
Exploring Spherical Autoencoder for Spherical Video Content
Processing

Jin Zhou
George Mason University
Fairfax, Virginia, USA
jzhou23@gmu.edu

Na Li
Rutgers University

Piscataway, New Jersey, USA
na.li@rutgers.edu

Yao Liu
Rutgers University

Piscataway, New Jersey, USA
yao.liu@rutgers.edu

Shuochao Yao
George Mason University
Fairfax, Virginia, USA
shuochao@gmu.edu

Songqing Chen
George Mason University
Fairfax, Virginia, USA
sqchen@gmu.edu

ABSTRACT

3D spherical content is increasingly presented in various applica-

tions (e.g., AR/MR/VR) for better users’ immersiveness experience,

yet today processing such spherical 3D content still mainly relies

on the traditional 2D approaches after projection, leading to the dis-

tortion and/or loss of critical information. This study sets to explore

methods to process spherical 3D content directly and more effec-

tively. Using 360-degree videos as an example, we propose a novel

approach called Spherical Autoencoder (SAE) for spherical video

processing. Instead of projecting to a 2D space, SAE represents the

360-degree video content as a spherical object and employs encod-

ing and decoding on the 360-degree video directly. Furthermore, to

support the adoption of SAE on pervasive mobile devices that often

have resource constraints, we further propose two optimizations on

top of SAE. First, since the FoV (Field of View) prediction is widely

studied and leveraged to transport only a portion of the content to

the mobile device to save bandwidth and battery consumption, we

design p-SAE, a SAE scheme with the partial view support that can

utilize such FoV prediction. Second, since machine learning models

are often compressed when running on mobile devices in order to

reduce the processing load, which usually leads to degradation of

output (e.g., video quality in SAE), we propose c-SAE by applying

the compressive sensing theory into SAE to maintain the video

quality when the model is compressed. Our extensive experiments

show that directly incorporating and processing spherical signals

is promising, and it outperforms the traditional approaches by a

large margin. Both p-SAE and c-SAE show their effectiveness in

delivering high quality videos (e.g., PSNR results) when used alone

or combined together with model compression.

CCS CONCEPTS

· Computing methodologies → Machine learning.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MM ’22, October 10ś14, 2022, Lisboa, Portugal

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9203-7/22/10. . . $15.00
https://doi.org/10.1145/3503161.3548364

KEYWORDS

Spherical Autoencoder, Partial View, Compressive Sensing

ACM Reference Format:

Jin Zhou, Na Li, Yao Liu, Shuochao Yao, and Songqing Chen. 2022. Ex-

ploring Spherical Autoencoder for Spherical Video Content Processing. In

Proceedings of the 30th ACM International Conference on Multimedia (MM

’22), October 10ś14, 2022, Lisboa, Portugal.ACM, New York, NY, USA, 9 pages.

https://doi.org/10.1145/3503161.3548364

1 INTRODUCTION

The ever-improving technologies have driven the increasing de-

mand of better "immersive" experiences from end-users for various

video content. While traditional video traffic has dominated the

Internet backbone for over a decade [11], recent years have seen

the increasing portion of 360-degree video traffic. These days many

people start to share their video content in the 360-degree format

on YouTube or Facebook. Real estates also use 360-degree videos

to showcase houses [6].

Compared to the traditional (2D) videos, 360-degree videos, offer-

ing 3 Degree of Freedom (3 DoF), can provide better "immersive" ex-

periences to users, and are the basis for the augmented/mixed/virtual

(AR/MR/VR) applications that offer 6 DoF. With the wide availabil-

ity of RGBD cameras and Lidar, many video analytics engines also

need to process such content in the domains of autonomous driving

and robotics. More broad applications are also been explored, such

as remote education, telementoring [27], holoportation [35] from

Microsoft, and Starline [12] from Google.

However, currently, processing and transmitting such spherical

3D content still mainly rely on the traditional approaches developed

for 2D video content. For example, for a 360-degree video, a common

thread of existing approaches is to project the video frames from 3D

to 2D and then use the traditional coding schemes, such as MPEG,

to compress the video content. After being received by the receiver,

the process is reversed and the 360-degree frames are reconstructed.

While this approach can quickly utilize the existing codecs and

the transport and processing support, during this process, a lot

of critical "immersive" information may get distorted or lost. For

example, the projection is often the first step when mapping a

3D frame to a 2D space. The commonly used projection schemes

include equirectangular projection [3], cubic projection [8], recti-

linear projection [9], equi-angular cube (EAC) [7], etc. However,

regardless which projection scheme is used, the distortion of the

https://doi.org/10.1145/3503161.3548364
https://doi.org/10.1145/3503161.3548364

MM ’22, October 10ś14, 2022, Lisboa, Portugal Jin Zhou et al.

polar areas is inevitable. Furthermore, traditional schemes were de-

veloped without being aware of the 3D information available. Thus

when they are utilized to process the mapped 3D spherical content,

such information may not be appropriately processed, leading to

degraded "immersiveness" experience.

In this work, we set to explore a new approach that can handle

spherical videos directly and more effectively. Instead of following

the traditional approach by projecting the 3D content to a 2D space,

we consider a 360-degree video as a spherical object in its entirety

and propose to build spherical auto-encoder (SAE) to process such

360-degree videos directly. For this purpose, in SAE, icosahedral

spherical mesh [17] is used to represent pixels on the spherical sur-

face, which allows flexible łrefinementž based on the user demand.

Compared to traditional approaches, no sphere-to-2D projection

is required. Moreover, we adopt the spherical convolution neural

network (CNN) to process the spherical content directly in order to

preserve the 3D information as much as possible. To upsample the

pixels to the original resolution, we use a novel VertexShuffle [32]

operation on the mesh, inspired by the PixelShuffle on 2D images.

Furthermore, to support SAE on the pervasive mobile devices

that have resource and battery constraints, we further propose two

optimizations on top of SAE. First, since field-of-view (FoV) predic-

tion [16, 41] has been heavily studied to only transport content in

FoV in high quality while other parts in low quality or no transmis-

sion at all, thus reducing bandwidth and battery consumption, we

design p-SAE, namely partial SAE, a SAE scheme with the partial

view support that can utilize such FoV prediction.

Second, since machine learning models are often compressed

when running on mobile devices in order to reduce the process-

ing load, which usually leads to degradation of output (e.g., video

quality in SAE), we propose c-SAE by applying the compressive

sensing theory into SAE to maintain the video quality when the

model is compressed.

