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Thermal Modeling of Patient-
Specific Breast Cancer With
Physics-Based Artificial
Intelligence
Breast cancer is a prevalent form of cancer among women. It is associated with increased
heat generation due to higher metabolism in the tumor and increased blood vessels
resulting from angiogenesis. The thermal alterations result in a change in the breast sur-
face temperature profile. Infrared imaging is an FDA-approved adjunctive to mammog-
raphy, which employs the surface temperature alterations in detecting cancer. To apply
infrared imaging in clinical settings, it is necessary to develop effective techniques to
model the relation between the tumor characteristics and the breast surface tempera-
tures. The present work describes the thermal modeling of breast cancer with physics-
informed neural networks. Losses are assigned to random points in the domain based on
the boundary conditions and governing equations that should be satisfied. The Adam opti-
mizer in TensorFlow minimizes the losses to find the temperature field or thermal conduc-
tivity that satisfies the boundary conditions and the bioheat equation. Backpropagation
computes the derivatives in the bioheat equation. Analyses of the three patient-specific
cases show that the machine-learning model accurately reproduces the thermal behavior
given by ANSYS-FLUENT simulation. Also, good agreement between the model prediction
and the infrared images is observed. Moreover, the neural network accurately recovers
the thermal conductivity within 6.5% relative error. [DOI: 10.1115/1.4055347]
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1 Introduction

Breast cancer remains a significant cause of morbidity and mor-
tality in women. 30% of cancer diagnosed in women in 2021 was
breast cancer, and about 1 in 8U.S. women will develop invasive
breast cancer in their lifetime [1]. Early detection is critical in
effectively treating and avoiding the spread of cancer to other
body regions. Infrared imaging is an FDA-approved adjunctive to
mammography, which can benefit from machine learning (ML)
for more effective screening. While much research focuses on
developing diagnostic tools to screen breast cancer, a cost-
effective and reliable technique based on infrared imaging is still
elusive [2]. Thermal imaging can become an effective technology
to screen patients for breast cancer safely, quickly, and inexpen-
sively [3,4]. However, current thermal imaging depends on com-
puter modeling of a breast to identify the relation between the
infrared images and the tumor characteristics. Available methods
include theoretical solutions of the bioheat equation, computa-
tional fluid dynamics, boundary elements methods, and supervised
artificial intelligence. The present work describes a novel
approach based on physics-informed artificial intelligence to
model breast cancer in patient-specific digital models.

Researchers apply theoretical solutions of the bioheat equation
to model breast cancer and relate the tumor location and heat gen-
eration to the surface temperatures. Assumptions include the rep-
resentation of the tumor with a point source, tumor located along
a defined axis, and homogenous breast tissue. Gescheit et al. [5]
simulated heated nanoparticles inside a rectangular domain and
accurately related the surface temperature to the heat source mag-
nitude and predicted the depth within 4.2%. Han et al. [6]

theoretically modeled breast cancer to relate temperatures from an
infrared camera of four patients with dense breasts to the magni-
tude of the metabolic heat generation. Results revealed that the
strengths of the heat sources in malignant cases were significant
and enabled clear identification of the tumor. Ye and Shi [7] theo-
retically modeled breast cancer to develop a method that identified
soft (low heat generation) and malignant (high heat generation)
tumors. Rastgar and Mohammadi [8] theoretically modeled breast
cancer and applied artificial neural networks (ANNs) to find the
tumor heat generation; the predicted maximum temperature was
in good agreement with thermographic data. Akpolile et al. [9]
theoretically solved the bioheat equation to identify the thermal
behavior of deep-seated tissues in the body. One of the main
drawbacks of applying theoretical solutions lies in the inability to
model patient-specific breast cases, which reduces the accuracy in
detecting the tumor characteristics.

