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Abstract—Generalization problem of reinforcement learning
is crucial especially for dynamic environments. Conventional
reinforcement learning methods solve the problems with some
ideal assumptions and are difficult to be applied in dynamic
environments directly. In this paper, we propose a new multi-
virtual-agent reinforcement learning (MVARL) approach for a
predator-prey grid game. The designed method can find the
optimal solution even when the predator moves. Specifically,
we design virtual agents to interact with simulated changing
environments in parallel instead of using actual agents. Moreover,
a global agent learns information from these virtual agents
and interacts with the actual environment at the same time.
This method can not only effectively improve the generalization
performance of reinforcement learning in dynamic environments,
but also reduce the overall computational cost. Two simulation
studies are considered in this paper to validate the effectiveness
of the designed method. We also compare the results with
the conventional reinforcement learning methods. The results
indicate that our proposed method can improve the robustness
of reinforcement learning method and contribute to the general-
ization to certain extent.

Index Terms—Reinforcement learning, multiple virtual agents,
generalization problem, dynamic environment, and parallel
learning.

I. INTRODUCTION

In the last decades, reinforcement learning (RL) has at-
tracted increasing interests in the field of machine learn-
ing. Unlike supervised learning and unsupervised learning,
reinforcement learning method is aimed at maximizing the
sum of the rewards an agent can receive in a long run [1].
Reinforcement learning has proven its value in a series of
artificial domains. However, many of the research advances in
RL are often hard to be applied in dynamic systems due to a
series of assumptions that are rarely satisfied in practice [2].

One of the largest challenges for applying reinforcement
learning methods in dynamic environments is the generaliza-
tion problem. Most researches analyzed in specific environ-
ments with ideal assumptions. Tasks may be partially observ-
able without considering abrupt changes or stochastic varia-
tions in a dynamic environment. For example, both Pacman
game [3] and Hunter & Prey game [4] are based on the agents
that can sense the position of enemies, while some enemies
are unpredictable or insensible in the reality. Real-world tasks
can be more complex and diversified. For renewable energy,
high variability of solar production, especially the ramp event,

978-1-7281-8671-9/22/$31.00 ©2022 IEEE

poses serious challenges to traditional power system [5]. The
ability of agents to predict the renewable energy accurately
maintains the reliability and stability of the power system,
especially under extreme weather conditions.

Recently, some approaches have been developed to improve
the robustness of reinforcement learning. Iyengar proposed a
robust formulation for discrete time dynamic programming
(DP) [6]. In [7], the authors involved an explicitly training
agent on various perturbations with an average learning error
and used a training policy that can determine online environ-
ments [8]. Beyond that, several works [9], [10], [11] analyzed
the dynamics of policies learned by multiple self-interested
independent learning agents using its deep Q-network. Al-
though combining with deep learning can somehow settle the
generalization problem of RL, deep neural network needs more
memory and computations [12]. Besides, as [13] illustrated,
deterministic optimization approaches may not ensure the
optimal point in most real-life problems containing uncertain
parameters [14]. Therefore, stochastic optimization is pre-
scribed involving uncertainties and probabilities to deal with
this problem.

RL has been successfully used in many fields and the
predator-prey model is one of the most popular models in
this field. J.Schrum compared the performances of several
algorithms applied in a simple predator-prey grid world in
terms of how well the predator and the prey compete with
each other [15]. But it analyzed this predator-prey problem
by using partial state representations with full awareness of
predators’ locations in all directions. Another related predator-
prey model used reinforcement learning algorithms to improve
the existing individual-based ecosystem [16]. For our experi-
ments, we concentrate on how to improve the prey’s ability to
escape when the predator occurs randomly with some certain
probabilities. This means that the knowledge learned by the
prey can be adapted to a changeable environment.

In this paper, we work on the generalization problem of
reinforcement learning methods in dynamic predator-prey grid
environments. Specifically, we propose a new algorithm called
multi-virtual-agent reinforcement learning (MVARL) method.
It is aimed at associating parallel learning with probability in
changing environments. The contributions of this paper are
provided as follows. First, our algorithm requires less com-
putational cost. Different from traditional multi-agent systems
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which require instantaneous communication information for
collaboration, our virtual agents can accelerate the learning
process by sharing information at periodic points during the
learning process. Second, instead of using multiple agents in
the same environment, we use virtual agents to avoid non-
stationary of sub-environments. In existing works of multi-
agent reinforcement learning (MARL), agents are solving
different parts of a task or working in an environment that
is altered by the actions of other agents [17] [18]. The non-
stationary of the environment is not generated by an arbitrary
stochastic process, but rather by other agents. Third, our algo-
rithm offers up the generalization problem of RL in dynamic
environments. Experiments show that our multi-virtual-agent
reinforcement learning algorithm has better performance than
other tabular reinforcement learning methods.

