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Abstract—Economic dispatch in a multi-microgrid (MMG)
system involves an increasing number of states from distributed
energy resources (DERs) compared to a single microgrid. In these
cases, traditional reinforcement learning (RL) approaches may
become computationally expensive or less effective in finding the
least-cost solution. This paper presents a novel RL approach
that employs local learning agents to interact with individual
microgrid environments in a distributed manner and a global
agent to search for actions to minimize system cost at the MMG
system level. The proposed distributed RL framework is more
efficient in learning the dispatch policy compared to conventional
approaches. Case studies are performed on a 3-microgrid system
with different types of DERs. Results substantiate the effective-
ness of the proposed approach in comparison with conventional
methods in terms of operation costs, computation time, and peak-
to-average ratio.

Index Terms—Aggregating knowledge, distributed energy re-
sources, distributed learning, multi-microgrid dispatch, and re-
inforcement learning.

I. INTRODUCTION

Recent advances and achievements of reinforcement learn-
ing (RL) have opened the door for its applications to a
broad range of power system problems [1], including multi-
microgrid (MMG) energy management. The development and
deployment of distributed energy resources (DERs) along with
advanced metering, communication, and control technologies
at the distribution level have transformed many conventional
distribution systems into modern MMG systems [2]. Energy
management in MMG systems is crucial to harvest the poten-
tial benefits of DERs and has attracted a lot of attention in
recent years.

There are two kinds of approaches for energy management
in an MMG system: competitive and collaborative [2], [3]. In
a competitive approach, a dedicated control center is designed
and used to minimize the cost of each microgrid. On the
other hand, a collaborative approach aims to minimize the
total cost of an MMG system with or without a global energy
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management center. Examples of each kind of approaches are
provided as follows:
o Competitive approaches
An RL-based bi-level coordinated energy management
framework is proposed in [4] for an MMG system
where a game-theoretic interactive mechanism between
the operator and the microgrids is applied to minimize
their individual costs. In [5], an interactive dispatching
model of virtual microgrids and a distribution network
is proposed with a bi-level bidding and market clearing
strategy using the multi-agent RL. An auction-based
microgrid market is proposed in [6] using multi-agent
RL to determine the equilibrium of all agents’ benefits
to maximize the average rewards. A multi-agent RL
framework is proposed in [7] to solve a distributed energy
management problem by maintaining a benefits balance
during agents’ interactive learning. RL approaches are
also proposed in [8] and [9] where DER agents interact
with each other in a distributed manner to find an optimal
operation strategy in competitive environments. Most of
these approaches look for equilibrium points like the
Nash equilibrium point strategy that may not always
exist or guarantee the optimal dispatch [3]. In addition,
since all agents aim to maximize their own benefits, it
may create an extra burden to balance energy in the
distribution network [2].
o Cooperative approaches
Cooperative control frameworks are proposed in [10]
and [11] to solve energy imbalance and energy stor-
age dispatch problems in MMG systems. An RL-based
cooperative multi-agent system is designed in [12] for
MMG dispatch using fuzzy Q-learning methods. An RL
approach with a distributed cooperative mechanism is
proposed in [13] to avoid a centralized controller that
involves a large number of states. Nevertheless, it is quite
challenging to design distributed control without any cen-
tralized coordination to achieve the desired performance.
A centralized controller is therefore recommended for
creating a more efficient generation-demand balance both
inside and between microgrids [2], [3].
Distributed RL with a global agent [14]-[17] has the po-
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Fig. 1. Multi-microgrid energy management with a global control agent.

tential to more efficiently solve the MMG dispatch problem.
This paper proposes an innovative RL for the MMG dis-
patch problem, where a global agent employs local agents
in a distributed manner to learn a policy to minimize the
total operation cost. In particular, local agents are used for
distributed exploration based on local states within individual
microgrid. On the other hand, the global agent serves two
roles: i) aggregation and Q-table update during exploration and
ii) taking actions to minimize the total cost at the system level
during exploitation. The proposed hybrid learning approach
leads to effective exploration of the solution space and guides
the global agent to learn the dispatch policy efficiently. To
evaluate the performance of the proposed approach, case
studies are performed on a system with three microgrids
with different types of DERs. The results in comparison with
the conventional approaches validate the effectiveness of the
proposed approach in terms of operation costs, computation
time, and peak-to-average ratio (PAR).

