q),0@ (D' (m)) = Dl 0qy(m) =1, VmeE M,

so that ®~!(m) € N, Vm € M, and thus ®~'(M) c N. We conclude that ®(N) = M. Conversely, assume that ®(N) = M.
Then,

Qo ®@(qy (D) = gy (@) = q,, (M) = 1,

so that @, = qMod)oq;/1 : G/N - G/M is well defined. This completes the proof of (11). It remains to show that every
isomorphism ¥ €Hom"(G/N,G/M) arises as ¥ = @, for a unique ® EAut(G). To see this, let d¥ be the corresponding
Lie algebra automorphism (say, Theorem 3.28 in [21]). Then, since G is simply connected and has the same Lie algebra as
G/N and G/M, there exists a unique ® EAut(G) such that d® = d¥. Consider the following two Lie group homomorphisms,

Yoqy : G - G/N, quo® : G- G/M.
By Proposition 3.30 in [21],
d(‘I’oqN) = dW¥odqy = d¥Y = d® = dq;,0d® = d(qM0d>).

But then by uniqueness in Theorem 5.6 of [21], it follows that ¥ °qy = q,, °®, and that ® is unique with this property.
The assertion is proven. O

In particular, two quotient groups G/N and G/M are isomorphic if and only if Hom"(G/N,G/M)#3.

5 Automorphisms of almost Abelian Lie groups

In this section, we will find an explicit description of the automorphism group Aut(G) of a connected almost Abelian
Lie group G, with each automorphism given as a diffeomorphism in global group coordinates. For this purpose we will
first combine Proposition 7, Proposition 8, Proposition 9 and Proposition 10 from [4] into a single convenient description
of automorphisms of an almost Abelian Lie algebra.

Proposition 7 The automorphism group Aut( %4(N)) € End(R? X R) of a real almost Abelian Lie algebra 2A(N) = RY X R
takes the form
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x @By = fory Ay 11 Dot \( X % o715 72 By Ay € R,
. _Jly 0 Ay va O Iy aly, — Py, # 0,1, p € R,
AucA) =g f—| o T Tl g Hom@e Ry, (12
w 0 n p dy N\w b11 € Aut(R??)

if 2A(N) = H @ R?2is a central extension of the Heisenberg algebra and

Aut( AR)) = { < g Z >| 2 €DI®R), yeR) AcAuRY), AIR)= aJ(N)A} (13)

otherwise.

Remark 2 If we apply formula (13) to the Lie algebra H @ R¢~2, then we will obtain only the subgroup consisting of
those automorphisms corresponding to #, =0 in formula (12).

We begin with the case of a simply connected G, where there is a bijective correspondence between Lie algebra auto-
morphisms and Lie group automorphisms. On several occasions, we will make use of the following elementary fact.

Remark 3 If A, B and C are square matrices such that AB = BC, then for every entire holomorphic function F € Hol(C)
one has F(A)B = BF(C).

This can be easily checked term by term in the Taylor expansion.
Let .77= exp(H) stand for the Heisenberg group.

Proposition 8 If G is a simply connected almost Abelian Lie group with Lie algebra %A(R), then

X [“Azz - ﬁsz]x +Apy+yit+ Bty + %‘sz2 + %Azzﬂz)’z + ¢o1(w)
@
Aut(G) = g Apy+ 1t
t by + at
alyy = Pryy Ay 71 b
_ 0 Ay 1 .
d(I>|(O’O) = 0 b a 0 € Aut( AN)) ¢
0 nop éu J
if G = J#x R4 2 s a central extension of the Heisenberg group and
@ eatJ(N) -1 A y
AW(G) = | ] — | =y + Av.at | d0] o0 = (g 7)€ AutCAR) (15)

otherwise.

Proof Central extensions of the Heisenberg group are exponential, and we can use the bijectivity of the exponential map
to switch from Lie algebra automorphisms to Lie group automorphisms. Namely, if