The remainder of this paper is organized as follows. Expla-
nations about comparative methods of reinforcement learning
including four kinds of traditional methods are given in Section
II. Section III states the main idea and structure of our
multi-virtual-agent reinforcement learning algorithm. Specific
experiments and results of two cases are shown in Section
IV. Finally, conclusions and the future research’s possible
applicable guidance are provided in Section V.

II. BACKGROUND AND METHODS

A Markov decision process (MDP) can be expressed by
a tuple: {S, A, P,R,~,so}, where S is a set of states s, A
is a set of possible actions a, P is the transition probability
which can be represented as P : S x A x S — R, R is the
reward function R(s,a), v is the discounted rate and sq is
the initial state where the agent will depart from. Mapping
from current state and action pair (s,a) to next state s
is probabilistic determined by P(s,a,s’). As we mentioned
before, the goal for a reinforcement learning agent is to
maximize the cumulative reward. The total reward is realized
giving: G = >°.° 7' R(sy, a;), where ~y should be subjected
to 0 < v < 1. In our experiments, the discounted rate v = 0.9.
Besides, e-greedy method is applied in order to keep trade-off
between the exploration and the exploitation.

A. Q-learning

One of the popular reinforcement learning algorithms is Q-
learning [19], which is an action selection method by using
state/action value function Q(s,a) and state value function
V(s) to learn the decision policy 7. Bellman’s optimal prin-
ciple suggests that an optimal policy can be built for the tail
sub-problem [20].

Q(s,a) = R(s,a) + ’yz P(s,a,s)V(s")
s’ ey
V(s) = maz.(Q(s,a))

Therefore, agent can update its Q-value corresponding to
this formula: Q(s, a) = R(s,a) + ymaz,Q(s’,a’). Once we
introduce the learning rate « to determine Q-values’ updating
speed, the formula will become

Q(s,a) = (1-a)Q(s, a)+a(R(s, a) +ymazry Q(s', a’)) (2)

B. Double Q-learning

Although the formulation of Q-learning works well in
majorities of cases, a Q-learning agent has a potential to put
itself at risk when an exploratory move compels it to receive
a low reward. To solve this problem, Hasselt applied a double
estimator to Q-learning to construct double Q-learning method
[21].

Double Q-learning method performs well in some settings
in which Q-learning performs poorly due to its overestimation.
And it’s proved that double Q-learning is not less data-efficient
than Q-learning. Double Q-learning stores two Q-functions
(Q4 and @Qp) updated with these formulas as below

a* = argmaz,Q* (s, a)

Q% (s,a) < Q% (s,a) + a(R(s,a) +1Q(s',a") = Q*(s,a))

b* = argmaz, QP (s, a)

QP (s,a) + QP (s,a) + a(R(s,a) + 1Q*(s',b") — QP (s,a))
3)
where a*,b* are the optimal actions of Q4 and QP respec-

tively.

Double Q-learning is likely to eliminate the limitation
caused by maximization bias [1]. Although double Q-learning
avoids the flaw of the overestimation bias that Q-learning does,
it might underestimate the action values at times. Double Q-
learning is suitable for the cases with random value reward,
like the example shown in Sutton’s textbook.

C. Q-learning with Experienced Replay

Pieters and Wiering proposed several adaptions of Q-
learning for a dynamic environment called Q-learning with
experienced replay method, where experience tuples are reused
based on time or based on the obtained reward [22]. The main
idea of this method is to accumulate tuple £ = {s,a,r, s’}
to construct the database M. After some trials Z, the agent
needs to randomly choose K tuples of E from M to update
Q-function as the equation below. This process is represented
by L function as below

M «+ update(M,E, N)
Q <« L(Q,M,K,v,«)

where K is the number of tuples and N is number of
experiences in the database M.

There are two kinds of methods to update database M
in order to solve the capacity problem. One is to update
based on time, the other is to update based on reward. In
the comparison experiments, we use the updating rule based
on time. If size(M) < N, database M will be merged with
E. If size(M) > N, we will remove the earliest element from
itself and then merge it with E.