Numerical simulations based on computational fluid dynamics
(CFD) provide another alternative to model breast cancer. The
method performs accurate modeling of patient-specific breast dig-
ital models. However, the need of multiple commercial software
to create the computational grid and numerically solve the bioheat
equation prevents its application in clinical settings. Mitra and
Balaji [10] trained ANNs with 375 simulated training cases and
72 simulated validation cases of a hemispherical breast with a
spherical tumor located along the central axis. The ANNs used 49
inputs (surface temperatures) and 4 outputs (tumor location and
radius). Results showed minor prediction errors of 15 and 22% in
tumor location. Saniei et al. [11] performed 70 simulated training
cases and 25 simulated validation cases of 4 different spherical
tumors. The trained NN predicted a tumor size of 1.59 cm and a
tumor depth of 1.1 cm against actual values of 2.5 cm and 1.5 cm
for one of the patients. Hossain and Mohammadi [12] used genetic
algorithms (GA) to simultaneously determine an embedded
tumor’s depth, radius, and heat generation. Predictions with 10%
noise in the numerical breast surface temperatures showed
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average errors of 3%. The data was generated from computer
modeling of a hemispherical or a hemispherical-deformed breast.
Parush and Majchrzak [13] performed numerical simulations to
develop an inverse model that identifies tissue properties or tumor
size and location. Results indicated maximum errors with a hemi-
spherical breast shape of 0.4%. Das and Mishra [14] performed
simulations to develop an inverse model. The authors found an
exact prediction of blood perfusion rate while keeping all other
parameters known. Also, relative errors of 2.5% in the predicted
tumor location and 5.5% in the predicted tumor size were
achieved. Hatwar and Herman [15] performed breast modeling
with seven layers of different thermal properties and developed an
inverse method. The steady-state prediction used 12 data points
distributed in a region above the tumor. Steady-state analyses with
the three unknowns (radius, depth, and blood perfusion) showed
different combinations of the tumor parameters yielding nearly
identical thermal signatures. The transient study with three
unknowns showed maximum errors of 0.017% within 34 itera-
tions. Figueiredo et al. [16] developed a linear regression model.
For each tumor identification, 1401 tumors of specific diameters
located within a search region were simulated individually.
Results indicated maximum errors for geometric center estimation
of 0.32 cm for a cancer of 1 cm in diameter located at 5 cm from
the surface; the time required to perform the prediction was
between 39 to 86min. In Bezerra et al. [17], simulations revealed
effects of the breast density, specific heat, tumor blood perfusion,
and tumor thermal conductivity on the breast surface temperature.
The inverse method showed relative errors of 1.8 and 4.2% on the
tissue conductivity and blood perfusion rate prediction. Agnelli
et al. [18] developed a pattern search algorithm; results with 15%
noise in a hemispherical breast showed relative errors of 5.8% and
5.5% in predicting the tumor metabolic heat rate and location.
Gonzalez-Hernandez et al. [19] coupled infrared imaging, com-
puter simulations, and the inverse Levenberg-Marquardt algo-
rithm to accurately identify the location and size of cancerous
breast tumors in seven patients. Other works focus on generating
computer simulations of patient-specific digital breast models
[20–22]. Also, researchers have adopted computer simulations to
analyze the effect of blood flow and thermal behavior in anatomi-
cal vessels [23–25].

Other techniques to couple cancerous tumor modeling with
infrared imaging consider boundary element methods. An in-
house code is required to solve the equations and the method has
not been tested in patient-specific breast shapes. Partridge and
Wrobel [26] coupled GA with the dual reciprocity boundary ele-
ment method (DRBEM). The model predicted a location of
(0.0191m, 0.0002m) and a size of 0.0125m� 0.025 m against
actual values of (0.01m, 0m) and 0.01m� 0.02 m. Luna et al.
[27] developed a DRBEM coupled with simulated annealing. The
method simultaneously predicted tumor location, size, blood per-
fusion rate, and metabolic heat generation in five tumors. Results
showed that the noisy cases had a maximum relative error of 1%
to 3%. Agnelli et al. [28] proposed a functional geometry algo-
rithm that depended on the derivative of the objective function.
The tumor was spherical in a rectangular domain. Results showed
predictions of the tumor region with less than 2% relative errors.