To evaluate the performance of SAE and p-SAE, we conduct

experiments and compare to the traditional approach. The results

show the SAE approach is promising, and outperforms the tradi-

tional approach (e.g., 2D convolutional autoencoder coupled with

the equirectangular projection) by a large margin. Moreover, p-SAE

and c-SAE also show comparable performance to the full SAE, when

used alone or combined together with model compression.

The rest of the paper is organized as follows. Section 2 presents

some background information and related work. We present the

design of our spherical autoencoder in section 3, the optimization

for mobile devices with p-SAE in section 4, and c-SAE with com-

pressive sensing in section 5. Experimental results are discussed in

section 6. We make concluding remarks in section 7.

2 BACKGROUND AND RELATED WORK

In this section, we present some background and prior work on

autoencoders and spherical convolutional neural networks, which

motivates our new design presented in the next section.

2.1 Image Compression and Autoencoders

Traditional 2D image/video compression has been extensively and

continuously researched. Traditional approaches for still image or

motion picture compression have often focused on using JPEG [43]

and MPEG based schemes, such as JPEG, MPEG2 [2], JPEG 2000 [1],

H.264 [4] and H.265 [5].

The recent deep neural network research has also motivated

a number of studies to use machine/deep learning techniques for

image/video compression [13, 21ś23, 30, 38, 42, 44]. While some

studies aimed to improve based on existing frameworks, e.g., Chen

et al. [21] proposed a learning based framework to effectively per-

form predictive coding inside the learning network for video com-

pression with iterative analysis/synthesis and binarization, a lot of

studies have turned attention to autoencoders [13, 22, 23, 30, 42],

because compared to the traditional approaches, autoencoders are

more flexible and adaptive to different media formats and resource

requirements. For example, Theis et al. [42] proposed a deep au-

toencoders framework and achieved competitive performance to

JPEG2000. For video compression, Habibian et al. [30] studied rate

distortion and proposed a deep generative model for lossy video

compression that outperforms the learned video compression net-

works based on motion compensation or interpolation.

However, most of existing works on autoencoders focused on

the traditional 2D image or video compression. The burgeoning

spherical objects, such as 360-degree videos, received little attention.

In this work, we aim to explore the construction of autoencoders

for spherical video processing.

2.2 Convolution Neural Network (CNN) and
Spherical CNN

Convolution neural networks (CNN) has been widely used in deep

learning for processing traditional images. However, for images

from emerging applications like omnidirectional vision for drones,

robots, and autonomous cars, and planetary signals in scientific

domains like global weather and climate modelling, the images

have to be projected to the plantar space before being processed,

which inevitably introduces information distortion and loss.

To properly process spherical images, spherical convolution neu-

ral networks (S-CNN) have been proposed [24, 28, 31]. Cohen et

al. [24] proposed the building blocks of Spherical CNN, formed the

theory of spherical CNNs and verified its properties, and showed

that it can be utilized for rotation invariant classification and re-

gression problems. More recently, Jiang et al. [31] optimized the

implementation on unstructured grid with UGSCNN using parame-

terized differential operators. UGSCNN is shown to be extremely

efficient and it can match or outperform state-of-the-art network

architectures in terms of performance but with a significantly lower

number of network parameters. While there is no work on spheri-

cal autoencoders yet, in our design, we will leverage the building

blocks of UGSCNN to implement SAE.

3 SPHERICAL AUTOENCODER (SAE)

In this section, we present our design of SAE, after a brief intro-

duction of the icosahedral mesh that we utilize to represent the

spherical objects.

3.1 Icosahedral Mesh Representation

In SAE design, similar to UGSCNN [31], we represent spherical ob-

jects with icosahedral mesh [17]. We consider each spherical video

Exploring Spherical Autoencoder for Spherical Video Content Processing MM ’22, October 10ś14, 2022, Lisboa, Portugal

(a) Level-0 Mesh (b) Level-1 Mesh (c) Level-2 Mesh (d) Level-3 Mesh

Figure 1: The icosahedral mesh representation in Level 0 to Level 3.

consisting of spherical frames. To represent pixels on each spheri-

cal frame, we discretize the sphere using refined icosahedral mesh.

Pixels of the video frame are then mapped to their corresponding

vertices of the refined mesh. The icosahedral mesh representation

starts with a regular icosahedron and re-projects all its 12 vertices

to a unit sphere (Figure 1(a)). To refine the mesh, we can divide

each of the 20 triangular faces into 4 smaller faces by creating new

vertices at mid-points of the edges, creating new edges among these

new vertices, and normalizing the new vertices to the unit sphere.

We call the regular icosahedron re-projected to the unit sphere

the Level-0 mesh, and we obtain Level-N mesh by repeating the

refining process N times, each time dividing a triangular into 4

triangles, by selecting the midpoints of each of the three edges and

connecting these midpoints to form three new edges. Figures 1(b),

(c), and (d) show the icosahedral mesh obtained after refining the

Level-0 mesh 1, 2, and 3 times. Each time the mesh is refined, the

number of vertices is approximately multiplied by 4. That is, the

more times the mesh is refined, the more spherical pixels can be

represented, and thus the higher resolution of the spherical frame

can be obtained. For example, with this discretization, a Level-9

mesh contains 2,621,442 vertices. The pixel density of this mesh

representation around the sphere’s equator area is roughly equiv-

alent to a spherical frame represented in the 2D equirectangular

projection in 2880x1440 resolution.

3.2 Spherical Autoencoder (SAE) with Full
Icosahedral Mesh

Figure 2 shows the proposed spherical autoencoder (SAE) archi-

tecture. To process an input video, we first load each frame into

the icosahedral mesh. The encoder of SAE loads the RGB values

of pixels on the spherical video frame as values of vertices on the

icosahedral mesh, e.g., a Level-9 mesh as shown in the figure. This

results in a 3 × 𝑁𝑣,9 tensor, where 𝑁𝑣,9 represents the number of

vertices of a full Level-9 icosahedral mesh. It then goes through a

MeshConv layer with batch normalization and ReLU function.

The MeshConv [31] operation shows in the figure can be repre-

sented as: MeshConv(𝐹 ; 𝜃) = 𝜃0𝐼𝐹 +𝜃1∇𝑥𝐹 +𝜃2∇𝑦𝐹 +𝜃3∇
2𝐹 . Here,

𝐼 represents the identity function, ∇𝑥 and ∇𝑦 represent the first

order differential operator on the mesh in 𝑥 and 𝑦, two orthogonal

dimensions, ∇2 represents the 2nd order differential operator on

the mesh, and 𝜃0, 𝜃1, 𝜃2, and 𝜃3 are learned parameters.

