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ABSTRACT

3D spherical content is increasingly presented in various applica-
tions (e.g., AR/MR/VR) for better users’ immersiveness experience,
yet today processing such spherical 3D content still mainly relies
on the traditional 2D approaches after projection, leading to the dis-
tortion and/or loss of critical information. This study sets to explore
methods to process spherical 3D content directly and more effec-
tively. Using 360-degree videos as an example, we propose a novel
approach called Spherical Autoencoder (SAE) for spherical video
processing. Instead of projecting to a 2D space, SAE represents the
360-degree video content as a spherical object and employs encod-
ing and decoding on the 360-degree video directly. Furthermore, to
support the adoption of SAE on pervasive mobile devices that often
have resource constraints, we further propose two optimizations on
top of SAE. First, since the FoV (Field of View) prediction is widely
studied and leveraged to transport only a portion of the content to
the mobile device to save bandwidth and battery consumption, we
design p-SAE, a SAE scheme with the partial view support that can
utilize such FoV prediction. Second, since machine learning models
are often compressed when running on mobile devices in order to
reduce the processing load, which usually leads to degradation of
output (e.g., video quality in SAE), we propose c-SAE by applying
the compressive sensing theory into SAE to maintain the video
quality when the model is compressed. Our extensive experiments
show that directly incorporating and processing spherical signals
is promising, and it outperforms the traditional approaches by a
large margin. Both p-SAE and c-SAE show their effectiveness in
delivering high quality videos (e.g., PSNR results) when used alone
or combined together with model compression.
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1 INTRODUCTION

The ever-improving technologies have driven the increasing de-
mand of better "immersive" experiences from end-users for various
video content. While traditional video traffic has dominated the
Internet backbone for over a decade [11], recent years have seen
the increasing portion of 360-degree video traffic. These days many
people start to share their video content in the 360-degree format
on YouTube or Facebook. Real estates also use 360-degree videos
to showcase houses [6].

Compared to the traditional (2D) videos, 360-degree videos, offer-
ing 3 Degree of Freedom (3 DoF), can provide better "immersive" ex-
periences to users, and are the basis for the augmented/mixed/virtual
(AR/MR/VR) applications that offer 6 DoF. With the wide availabil-
ity of RGBD cameras and Lidar, many video analytics engines also
need to process such content in the domains of autonomous driving
and robotics. More broad applications are also been explored, such
as remote education, telementoring [27], holoportation [35] from
Microsoft, and Starline [12] from Google.

However, currently, processing and transmitting such spherical
3D content still mainly rely on the traditional approaches developed
for 2D video content. For example, for a 360-degree video, a common
thread of existing approaches is to project the video frames from 3D
to 2D and then use the traditional coding schemes, such as MPEG,
to compress the video content. After being received by the receiver,
the process is reversed and the 360-degree frames are reconstructed.

While this approach can quickly utilize the existing codecs and
the transport and processing support, during this process, a lot
of critical "immersive" information may get distorted or lost. For
example, the projection is often the first step when mapping a
3D frame to a 2D space. The commonly used projection schemes
include equirectangular projection [3], cubic projection [8], recti-
linear projection [9], equi-angular cube (EAC) [7], etc. However,
regardless which projection scheme is used, the distortion of the
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polar areas is inevitable. Furthermore, traditional schemes were de-
veloped without being aware of the 3D information available. Thus
when they are utilized to process the mapped 3D spherical content,
such information may not be appropriately processed, leading to
degraded "immersiveness" experience.

In this work, we set to explore a new approach that can handle
spherical videos directly and more effectively. Instead of following
the traditional approach by projecting the 3D content to a 2D space,
we consider a 360-degree video as a spherical object in its entirety
and propose to build spherical auto-encoder (SAE) to process such
360-degree videos directly. For this purpose, in SAE, icosahedral
spherical mesh [17] is used to represent pixels on the spherical sur-
face, which allows flexible “refinement” based on the user demand.
Compared to traditional approaches, no sphere-to-2D projection
is required. Moreover, we adopt the spherical convolution neural
network (CNN) to process the spherical content directly in order to
preserve the 3D information as much as possible. To upsample the
pixels to the original resolution, we use a novel VertexShuffle [32]
operation on the mesh, inspired by the PixelShuffle on 2D images.