“4)

D. Monte Carlo Method

Unlike dynamic programming, the Monte Carlo (MC)
method does not need a model of the environment. Hence,
it’s possible to achieve optimal behavior without any prior
knowledge. Its goal is to learn v, (s) given some numbers of
episodes under 7. Monte Carlo method samples and averages
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returns observed for each state-action pair after visiting to s
[23]. Policy improvement is done by making the policy greedy
with respect to the current value function.

In our experiment, we use Monte Carlo method by using
e-soft policy and the probability of the greedy action is
determined by (5)

€

where A(s) is the sum of all actions’ values.

P(s,a) =1

III. MULTI-VIRTUAL-AGENT REINFORCEMENT LEARNING

Our algorithm is developed in a parallel learning framework,
where several virtual agents are learning simultaneously in
different virtual sub-environments. Meanwhile, a global agent
interacts with the real changing environment. Each virtual
agent i has a Q-table ° and action set A’ to control its
optimal policy. The virtual environments compose the global
environment with probability. Namely, if the probability of
virtual environment i is p‘, the global environment will be
determined by this relation: Global Environment = "7 | p' x
Virtual Environment’. The sum of all p* should be equal to 1.
The framework of multi-virtual-agent reinforcement learning
is shown as Fig. 1 with three main modules. Multiple virtual
agents interact with virtual environments in module I and
module II. Then each virtual agents integrate with global agent
in module III with the experience they learned. After this
iteration, global agent interacts with global environment in
module III, then sends the updated parameters back to those
virtual agents in module II.

Represented by virtual environments

Virtual Agent*
Ql Al

Global Environment
- p'X Environment*

4 oo p"
X Environment™

Environment? Virtual Agent?

Environment*
1
p

p? Q% A?
Global Agent
Environ;nent" Virtu::l A;i/enz" QI =3y, piQ!
p Q" A A9 = e—greedy (s9,£,Q8)
Module | Module |1 Module| ll

Update periodic parameters

Fig. 1. The structure of MVARL algorithm. Module I and module II stand for
the multiple virtual environments and virtual agents respectively. Module IIT
is the actual operation module which includes the global agent and the global
environment. Global environment is composed of several virtual environments
with probabilities which totally sum up to 1. Global agent updates its Q-
values according to those virtual agents’ Q-values with probabilities and take
its action using e-greedy algorithm. In the meanwhile, global agent will send
the updated information to virtual agents in module II after its iteration.

For our algorithm, the update of i*" virtual agent’s Q-table
Q' in each episode is defined by Equation (6).
Q'(s',a") = (1—a)Q'(s",a")+

o(R(s" a') + maza Qi (s a)) O

where s?,a’, Q*(s*,a’) and R'(s’,a’) represent the i*" virtual
agent’s state, action, Q-value and reward of pair (s, a’). s’ is
the next state and a’ is the next action of ‘" virtual agent.

@9 is the Q-table of global agent which is integrated with
virtual agents’ Q-table after each episode. In regard to the
update algorithm of global agent’s Q-table, there are two kinds
of approaches to integrate information. One is to update with
statistical probability expressed as Equation (7), the other is
to update averagely expressed as Equation (8).

Q(s,a) = > p'Q'(s,a)| Y p' =1 (7
=1 i=1

Q(s,0) =Y 1 Q' (s,0) ®

After the iteration of global agent, the virtual agents’ Q-values
are also updated according to the global agent.

Qi(sva):Qg(saa)v VZ:]., ,n (9)
IV. EXPERIMENTS

A. Task Description

The task used in our work is a predator-prey game, which
is shown in Fig. 2. It’s a 6 x 9 grid world with several walls.
The biggest difference from traditional grid world is that a
predator and a prey are introduced to the environment and
the position of the predator is changing according to specific
probability.

A prey will start each episode at the S point and a
predator will appear at Area 1, Area 2, and Area 3 or
will not appear with a statistical probability P, where P =
[pi. 0% %, p*] | Z?Zl p* = 1. p’ means the probability that a
prédator will appear at Area i (Vi = 1,2,3), and p* means
the probability that a predator will not appear.