Artificial intelligence models performing breast cancer detec-
tion utilize multiple infrared images to identify the presence of a
tumor [29]. Mambou et al. [30] considered inputs of thermal
images of 67 patients (43 healthy and 24 unhealthy) taken after
cooling, and the output indicated the probability of cancer. Results
show neural networks (NNs) classifying a thermal breast image as
soft or malignant. Ng and Kee [31] demonstrated a similar
approach in steady-state. Results showed 75% accuracy in making
a proper diagnosis in the unhealthy population and 90% in the
healthy population. Although these NN models can classify breast
cancer cases, they cannot estimate the tumor location, radius, or
breast tissue properties. Also, supervised AI models rely mainly
on images and classification algorithms and ignore the governing
bioheat equation to perform the training.

Recent advances include the development of a specific type of
neural network called physics-informed neural network (PINN),
utilizing physical constraints, boundary conditions, and governing
equations of a naturally occurring phenomenon to define the loss
functions [32–34]. The PINN learns the solution of differential
equations by minimizing loss functions. The inputs to the neural
network are the coordinates values of points in a domain, and
the outputs are quantitative predicted values at these locations.
The inputs and outputs include the coordinates of the points in the
domain and information about these points, such as pressure, con-
centration, electric charge, and temperatures. PINNs are currently
employed to uncover fluid dynamics or heat transfer trends
[35,36], but to our knowledge, the technical literature lacks the
application of PINNs to model systems with concentrated source
terms, such as breast cancer with metabolic heat generation.
PINNs main advantages over other available modeling techniques
include

(1) Independence of commercial software for surface recon-
struction, generation of computational grid, and physics
modeling.

(2) High-level accuracy with a calculation of gradients using
automatic differentiation (TensorFlow integrated function)
rather than discretization techniques.

(3) Ability to retrieve optimal thermophysical properties
(inverse modeling) such as thermal conductivity [37].
Inverse modeling for estimation of thermophysical proper-
ties can be done with regular NNs in combination with opti-
mization techniques [38], and PINNs give a seamless
approach to finding optimal parameters by simultaneously
learning the physical conditions and surface temperatures.

The present work describes the application of PINNs to model
breast cancer in patient-specific digital models. The main advant-
age lies in its ability to model breast cancer detection without
commercial software to create a computational grid or solve gov-
erning equations. The developed PINN uses random points to
find the solution and solves the bioheat equation with an opti-
mizer. The model was created in TensorFlow (Google’s AI plat-
form). The present study applies PINN to thermally model three
patient-specific cases. A sensitivity approach finds the optimal
number of hidden layers and neurons. Results show that the PINN
prediction closely approximates the temperatures of the computer
simulation software. Also, the developed PINN generates temper-
ature trends observed in infrared images obtained in a clinical set-
ting. In addition, the PINN model finds tissue properties by
defining a loss function of the surface temperatures.

2 Methods

This section describes the methods utilized to develop and test
the proposed PINN. The PINN predictions were compared to
results of a commercial CFD simulation software. Section 2.1
describes the techniques to reconstruct the patient-specific digital
models and the tumor characteristics in the three analyzed cases,
which had biopsy-proven breast cancer. Section 2.2 describes the
methods to perform thermal modeling with PINNs including the
definition of the loss functions fed to the optimizer. Section 2.3
focuses on the simulations used to evaluate the accuracy of the
PINN model. Finally, Section 2.4 shows the equations used to
evaluate the difference between the temperatures given by the
simulation software and the developed PINN.

2.1 Reconstruction of Breast Digital Models and Tumor
Characteristics. The digital breast model is a 3D surface file of
the breast outline and shape. It is needed to perform both the CFD
simulations and PINN modeling. In the present work, the digital
breast models were reconstructed from available MRI images of
the breast as described by Gonzalez-Hernandez et al. [19,21].
Figure 1 shows the computer-generated digital breast models
adopted. Table 1 indicates the tumor characteristics including the
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spatial location and radius. Available clinical data and MRI
images gave the dimensions of the tumor characteristics (location
and size) based on data from mammogram scans [39].