Furthermore, to support SAE on the pervasive mobile devices
that have resource and battery constraints, we further propose two
optimizations on top of SAE. First, since field-of-view (FoV) predic-
tion [16, 41] has been heavily studied to only transport content in
FoV in high quality while other parts in low quality or no transmis-
sion at all, thus reducing bandwidth and battery consumption, we
design p-SAE, namely partial SAE, a SAE scheme with the partial
view support that can utilize such FoV prediction.

Second, since machine learning models are often compressed
when running on mobile devices in order to reduce the process-
ing load, which usually leads to degradation of output (e.g., video
quality in SAE), we propose c-SAE by applying the compressive
sensing theory into SAE to maintain the video quality when the
model is compressed.

To evaluate the performance of SAE and p-SAE, we conduct
experiments and compare to the traditional approach. The results
show the SAE approach is promising, and outperforms the tradi-
tional approach (e.g., 2D convolutional autoencoder coupled with
the equirectangular projection) by a large margin. Moreover, p-SAE
and c-SAE also show comparable performance to the full SAE, when
used alone or combined together with model compression.

The rest of the paper is organized as follows. Section 2 presents
some background information and related work. We present the
design of our spherical autoencoder in section 3, the optimization
for mobile devices with p-SAE in section 4, and c-SAE with com-
pressive sensing in section 5. Experimental results are discussed in
section 6. We make concluding remarks in section 7.

2 BACKGROUND AND RELATED WORK

In this section, we present some background and prior work on
autoencoders and spherical convolutional neural networks, which
motivates our new design presented in the next section.

2.1 Image Compression and Autoencoders

Traditional 2D image/video compression has been extensively and
continuously researched. Traditional approaches for still image or
motion picture compression have often focused on using JPEG [43]
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and MPEG based schemes, such as JPEG, MPEG2 [2], JPEG 2000 [1],
H.264 [4] and H.265 [5].

The recent deep neural network research has also motivated
a number of studies to use machine/deep learning techniques for
image/video compression [13, 21-23, 30, 38, 42, 44]. While some
studies aimed to improve based on existing frameworks, e.g., Chen
et al. [21] proposed a learning based framework to effectively per-
form predictive coding inside the learning network for video com-
pression with iterative analysis/synthesis and binarization, a lot of
studies have turned attention to autoencoders [13, 22, 23, 30, 42],
because compared to the traditional approaches, autoencoders are
more flexible and adaptive to different media formats and resource
requirements. For example, Theis et al. [42] proposed a deep au-
toencoders framework and achieved competitive performance to
JPEG2000. For video compression, Habibian et al. [30] studied rate
distortion and proposed a deep generative model for lossy video
compression that outperforms the learned video compression net-
works based on motion compensation or interpolation.

However, most of existing works on autoencoders focused on
the traditional 2D image or video compression. The burgeoning
spherical objects, such as 360-degree videos, received little attention.
In this work, we aim to explore the construction of autoencoders
for spherical video processing.

2.2 Convolution Neural Network (CNN) and
Spherical CNN

Convolution neural networks (CNN) has been widely used in deep
learning for processing traditional images. However, for images
from emerging applications like omnidirectional vision for drones,
robots, and autonomous cars, and planetary signals in scientific
domains like global weather and climate modelling, the images
have to be projected to the plantar space before being processed,
which inevitably introduces information distortion and loss.