The rest of this paper is organized as follows. The model
description and problem formulation are presented in Sec-
tion II. Section III presents the proposed RL approach for
MMG energy management. The proposed RL is evaluated
through case studies in Section IV. Finally, the conclusions
are drawn in Section V.

II. MULTI-MICROGRID SYSTEM MODEL AND PROBLEM
FORMULATION

This section presents the mathematical models used for the
MMG energy management problem. The interaction between
the individual microgrid controllers and system operator is
illustrated in Fig. 1. The microgrid data and dispatch deci-
sions are exchanged between the microgrids and the operator
through a bi-directional communication channel. The central
operator can purchase energy from the main grid or use
DERs to meet the microgrid demand. DERs considered in this
paper include distributed renewable generation (RG) such as
photovoltaic (PV) and wind, battery energy storage system
(BESS) assets, and dispatchable distributed generators (DGs)
such as diesel engines (DEs) and fuel cells (FCs).

The MMG energy management problem is to make hourly
dispatch decisions to minimize the total operation cost. The
objective function is the sum of the operation cost of M
microgrids over a time period of T' (typically 24 hours), as
expressed in (1):

mmz Z
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where m is the microgrid index, ¢ is the hour index, K™ is a
set that contains all DGs in microgrid m, and C{(p{® ) is the
operational cost of DG k, which can be expressed as

CREM) = duk () + b+ e . @

where pggk is DG k power output, ag, by, and ¢ are the
coefficients of the quadratic function, and d;j is a binary
variable that indicates the ON/OFF status of DG k. The power

purchase cost or sell revenue C™* (pfr;n) is expressed as
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where ); is the retail price at the point of common coupling,
p’;r;fl is the power purchased from (positive) or sold to (nega-
tive) the main grid, At is the time step size, and 7, is used
to capture network losses, which can differ among microgrids
depending on their locations within the distribution network.
In this way, each microgrid receives different retail electricity
prices due to different losses, which is known as distribution
locational marginal price [18].

The microgrid resources must be dispatched considering
both microgrid- and component-level constraints [19]. First,
the power balance of microgrid m must be satisfied all the

time:
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where B™ is a set that contains all BESSs in microgrid
m, Wg,, is the RG output assuming RG is operated in
the maximum power point tracking mode to maximize the
environmental and economic benefits, and l; ,, is the load
of the m-th microgrid. The DG power output constraint is
expressed in (5):

dg_rated d ated
Oiri ik < 5 < P dik s )

where ¢2g is the minimum power generation limit as a
percentage of rated power pf'd of DG k.

The BESS operation follows the linear model described in
[20]. In particular, the BESS power limits are provided in (6):

7P < pbatt < Pb+7 (6)

batt

where p;5' is the charging/discharging power (positive when

dlscharglng) of BESS b, P;r is the maximum discharging
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power, and P, is the maximum charging power. The BESS
state of charge (SOC) transition function is given in (7).

= )

where s, 5 is the SOC of BESS b at the end of hour ¢, £}, is
the rated energy capacity, and Ae;; is the change of energy
in BESS in hour ¢, which can be expressed as:

St+1,b = St,b —

m, pry At i piy <0
Aerp =  phat ) 3
;T At, otherwise
b

where 7, and n{f are the charging and discharging efficiencies,
respectively. The SOC of the battery is constrained by (9):

Sp < Set1,0 < Spy 9

where s, and 5, are the lower and upper bounds of SOC,
respectively.

III. PROPOSED RL FOR MULTI-MICROGRID ENERGY
MANAGEMENT

RL is a type of machine learning approach focusing on
how agents interact with the problem environment with the
goal of achieving the optimal policy in a sequential decision-
making process [21]. In RL research, the sequential decision-
making problem is formalized as a Markov decision process
[22]. In this process, the RL agent observes the environment
state, takes action, and receives an immediate reward from
the environment. Then, the agent moves to the next state and
iteratively repeats this process to find the optimal policy that
minimizes the total cost [23].