The predator in each area has two possible positions and
each time a predator will only appear at one of them randomly.
Only the prey can occupy the goal space G and the prey has
no access to wall spaces. If the goal space is occupied by a
prey, it means the prey successfully escapes and the terminal
state is a win state with a positive reward 100. Otherwise,
if a predator eats a prey by occupying the same space as the
prey or the prey can’t escape within required steps, it means
the prey loses the game and the terminal state is a lose state
with a negative reward -100. The rewards of other steps are
0. The maximum step (Max-Step) for a prey to escape is set
as 600. The goal for a prey is to start from point S, avoiding
walls and the predator in the way of finding an optimal way to
reach the point G and escape. It’s apparent that Area 1, Area
2, and Area 3 are very crucial for a prey to escape from this
grid world.

B. Evaluation Indicators

To evaluate the performance of algorithm, we introduce two
indices: win probability (probability of the win state) and
step. Win probability represents the probability of the prey
to escape successfully which is defined by Equation (10).
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Oppositely, lose probability means the probability that the
prey will lose the game. Step stands for how many steps the
prey needs to take in one episode which is defined by Equation
(11). The step-to-goal means the actual steps the prey needs
to take in the win states. It’s worth mentioning that if the
terminal state is a lose state, the step will be set as the Max-
Step which equals to 600. Accordingly, we define an episode
as the prey ends at a win state or a lose state, which means
the prey escape successfully or unsuccessfully.

NtTials Nepisodes
Zj1:1 ijzl flag
Nirials ZNCpisodes

Average win probability =

Jji=1 jo2=1 (10)
flag — 1, if the prey successes
&= 0, if the prey fails
N, rials
. Zjlt:1l Step
Average step per episode = —————
Ntrials (1 1)

St step-to-goal, if the prey successes
cp =
P Max-Step, if the prey fails

where Niyiq1s is the number of trials, Nepisodes 15 the number
of episodes, and ji, jo are the indexes of trials and episodes
separately.

C. Case 1

According to our algorithm, we initially choose o = 1,y =
0.9, Niriats = 50, and Nepisodes = 5000. In order to eliminate
the effect of random results, we implement 50 trials and
average the results.

Area

Area

2 3

Fig. 2. Case 1: predator-prey game with size of 6 X 9. Area 1, Area 2, and
Area 3 stand for the areas that a predator is possible to occur. S is the start
space and G is the goal space. The grey ones are wall spaces.

Case 1 is executed in a 6 X 9 predator-prey game with
a predator appearing possibility P = [0.4,0.3,0.2,0.1]. The
environment of case 1 is shown in Fig.2. In order to choose
optimal parameter of e-greedy, we have two kinds of exper-
iments. One is to choose ¢ fixed, the other is to choose ¢
variable according to the number of episodes which means
e = f where 7 is the declining rate. For the first choice,
our experiment chooses ¢ = 0.01/0.1/0.3/0.6/0.8. For the
second choice, our experiment chooses initiale = 1,7 = 1.1,¢
declines every k episodes, where k varies from 5 to 80.
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(c) Average win probability of vari- (d) Average step of variable epsilons.
able epsilons.

Fig. 3. Average win probability and step of case P=[0.4,0.3,0.2,0.1]. (a) and
(b) are fixed epsilons, where ¢ = 0.01/0.1/0.3/0.6/0.8. (c) and (d) are
variable epsilons and we chose g =1, 7 = 1.1, = f, € declines every k
episodes as variable epsilons, where k varies from 5 to 80.

According to our algorithm structure, we use four virtual
agents to simulate four kinds of sub-environments separately.
Each virtual environment i has p’ probability to occur in the
global environment. For each episode, virtual agents will end
at the win state or the lose state. Then virtual agents share
information to the global agent. The global agent integrates
these information with probabilities and then sends informa-
tion back to virtual agents.

As the Fig. 3(a) and Fig. 3(c) demonstrated, variable ¢ has
a better win probability than fixed ones. Especially, when € =
17,k = 5, the result of average win probability has an optimal
performance nearly reach 80 % and the result of average step
is also the smallest one. Although when € = ﬁ, k = 10, the
average step is the most concentrated according to Fig.3(b)
and Fig.3(d), we choose € = {5,k = 5 as parameters of ¢ for
overall consideration.