The output then goes through two ResBlocks [31] to both coarsen

the mesh (i.e., coarsen the mesh from Level-9 mesh to Level-8 and

Level-7 meshes, respectively.) and increase the channel dimension.

Finally, we use another MeshConv layer to change the channel

dimension to 3. In this way, the output tensor of the SAE encoder is

a 3×𝑁𝑣,7 tensor, a low-dimensional representation of the spherical

pixels, achieving a 16x compression ratio compared to the input

3 × 𝑁𝑣,9 tensor.

The decoder of SAE takes the low-dimensional 3 × 𝑁𝑣,7 tensor

compressed input. Instead of using deconvolution operations to

reconstruct the original data, we use a novel VertexShuffle operation

proposed in our prior work [32]. The VertexShuffle operation on

icosahedral meshes is inspired by the PixelShuffle operation on 2D

images [40]. We denote the VertexShuffle operation as:

𝑀𝑖+1 = VertexShuffle(𝑀𝑖),

where𝑀𝑖 ∈ R
𝐶×𝑁𝑣,𝑖 represents features of the Level-𝑖 mesh where

𝐶 is the feature dimension,𝑀𝑖+1 ∈ R𝐶/4×𝑁𝑣,𝑖+1 represents features

of the Level-𝑖 + 1 mesh with 𝑁𝑣,𝑖+1 vertices, and the feature di-

mension is reduced to 𝐶/4. Similar to the PixelShuffle operation,

the VertexShuffle operation on the mesh also does not require any

parameters. Unlike the PixelShuffle operation, feature maps are

not simply shuffled in VertexShuffle. Instead, given that the spheri-

cal mesh is refined by progressively creating new vertices at edge

midpoints and sub-dividing each face into four equal triangles, we

split𝑀𝑖 into four parts {𝑀𝑖0, 𝑀𝑖1, 𝑀𝑖2, 𝑀𝑖3} (thus the feature dimen-

sion of𝑀𝑖+1 becomes𝐶/4) and use {𝑀𝑖1, 𝑀𝑖2, 𝑀𝑖3} for constructing

midpoints on three edges of triangles as follows:

𝑁 ′
𝑖0 = (𝑀𝑖1 (𝑣0) +𝑀𝑖1 (𝑣1))/2

𝑁 ′
𝑖1 = (𝑀𝑖2 (𝑣1) +𝑀𝑖2 (𝑣2))/2

𝑁 ′
𝑖2 = (𝑀𝑖3 (𝑣2) +𝑀𝑖3 (𝑣0))/2

Here, 𝑣0, 𝑣1, and 𝑣2 represent vertices of a triangle face. Due to

shared edges among triangular faces on the mesh, we dedupli-

cate the new midpoints: 𝑁𝑖 = 𝑢𝑛𝑖𝑞𝑢𝑒 (𝑁 ′
𝑖). Finally, we can obtain

the output of the VertexShuffle operation: VertexShuffle(𝑀𝑖) =

𝑐𝑜𝑛𝑐𝑎𝑡 (𝑀𝑖0, 𝑁𝑖).

The decoder passes its input tensor through one MeshConv layer

and two ResBlocks to increase the channel dimensions. It then

passes the output through two VertexShuffle operations to increase

the number of vertices, e.g., from a Level-7 mesh to a Level-9 mesh.

MM ’22, October 10ś14, 2022, Lisboa, Portugal Jin Zhou et al.

Figure 2: The SAE architecture. As an example, the input to the SAE encoder in this figure is a Level-9 mesh with each vertex

representing the RGB values of a pixel.

A final MeshConv layer in the decoder produces a 3 × 𝑁𝑣,9 tensor,

in the same dimension as the original input to the SAE encoder.

To minimize the reconstruction error, we compare the input

to the encoder with the output of the decoder of SAE and use a

customized negative PSNR loss, i.e., 10 × log10 (MSELoss).

While Figure 2 shows an example of compressing spherical pixels

in Level-9 mesh input to Level-7 mesh, achieving 16x compression,

it is possible to adapt the model to allow inputs and create low-

dimension representations of different mesh granularity, e.g., Level-

8 mesh input and Level-6 encoder output if the original video is in

lower resolution.

4 PARTIAL SAE (p-SAE) WITH PARTIAL
ICOSAHEDRAL MESH

In parallel to the increase of spherical videos, another trend seen

in the recent years is that today more and more users tend to use

mobile devices in sharing and watching videos. Thus, it is necessary

and desirable to optimize SAE for mobile devices, given that mobile

devices often have resource constraints, particularly the limited

battery power supply. For this purpose, we further present two

optimizations, p-SAE and c-SAE, that we design for mobile devices

in this and next section, respectively.

p-SAE is designed to utilize the field-of-view (FoV) prediction [16,

41]. FoV prediction has been extensively studied to only transport

content in FoV in high quality while other parts in low quality

or no transmission at all, thus reducing bandwidth and battery

consumption. A spherical video contains information about every

direction surrounding the camera. However, usually only a small

portion of the spherical contentmay be of interest to the viewers at a

time. Thus, for bandwidth-efficient spherical content transportation,

only spherical content expected to be viewed can be transmitted

and decoded.

To support the utilization of FoV, we use the partial icosahedral

mesh [32]. The partial icosahedral mesh is created by selecting one

triangular face from the full Level-1 mesh (that is, only 1 out of the

Figure 3: Example image after using partial mesh

80 faces) and only refine triangles within this face. As a result, the

refined face is about 1/80 of the sphere and contains roughly 1/80

of the vertices in a full mesh.

For example, if we load a spherical frame to the partial icosa-

hedral mesh, then re-project the partial mesh to 2D planar using

the equirectangular projection, we may obtain an image as shown

in Figure 3. In this image, only one triangular face roughly in the

middle of the image contains detailed information about the image.

To perform encoding and decoding operations for spherical con-

tent belonging to any of the rest 79 faces, vertices in these 79 faces

(in a full mesh) are rotated to vertices of the selected refined face

using a calculated rotation matrix (79 matrices in total). In this way,

we can use SAE that operates on the partial icosahedral mesh to

selectively encode and decode the spherical content, and we call

this partial SAE (p-SAE).

With p-SAE, if reliable prediction can be made that only 𝑁 out of

80 full Level-1 mesh faces are required to be transmitted, then the

autoencoder calculation only needs to be performed on these faces,

thereby saving both network transmission and encoder/decoder

computation costs.