2.2 Physics-Based AI Algorithm. Figure 2 shows the points
in the breast of Patient-2 used to perform the PINN modeling. The
points are randomly generated from the digital breast model. The
number of points depends mainly on the size of the surface area,
the volume of the region, the length of the temporal domain, and
the conditions or equations related to the modeling of the property
in the system. The present work analyzes the effect of the number
of points by looking at how the predicted specific property
changes with the number of points.

Figure 3 shows the process flow. Spatial points are generated
wherein each point corresponds to a specific location on the breast
boundary or internal tissue. The PINN uses a fully connected neu-
ral network where the inputs are the locations of the points, and
the outputs are the predicted temperatures at the points corre-
sponding to the tumor characteristics (size and location). The
Adam optimizer in the TensorFlow machine-learning platform
minimizes the values of losses at the points.

Following the work of Raissi et al. [34], the loss equals the dif-
ference between the expected and predicted values. Ideally, the
loss should be equal to zero. In the case of boundary conditions,
consider, for example, T ¼ Tch at the chest point cloud; the loss is
res ¼ T � Tch, where T is the variable that is being predicted. In
the case of functions or equations at the interior points, for the
exemplary case of T ¼ mxþ b, the residual is res ¼ T � mx� b,
where T is the variable that is being predicted and x is the input to
the NN. In the developed PINN, the optimizer minimizes the total
loss given by

lossT ¼ 1

NBC

XNBC

j¼1

lossBC;jð Þ2 þ
1

Ninter

XNinter

i¼1

lossinter;ið Þ2 (1)

where NBC and Ninter correspond to the number of boundary and
interior points.

The term lossBC accounting for the boundary conditions is cal-
culated from the conditions of convection at the breast surface
and constant body temperature at the body chest (T ¼ Tch) [40]

lossBC1 ¼
k

D

@T�

@n�

����
pred

� h T�
1 � T�

pred

� �
(2)

lossBC2 ¼ T�
ch; pred � T�

ch (3)

The term lossinter;i is calculated from the dimensionless Pennes
Bioheat equation, Eq. (4)

lossinter ¼
@2T�

@x�2
þ @2T�

@y�2
þ @2T�

@z�2
þ qc

k
xbD

2 Ta
� � T�ð Þ

þ 2D2

k Tmax � Tminð Þ _qm (4)

In Eqs. (1)–(4), Ta, _qm, x, q, cp, k, and h, stand for artery blood
temperature, metabolic heat generation, blood perfusion rate, tis-
sue density, tissue-specific heat, tissue thermal conductivity,
ambient convective heat transfer coefficient, respectively. Con-
ventional thermal property values were adopted for each of the
terms in the governing equations and boundary conditions [40].

The inverse problem considers the bioheat equation with
unknown thermal conductivity. The PINN finds the thermal con-
ductivity by minimizing the total loss, which includes the bioheat
equation with an unknown thermal conductivity. Pashaei-Kalajahi
et al. [37] enabled PINNs to predict the values of multiple intrin-
sic parameters (or properties) from data of the flow transport and
the physics governing equations as part of its training.

Traditional deep learning models use several breast images to
classify an IR image as healthy or cancerous [41–49]. These meth-
ods do not consider individual variability in patients as they over-
look the basic governing equations for training and require
excessive processing time due to a large amount of data
[43,46,49]. Additionally, classification methods cannot identify
the spatial location and size of the tumor.

In TensorFlow, the function tf.gradients calculated the deriva-
tives with back propagation. The advantage lies in the ability to
compute gradients using automatic differentiation, which elimi-
nates numerical approximations limited by computational cell

Fig. 1 Analyzed breast digital models with the identified tumor location and size: (a) patient-1, (b) patient-2, and (c)
patient-3

Table 1 Tumor location and size in the analyzed patients

Tumor parameters Patient-1 Patient-2 Patient-3

x-location (m) 0.076 0.058 0.053
y-location (m) 0.060 0.068 0.048
z-location (m) 0.118 0.13 0.125
Diameter (m) 0.014 0.008 0.011
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size. An Nvidia Quadro RTX 8000, 48GB GPU executed the neu-
ral network model training.