Reasons for optimal win probability can’t reach 100% is
because Areal, Area2, and Area3 are critical and difficult
spaces for a prey to overcome. They are important spaces for a
prey to go to the goal space to escape. So, it’s hard for a prey
to avoid all situations of the predator because the predator
changes with probability. The best solution for a prey is to
choose minimum probability way to the lose state, which is
equal to 20% in the case of P = [0.4,0.3,0.2,0.1]. It’s obvious
proved by the heatmap of global agent’s Q-table, which is
shown in Fig. 4. The Q-table has 6 rows and 9 cols with 54
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Fig. 4. Case 1: heatmap of Q table when P = [0.4,0.3,0.2,0.1]. This heatmap represents Q-table of case 1: a 6 x 9 predator-prey game. The Q-table
has 6 X 9 = 54 spaces and each space has four sub-spaces. Every four sub-spaces stand for four actions’ Q-values in this space, which are up, down, left,
and right. Global agent will choose the action with the biggest Q-value (highlighted in green color) as its actual action from four directions in each space.
Therefore, it will find a way to go through Area3 which has the minimum probability to lose the game.

spaces. Each space is separated into four sub-spaces standing
for four actions’ Q-values. Global agent will choose the action
with the biggest Q-value (highlighted in green color) as its
actual action from four directions (up, down, left, and right)
in each space.

The best route for global agent in case 1 is to find the
way with the minimum lose probability, which is the way
to go through Area3 with a lose probability of 20%. That
explains why the best performance of our algorithm in the
case is 80%. Likewise, when the probability is changed to
P =10.1,0.3,0.4,0.2], this conclusion can also be applied.
The best route in this case is to go through Areal with a win
probability 90%. Cases with different probabilities satisfy this
rule as well.

We also change the distribution of P to see the generaliza-
tion performance of our two kinds of updating algorithms.
By using the Equation (8), the update of global Q-table
uses average probability of sub-environments, while the actual
environment’s distribution is various. The results illustrate
that using average probability to update global agent’s policy
can achieve performance as good as the Equation (7) which
updates Q-table with statistical probability. The results of two
updating algorithms with different P are shown in Fig.5.

Comparison Experiments. We used random walk as our

0.8 P
>
f)
=06
K
©
Qa
e . :
Q4 —— P=[0.1,0.2,0.3,0.4], using Equation (7)
= —=— P=[0.1,0.2,0.3,0.4], using Equation (8)
= —— P=[0.3,0.25,0.25,0.2], using Equation (7)
02 —— P=[0.3,0.25,0.25,0.2], using Equation (8)
’ —— P=[0.1,0.3,0.4,0.2], using Equation (7)
—— P=[0.1,0.3,0.4,0.2], using Equation (8)
0.0
0 1000 2000 3000 4000 5000
Episodes

Fig. 5. Case 1: average win probability of different probabilities P with two
updating algorithms according to Equation (7) and Equation (8). Two kinds
of updating algorithms can have almost similar results.

blank experiment. This means the prey acts without any
algorithm, randomly choosing its action from four directions.

As we mentioned before, we choose four kinds of classical
reinforcement learning algorithms to compare our algorithm’s
performance, which include Q-learning, double Q-learning, Q-
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TABLE I
RESULTS OF AVERAGE WIN PROBABILITY AND STEP FOR CASE 1.

Methods .
MVARL|Random Walk|Q-learning|Double Q| Q-ER | MC
Indices
Win Probability| 79.3% 30.6% 57.3% 61.3% [60.2%|62.6%
Average Step 136 480 284 311 259 | 249

learning with experience replay and Monte Carlo methods.
To be fair, we implement several experiments to choose best
parameters for each comparative method.

e Q-learning: best ¢ = 0.3

e Double Q-learning: best € = 0.2

e Q-learning with experience replay: best ¢ = 0.3, K =
20,T =20, N = 40
e Monte Carlo method: best € = 0.25
0.9
0.81
0.7 1
>
£ 0.6 {Lrryre VRRREEERRRAERR
._rau
a 0.5 1
o
5 044
£ 0.3 1 - - —o—e—e—e—e——0-tes-0-0—0—0—0—0—0—0—0-0-s-s-oo -
= —— MVARL —— Double Q
0.2+ Random Walk —+— Q-ER
0.1 —e— Q-learning —— Monte Carlo
0.0 . . . ,
0 1000 2000 3000 4000 5000
Episodes

Fig. 6. Case 1: average win probability of different algorithms. Y-axis means
the probability of the prey that can escape from the grid world under this case.
The higher the win probability is, the better the algorithm’s performance is.
MVARL represents our proposed multi-virtual-agent reinforcement learning
17,k = 5. Double Q means double
Q-learning method and Q-ER stands for Q-learning with experience replay

algorithm with best parameters ¢ =

method. Four comparative methods are implemented with best parameters
which are all listed in Sec.IV.