Using the partial icosahedral mesh also brings another benefit

of disk and memory storage space savings. The storage size of a

partial mesh is only about 1/80 compared to the full mesh at the

same level.

Exploring Spherical Autoencoder for Spherical Video Content Processing MM ’22, October 10ś14, 2022, Lisboa, Portugal

5 COMPRESSIVE SAE (c-SAE)

p-SAE can reduce the resource consumption on mobile devices by

transmitting less data. On the other hand, today when machine

learning models are deployed on mobile devices, a common practice

is to compress the model in order to reduce its processing load and

fit better with the resource constraints on mobile devices. However,

this often comes with the degradation of the model output, which,

for SAE, is the video quality. To maintain the video quality while

the model is compressed, we propose to integrate the compressive

sensing theory in SAE.

5.1 Compressive Sensing

Compressive sensing has been widely used to recover an unknown

data vector, 𝑥 ∈ R𝑛 , from a few linear measurements, 𝑦 ∈ R𝑚 .

𝑦 = 𝐸𝑥, (1)

where 𝐸 ∈ R𝑚×𝑛 is the measurement matrix. Since the number

of measurements is far less than the number of data points, i.e.,

𝑚 ≪ 𝑛, determining 𝑥 by solving the equation (1) is an ill-posed

inverse problem with no unique solution. As a result, we must add

prior knowledge to the data vector 𝑥 and measurement matrix 𝐸.

In classical compressive sensing theory, 𝑥 is commonly assumed to

be a sparse vector in a set of basis Φ and 𝐸 to satisfy the Restricted

Isometry Property (RIP) or the Restricted Eigenvalue Condition

(REC) [20], and thus we can guarantee that minimizing the recovery

error,

𝑥 = argmin
𝑥

∥𝑦 − 𝐸𝑥 ∥2 𝑠 .𝑡 . ∥Φ𝑥 ∥1 ≤ 𝛽, (2)

leads to accurate reconstruction with a high probability. The con-

strained minimization problem (2) is usually solved by iterative

gradient projection algorithms [18, 29]. However, conventional

compressive sensing has two fundamental limitations that make it

inappropriate for domain-specific encoder-decoder construction.

On the one hand, while sparsity priors have been shown to be effec-

tive, the sparsity property of spherical 3D image data is unclear, and

more complicated models with more structure have recently been

proposed with superior reconstruction performance [19, 45, 46]. On

the other hand, the slow iterative gradient projection algorithms

are used to solve the reconstruction problem (2), which significantly

slows down the decoding time.

5.2 Compressive SAE (c-SAE)

To address the aforementioned two drawbacks, compressive SAE (c-

SAE) links the proposed SAE (spherical encoder-decoder structure)

with compressive sensing theory. Instead of relying on pre-defined

sparsity, the spherical decoder acts as an implicit prior constraint

for decoding compressed spherical images, allowing us to recon-

struct the encoded data with a single decoder run and avoid the

costly iterative methods used in traditional compressive sensing

techniques. The spherical encoder component, on the other hand,

is viewed as a learnable yet lightweight module. It can also auto-

matically learn the appropriate transformation for compressing

spherical video content for offloading with the least computational

cost on local devices. According to the recent deep compressive

offloading theory [45], we should impose the Restricted Isometry

Property (RIP) (with orthogonal regularization) and Lipschitz con-

tinuity (with spectral normalization) on the spherical encoder and

decoder, respectively, to provide recovery guarantees for the data

encoding-decoding process based on compressive sensing theory.

Orthogonal Regularization If we want to maintain the compres-

sion ratio and the quality of recovery, we are required to make our

encoder to be isometric. The general idea to achieve this goal is to

add the orthogonal regularization with the spherical convolution

kernel in the encoder. Orthogonal regularization uses weights to be

orthogonal by pushing them towards the nearest orthogonal mani-

fold. Hence, we apply the orthogonal regularization on the spherical

convolution layers which are fully-connected. In this model, We

can consider the spherical convolution kernel as a 3D kernel, where

the convolution part within encoder and decoder takes the value

of vertices on Level-n mesh. For this purpose, first, we convert the

kernel 𝐾 ∈ Rℎ×𝑤×𝑑×𝑐𝑖×𝑐 𝑗×𝑐𝑜 to 𝐾 ′ ∈ Rℎ ·𝑤 ·𝑑×𝑐𝑖×𝑐 𝑗×𝑐𝑜 , to make

these convolution to be considered as matrix multiplications. Then,

to ensure that the convolutions are isometry for a constrained fea-

ture space, we can apply orthogonal regularization to the kernel.

A linear transformation with a semi-orthogonal matrix is used to

guarantee the preservation of the isometric property. We can thus

add the orthogonal regularization to the convolution kernel 𝐾 ′

during training as follows,

𝑎𝑟𝑔𝑚𝑖𝑛

𝐾 ′𝑇𝐾 ′ − 𝐼

,

where 𝐼 is the identity matrix.

Spectral Normalization To achieve the data recovery assurances

offered by compressive offloading, the decodermust be an L-Lipschitz

function (where L is the Lipschitz constant). Assume 𝑒1 and 𝑒2 are

two encoded data samples, and 𝐷 represents the spherical decoder.

Given that 𝐷 is an L-Lipschitz function,

∥𝐷 (𝑒1) − 𝐷 (𝑒2)∥ ≤ 𝐿 ∥𝑒1 − 𝑒2∥

Thanks to the recent advances in compressive sensing theory

with generative neural networks as the implicit constraint [19], we

can attain a similar data recovery guarantee as to the conventional

sparsity constraints when the generative neural network (i.e., the

spherical decoder in our paper) is an L-Lipschitz function. So the

remaining question is how to apply this Lipschitz constant on

the decoder efficiently. Here, we use spectral normalization [37],

a technique that has been widely adopted in generative neural

network models such as Wasserstein GAN [14].

Neural networks are layered structures. If we can constrain the

Lipschitz constant of each layer to be smaller than one, the whole

neural network becomes a 1-Lipschitz function. The neural network

operation in each layer may be thought of as an affine transfor-

mation followed by an activation function. The Lipschitz constant

of all widely adopted activation functions, including ReLU and

Sigmoid, is less than 1. The biggest singular value of the weight

matrix, on the other hand, controls the Lipschitz constant of an

affine transformation. We can normalize the weight matrix against

the biggest singular value of the weight matrix to maintain the

Lipschitz constant of each layer smaller than 1, which is precisely

what spectral normalization does.