X [“Azz - ﬁm]x + Ay + 71t + ¢ (w)
dol Y | = Apy + 1t ’

t ﬂzy + at

w ny + pt + ¢y (w)

then
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0000 1 000
x0¢0 x+21¢0
= 2
| exp vy 000 o vy 010
w000 w 001
0 0 0 0
= exp (@8, = Bora]x + Ay + 711+ o (W) O Bry +ar 0
Ay y + 75t 0 0 0
ny + pt + ¢ (w) 0 0 0
1 0 0 0
[aAy, — B [Apyt+rat][fry+ar]
0 = Bava] X+ Ay + 11+ o (w) + 5 I pry+at O
Ay + 1t 0 1 0
ny + pt + ¢ (w) 0 0 1

which yields the desired assertion. For the generic case let us first show that the map

o) [eatJ(N) -1

[v,f] — IR }/+Av,at]

is bijective by checking that its inverse is given by

o [ N ot
e [ 2A Yy A L
[v,1] [ ) Y v
Indeed,
_ tJ(N) _ 1 _ _ eatJ(N) _ 1 at
O lodv, 1] = [-C—— Ay + Ay A, Y =1,
o®lv. 1l [ 1) v PR Bl

where we used a J(X)A = AJ(X) and Remark 3. Next, we establish that the same map is a Lie group homomorphism,

eI _ 1 asI®) _ 1

—_— + Au,
IR y u as]

7/+Av,at] . [e

@[y, 1] - Dlu,s] = [ Ad(R)

a(t+s)I(R) _
= TS 13/ +A [v + e”(mu] ,a(t +5)

= O+ "Ny, 1+ 5] = O([v, 1] - [u, s1).

Finally, for every (i, s) € RY X R = UAR) let (- 1,1) 3 7=[v(z),1(r)] € G be a smooth curve such that [v(0),#(0)] = [0,0]
and (v/(0, 7 (0)) = (u, s). Then,

= (Au + sy, as),

d d [emw -1
=0

dT<D[v(T), H(Oloo = - A®)

e y + Av(7), at(r)]

dd(u, s) =

which completes the proof. O

Remark 4 Again, if we apply formula (15) to a central extension G = /#x R?2 of the Heisenberg group, then we will
exactly recover those automorphisms with 4, =0 in formula (14).

The normal subgroup Inn(G) CAut(G) of inner automorphisms contains ®, €EAut(G) such that @ ,(h) = ghg™! for
some g € Gand all h € G.
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Corollary 1 If G is a simply connected almost Abelian Lie group with Lie algebra A(N), then

® [eﬂm) 1

Inn(G) = {[v, ] — T 7+ Av, t] | y €I®(RY), A=e"™, se R}.

Proof That ®, €Inn(G) means that @, (h) = ghg™ I for g € G,Vh € G.Let g = [u,s] and h = [v,1], so that

tI(N) _ 1

Dy qlv, 1] = [u, s]v, t][u, sI7h = [eSJ(N)v - (e'J(N) - l)u, t] = [e ) Yy + Av, t] ,

where
A=e"™, y=-INu,
precisely as asserted. [J

We turn now to the case of more general connected almost Abelian Lie group G/N where G is simply connected and

N C G is a discrete central subgroup. Denote by q, : G — G/N the canonical quotient homomorphism. By Proposi-
tion 6 we know that

Aut(G/N) = {®y = qyo®oqy!| @ € Au(G), ®N)=N}.

We will describe the condition ®(N) = N more explicitly using Proposition 8. The following simple fact will come in
handy.
Lemma6 If ¢''® = 1, then “4(R) = L, ® W where L is indecomposable and W = ker J(R), and

L) _ 1 |
AR 1[0, ® 1y|, Va € DiR).

Proof Note that

N teatJ(N) -1
ad®) addN)

If t =0, then

N _
atl(R)

and the assertion is clear. If 1#0, then ¢ € Ty#, and by Lemma 5

atJ(N) X, _ 1 atx

pesuppR R(p.1) XetpesuppR R(p.1) xoc X%

= [OLO ® IW]’

as desired. O

Now, fix a central discrete subgroup N C G and let by Proposition 5 N be generated by {[x;, 0,0, w;1}*_ if G = 7#x R*2
and {[v;, 1;]}*_, otherwise.

Proposition 9 In terminology of Proposition 8, an automorphism ® €Aut(G) satisfies @(N) = N if and only if
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aAZZ_ﬁZyZ ¢01><X1 oo Xp > <x1 xk>
= -A, AeGL(Zk
< 0 ¢11 Wi ..o Wy Wi ... Wy ( ) (16)

for G = s R¥~% and
A rw Vi Ve N Ve e
<0 a )(rl v )T\ Ly ) ASCHED an

otherwise. Here, yyw = [OLU ® lw] y as per Lemma 6.