To properly process spherical images, spherical convolution neu-
ral networks (S-CNN) have been proposed [24, 28, 31]. Cohen et
al. [24] proposed the building blocks of Spherical CNN, formed the
theory of spherical CNNs and verified its properties, and showed
that it can be utilized for rotation invariant classification and re-
gression problems. More recently, Jiang et al. [31] optimized the
implementation on unstructured grid with UGSCNN using parame-
terized differential operators. UGSCNN is shown to be extremely
efficient and it can match or outperform state-of-the-art network
architectures in terms of performance but with a significantly lower
number of network parameters. While there is no work on spheri-
cal autoencoders yet, in our design, we will leverage the building
blocks of UGSCNN to implement SAE.

3 SPHERICAL AUTOENCODER (SAE)

In this section, we present our design of SAE, after a brief intro-
duction of the icosahedral mesh that we utilize to represent the
spherical objects.

3.1 Icosahedral Mesh Representation

In SAE design, similar to UGSCNN [31], we represent spherical ob-
jects with icosahedral mesh [17]. We consider each spherical video
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(c) Level-2 Mesh (d) Level-3 Mesh

Figure 1: The icosahedral mesh representation in Level 0 to Level 3.

consisting of spherical frames. To represent pixels on each spheri-
cal frame, we discretize the sphere using refined icosahedral mesh.
Pixels of the video frame are then mapped to their corresponding
vertices of the refined mesh. The icosahedral mesh representation
starts with a regular icosahedron and re-projects all its 12 vertices
to a unit sphere (Figure 1(a)). To refine the mesh, we can divide
each of the 20 triangular faces into 4 smaller faces by creating new
vertices at mid-points of the edges, creating new edges among these
new vertices, and normalizing the new vertices to the unit sphere.

We call the regular icosahedron re-projected to the unit sphere
the Level-0 mesh, and we obtain Level-N mesh by repeating the
refining process N times, each time dividing a triangular into 4
triangles, by selecting the midpoints of each of the three edges and
connecting these midpoints to form three new edges. Figures 1(b),
(c), and (d) show the icosahedral mesh obtained after refining the
Level-0 mesh 1, 2, and 3 times. Each time the mesh is refined, the
number of vertices is approximately multiplied by 4. That is, the
more times the mesh is refined, the more spherical pixels can be
represented, and thus the higher resolution of the spherical frame
can be obtained. For example, with this discretization, a Level-9
mesh contains 2,621,442 vertices. The pixel density of this mesh
representation around the sphere’s equator area is roughly equiv-
alent to a spherical frame represented in the 2D equirectangular
projection in 2880x1440 resolution.

3.2 Spherical Autoencoder (SAE) with Full
Icosahedral Mesh

Figure 2 shows the proposed spherical autoencoder (SAE) archi-
tecture. To process an input video, we first load each frame into
the icosahedral mesh. The encoder of SAE loads the RGB values
of pixels on the spherical video frame as values of vertices on the
icosahedral mesh, e.g., a Level-9 mesh as shown in the figure. This
results in a 3 X Ny 9 tensor, where Ny ¢ represents the number of
vertices of a full Level-9 icosahedral mesh. It then goes through a
MeshConv layer with batch normalization and ReLU function.

The MeshConv [31] operation shows in the figure can be repre-
sented as: MeshConv(F; 6) = 901F+91VXF+92VyF+93V2F . Here,
I represents the identity function, Vy and V represent the first
order differential operator on the mesh in x and y, two orthogonal
dimensions, V? represents the 2nd order differential operator on
the mesh, and 6y, 61, 02, and 63 are learned parameters.

The output then goes through two ResBlocks [31] to both coarsen
the mesh (i.e., coarsen the mesh from Level-9 mesh to Level-8 and
Level-7 meshes, respectively.) and increase the channel dimension.
Finally, we use another MeshConv layer to change the channel
dimension to 3. In this way, the output tensor of the SAE encoder is
a 3 X Ny 7 tensor, a low-dimensional representation of the spherical
pixels, achieving a 16x compression ratio compared to the input
3 X Ny 9 tensor.