2.3 Computer Simulation With Computational Fluid
Dynamics. The commercial software ANSYS 2021R1 performed
the simulation. Modules SpaceClaim and ANSYS-meshing created
the computational grid representing the idealized 3D geometry. A
grid with 1 million computational cells was made for each
patient-specific digital model. The simulation of the thermal
behavior due to the tumor was performed in ANSYS-FLUENT with
central differences discretization scheme to estimate the gradients
(in the governing equation) and TVID to solve the numerical mat-
rices. Gonzales-Hernandez et al. [19] give additional details of the
computer simulation in ANSYS-FLUENT.

The CFD model was validated by comparison of simulated sur-
face and IR temperatures of seven patients with biopsy-proven
breast cancer. Gonzalez-Hernandez [21] showed that the Pennes
bioheat model generated the experimental internal tissue tempera-
tures reported by Gautherie [50]. Recinella et al. [39] validated
screening, digital model generation, and numerical modeling by
comparison against infrared images of three women with biopsy-
proven breast cancer. Gonzalez-Hernandez et al. [19] performed
inverse modeling and identified acceptable agreement between
CFD temperatures and IR images in seven patients. Also, a similar
modeling approach shows good agreement of simulated and IR
temperatures on realistic female torsos [22,51].

Table 2 shows the thermophysical properties in the CFD and
PINN modeling. The adopted heat transfer coefficient (5W/m2-K)
is justified since the patients were screened with the IR imaging
system in an enclosed environment under ambient conditions, and
a similar value was adopted in previous clinical studies [51].

Gautherie’s experimental work [50] on determining breast tissue ther-
mal conductivity shows a small range of thermal conductivity
(0.17–0.37W/m-K) depending on tissue structure. In addition, the
modeling assumed a homogenous thermal conductivity since the dif-
ference in thermal conductivity between cancerous and normal tissue
is minimal and the tumor region is small [50]. The hyperbolic relation
between metabolic activity and tumor radius derived by Gautherie
[50] calculated the tumor heat generation based on the tumor radius.

2.4 Quantification of Difference Between Physics-
Informed Neural Network and Computational Fluid Dynam-
ics Results. The quantified difference between the temperatures
obtained with PINN and CFD considered the absolute difference
(AD) and the mean squared error (MSE). The AD calculated by
Eq. (5) shows a distribution of the difference between the pre-
dicted and the expected temperatures.

ADi ¼ jTpred;i � TCFD;ij (5)

where Tpred;i corresponds to the temperature predicted by the
PINN model at point i and TCFD;i is the temperature given by the
CFD model at point i.

The MSE given by Eq. (6) gives an average value of the differ-
ence between the CFD and PINN temperatures. The MSE is
always positive, and values close to zero imply more relative
similarities

MSE ¼ 1

N

XN

i¼1

Tpred;i � TCFD;ið Þ2 (6)

where N corresponds to the number of points.

Fig. 2 Point clouds used for thermal modeling of the case Patient-2: (a) front view of surface points,
(b) back view of chest points, and (c) front view of interior points

Fig. 3 Process flow and algorithm to perform breast cancer thermal modeling
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3 Results

Section 3.1 shows the computed errors obtained in the identifi-
cation of the optimal number of layers and neurons. Section 3.2
demonstrates the accuracy of the developed PINN model relative
to temperatures obtained with a customized computer model.
Section 3.3 shows the ability of the PINN in generating tempera-
ture trends in infrared images obtained in clinical settings. Finally,
Section 3.4 shows the way the PINN model performs inverse
modeling to predict the tissue thermal conductivity.

3.1 Neuron, Layers, and Points Sensitivity Analysis
(Identification of Optimal Physics-Informed Neural Net-
work). Sensitivity analyses identified the optimal configuration.
The analysis of number of hidden layers and neurons
determined an optimal neural network configuration capable of
giving an MSE lower than 0.1. The analysis of number of hidden
layers and neurons considered a fixed number of points equal to
22,000 in the interior, 2,000 on the surface, and 2,000 on the
chest.