Proof If G = s#x R972, then for every ® EAut(G) the condition ®(N) C N can be expressed as the statement that for
every fixed 1 < i, < k, the image <I)([x,-0, 0,0, wio] is an integer linear combination of {[x;,0,0, w;] }le. In matrix language
of Proposition 8, this can be written as

Xy [“Azz - ﬂz?’z]xio + ho1(w;,) alyy = By, 00 gy || X,
@ 0 ]_ 0 _ 0 00 O 0
0| 0 - 0 00 O 0
Wi é1(w;) 0 00 ¢y )Lw,,
s,
= e |, A €Z, i=1,.. k.
0 ..0 o
Aki
Wy e Wy 0

Combining these statements for all i; =1,...,k we obtain the formula (16) with A being a k X k matrix with integer entries.
Following the same logic for ®~'(N) c N we will obtain a similar formula where the matrix A~ figures and is supposed
to have integer coefficients. But ®(N) = N is equivalent to ®(N) C N and @~ '(N) C N, which holds if and only if both A
and A~ ! have integer entries, i.e., A € GL(Z, k), as desired. If G # 7x R?2, then by Proposition 4 we see that ¢"’® = 1
for all i =1,...,k. Thus, by Proposition 8 and Lemma 6, the condition ®(N) C N becomes

Ay,

i T
q)[v%]: :J v+ Ay, =<A}/W>[Vi0]=<vl V") | Ay ez i=1,... k
til) atio 0 a ti() tl t]( Ak 0

lo

Combining these statements for all i, =1,...,k we obtain the formula (17) with A being a k X k matrix with integer entries.
The rest of the argument follows as before. O

Remark 5 Let N C G be a discrete central subgroup. Since all ® €Inn(G) act trivially on N CZ(G), it follows that ®(N)
= N is satisfied automatically.

6 Discrete normal subgroups and quotients of simply connected almost Abelian groups
revisited

Pursuant to the aims of Proposition 6, in this section, we want to derive necessary and sufficient conditions for two
discrete central subgroups N,M C G to be related by an automorphism ® €Aut(G) of the simply connected almost
Abelian Lie group G. We begin with preparatory steps with a discrete central subgroup N C G given in terms of a
set of generators [v,t],...,[v;.t;] according to Proposition 5. Every other set of generators [u,,s,],...,[u.s;] of N is
related to the original one by
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(“1 ”k> = <V1 e Vk > ‘A, Ae€GLZk).
.. tl e tk
According to Lemma 5, there exists 1y € Ty and ny, ... ,n, € Zsuch thatt,=ngt,, i =1,.. .k
Lemma 7 There exists a change of generators A € GL(Z, k) such that
ul uz e Mk _ Vl V2 e vk .A
5;0...0) \t;t,...1 '
Proof This can be achieved easily by column operations justified with Bezout’s identity. See Appendix Appendix.

In what follows, we will assume that a discrete central subgroup N C G is given by a set of generators in the more
economic form [v,t,],[v,,0],...,[v;,0]. In terminology of formula (16) in [5],

o0
1
kerJN) = @ @ Rel(x.n),
n—1 R(X,n)
or in other words, the vectors v, ..., v, € R4 written in the standard basis eZ’(p, n) may have non-zero entries only
in the rows corresponding to the topmost elements of the Jordan blocks with eigenvalue zero. Let 7, ...,7, € RY,

g = dimker J(X), be the vectors obtained by picking only these significant rows. We have seen in Proposition 8 that
operators A € Aut(R?) with [A,J(R)] =0 play a prominent role in the structure of automorphisms of G. Such an operator
A preserves the invariant subspace ker J(R), and we denote the restriction of A to ker J(X) by A € Aut(RY). Let us now
assume that Jordan blocks in J(R) are ordered by non-decreasing block dimension n. Applying Proposition 7 and Lemma
2 from [5], we see that A = A @ 0 (i.e., the matrix A beyond the submatrix Ais identically zero) and Aisan arbitrary real
invertible block-upper-triangular matrix with blocks corresponding to constant Jordan block dimension n. That means,

nn

D P

an € Hom(R%, R%), NX,n)=¢q;, i,j=1,...,s,

L)

A non, *°° non A
A = 21 2.&’ A

o
S
>

ngn,

QG +...+tq,=q, n>ny, i=1,..,s5—1
The following simple observation will be useful in what follows.

Remark 6 In terminology of [5], Dil(R) C R*is a finite multiplicative subgroup and therefore Dil(R) C Z,. If supp® C iR,
which by Lemma 5 is the case when Ty#{0}, then necessarily Dil(R) = Z,.

Proposition 10 Two discrete central subgroups N and M given in terms of generators [v,,;],[v,,01....,[v;,0] and
[11,8,1,[u,,0],...,[u,0], respectively, are related by an automorphism of G if and only if #; = +s, and there exist A as

above and an A € GL(Z, k) such that

A‘(\jlﬁz...ﬁk):(ﬁlﬁz...ak)‘A lf t1:0

and
A (Wb, ...0) = (iyity ... o) - A if 1 #0,

where w € R? can be chosen arbitrarily.