The decoder of SAE takes the low-dimensional 3 X Ny 7 tensor
compressed input. Instead of using deconvolution operations to
reconstruct the original data, we use a novel VertexShuffle operation
proposed in our prior work [32]. The VertexShuffle operation on
icosahedral meshes is inspired by the PixelShuffle operation on 2D
images [40]. We denote the VertexShuflle operation as:

Mi;41 = VertexShuffle(M;),

where M; € RE*Ne. represents features of the Level-i mesh where
C is the feature dimension, M;41 € RC/4XNo,in represents features
of the Level-i + 1 mesh with Ny ;41 vertices, and the feature di-
mension is reduced to C/4. Similar to the PixelShuffle operation,
the VertexShuffle operation on the mesh also does not require any
parameters. Unlike the PixelShuffle operation, feature maps are
not simply shuffled in VertexShuffle. Instead, given that the spheri-
cal mesh is refined by progressively creating new vertices at edge
midpoints and sub-dividing each face into four equal triangles, we
split M; into four parts {Mjo, Mi1, Mjz, M;3} (thus the feature dimen-
sion of M;4+1 becomes C/4) and use {M;1, Mj2, M;3} for constructing
midpoints on three edges of triangles as follows:

Ni,O = (Mil(UO) + Mil(ol))/2
Ni'1 = (Mi2(v1) + Mi2(v2))/2
Ni'2 = (Mi3(v2) + Mj3(v9))/2

Here, vg, v1, and vy represent vertices of a triangle face. Due to
shared edges among triangular faces on the mesh, we dedupli-
cate the new midpoints: N; = unique(N;). Finally, we can obtain
the output of the VertexShuffle operation: VertexShuffle(M;) =
concat(M;o, Ny).

The decoder passes its input tensor through one MeshConv layer
and two ResBlocks to increase the channel dimensions. It then
passes the output through two VertexShuffle operations to increase
the number of vertices, e.g., from a Level-7 mesh to a Level-9 mesh.
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Figure 2: The SAE architecture. As an example, the input to the SAE encoder in this figure is a Level-9 mesh with each vertex

representing the RGB values of a pixel.

A final MeshConv layer in the decoder produces a 3 X Ny g tensor,
in the same dimension as the original input to the SAE encoder.

To minimize the reconstruction error, we compare the input
to the encoder with the output of the decoder of SAE and use a
customized negative PSNR loss, i.e., 10 x log;,(MSELoss).

While Figure 2 shows an example of compressing spherical pixels
in Level-9 mesh input to Level-7 mesh, achieving 16x compression,
it is possible to adapt the model to allow inputs and create low-
dimension representations of different mesh granularity, e.g., Level-
8 mesh input and Level-6 encoder output if the original video is in
lower resolution.

4 PARTIAL SAE (p-SAE) WITH PARTIAL
ICOSAHEDRAL MESH

In parallel to the increase of spherical videos, another trend seen
in the recent years is that today more and more users tend to use
mobile devices in sharing and watching videos. Thus, it is necessary
and desirable to optimize SAE for mobile devices, given that mobile
devices often have resource constraints, particularly the limited
battery power supply. For this purpose, we further present two
optimizations, p-SAE and c-SAE, that we design for mobile devices
in this and next section, respectively.

p-SAE is designed to utilize the field-of-view (FoV) prediction [16,
41]. FoV prediction has been extensively studied to only transport
content in FoV in high quality while other parts in low quality
or no transmission at all, thus reducing bandwidth and battery
consumption. A spherical video contains information about every
direction surrounding the camera. However, usually only a small
portion of the spherical content may be of interest to the viewers at a
time. Thus, for bandwidth-efficient spherical content transportation,
only spherical content expected to be viewed can be transmitted
and decoded.