The fundamental elements of a conventional centralized RL
approach include:

o Agent: Operator

o State: Sy = (S}, ..., 9™, ..., SM)

o Action: a; = (aj,...,a™™, ...,aM)

e Reward/Cost: The cost r; can be defined as the summa-

tion of the cost functions presented in (1).

Herein, S; is the state information for the entire MMG
system. The set of state variables of m-th microgrid is S}* =
(8¢,,ds,x), which is a part of S;. Similarly, a; is the action
taken by the operator at time ¢, with a}* = ( Efg‘,pffk,pfffl)
as a part of the action. The corresponding cost r; can be
obtained for taking action a; from state S;. For determining
the next-state S;;1, the SOC dynamics in (7) can be used for
the battery, and the DG status can be updated using the DG
status transitions presented in [24].

Q-learning is a model-free RL approach to learn the value
of an action in a particular state through an iterative process
and inform the RL agent what action to execute under certain
circumstances [25], [26]. The Q-learning algorithm uses a
function that calculates the value of a state-action combination:

Q: 8 x asR (10)

A Q-value is assigned for each state-action pair, and it indi-
cates the quality of the action for the given state. The core

of the Q-learning algorithm is the Bellman equation with the
value iteration process, and the Q-value is usually updated
using the weighted average of the old value and the new
information. For example, when the agent receives the cost
r and next-state Sy, for taking action a; from state S, the
Q-value can be updated using the Bellman equation as follows:

Q™ (S, ar) < Q" (S, ar)+

a (n +7min Q" M (Sps1,ai41) — Q" Sy, at)> :
(11)

where Q™ (S, a;) is the Q-value for the given state-action pair
at iteration n, « is the learning rate, and v is the discount
factor.

In the given problem formulation, the number of states
increases exponentially with the number of microgrids in
the system and downgrades the solution quality due to in-
creased computation burden. To tackle the challenge, this
paper proposes an innovative RL approach that follows the
exploration and exploitation strategy and involves local agents
within individual microgrids and a global agent at the system
level. During exploration, local agents explore a random
action considering the states within the microgrid and collect
rewards. The global agent updates the value table based on the
states, actions, and rewards received from local agents. During
exploitation, only global agent is used to search for a least-cost
action based on the Q-table and update Q-table based on the
actions taken and rewards received. With this proposed hybrid
exploration and exploitation process, the proposed approach
can effectively explore the solution space and learn the MMG
dispatch policy more efficiently compared to a conventional
centralized approach. Additional descriptions of functions of
local and global agents are provided as follows.

o Local agents

The local agents are only active during exploration pro-
cess. They interact with the microgrid environments in
a distributed manner to collect states, randomly explore
actions, and calculate the corresponding rewards, making
them ready for the global agent for aggregation and value
table update. The fundamental elements of local agents
include:

Agent: Microgrid local agents Q™

State: S = (54,5, d¢ k), VM

s . m __ ( batt ,dg grid
Action: a}* = ( t}bypt,kﬂpt,m)’ vm

dg, d id
Cost: 17" = 3y cxem O (075) + C (D)
Next-state: ity = (S¢41,0, dey1,1), YM

e Global agent

The global agent is active during both exploration and
exploitation. During exploration, upon information re-
ceived from local agents, aggregation is performed and
value table is updated. During exploitation, the minimum
cost policy is used to take actions and update Q-table
using (11). The fundamental elements of the global agent
include:
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TABLE I
TYPES OF DERS BY MICROGRID.
No. Compositions
1 Wind, BESS
2 Wind, PV, BESS, DE
3 Wind, BESS, FC

Agent: Operator ()

- State: S; = (S}, ..., SM)
- Action: a; = (a}, ...,aM)
- Costiry =3 "

Next-state: Sy1 = (S} q, ..., SM)

This process continues until the iteration number exceeds the
limit. Once the training is completed, for any MMG state S,
the corresponding action a; can be determined as

a :mng(Stva’)a (12)

where A is the feasible action space that satisfies operational
constraints of the microgrids presented in (4)—(9).