Journal of Mathematical Sciences (2022) 266:42-65 57

Proof The subgroup N is mapped to the subgroup M by an automorphism ® €Aut(G) if and only if the generators
[vi,t;1[v,,0],...,[v;,0] are mapped to any set of generators of M, which must be related to the original generators
[1,5,],[u5,0],...,[1;,0] through a matrix A € GL(Z, k), i.e.,

VIV e V| U Mg g )
o(ns78)=(e %)
Ay N (viveowe ) _(ug Uy ooy A
0 «a t40..0) \s 0..0 ’

since even for /#’x R?~2 the coefficient f3, has no effect in acting on vectors from ker J(X). By Remark 6 we have a = + 1
so that #; = +s,. Furthermore,

By Proposition 8 this amounts to

A-(,vy,..uv)+(17,0,...,0) = (v, vy, ...1p) - A,

where the choice of y € R? is completely arbitrary. The assertion now follows by restricting the above equation to
ker J(N). O

Finding algebraic criteria under which the above conditions are satisfied is a hard problem which we will not pursue here.
As a simple side result, the structure of a discrete central subgroup N C G can be simplified further using automorphisms.
In the above economic form of the basis for NV, the element v, is arbitrary, and it need not be possible to kill v, by any further
right GL(Z, k) action. Instead, we can use automorphisms of G to achieve that simplification.

Proposition 11 For every discrete central subgroup N C G of a simply connected almost Abelian group G = R¢ X R
with Lie algebra YA(N), there exists an automorphism ® €Aut(G) such that the discrete central subgroup M = ®(N) satis-
fies M = (M nker J(N)) X (M N Ty).

Proof Let N be given in terms of the generators [v,,t;1,[v,,0],...,[v;,0]. If ; =0, then N C kerJ(X) and the assertion is
trivial. Assume that #,#0, so that by Lemma 5 we have supp® C (R, and therefore Dil(R) = Z, [5]. Choose ® according
to Proposition 8 with @ =sgnt;, A=1andy = —tiv,. Then, M = ®(N) is given by the set of generators

1

1
I_Zvl '<v1 Vv, ...vk>=<0 Vv, ...vk>
0 sgnt, b 0...0 t,] O ... 0 )’

whence the statement of the proposition follows. (I

7 Connected almost Abelian groups

The goal of this section is to describe connected (not necessarily simply connected) almost Abelian groups in terms of
faithful matrix representations whenever the latter exist. Recall that a connected almost Abelian group can be written as G/N
where the universal cover G is a simply connected almost Abelian group and N C G is a discrete central subgroup. Regardless
of whether G/N is a matrix group, the matrix representation of G can be used to produce a natural (almost global) coordinate
chart on G/N as follows. Consider a modification of the second faithful matrix representation of G from Proposition 2 as a
faithful “quotient-matrix” representation of G/N,

1 0 0
G/N3([v,t] modN v e’® 0 | € End(R4+?).
4 mod N 0 1
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This representation is algebraically convenient since by Proposition 5 we know that N can be seen as an additive subrgoup
of R¥!, and [v,f] mod N is easy to compute. In a neighbourhood of the identity the above representation coincides with
the true faithful matrix representation of G.

Let us now turn to proper faithful matrix representations. The following provides an explicit faithful matrix represen-
tation for a quotient group G/N under certain assumptions on N. Let

AN) = R )R @ R4

be a decomposition of %A(R) as in [Ave16] where R% X R is indecomposable. Then, the simply connected group decom-
poses as G = G, X R%%, The first faithful representation of G from Proposition 2, upon substitution of the decomposition
RIsSusvedweRY @RI, gives

1 0 00
Y d—d, v e’ 00 d+1
G=RYXRXR™ 3wl — | ° "0 | €End®R®.
0 0 O0¢

If we denote by diagw the (d — d))-dimensional diagonal matrix composed of components of w, then it can be easily
checked that

1 0 00 1 0 0 0
v ) 0 0 vel®) o 0
w 0 10| 7 o 0 etiev g (18)
0 0 0¢ 00 0

is a matrix Lie group isomorphism, and therefore the right hand side is another faithful matrix representation of G.
Assume now that the discrete central subgroup satisfies N C R%% X Ty, i.e., per Proposition 5, is generated by

witl e W] ERTOX Ty, 0<k<d—dy+1.