With the orthogonal regularization and spectral normalization,

the final structure of our autoencoder is depicted in Figure 4. Accord-

ing to deep compressive offloading theory [45], with orthogonal

regularization on the encoder and spectral normalization on the

MM ’22, October 10ś14, 2022, Lisboa, Portugal Jin Zhou et al.

Figure 4: Architecture of Compressive Spherical Autoencoder

decoder, we can ensure that the spherical decoder can reconstruct

the offloading data given by the spherical encoder with almost no

loss at a high probability.

6 EVALUATION

We present the evaluation results after an introduction of the data

sets and our baseline model.

6.1 Experiment Setup

Setup Our models run on a machine with Tesla P100-PCIE GPU

with 16G memory, and 2.3 GHz Intel Xeon CPU. Since PSNR is

commonly used to evaluate the quality of videos, during training,

we use PSNR as the loss function. We also use the model size to

evaluate the scalability and flexibility of the SAE. For example,

if the model size is very large, it has to be implemented on the

server side to ensure its performance. During the training, when

the model needs to load Level-9 full mesh, the batch size was set to

2, because the Level-9 full mesh cost about 2 GB memory. If there

is no constraint on the memory size, a large batch size can be used.

On the other hand, when the video quality requirement is not high,

we can use Level-8 or even lower level mesh to reduce the memory

demand. In these cases, the batch size can be set to 16 or 32.

Dataset In our experiments, we use a few different 360-degree

videos that we downloaded from the Internet. We classify them

into four categories and only present the result of one representa-

tive video from each category. 1 The first is highly dynamic videos

such as sports. We choose Football for the experiments. The next is

dynamic, including amusement videos and performance videos. We

choose Roller Coaster for our experiments. The third is low motion

videos, which include observation videos recorded indoor, for ex-

ample, a classroom with students and teacher with few movements.

We choose Indoor in our experiments. The last includes the rela-

tively static videos. These videos contain daily monitoring of the

city and urban planning and construction. We choose City. These

videos have different resolutions: Indoor is 1920 × 960 , City is 2056

× 1080, Roller-Coaster is 1920 × 1080 and Football is 2048 × 4096.

Baseline Model We compare our approaches with the baseline

approach ś the convolutional autoencoder, denoted as CAE [10].

In the experiments, we use the equirectangular projection to first

project each frame into a rectangular image according to its length

and width. Then we divide this rectangular picture into 𝑛 patches,

and run 2D convolutional autoencoder on each patch. The com-

pression ratio of CAE is 12x.

1These videos are from the łThe Psychology of 360-Videož repository [36], available
at https://github.com/vhilab/psych-360

6.2 Evaluation Results

PSNR results Table 1 reports the PSNR results of our SAE model

and its variants. In these models, the Level-9 mesh is used. In this

table, CAE represents the results from the traditional 2D convolu-

tional autoencoder, and co-CAE represents the compressed CAE.

SAE (Spherical AutoEncoder) uses the full sphere mesh. p-SAE uses

partial mesh in SAE instead of full mesh. c-SAE applies compressive

sensing in SAE, and c-p-SAE applies compressive sensing in p-SAE.

These models are all compressed with different compression rates

as indicated in the table (shown as łmodel compression ratiož).

As shown in Table 1, the second column shows the original CAE

(top half) and compressed CAE (bottom half) results. The original

CAE delivers spherical videos with a PSNR below 25 in general,

while the compressed one can only deliver the video with a PSNR

at 20 or lower. We did not include more compression results as

these are already too low for users. Compared to CAE, the results

of SAE models are significantly better (the PSNR is above 30 in all

cases), especially for high resolution videos. This is because for the

high resolution video, especially for 360 videos, the resolution is

not like 2D. These video frames have to be projected and divided

into several patches to process. This will casue some extraction loss

for CAE to process high resolution 360 video frames but not for

SAE models. Overall, we observe SAE models always outperform

CAE by a large margin. This shows the benefit of operating on the

spherical pixels directly compared to first projecting the pixels to

the 2D planar image which results in distortions.

Comparing p-SAE with SAE, we find that the PSNR results of

p-SAE are degrading in general, but are still above 30 dB, indicating

acceptable results. These results indicate that p-SAE is promising

when mobile devices are used to watch the video and a careful

trade-off should be explored when deploying. On the other hand,

when integrating compressive sensing with model compression, we

observe very interesting results. Compressive sensing techniques

are integrated in order to maintain the video quality after decoding,

i.e., data recovery. Comparing SAE with c-SAE results in Table 1,

we can see that with compressive sensing, the PSNR results are

improved. The reason is that through orthogonal regularization

and spectral normalization, c-SAE provides better guarantees for

data decoding. We can observe similar trends when comparing

p-SAE with c-p-SAE. These results indicate that after adopting

compressive sensing in these models when they are compressed for

mobile devices, c-SAE models can effectively help with the mobile

device in accessing videos without decreasing the video quality.

Model Size Table 2 further shows the model size and GPU usage

of these models under different compression rates. For CAE, the

total number of parameters is 2,241,859. The model size is 8.6 MB.

While for SAE, the total number of parameters with full mesh

is 51,050, which means the model size of SAE is about 268 KB.

Thus, the CAE model is over 30 times larger than that of SAE.

This indicates that SAE not only delivers better quality, but also

has better portability, particularly when the quality demand is

high. The total number of parameters of p-SAE model for partial

mesh implementation is 47,604, which translates into the model

size of P-SAE around 250 KB. Note that when training the model

with Level-9 full mesh, we will have to load about 2 GB Level-

9 spherical mesh that requires a lot of GPU memory. This will

Exploring Spherical Autoencoder for Spherical Video Content Processing MM ’22, October 10ś14, 2022, Lisboa, Portugal

Table 1: PSNR result of CAE, SAE, p-SAE, c-SAE, c-p-SAE with different compression rates

Model CAE SAE p-SAE

Model Compression Ratio none none 26.01% 41.54% 58.30% none 36.03% 45.97% 55.11%

Indoor 24.7384 39.2887 41.2183 39.0652 38.3835 37.8229 37.7869 36.4909 35.9083

City 17.1524 39.7354 38.9868 38.5078 37.6546 33.4587 33.6031 32.7565 31.8372

Roller-Coaster 17.8414 34.1936 32.8375 32.0299 31.5185 32.5046 32.1746 31.5830 30.3547

Football 20.6538 36.2050 36.3093 36.2165 36.1787 34.4323 33.9375 33.7339 33.2091

Model co-CAE c-SAE c-p-SAE

Model Compression Ratio 37.21% none 26.01% 41.54% 58.30% none 36.03% 45.97% 55.11%