To support the utilization of FoV, we use the partial icosahedral
mesh [32]. The partial icosahedral mesh is created by selecting one
triangular face from the full Level-1 mesh (that is, only 1 out of the

Figure 3: Example image after using partial mesh

80 faces) and only refine triangles within this face. As a result, the
refined face is about 1/80 of the sphere and contains roughly 1/80
of the vertices in a full mesh.

For example, if we load a spherical frame to the partial icosa-
hedral mesh, then re-project the partial mesh to 2D planar using
the equirectangular projection, we may obtain an image as shown
in Figure 3. In this image, only one triangular face roughly in the
middle of the image contains detailed information about the image.

To perform encoding and decoding operations for spherical con-
tent belonging to any of the rest 79 faces, vertices in these 79 faces
(in a full mesh) are rotated to vertices of the selected refined face
using a calculated rotation matrix (79 matrices in total). In this way,
we can use SAE that operates on the partial icosahedral mesh to
selectively encode and decode the spherical content, and we call
this partial SAE (p-SAE).

With p-SAE, if reliable prediction can be made that only N out of
80 full Level-1 mesh faces are required to be transmitted, then the
autoencoder calculation only needs to be performed on these faces,
thereby saving both network transmission and encoder/decoder
computation costs.

Using the partial icosahedral mesh also brings another benefit
of disk and memory storage space savings. The storage size of a
partial mesh is only about 1/80 compared to the full mesh at the
same level.
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5 COMPRESSIVE SAE (c-SAE)

p-SAE can reduce the resource consumption on mobile devices by
transmitting less data. On the other hand, today when machine
learning models are deployed on mobile devices, a common practice
is to compress the model in order to reduce its processing load and
fit better with the resource constraints on mobile devices. However,
this often comes with the degradation of the model output, which,
for SAE, is the video quality. To maintain the video quality while
the model is compressed, we propose to integrate the compressive
sensing theory in SAE.

5.1 Compressive Sensing

Compressive sensing has been widely used to recover an unknown
data vector, x € R” | from a few linear measurements, y € R™.

y = Ex, (1)

where E € R™*" is the measurement matrix. Since the number
of measurements is far less than the number of data points, i.e.,
m < n, determining x by solving the equation (1) is an ill-posed
inverse problem with no unique solution. As a result, we must add
prior knowledge to the data vector x and measurement matrix E.
In classical compressive sensing theory, x is commonly assumed to
be a sparse vector in a set of basis ® and E to satisfy the Restricted
Isometry Property (RIP) or the Restricted Eigenvalue Condition
(REC) [20], and thus we can guarantee that minimizing the recovery
error,

# = argmin ||y — Ex||? s.t. ||®x]; < B %)

X

leads to accurate reconstruction with a high probability. The con-
strained minimization problem (2) is usually solved by iterative
gradient projection algorithms [18, 29]. However, conventional
compressive sensing has two fundamental limitations that make it
inappropriate for domain-specific encoder-decoder construction.
On the one hand, while sparsity priors have been shown to be effec-
tive, the sparsity property of spherical 3D image data is unclear, and
more complicated models with more structure have recently been
proposed with superior reconstruction performance [19, 45, 46]. On
the other hand, the slow iterative gradient projection algorithms
are used to solve the reconstruction problem (2), which significantly
slows down the decoding time.

5.2 Compressive SAE (c-SAE)

To address the aforementioned two drawbacks, compressive SAE (c-
SAE) links the proposed SAE (spherical encoder-decoder structure)
with compressive sensing theory. Instead of relying on pre-defined
sparsity, the spherical decoder acts as an implicit prior constraint
for decoding compressed spherical images, allowing us to recon-
struct the encoded data with a single decoder run and avoid the
costly iterative methods used in traditional compressive sensing
techniques. The spherical encoder component, on the other hand,
is viewed as a learnable yet lightweight module. It can also auto-
matically learn the appropriate transformation for compressing
spherical video content for offloading with the least computational
cost on local devices. According to the recent deep compressive
offloading theory [45], we should impose the Restricted Isometry
Property (RIP) (with orthogonal regularization) and Lipschitz con-
tinuity (with spectral normalization) on the spherical encoder and
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decoder, respectively, to provide recovery guarantees for the data
encoding-decoding process based on compressive sensing theory.