Table 3 shows the results obtained for each test case after
500,000 training iterations. Results show the number of hidden
layers and neurons playing a significant role in the accuracy of the
predicted temperature. Results also show improved accuracy by
increasing the number of hidden layers from 1 to 3 and the num-
ber of neurons from 10 to 30. Results indicate that the configura-
tion with 3 hidden layers and 30 neurons can reach the desired
MSE lower than 0.1.

Figure 4 shows the results of quantifying the effect of the inte-
rior points and the number of iterations. Figure 4(a) shows the
computed MSE for Patient-1 with 22,000, 12,000, and 7,000 inte-
rior points with 3 hidden-layers and 30 neurons. Figure 4(b) shows
the MSE computed for each analyzed patient-specific digital
model with the adopted PINN configuration. Results in Fig. 4(a)
reveal that the PINN performs an accurate prediction after
250,000 iterations for the three analyzed number of interior points.
However, the initial error is significantly higher with fewer inte-
rior points.

Although the configuration with the lowest number of interior
points reached a low MSE at the end of the 500,000 iterations, we
preferred to follow a safe path. Therefore, the PINN with 3 hidden
layers and 30 neurons with 22,000 interior points was adopted to
perform subsequent analyses since it gave the lowest MSE during
training, including an early stage in the training process. Results
in Fig. 4(b) show MSE values obtained during the training of the
cases Patient-1, Patient-2, and Patient-3 with the adopted neural
network configuration. The developed PINN gave an MSE that
decreased from 0.1 early in the training process to 0.04 after 1
million iterations. These results indicate that the adopted PINN
configuration performs well for the three analyzed patient-specific
cases.

3.2 Comparison Simulations With Computational Fluid
Dynamics and Predictions With Physics-Informed Neural Net-
work. Figure 5 shows a comparison of the breast surface tempera-
tures retrieved by ANSYS-FLUENT and PINN. The boundary
conditions of 310K at the chest and 294K at the ambient drive
the breast surface temperature distribution. The temperature distri-
bution on each patient shows maximum values of 309K near the
chest and a minimum value of 302 near the outer region. The
tumor metabolic heat generation creates an area of increased tem-
perature on the east side in Patient-1, west side in Patient-2, and
northeast side in Patient-3. The tumor metabolic heat generation
increases the temperature by approximately 1K. These results
show that the PINN model can reproduce the main features related
to the breast cancer thermal behavior. In addition, results show
that the developed PINN can generate the temperatures given by
CFD. Similar levels of accuracy of PINNs against CFD have been
reported by recent works modeling blood flow in brain aneurysms
[53], fluid dynamics in laminar flow [55], and heat transfer [35].

Figure 6 shows the absolute difference in breast surface temper-
ature between CFD and PINN for the case Patient-1. The figure
reports the change in the AD (calculated with Eq. (5)) with the
number of iterations. Results show the highest AD changing from
0.74 at 100,000 training iterations to 0.3 at 1 million iterations. At
100,000 iterations, results show significant absolute differences in
the regions near the chest. However, this trend reverses after
200,000 iterations since Figs. 6(b)–6(d) show the lowest AD val-
ues near the breast chest. A possible explanation is that the PINN
might perform early identification of the regions with high errors;
it might be focusing most of the rest of the training on the early-
identified areas of high error.

3.3 Comparison of Physics-Informed Neural Network
Against Infrared Temperatures. We compared the predicted
temperatures with infrared images to further evaluate the ability
of the PINN to model breast cancer. The infrared pictures were
obtained with the clinical imaging system described in previous
works [19,39].