Indoor 20.1124 40.5602 41.3595 39.7724 38.7182 38.6803 38.5517 37.6399 37.5349

City 15.0681 40.3514 39.4804 39.1991 38.9915 34.5360 36.4247 33.6042 33.0823

Roller-Coaster 13.5168 35.5432 33.8656 33.4480 32.6312 33.2020 32.2679 32.1994 31.0052

Football 14.8910 35.5992 36.8822 36.4333 36.0842 36.6811 36.8463 36.4243 36.1195

Table 2: Model size and GPU usage of different models

Model CAE SAE p-SAE

Model Compression Ratio none none 26.01% 41.54% 58.30% none 36.03% 45.97% 55.11%

Model Size (KB) 8600 268 195 154 110 250 180 152 126

GPU Usage 4702 13261 13053 12371 11647 2973 2619 2578 2477

Model co-CAE c-SAE c-p-SAE

Model Compression Ratio 37.21% none 26.01% 41.54% 58.30% none 36.03% 45.97% 55.11%

Model Size (KB) 5400 330 207 174 135 321 202 187 131

GPU Usage 3514 15479 15291 14695 14027 1692 1447 1397 1375

Table 3: VI-VMAF scores

Model CAE SAE p-SAE

Model Compression Ratio none none 26.01% 41.54% 58.30% none 36.03% 45.97% 55.11%

Indoor 34.6512 73.4501 73.2218 72.6442 72.6351 70.4519 70.1362 69.8044 69.2314

City 34.0079 72.7804 72.6419 71.9773 71.0025 70.7577 70.5893 69.7488 69.6832

Roller-Coaster 28.5093 68.1255 68.1238 67.9836 67.4821 66.2091 65.9343 65.4290 65.1028

Football 29.8409 68.8549 68.6027 68.4981 68.0195 67.5121 67.4982 67.0034 66.2105

Model co-CAE c-SAE c-p-SAE

Model Compression Ratio 37.21% none 26.01% 41.54% 58.30% none 36.03% 45.97% 55.11%

Indoor 32.8001 75.8872 75.4571 74.7633 73.8041 72.6344 72.1874 71.0801 70.3342

City 31.5367 75.0090 74.6623 74.1342 73.3103 71.9523 71.6345 70.7638 70.1020

Roller-Coaster 25.0956 71.8376 71.0186 71.0123 70.8327 69.7491 68.4566 68.1483 67.3970

Football 26.7573 72.9037 71.9642 71.6107 70.9362 69.9907 69.6016 69.2106 68.6433

limit the speed of training. Instead, when using p-SAE with partial

mesh, this will speed up significantly. It does come with a cost

of slightly decreased PSNR result. On the other hand, comparing

c-SAE models to SAE models, we also find that the model size

slightly increases. This is because of the orthogonal regularizer and

spectral normalization used in compressive sensing, the cost for

the improved PSNR results. Thus, there is a clear trade-off here

that should be taken into consideration when choosing different

models.

Voronoi VMAF In addition to PSNR, we also evaluate the result us-

ing the recently developed Video Multimethod Assessment Fusion

(VMAF) metric [34]. The VMAF metric is a support vector machine

(SVM) regressor which assigns weights to each elementary metric.

The final metric could preserve all the strengths of the individual

metrics and deliver a more accurate final score. The elementary

metrics include visual information fidelity (VIF) [39], detail loss

metric (DLM) [33], and mean co-located pixel difference.

VMAF was originally developed for traditional 2D content. To

properly use VMAF in our evaluation, we further adopt the Voronoi

objective metric [26]-based VMAF that is developed recently to

evaluate the quality of experience for spherical videos. In this eval-

uation, a spherical video is divided into 𝑀 patches using the spher-

ical Voronoi diagram [15] of 𝑀 evenly distributed points on the

sphere [25]. Table 3 shows the Voronoi VMAF (VI-VMAF) scores. It

MM ’22, October 10ś14, 2022, Lisboa, Portugal Jin Zhou et al.

(a) Original frame samples

(b) CAE frame samples

(c) SAE frame samples

(d) c-SAE frame samples

Figure 5: Sample frames from four videos

is clear from the table that all SAE models outperform CAE signifi-

cantly, even with a high compression rates. Overall, these results

are consistent with the PSNR results. Compared to the PSNR based

results, the score difference between different model outputs is

more pronounced with VI-VMAF.

Visual Comparisons Figure 5 shows some examples of frames

extracted from these videos. We can observe that, for CAE, since it

is trained by first projecting a spherical surface onto a rectangular

plane and then dividing that into patches, the boundary and details

of the image are relatively still clear, but the image clarity and

colors are affected. For SAE, the quality of the original frame is well

maintained, the borders are clearer and the clarity of the picture

is high. We did not include p-SAE as it only shows a partial view

like Figure 3. These results indicate that spherical processing of

360-degree videos is more effective than the projection plus the

conventional 2D processing approach, potentially preserving more

critical spherical information during the processing.

7 CONCLUSION

Spherical video content is getting more and more popular in vari-

ous applications. Compared to the traditional 2D video, spherical

video content not only demands more bandwidth to transmit, but

also more efficient techniques for content processing, e.g., for video

analytics engines. In this work, we explore a new approach to ef-

fectively process spherical content. Compared to the traditional

approach where a spherical frame is mapped to a 2D space, we

have investigated processing the spherical content directly using

a spherical autoencoder (SAE). Motivated by the fact that mobile

devices are widely used for video accesses, we further propose

two optimizations to make SAE better fit for resource constrained

mobile devices while maintaining the video quality. Our experi-

mental results show that our proposed approaches can significantly

outperform the traditional approach and both the partial view sup-

ported SAE, i.e., p-SAE, and compressive sensing integrated SAE,

i.e., c-SAE, are effective in delivering high quality videos.

ACKNOWLEDGMENTS

The authors thank the anonymous reviewers for their constructive

comments. This work was supported in part by NSF grants CNS-

1943250, CNS-2007153, CNS-2200042, IIS-2107200, CPS-2038658,

and by the Commonwealth Cyber Initiative, an investment in the

advancement of cyber R&D, innovation, and workforce develop-

ment.