Orthogonal Regularization If we want to maintain the compres-
sion ratio and the quality of recovery, we are required to make our
encoder to be isometric. The general idea to achieve this goal is to
add the orthogonal regularization with the spherical convolution
kernel in the encoder. Orthogonal regularization uses weights to be
orthogonal by pushing them towards the nearest orthogonal mani-
fold. Hence, we apply the orthogonal regularization on the spherical
convolution layers which are fully-connected. In this model, We
can consider the spherical convolution kernel as a 3D kernel, where
the convolution part within encoder and decoder takes the value
of vertices on Level-n mesh. For this purpose, first, we convert the
kernel K € thwxdxcixcjxco to K’ € Rh~w'd><cixcj><co, to make
these convolution to be considered as matrix multiplications. Then,
to ensure that the convolutions are isometry for a constrained fea-
ture space, we can apply orthogonal regularization to the kernel.
A linear transformation with a semi-orthogonal matrix is used to
guarantee the preservation of the isometric property. We can thus
add the orthogonal regularization to the convolution kernel K’
during training as follows,

KTK - I‘

argmin‘

>

where I is the identity matrix.

Spectral Normalization To achieve the data recovery assurances
offered by compressive offloading, the decoder must be an L-Lipschitz
function (where L is the Lipschitz constant). Assume e; and e are
two encoded data samples, and D represents the spherical decoder.
Given that D is an L-Lipschitz function,

ID(e1) = D(ez)ll < Ller — ezl

Thanks to the recent advances in compressive sensing theory
with generative neural networks as the implicit constraint [19], we
can attain a similar data recovery guarantee as to the conventional
sparsity constraints when the generative neural network (i.e., the
spherical decoder in our paper) is an L-Lipschitz function. So the
remaining question is how to apply this Lipschitz constant on
the decoder efficiently. Here, we use spectral normalization [37],
a technique that has been widely adopted in generative neural
network models such as Wasserstein GAN [14].

Neural networks are layered structures. If we can constrain the
Lipschitz constant of each layer to be smaller than one, the whole
neural network becomes a 1-Lipschitz function. The neural network
operation in each layer may be thought of as an affine transfor-
mation followed by an activation function. The Lipschitz constant
of all widely adopted activation functions, including ReLU and
Sigmoid, is less than 1. The biggest singular value of the weight
matrix, on the other hand, controls the Lipschitz constant of an
affine transformation. We can normalize the weight matrix against
the biggest singular value of the weight matrix to maintain the
Lipschitz constant of each layer smaller than 1, which is precisely
what spectral normalization does.

With the orthogonal regularization and spectral normalization,
the final structure of our autoencoder is depicted in Figure 4. Accord-
ing to deep compressive offloading theory [45], with orthogonal
regularization on the encoder and spectral normalization on the
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Figure 4: Architecture of Compressive Spherical Autoencoder

decoder, we can ensure that the spherical decoder can reconstruct
the offloading data given by the spherical encoder with almost no
loss at a high probability.

6 EVALUATION

We present the evaluation results after an introduction of the data
sets and our baseline model.

6.1 Experiment Setup

Setup Our models run on a machine with Tesla P100-PCIE GPU
with 16G memory, and 2.3 GHz Intel Xeon CPU. Since PSNR is
commonly used to evaluate the quality of videos, during training,
we use PSNR as the loss function. We also use the model size to
evaluate the scalability and flexibility of the SAE. For example,
if the model size is very large, it has to be implemented on the
server side to ensure its performance. During the training, when
the model needs to load Level-9 full mesh, the batch size was set to
2, because the Level-9 full mesh cost about 2 GB memory. If there
is no constraint on the memory size, a large batch size can be used.
On the other hand, when the video quality requirement is not high,
we can use Level-8 or even lower level mesh to reduce the memory
demand. In these cases, the batch size can be set to 16 or 32.