The performance for experiments of case 1 is listed as the
Table I shown and the curve of average win probability and
the box-plot of average step are plotted in Fig.6 and Fig.7.
Obviously, our algorithm MVARL has the most outstanding
performance both in terms of average win probability and
average step. The win probability of our MVARL algorithm
is 79.3%. It outperforms 26.6% than the optimal comparative
reinforcement learning method (Monte Carlo method) and is
2.6 times bigger than blank experiment. Besides, the step of
Monte Carlo method is 1.83 times bigger than our proposed
algorithm, where MVARL only needs 136 steps averagely to
reach the goal space.

5P

Doﬁble Q-ER M(;nte
Carlo

Average step per episode
g g

—_
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(=]
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MVARL Random Q-
Walk learning Q

Methods

Fig. 7. Case 1: average step of different algorithms. Y-axis means how many
steps the prey needs to escape form the grid world under this case averagely.
And if the terminal state is the lose state, the step will be set as 600. Obviously,

the lower the step is, the better the algorithm’s performance is.
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Fig. 8. Case 1: average step-to-goal of the first 1000 win states of different
algorithms. We represent the actual steps the prey needs to take to get to the
goal position under win states.

The reason for the average step is a big number is because
the steps are averaged in each episode for different trials. So,
average step will be larger than actual steps in the win state
due to the step is set as 600 in the lose state.

To reflect our results more intuitively, we also plot average
step-to-goal curve of the first 1000 win states in 50 trials,
which is shown in Fig.8. It’s obvious that our multi-virtual-
agent reinforcement learning algorithm converges fastest and
its average step-to-goal is shortest with a value of 14.

D. Case 2

In order to have more generalized performance, we ex-
pand the grid world’s size and the appearing scope of a
predator. The experiment of case 2 is executed in a 20 x 20
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TABLE II
RESULTS OF AVERAGE WIN PROBABILITY AND STEP FOR CASE 2.

Methods .
MVARL|Random Walk|Q-learning|Double Q| Q-ER | MC
Indices
Win Probability| 84.8% 5.8% 66.2% 22.4% |70.0%|72.6%
Average Step 116 588 252 543 213 | 211

predator-prey game with a predator appearing possibility P =
[0.4,0.3,0.2,0.1]. The predator in each area has three possible
positions. The environment is shown in Fig.9.

Areal2 >

o
w

Fig. 9. Case 2: predator-prey game with size of 20 x 20. The size of grid
world and the areas of the predator become bigger. This means the predator

in each area has three possible positions to appear.

The performance for experiments of case 2 is listed in the
Table II. The average win probability curve, avearage step’s
box-plot, and average step-to-goal curve of the first 1000 win
states are plotted in Fig.10, Fig.11 and Fig.12. Similarly, we
can conclude that our MVARL algorithm converges fastest
with a step-to-goal attaining to 26 after convergence. Our
MVARL algorithm achieves best performance in terms of both
average win probability and step in case 2.

It’s proved that when the size of grid world become bigger,
our algorithm still outperforms other comparative methods.
The average win probability is a little more than 80%. This
is because the predator has more spaces to move around. We
also noticed that the performance of double Q-learning method
falls down a lot when the size of the grid world is expanded.
This may be because double Q-learning method is based on
the assumption of estimating Q4 ~ Q® ~ Q*. But for our
case with a changing predator, the bigger the size of grid world
is, the less possible for this hypothesis to become true. The
update of two Q-tables leads the learning process to fall into
a loop. Therefore, double Q-learning method will have worse
results as the state space becomes bigger in this case.

V. CONCLUSIONS

In this paper, we propose an algorithm called multi-virtual-
agent reinforcement learning method using several virtual
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agents to simulate sub-environment of dynamic environment in
parallel. The most important contribution of our work is to im-
prove the robust of reinforcement learning algorithm and make
it more efficiently to be applied in dynamic environments. Our
experiments show that MVARL has better performance than
other tabular learning methods, such as Q-learning, double Q-
learning, Q-learning with experience replay and Monte Carlo
methods both in terms of average win probability and average
step indices. We proved that our conclusions are still valid
when the size of the grid world in predator-prey game becomes
bigger.
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