The representation on the right hand side of (18) is convenient in that it allows to reshuffle the last d — d, + 1 dimensions
in way to separate the generators of N. Namely, complete arbitrarily the above generators of N to a basis in R“% @ R,

d—d,
il o la—gy i1 ] ERTC O R,

and consider the inverse P € End(R9~%*!) of the matrix with columns being elements of this basis,

-1
p= (Wl Wd—do+1> . (19)

I Tagyt

Let P, € Hom(R*%*!, R) represent the first k rows of P, and P, € Hom(R*~%*!, R*~%*1¥) the remaining rows.

Proposition 12 If the discrete central subgroup satisfies N C R4 x T,,, then the map

1 0 0 0

v e ®o) 0 0 dao
G/N > [V7 Z W] mod N = 0 0 ediaanlPH[W,t]T 0 € End(R * )

0 0 0 ediagPy [w, 7

is a faithful matrix representation of G/N.

Proof In view of (18) being a faithful representation of G, it suffices to show that the map
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1 0 0 0 1 0 0 0
v etJ(NO) 0 0 v etJ(RO) 0 0
0 0 ediagw = 0 O ediag2mP [w,f]T 0
0 0 0 € 0O O 0 pdiagP, [w, 1"

is a Lie group homomorphism with kernel N. Checking that this is a Lie group homomorphism is straightforward. Now,
let[v,7,w] € R% X R x RY% = G. Then,

1 0 0 0 1000
v eI 0 0 0100
0 0 ediag2mPH w7 0 = 0010
0 0 0 diagP [w.]7 0001

if
v=0, t€Ty, Pjwi" ez, P w1 =0.
The latter two conditions can be combined into P[w, {]T € Z* @ 0, which in view of (19) can be written as
<w> _ <w1 Wd_d0+1><m>’ me 7t
t B Ty gg 0
which is equivalent to [w,f] being generated by [wy,t,],...,[w.t,] over Z. Thus, [v,t,w] is in the kernel if [v,£,w] € N, which
completes the proof. O

Below we establish a necessary and sufficient condition for G/N to be a matrix group in terms of the subgroup N. We

start with a little lemma.

Lemma8 Let X, Y,Z € End(C") be such that
X.Y1=Z, [X.Z]=1[Y,Z]1=0, Z+Z" =0.

Then, Z =0.

Proof Since Z is anti-Hermitean, by the spectral theorem for Hermitean matrices it is unitarily diagonalizable with purely
imaginary spectrum. Assume without loss of generality that

q
Z=l®/li1n[, A ER, n +...+n,=n
i=1

Then, by Proposition 7 in [Avel8], the matrices X and Y are of the form
q q
x=@x. r=@v. X.¥, €End(cC".
i=1 i=1

Thus, [X;, Y;] = 4,1, and therefore tr[X,,Y;] =0 =4, i =1,...,q, which shows that Z=0. O

Proposition 13 LetG = RY X R be a simply connected almost Abelian group with Lie algebraL, = R? X R = %(X), and
let N C G be a discrete central subgroup with generators [v,,;],...,[v,.#]. Then, the following two statements are equivalent:

o R{(v.t), ...t} N[L, L1 =0
e G/N has a faithful (real or complex) matrix representation

Proof 2. = 1. Assume towards a contradiction that condition 1. is not satisfied,
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k
(0.1, 0] =Y 4, 1) #0, u€R’, AER, i=1...k
i=1

andlete : G/N — Aut(C")be a faithful representation with do : L. — End(C") being its derivative. Because exp |, = 1
we have that exp(v;, ;) = [v;, #;] and thus 6[v,, #;] = e%"+) = 1, which implies by Lemma 5 that do(v,,t;) is diagonalizable
with spectrum in 27:1Z. Moreover, since [do(vi,ti),da(vj,tj)] =0foralli,j =1,...,k, there is an invertible P € Aut(C") such
that

P ldo(v,t)P=1D;, D! =D, i=1,... .k

Denote

k
X =P 'ds(0, )P, Y =P 'doO,u)P, Z=1 Z B

i=1
Then, the assumptions of Lemma 8 are satisfied, implying that
Z=do([(0,1),w,0)]) =0, [(0,1),(u, 0)] #0,

which contradicts the fact that o is faithful.