IV. SIMULATION ANALYSIS

In this section, the parameters of the MMG system and
proposed RL approach used in the simulation studies are
presented first. Next, case studies are presented to validate
and evaluate the proposed RL approach in terms of operation
costs, computation time, and PAR. The simulation results
are evaluated and compared with two existing methods: 1)
cooperative Q-learning and ii) Monte Carlo method. In cooper-
ative Q-learning (hereinafter referred to as “cooperative RL”
for simplicity), the microgrid agents share their information
in a cooperative mechanism and take the dispatch decisions
based on the feasible action space of the MMG system
[11], [13]. Thus, the microgrid agents learn their cooperative
dispatch policy by interacting with the MMG environment in
an iterative process. The Monte Carlo method is a widely used
mathematical technique that generates random variables to
treat optimization problems [27]. In the Monte Carlo method,
random actions are generated based on the feasible action
space A for solving the given MMG dispatch problem, and
the solution is determined after N iterations based on the
minimum MMG operation cost.

A. Simulation Setup

The test system is an MMG system with three microgrids
connected to the main grid. Each microgrid consists of differ-
ent DERs, and the compositions of DERs in the microgrids
are summarized in Table I. Table II lists dispatchable DG and
BESS parameters, which were adopted from [18], [28], [29]
and slightly modified to align with the microgrid design.

For RG, the rated power of wind is assumed to be 100 kW
for all microgrids for simplicity, and the power output profiles
are generated using the System Advisory Model (SAM) [30]
considering different manufacturers to add some variations.
Similarly, the output profile of PV is obtained using SAM with

TABLE II
PARAMETERS OF DISTRIBUTED ENERGY RESOURCES.

DG Type Range ag bg ck
(W)  $EW?)  ($KW) ®
Diesel Engine  [30 200] 0.00042 0.0185 0.4
Fuel Cell [0 60] 0.00024 0.0267 0.38
Energy Energy Rated Char. Dischar.
Storage Capacity Power Efficiency  Efficiency
(kWh) (kW) (%) (%)
Lithium-ion 160 40 91.5 91.5
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Fig. 2. Load, renewable generation, and net load of different microgrids in
the MMG system. MG denotes microgrid.

a rated power of 50 kW for the city of Phoenix, Arizona. The
residential load profiles in Phoenix from [31] were scaled to
represent the microgrid loads with peaks of 100 kW, 150 kW,
and 100 kW, respectively. The microgrid loads, total power
outputs obtained from PV and wind, and the corresponding
net loads on a typical winter day are plotted in Fig. 2, used
for numerical experiments in this paper.

It is assumed that the distance of the microgrid from the
point of common coupling increases with the serial number.
The higher-distance microgrid suffers from more network
losses, hence receiving a higher retail price. The 7, is set
for the microgrids in the range of 1.01-1.05, with an interval
of 0.02. The maximum and minimum battery SOCs (s, and
5p) are set to be 0.1 and 0.9, respectively.

A decayed e-greedy strategy is used to balance exploration
and exploitation for the RL approaches [32]. In this strategy,
the e initializes as 0.8 and divides the value by 1.3 at every
50 iterations until it reaches 0.01. The maximum iteration is
set to be NV = 1000. A fixed step-size of a = 0.5 is used for
updating the Q-values using (11). The Q-tables are defined
as a cell array with respect to states, action, and time steps
and initialize them with all zeros. For defining the states of
microgrids, discretized battery SOC and DG ON/OFF status
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TABLE 111
PERFORMANCE COMPARISON FOR MMG DISPATCH.

Approach Cost % of Time
(&) Improvement | (minutes)
Proposed RL 22.4 70.5 1.2
Cooperative RL | 27.2 40.4 3.1
Monte Carlo 38.2 - 33

60 T T

Cooperative RL
55 1 ————— Proposed RL

0 100 200 300 400 500 600 700 800 900
Iteration

1000

Fig. 3. Convergence performance of the proposed versus conventional
cooperative RL.

are used. If a microgrid does not have DGs, the DG state is
defined with zero. All numerical experiments were performed
in MATLAB R2020b on a computer with an Intel Core i7-
8665U 1.90 GHz CPU and 16 GB RAM.