Figure 7 shows a comparison of the infrared image data with
the PINN predictions. The temperature contours given by the
developed PINN were obtained by adjusting the breast digital
model to match the infrared images. Also, the temperature range
in the images obtained from the PINN model was adjusted to
match the infrared images. Overall, there is good agreement
between the infrared and the predicted temperatures in terms of
magnitude and temperature distribution. In Patient-1, both the
PINN and infrared results show an increased temperature of
305.6K in the breast surface region due to the tumor metabolic
heat generation. In Patient-2, infrared image shows a spot with a
high temperature near the nipple, and PINN shows a larger area
with a high temperature near the nipple. In addition, the tempera-
ture decays from 306 to 302K and follows the same trend in both
infrared and PINN. Similar results are observed in Patient-3 where
the PINN and infrared show an increased temperature with a value
of 305K on the breast surface at the northeast due to the tumor
metabolic heat generation and a cold region of 302K on the breast
surface at the center. The differences between the PINN and IR
temperatures arise from the modeling assumptions embedded in
the Pennes bioheat equation and boundary conditions.

Table 2 Thermophysical properties and conditions adopted by
the simulation and PINN modeling

Parameter Value Unit

Thermal conductivity (k) [51] 0.3 W/m-K
Perfusion rate of healthy tissue (xhÞ [51] 1.8� 10�4 1/s
Perfusion rate of tumor (xtÞ [51] 9� 10�3 1/s
Metabolic activity of healthy tissue ( _qh) [51] 450 W/m3

Metabolic activity of tumor ( _qt) [51] 5,000-70,000 W/m3

Temperature of arteries (Ta) [53] 37 �C
Specific heat of blood (cb) [53] 3,840 J/kg-K
Density of blood (qb) [53] 1,060 Kg/m3

Core temperature (Tc) [51] 37 �C
Ambient temperature (T1) 21 �C
Heat transfer coefficient (h) [52] 5 W/m2-K

Table 3 Effect of the number of hidden layers and neurons in
Patient-1

NN configuration MSE error (500k iteration) Total loss at MSE

1 Layer, 30 Neurons 1.809 3.84 � 10�3

2 Layers, 30 Neurons 1.116 1.31 � 10�3

3 Layers, 30 Neurons 0.028 1.51 � 10�4

3 Layers, 20 Neurons 4.901 2.52 � 10�3

3 Layers, 10 Neurons 5.216 2.75 � 10�3

Journal of Heat and Mass Transfer MARCH 2023, Vol. 145 / 031201-5

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/heattransfer/article-pdf/145/3/031201/6958711/ht_145_03_031201.pdf by R

ochester Institute O
f Technology user on 11 D

ecem
ber 2022



Assumptions such as homogeneous perfusion rate, tissue proper-
ties, and metabolic heat generation rate might be most influential
[51]. Recent advances by Gershenson and Gershenson [55] show
internal vasculature plays a vital role in the heat transfer from the

tumor to the surface, which might influence the observed tempera-
ture differences. Nevertheless, the temperature predicted by the
PINN model closely reproduces the infrared temperatures in the
three analyzed cases. Results in Fig. 7 show (i) PINNs capturing
the temperature range (maximum and minimum values) and distri-
bution in the IR images, and (ii) PINNs identifying an increased
temperature at surface regions due to the tumor presence given by
the IR image. Still, IR images show more abrupt temperature var-
iations, whereas PINN predicts more smooth temperature distribu-
tions. Further, IR images reflect the local variations due to surface
vessels and other anomalies. It might be worth developing model-
ing techniques considering the biological aspects (perfusion rate
and heat generation) and the effect of thermal properties and
boundary conditions with more detail, which will allow

Fig. 4 Performance of PINN with three hidden layers and 30 neurons: (a) effect of the number of interior points in
case Patient-1 and (b) impact of the number of iterations in cases Patient-1, Patient-2, and Patient-3

Fig. 5 Comparison of breast surface temperature obtained
with the CFD software and the PINN model for the three ana-
lyzed patients

Fig. 6 Calculated absolute difference (AD) between PINN and
CFD with the number of training iterations: (a) 100,000 itera-
tions, (b) 400,000 iterations, (c) 700,000 iterations K, and (d)
1,000,000 iterations. Differences computed for Patient-1.
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generating the sharp transitions in temperature on the surface
observed in the IR images.