1. = 2. Let now condition 1. be satisfied. By Lemma 7 we can assume without loss of generality thatt, =t;=... =1,
=0.IfL = R% X R @ R% % is the decomposition as before, then condition 1. implies that v,, ..., v, € R¢%.If t, =0, then
condition 1. also requires that v, € R9~%, which shows that N C R¢~%, and by Proposition 12 the quotient group G/N has
a faithful matrix representation. If #,#0, then applying the automorphism ® €Aut(G) from Proposition 11 we obtain the
discrete central subgroup ®(N) with generators [0,#,],[v,,0],...,[v;,0], which now satisfies ®(N) C R~ x Ty. Thus, by
Proposition 12, the quotient group G/®(N) has a faithful matrix representation. But then by Proposition 6, the automor-
phism @ induces an isomorphism between G/N and G/®(N), proving that G/N has a faithful matrix representation, too. O

8 Connected subgroups of a connected almost Abelian Lie group

The goal of this section is describing all connected Lie subgroups of a connected almost Abelian Lie group. A connected
almost Abelian group can be identified with the quotient group G/N where G is a simply connected almost Abelian Lie
group and N C G is a discrete normal subgroup (see Proposition 5). The canonical quotient map qy : G — G/N is a Lie
group homomorphism, and its derivative d qy is an isomorphism of Lie algebras. Thus, we can assume without loss of
generality that the Lie algebras of both G and G/N are A(R). By the Lattice Isomorphism Theorem (Theorem 20 in [11])
subgroups Hy, C G/N are exactly the quotients H/N of subgroups H C G with N C H C G. However, the complete preimage
qn(Hy) C G may not be a closed subgroup, and we may have to choose a different H with H/N = H).

We will start from a simply connected almost Abelian Lie group G with Lie algebra 4(X) = R? X R. By Theorem 5.20
in [21] to every Lie subalgebra L. ¢ 94(R) there exists a unique connected Lie subgroup Hy, C G for which it is the Lie
algebra, and conversely, all connected Lie subgroups of G arise in this way.

Remark 7 By Proposition 4 in [4], either of the following two possibilities occurs:

e L =W c R%is an Abelian Lie subalgebra.
e L is of the form

L={w+ny,0)€ER'XR| weW, reR},

where v, € R is a fixed element and W C R is an ad-invariant vector subspace. In this case L is Abelian if and only
it W C Z(AN)).
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Accordingly, the corresponding connected Lie subgroups Hj fall into two categories.

Proposition 14 The connected Lie subgroup Hy C G of the simply connected almost Abelian Lie group G with Lie
algebra L as in Remark 7 is given by either of the following two forms, accordingly:

Hy, = {[w,00 € R X R| we W} =exp(W)

AN _q .,
Hy, = W+vao,t ER'XR| weW, teR~exp(W): R

In the second case

exp(W) xR if W cCZ(ARN)),
expW) - & = J ZPW) (ARY)

exp(W) X R else.
Proof That Hy is indeed a Lie subgroup in both cases can be checked directly using, say, the faithful matrix representation
I of Proposition 2. In Case 1, the exponential map from Lemma 1 delivers the desired result immediately. For Case 2, pick
an arbitrary (w, + fyv.t;) EL and let (=1,1) 3 7 = (w(7), #(r)) € W @ R be a smooth curve with

w(0),1(0)) = (0,0),  (W'(0),7(0)) = (wy, 1)) € WD R.
Then, we have

SO _

i w(T) + ———V, t(r)]

dT J(N) = (WO + toVO, t()),

7=0

showing that the Lie algebra of Hy, is L. Finally, an automorphism with « =1, A =1 and y = v, from Proposition 8 can
be used to establish the isomorphism between Hy and exp(W) - R. O

Remark 8 Proposition 14 easily implies, in particular, that all connected subgroups of a simply connected almost Abelian
group are simply connected and closed.

Remark 9 By Proposition 11 in [4], two almost Abelian Lie subalgebras L;, L, C %4(R) corresponding to ad-invariant
vector subspaces W, W, C R? are isomorphic if and only if J(N) |y, and J(N)|yy, are projectively similar. Since both Hy,
and Hy are simply connected, we have that Hy, ~ Hy, if and only if L; ~ L,.

Remark 10 By Corollary 5.7 in [21], two connected subgroups Hy, ,Hy, C G of a simply connected almost Abelian
group G, associated with Lie algebras L, L, C A(N), respectively, are related by an automorphism ® €Aut(G) if and
only if the Lie algebras are related by the automorphism dIT € Aut( YA(N)).

Let us now consider subgroups Hy C G/N of connected almost Abelian groups G/N.

Lemma9 Let G be a Lie group and N C G a normal subgroup. Then, every connected subgroup Hy, C G/N is the projec-
tion Hy = H/N of a unique connected Lie subgroup H C G.