Exploring Spherical Autoencoder for Spherical Video Content Processing MM ’22, October 10ś14, 2022, Lisboa, Portugal

REFERENCES
[1] 1998. JPEG 2000. https://jpeg.org/jpeg2000/
[2] 1998. MPEG. https://www.mpegstandards.org/
[3] 1999. Equirectangular Projection. http://mathworld.wolfram.com/

EquirectangularProjection.html.
[4] 2008. H.264. https://www.itu.int/rec/T-REC-H.264
[5] 2008. H.265. https://www.itu.int/rec/T-REC-H.265
[6] 2011. Matterport. https://matterport.com/industries/real-estate
[7] 2017. Bringing pixels front and center in VR video. https://blog.google/products/

google-vr/bringing-pixels-front-and-center-vr-video/.
[8] 2019. Cubic Projection. http://wiki.panotools.org/Cubic_Projection.
[9] 2019. Rectilinear Projection. https://wiki.panotools.org/Rectilinear_Projection.
[10] 2021. CAE. https://github.com/alexandru-dinu/cae
[11] 2021. Global - 2021 Forecast Highlights. https://www.cisco.com/c/dam/m/

en_us/solutions/service-provider/vni-forecast-highlights/pdf/Global_2021_
Forecast_Highlights.pdf

[12] 2021. Starline. https://blog.google/technology/research/project-starline/
[13] Pinar Akyazi and Touradj Ebrahimi. 2019. Learning-Based Image Compression

using Convolutional Autoencoder and Wavelet Decomposition. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
Workshops.

[14] Martin Arjovsky, Soumith Chintala, and Léon Bottou. 2017. Wasserstein GAN.
arXiv:1701.07875 [stat.ML]

[15] Franz Aurenhammer. 1991. Voronoi DiagramsÐa Survey of a Fundamental
Geometric Data Structure. ACM Comput. Surv. 23, 3 (Sept. 1991), 345ś405. https:
//doi.org/10.1145/116873.116880

[16] Yanan Bao, Huasen Wu, Tianxiao Zhang, Albara Ah Ramli, and Xin Liu. 2016.
Shooting a moving target: Motion-prediction-based transmission for 360-degree
videos. In 2016 IEEE International Conference on Big Data (Big Data). IEEE, 1161ś
1170.

[17] John R. Baumgardner and Paul O. Frederickson. 1985. Icosahedral Discretization
of the Two-Sphere. SIAM J. Numer. Anal. 22, 6 (Dec. 1985), 1107ś1115. https:
//doi.org/10.1137/0722066

[18] Amir Beck and Marc Teboulle. 2009. A fast iterative shrinkage-thresholding
algorithm for linear inverse problems. SIAM journal on imaging sciences 2, 1
(2009), 183ś202.

[19] Ashish Bora, Ajil Jalal, Eric Price, and Alexandros G Dimakis. 2017. Compressed
sensing using generative models. In International Conference on Machine Learning.
PMLR, 537ś546.

[20] Emmanuel J Candès, Justin Romberg, and Terence Tao. 2006. Robust uncer-
tainty principles: Exact signal reconstruction from highly incomplete frequency
information. IEEE Transactions on information theory 52, 2 (2006), 489ś509.

[21] Zhibo Chen, Tianyu He, Xin Jin, and Feng Wu. 2018. Learning for Video Com-
pression. CoRR abs/1804.09869 (2018). arXiv:1804.09869 http://arxiv.org/abs/
1804.09869

[22] Zhengxue Cheng, Heming Sun, Masaru Takeuchi, and Jiro Katto. 2018. Deep
Convolutional AutoEncoder-based Lossy Image Compression. In 2018 Picture
Coding Symposium (PCS). 253ś257. https://doi.org/10.1109/PCS.2018.8456308

[23] Zhengxue Cheng, Heming Sun, Masaru Takeuchi, and Jiro Katto. 2018. Per-
formance Comparison of Convolutional AutoEncoders, Generative Adversarial
Networks and Super- Resolution for Image Compression. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops.

[24] Taco S. Cohen, Mario Geiger, Jonas Köhler, and Max Welling. 2018. Spherical
CNNs. CoRR abs/1801.10130 (2018). arXiv:1801.10130 http://arxiv.org/abs/1801.
10130

[25] Simone Croci, Sebastian Knorr, Lutz Goldmann, and Aljosa Smolic. 2017. A
framework for quality control in cinematic VR based on Voronoi patches and
saliency. In 2017 International Conference on 3D Immersion (IC3D). 1ś8. https:
//doi.org/10.1109/IC3D.2017.8251907

[26] Simone Croci, Cagri Ozcinar, Emin Zerman, Julián Cabrera, and Aljosa Smolic.
2019. Voronoi-based Objective Quality Metrics for Omnidirectional Video. In 2019
Eleventh International Conference on Quality of Multimedia Experience (QoMEX).
1ś6. https://doi.org/10.1109/QoMEX.2019.8743345

[27] Simon Erridge, Derek KT Yeung, Hitendra RH Patel, and Sanjay Purkayastha.
2019. Telementoring of surgeons: a systematic review. Surgical innovation 26, 1
(2019), 95ś111.

[28] Carlos Esteves, Christine Allen-Blanchette, Ameesh Makadia, and Kostas Dani-
ilidis. 2018. Learning SO(3) Equivariant Representations with Spherical CNNs.
arXiv:1711.06721 [cs.CV]

[29] Mário AT Figueiredo, Robert D Nowak, and Stephen J Wright. 2007. Gradient
projection for sparse reconstruction: Application to compressed sensing and
other inverse problems. IEEE Journal of selected topics in signal processing 1, 4
(2007), 586ś597.

[30] Amirhossein Habibian, Ties van Rozendaal, Jakub M Tomczak, and Taco S Cohen.
2019. Video compression with rate-distortion autoencoders. In Proceedings of the
IEEE/CVF International Conference on Computer Vision. 7033ś7042.

[31] Chiyu Max Jiang, Jingwei Huang, Karthik Kashinath, Prabhat, Philip Marcus,
and Matthias Nießner. 2019. Spherical CNNs on Unstructured Grids. CoRR
abs/1901.02039 (2019). arXiv:1901.02039 http://arxiv.org/abs/1901.02039

[32] Na Li and Yao Liu. 2022. Applying VertexShuffle Toward 360-Degree Video
Super-Resolution. In Proceedings of the 32nd ACM Workshop on Network and
Operating Systems Support for Digital Audio and Video.

[33] Songnan Li, Fan Zhang, Lin Ma, and King Ngi Ngan. 2011. Image Quality Assess-
ment by Separately Evaluating Detail Losses and Additive Impairments. IEEE
Transactions on Multimedia 13, 5 (2011), 935ś949. https://doi.org/10.1109/TMM.
2011.2152382

[34] Z. Li, A. Aaron, I. Katsavounidis, A. Moorthy, and M. Manohara. [n.d.]. Toward a
practical perceptual video quality metric. https://netflixtechblog.com/toward-a-
practical-perceptual-video-quality-metric-653f208b9652.