3.4 Retrieving Thermal Conductivity (Inverse Modeling).
Another advantage of PINN over conventional CFD lies in the
ability to perform inverse modeling. In forward modeling, the
temperatures are obtained with specified thermal properties. In
inverse modeling, the challenge involves getting the thermal prop-
erties given temperature values at specific points on the surface.
The present investigation tested the ability of the PINN model to
retrieve the tissue thermal conductivity assuming a known temper-
ature of 1,000 points on the breast surface. The developed PINN
finds the thermal conductivity value leading to a minimal total
loss magnitude. The process requires an initial guess, predefined
at 0.2W/m-K with a target thermal conductivity of 0.3W/m-K.

Results indicated that at the beginning of the training, the ther-
mal conductivity is equal to 0.2, which is the predefined initial
value. The PINN identifies that the optimal thermal conductivity
is higher than the initial value during the first couple of iterations.
Then, the PINN quickly increases to the value of 0.3W/m-K after
20,000 iterations. Then, the change in the thermal conductivity
becomes more asymptotic as the PINN gets closer to the target.
After 120,000 training iterations, the thermal conductivity value
has become fully asymptotic and constant with a predicted value
of 0.32W/m-K. It was assumed that the PINN model predicted a
thermal conductivity of 0.32W/m-K, which is 6.5% different
from the target value of 0.3W/m-K.

4 Conclusions

The present work describes the application of a PINN in the
thermal modeling of breast cancer. The developed PINN has suc-
cessfully performed breast cancer thermal modeling including the
inverse calculation of the tissue thermal conductivity. The devel-
oped approach uses a digital breast model to create random points.
The points are employed to define losses related to the boundary
conditions (a constant temperature at the chest and convection at
the breast surface) and the governing equations (the bioheat equa-
tion at the interior). The PINN was implemented in TensorFlow
and learned the thermal conditions (including the thermal tissue
conductivity) by minimizing the losses with the Adam optimizer.
The approach was tested with three patient-specific cases, and the
predicted temperature distribution was compared against tempera-
tures obtained from CFD.

The optimization method to identify the best neural network
configuration indicated that only three hidden layers with thirty
neurons are necessary to perform an accurate prediction. Also,
results revealed that 7000 interior points could find an acceptable
solution, but more points lead to low MSE values with fewer
training iterations. The comparison of the developed physics-
based AI model against the CFD solution showed MSE values
below 0.1 within the first 150,000 iterations for each analyzed
patient-specific case. Temperature contours showed that the devel-
oped model closely reproduced the thermal trends given by the
CFD model. Also, a comparison with infrared images revealed
that the PINN model generated temperature trends obtained in
clinical settings. Finally, results indicated the capability of the
PINN to retrieve the tissue thermal conductivity; the developed
model predicted the tissue thermal conductivity with a 6.5% rela-
tive error within the first 120,000 training iterations.

The present study demonstrates that PINNs effectively predict
breast cancer thermal behavior without the need for commercial
software to create the computational mesh or perform the numeri-
cal simulation, which is a step toward implementing infrared tech-
nology in clinical settings. Moreover, the present work shows the
validity of the PINN approach with actual patient data. Further
large-scale clinical studies are warranted before the system can be
established as an adjunctive screening modality to mammography
that detects breast cancer in clinical settings.
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Nomenclature

AD ¼ absolute difference in temperature (K)
c ¼ specific heat (J/kg-K)
D ¼ characteristic length (m)
H ¼ convective heat transfer coefficient (W/m2-K)
K ¼ thermal conductivity (W/m-K)

loss ¼ loss value fed to optimizer
MSE ¼ mean squared error

N ¼ number of points
n ¼ unit normal vector
T ¼ temperature (K)
x ¼ vector with x, y, and z coordinates (m)
q ¼ tissue density (kg/m3)
x ¼ perfusion rate (1/s)

Superscripts or Subscripts

BC ¼ boundary condition
ch ¼ chest
int ¼ interior

max ¼ maximum
min ¼ minimum

Fig. 7 Comparison between the prediction of the PINN model
and infrared images for the three analyzed cases
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pred ¼ predicted
* ¼ dimensionless

1 ¼ ambient
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