Proof The quotient map q, : G — G/N is a surjective Lie group homomorphism, and its derivative d q : L :—Lgy is
a surjective Lie algebra homomorphism. The preimage dq‘lLHN of the Lie algebra of H, is a Lie subalgebra of L, and
thus is the Lie algebra of a unique connected subgroup H C G (Theorem 5.20 in [21] or Proposition 5.6.5 in [27]). The
image qy(H) C G/N is a connected subgroup with Lie algebra L , which by uniqueness must be q,(H) = Hy. Finally, if
H' C G is another connected subgroup with qy(H') = Hy, then L, = L, so that again by uniqueness H' = H. O
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Remark 11 Since the projection H/N of a connected subgroup H C G is a connected subgroup H/N C G, we conclude that
connected subgroups of G/N are exactly images H/N of connected subgroups H C G, which were already classified above.

It remains to find when a given connected subgroup H/N C G/N is closed. For this purpose, we will first establish a
simple fact regarding the relative structure of H and N.

Lemma 10 Let G be a simply connected almost Abelian group, N C G a discrete normal subgroup and H C G a connected
subgroup. Then, there exists a subgroup B C N such that N=(Nn H) X B.

Proof We use Proposition 14 to write H in the form H = exp(W) or H = exp(W) X R (direct or semidirect), with W ¢ R?
a vector subspace. All we need to show is that the N N H C N is a pure subgroup. Indeed, let [v,f] € N and ¢ € N such that
[v,1]7 = [qv.qt] € N N H. Then, gv EW and thus also v EW, whence [v,f] € N n H. Then, by Corollary 28.5 in [20], N n
H is a direct factor. 0

Since
exp |z upper : Z(AN) & R = Z(G)y X R
is a bijection, we can introduce its inverse
log = [exPp lyerimer] ™ 1 Z(G)y X R = Z(G)y X R.

For every subset X C Z(G), X R, we denote by X the connected subgroup

X= exp [R(log(X))], VX C Z(G), x R.

Thus, X C G is a minimal Lie subgroup containing the set X.

Proposition 15 Let G be a simply connected almost Abelian group, N C G a discrete normal subgroup and H C G a

connected subgroup. Then, the connected subgroup H/N C G/N is closed if and only if HNN = H N N.

Proof First, let us note that

HnNnNCHNN.

Indeed, H N N C N is obvious, while H N N C H follows from R({log(H N N)) C L, where L, is the Lie algebra of H. Let by
Lemma 10 N = (H n N) X B for a subgroup B C N. Since N is a free Abelian group, we have thatR({log(H N N)) N R({log(B)) = 0,

and because N is a subgroup of the Abelian Lie group Z(G), X R, it follows that N = HNN x B. Thus,

HNANN=HNHNNXB) =HNNX(HNB),

HANN=HNN < HnB={1}.

By definition of quotient topology, H/N C G/N is closed if and only if the complete preimage HN C G is closed. The

subgroups H and N are connected, and so is their product HN. Since N C G is central, both HN and HN are subgroups.
Being a connected subgroup, HN c G is closed by Proposition 14. Thus, the question is reduced to whether HN C HN
is closed or not. _ _ _

HN B C Bisaclosed Lie subgroup; hence, B =H N BxC where C C Bisaclosed Lie subgroup. It follows that

HN = HB = BH, HN = HB = HC = CH,
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and we want to know whether BH C CH is closed. Again, by definition of quotient topology, this is equivalent to BH/H
C CH/H being closed or not. Since BN H = C n H = {1}, the homomorphisms B — BH/H and C — CH/H are isomor-

phisms, therefore rankBH/H = rankB and dim CH /H = dim C, which implies that rankBH /H = dim B > dim CH /H, and
equality holds if and only if H N B= {1}.IfHn B= {1}, then the homomorphism B - BH /H is an isomorphism, and

BH/H C CH/H = BH/H is closed. On the other hand, if H N B # {1}, then dim CH/H < rankBH /H; therefore, BH/H
C CH/H is dense (see Theorem 6.1 in [30]). O

Appendix: : proof of Lemma 7

Letl <k € Nand (v;,1)), ..., (v, 1) € RY X R such that t, = njty, n; € Z for i =1,....k, where t, € R.
Lemma 7 There exists a change of generators A € GL(Z, k) such that

ul u2 “en uk — Vl V2 “on vk ,A
s 0...0 [ O ’
Remark 12 Here, s, = d.ty, where d, = ged(ny, ..., ny).