[35] Microsoft. 2016. Holoportation. https://www.microsoft.com/en-us/research/
project/holoportation-3/ (Access:2022-02).

[36] Mark Roman Miller, Fernanda Herrera, Hanseul Jun, James A Landay, and
Jeremy N Bailenson. 2020. Personal identifiability of user tracking data dur-
ing observation of 360-degree VR video. Scientific Reports 10, 1 (2020), 1ś10.

[37] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. 2018.
Spectral normalization for generative adversarial networks. arXiv preprint
arXiv:1802.05957 (2018).

[38] Oren Rippel, Sanjay Nair, Carissa Lew, Steve Branson, Alexander G.
Anderson, and Lubomir Bourdev. 2018. Learned Video Compression.
arXiv:1811.06981 [eess.IV]

[39] H.R. Sheikh and A.C. Bovik. 2006. Image information and visual quality. IEEE
Transactions on Image Processing 15, 2 (2006), 430ś444. https://doi.org/10.1109/
TIP.2005.859378

[40] Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz, Andrew P Aitken,
Rob Bishop, Daniel Rueckert, and Zehan Wang. 2016. Real-time single image and
video super-resolution using an efficient sub-pixel convolutional neural network.
In Proceedings of the IEEE conference on computer vision and pattern recognition.
1874ś1883.

[41] Liyang Sun, Fanyi Duanmu, Yong Liu, YaoWang, Yinghua Ye, Hang Shi, and David
Dai. 2018. Multi-path multi-tier 360-degree video streaming in 5G networks. In
Proceedings of the 9th ACM Multimedia Systems Conference. 162ś173.

[42] Lucas Theis, Wenzhe Shi, Andrew Cunningham, and Ferenc Huszár. 2017. Lossy
Image Compression with Compressive Autoencoders. arXiv:1703.00395 [stat.ML]

[43] Gregory K.Wallace. 1991. The JPEG Still Picture Compression Standard. Commun.
ACM 34, 4 (April 1991), 30ś44. https://doi.org/10.1145/103085.103089

[44] Chao-Yuan Wu, Nayan Singhal, and Philipp Krähenbühl. 2018. Video Compres-
sion through Image Interpolation. arXiv:1804.06919 [cs.CV]

[45] Shuochao Yao, Jinyang Li, Dongxin Liu, Tianshi Wang, Shengzhong Liu, Huajie
Shao, and Tarek Abdelzaher. 2020. Deep Compressive Offloading: Speeding up
Neural Network Inference by Trading Edge Computation for Network Latency.
Association for Computing Machinery, New York, NY, USA, 476ś488. https:
//doi.org/10.1145/3384419.3430898

[46] Shuochao Yao, Jinyang Li, Dongxin Liu, Tianshi Wang, Shengzhong Liu, Huajie
Shao, and Tarek Abdelzaher. 2021. Deep Compressive Offloading: Speeding Up
Edge Offloading for AI Services. GetMobile: Mobile Computing and Communica-
tions 25, 1 (2021), 39ś42.

https://jpeg.org/jpeg2000/
https://www.mpegstandards.org/
http://mathworld.wolfram.com/EquirectangularProjection.html
http://mathworld.wolfram.com/EquirectangularProjection.html
https://www.itu.int/rec/T-REC-H.264
https://www.itu.int/rec/T-REC-H.265
https://matterport.com/industries/real-estate
https://blog.google/products/google-vr/bringing-pixels-front-and-center-vr-video/
https://blog.google/products/google-vr/bringing-pixels-front-and-center-vr-video/
http://wiki.panotools.org/Cubic_Projection
https://wiki.panotools.org/Rectilinear_Projection
https://github.com/alexandru-dinu/cae
https://www.cisco.com/c/dam/m/en_us/solutions/service-provider/vni-forecast-highlights/pdf/Global_2021_Forecast_Highlights.pdf
https://www.cisco.com/c/dam/m/en_us/solutions/service-provider/vni-forecast-highlights/pdf/Global_2021_Forecast_Highlights.pdf
https://www.cisco.com/c/dam/m/en_us/solutions/service-provider/vni-forecast-highlights/pdf/Global_2021_Forecast_Highlights.pdf
https://blog.google/technology/research/project-starline/
https://arxiv.org/abs/1701.07875
https://doi.org/10.1145/116873.116880
https://doi.org/10.1145/116873.116880
https://doi.org/10.1137/0722066
https://doi.org/10.1137/0722066
https://arxiv.org/abs/1804.09869
http://arxiv.org/abs/1804.09869
http://arxiv.org/abs/1804.09869
https://doi.org/10.1109/PCS.2018.8456308
https://arxiv.org/abs/1801.10130
http://arxiv.org/abs/1801.10130
http://arxiv.org/abs/1801.10130
https://doi.org/10.1109/IC3D.2017.8251907
https://doi.org/10.1109/IC3D.2017.8251907
https://doi.org/10.1109/QoMEX.2019.8743345
https://arxiv.org/abs/1711.06721
https://arxiv.org/abs/1901.02039
http://arxiv.org/abs/1901.02039
https://doi.org/10.1109/TMM.2011.2152382
https://doi.org/10.1109/TMM.2011.2152382
https://www.microsoft.com/en-us/research/project/holoportation-3/
https://www.microsoft.com/en-us/research/project/holoportation-3/
https://arxiv.org/abs/1811.06981
https://doi.org/10.1109/TIP.2005.859378
https://doi.org/10.1109/TIP.2005.859378
https://arxiv.org/abs/1703.00395
https://doi.org/10.1145/103085.103089
https://arxiv.org/abs/1804.06919
https://doi.org/10.1145/3384419.3430898
https://doi.org/10.1145/3384419.3430898

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Image Compression and Autoencoders
	2.2 Convolution Neural Network (CNN) and Spherical CNN

	3 Spherical Autoencoder (SAE)
	3.1 Icosahedral Mesh Representation
	3.2 Spherical Autoencoder (SAE) with Full Icosahedral Mesh

	4 Partial SAE (p-SAE) with Partial Icosahedral Mesh
	5 Compressive SAE (c-SAE)
	5.1 Compressive Sensing
	5.2 Compressive SAE (c-SAE)

	6 Evaluation
	6.1 Experiment Setup
	6.2 Evaluation Results

	7 Conclusion
	Acknowledgments
	References