B. Result Analysis

This section presents the results obtained from the simula-
tion studies for evaluating the performance of the proposed RL
approach in the MMG environment. Table III summarizes the
performance results in terms of operation cost and computation
time obtained using the proposed RL approach and the other
conventional approaches.

As can be seen, the proposed RL solves the MMG dispatch
problem in 1.2 minutes with the minimum operation cost,
showing 70% improvement compared to the conventional
Monte Carlo method. On the other side, with the same simula-
tion settings, the conventional cooperative RL approach takes
more than double the computation time to solve the problem
and incurs $4.8 in extra operating costs. The conventional
Monte Carlo method shows the maximum operating cost
during the experiment.

To better see the comparison, the cost versus number of
iterations is plotted in Fig. 3 to show the training process of
the two RL approaches and how they converge to the given
solutions. As can be seen, due to the high initial exploration
rate, both approaches involve exploring the solution space
showing excessive cost fluctuations at the beginning. As the
exploitation rate increases with the iteration, the improved
performance of the proposed RL approach is revealed. As
shown in the figure, the proposed RL approach shows a

TABLE IV
EVALUATION IN TERMS OF PEAK-TO-AVERAGE RATIO.
PAR
Approach
MG1 | MG2 | MG 3
Proposed RL 1.79 1.79 1.82
Cooperative RL 1.98 1.85 1.93
Monte Carlo 2.05 1.85 2.11
MG 1
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Fig. 4. Battery SOC profiles of different microgrids, obtained using the
proposed and conventional RL approaches. MG denotes microgrid.

5.9% improvement after 500 iterations, and the improvement
increases to 21.4% at the end of 1000 iterations.

The microgrids’ energy storage systems play a critical role
in minimizing the operation cost by shaving the system peak
and shifting energy to reduce PAR. The results in terms of
PAR are summarized in Table IV. The results show that the
proposed RL approach effectively dispatches the microgrid
BESS and achieves the minimum PAR value for all microgrids
compared to the conventional approaches. The performance of
the RL approaches can also be evaluated through the BESS
dispatch decisions made after the training. To better show the
dispatch performance, the battery SOC profiles are plotted in
Fig. 4 for both RL approaches.

As can be seen, the proposed RL approach efficiently
charges the BESS of the microgrids with the negative net
loads and is discharged to shave the loads, mainly around the
evening time when the net load is the highest, to maximize
the benefits of energy shifting. BESSs are poorly dispatched
with the conventional RL approach, as indicated by the high
operation cost. For example, in some hours, the BESSs are
charged or on standby when discharging would be beneficial,
and vice versa, adding extra operating costs to the system.
Again, some RG is sold to the grid instead of being used
to charge BESSs in some hours, which provided an instant
benefit; however, it increased the total operation cost of
the MMG system. Overall, the proposed RL approach is a
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promising technique for solving the MMG dispatch problems,
and the learning performance is validated through simulation
studies.

V. CONCLUSION

This paper proposes an innovative RL approach for solving
an MMG dispatch problem. The proposed learning approach
consists of both a global agent for system-level coordination
and local agents for individual microgrids. The RL agent
employs local learning agents to interact with microgrid
environments in a distributed manner with a common goal
and aggregates the outcomes to learn the dispatch policy for
the MMG system. Through the distributed learning and the
proposed aggregation process, the proposed RL effectively
explores the solution space to learn the MMG dispatch policy
with minimum operation cost. The proposed approach is
evaluated and validated through case studies on an MMG
system of three microgrids with different types of DERs. The
results showed that the proposed RL approach outperforms the
conventional approaches in terms of operation costs, compu-
tation time, and PAR value. An interesting research direction
is to develop a distributed RL approach based on the policy
iteration strategy for MMG dispatch considering distribution
power flow.
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