Proof The statement amounts to the existence of an A € GL(Z, k) such that

d,,0,...,0) = (ny,ny, ..., n) - A.
Dividing both sides by d. we reduce the problem to finding an A € GL(Z, k) such that

1,0,...,0) = (7, fty, ..., 7iy) - A, (20)
where #i; = n;/d, fori =1,...k and gcd(#,, ..., 71;) = 1. Denote

d, = ged(ity, fis, ..., ),  dy = ged(fiy, iy, ..., 7)), ..., dp=ged(i, iy, ... 7)),
. iy . 53 . iy
m=— m=— .., m=E=———

d2d3..udk dld3¢"dk dldz;::dk_l

so that i, = m;d,d,...d/d; fori=1,....k and gcd(m;, m;) = 1for all i#j.
We will define the auxiliary matrix B € GL(Z, k) depending on whether k is even or odd. If k =2r, then define num-
bers gy, ..., g, € Z such that, by Bézout’s identity, m,;_q,;_, + myq,; =1 forj=1,....r. Then, B is the following matrix,

0 ... 0 -m 0 ... O
0 ... 0 m 0 .. O
0g3;... 0 0 —-my.. O
B=]10g¢g,... 0 0 my 0

00 ..q4 0 0 ...-m
00 q 0 0 .. .m_

It is easy to see that indeed, | det B| = 1 and
my,...omJm.,....m)-B=(1,...,1]0,...,0).

If on the other hand k =2r +3, then we introduce the numbers g, ..., g;_3 € Z as before, my;_q,;_ + my;q,; =1 for j
=1,...,r. Then, again powered by Bézout’s identity, we define integers g;_,, Gx_1 9> Sx—2- S € Z such that m_,q,_, +
My_ Gy + myg, =1 and my_,s;, + mys, = 1. Now, the matrix B is as follows,
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q, 0 0 0 -m O 0 0 0

q, 0 0 0 m O 0 0 0

0 g5 0 0 0 -my 0 0 0

0gy... 0O 0 0 my 0 0 0
p=| i+ : : : : :

00 ..qey 0O 0 O ...—m_y O 0

00..q3 0 0 O m_y 0 0

00 0 ¢, 0 O 0 my,  —My_ Si_o

00 0 ¢, 0 O 0 0 1

00 0 g 0 O 0 —-my_y, —my_s;

Again, it can be observed that | det B| = 1 and
(my,....m My, ...,my) - B=(1,...,1]0, ..., 0).

For every [ € Ndenote by C; € GL(Z, I), the matrix

1-1 0 ..0
=21l
00 0 ..1

It can be easily seen that
(1,...,1,0,...,0)- [C;® 1,_ | =(1,0,...,0),

where exactly / non-zero entries are on the left-hand side. Finally, we define the auxiliary matrix D € GL(Z, k) by
D=B- [C, ® 1,] orD=B- [Cr+1 ® 1,+2] depending on whether k =2r or k =2r + 3, respectively. From what we had
above, it is clear that

(my,my,....m)-D=(1,0,...,0). [¥2))

This property of D (as the more general (20)) is remarkable. It means that the first column D is a Bézout tuple for (m,,...
,m,), while the k — 1 other columns D.,,...,D.; span the hyperplane orthogonal to (m,,...,m,). It is clear that any other
Bézout tuple for (m,,...,m,) is of the form D - (1,4,,.. .,lk)T with (4,,...,4;) € Zk1 and replacing the first column D in
D with any other such tuple will not violate (21).

Remember that ged(fi,, ... , 1,) = 1, so that there exists a Bézout tuple (p,, ..., p;) € Z¥such thatii;p, + ... + fip, = 1.
It follows that

d,...d, d,...d,
+...+
4, P1 my d,

my =1

thatis, d,...d, - (p,/d,,....p;/d,) is a Bézout tuple for (m,...,m;), and we can afford setting D+, =d,...d, - (p,/d,,....p,/d})
without changing (21) or det D.
The desired matrix A can be constructed as below,

P Dl,zdl Dl,kdl
A=]: : : : .
Pk Dk,zdk Dk,kdk
We check that (20) is true. Indeed, (71, ..., 1) - (py, .- ,pk)T = 1 by definition, whereas
(N AR (DUdl, ,D,w-dk)T =d,..d.-(my,...,m)- (Dl‘]-, ,DkJ) =0, j=2,...,k

follows from (21). Finally,
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p1/d, Dy, ... Dy,
detA = |diag(d,, ..., d}) - : Do =
P/ dy Dk,2 Dk,k

dl...dkpl/dl D172 e Dl’k
: N = detD,
dl..-dkpk/dl Dk,2 . Dk,k

which proves that A € GL(Z, k).

O
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