Dataset In our experiments, we use a few different 360-degree
videos that we downloaded from the Internet. We classify them
into four categories and only present the result of one representa-
tive video from each category. ! The first is highly dynamic videos
such as sports. We choose Football for the experiments. The next is
dynamic, including amusement videos and performance videos. We
choose Roller Coaster for our experiments. The third is low motion
videos, which include observation videos recorded indoor, for ex-
ample, a classroom with students and teacher with few movements.
We choose Indoor in our experiments. The last includes the rela-
tively static videos. These videos contain daily monitoring of the
city and urban planning and construction. We choose City. These
videos have different resolutions: Indoor is 1920 X 960 , City is 2056
x 1080, Roller-Coaster is 1920 x 1080 and Football is 2048 x 4096.

Baseline Model We compare our approaches with the baseline
approach - the convolutional autoencoder, denoted as CAE [10].
In the experiments, we use the equirectangular projection to first
project each frame into a rectangular image according to its length
and width. Then we divide this rectangular picture into n patches,
and run 2D convolutional autoencoder on each patch. The com-
pression ratio of CAE is 12x.

These videos are from the “The Psychology of 360-Video” repository [36], available
at https://github.com/vhilab/psych-360

Output
video
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6.2 Evaluation Results

PSNR results Table 1 reports the PSNR results of our SAE model
and its variants. In these models, the Level-9 mesh is used. In this
table, CAE represents the results from the traditional 2D convolu-
tional autoencoder, and co-CAE represents the compressed CAE.
SAE (Spherical AutoEncoder) uses the full sphere mesh. p-SAE uses
partial mesh in SAE instead of full mesh. c-SAE applies compressive
sensing in SAE, and c-p-SAE applies compressive sensing in p-SAE.
These models are all compressed with different compression rates
as indicated in the table (shown as “model compression ratio”).

As shown in Table 1, the second column shows the original CAE
(top half) and compressed CAE (bottom half) results. The original
CAE delivers spherical videos with a PSNR below 25 in general,
while the compressed one can only deliver the video with a PSNR
at 20 or lower. We did not include more compression results as
these are already too low for users. Compared to CAE, the results
of SAE models are significantly better (the PSNR is above 30 in all
cases), especially for high resolution videos. This is because for the
high resolution video, especially for 360 videos, the resolution is
not like 2D. These video frames have to be projected and divided
into several patches to process. This will casue some extraction loss
for CAE to process high resolution 360 video frames but not for
SAE models. Overall, we observe SAE models always outperform
CAE by a large margin. This shows the benefit of operating on the
spherical pixels directly compared to first projecting the pixels to
the 2D planar image which results in distortions.

Comparing p-SAE with SAE, we find that the PSNR results of
p-SAE are degrading in general, but are still above 30 dB, indicating
acceptable results. These results indicate that p-SAE is promising
when mobile devices are used to watch the video and a careful
trade-off should be explored when deploying. On the other hand,
when integrating compressive sensing with model compression, we
observe very interesting results. Compressive sensing techniques
are integrated in order to maintain the video quality after decoding,
i.e., data recovery. Comparing SAE with c-SAE results in Table 1,
we can see that with compressive sensing, the PSNR results are
improved. The reason is that through orthogonal regularization
and spectral normalization, c-SAE provides better guarantees for
data decoding. We can observe similar trends when comparing
p-SAE with c-p-SAE. These results indicate that after adopting
compressive sensing in these models when they are compressed for
mobile devices, c-SAE models can effectively help with the mobile
device in accessing videos without decreasing the video quality.

Model Size Table 2 further shows the model size and GPU usage
of these models under different compression rates. For CAE, the
total number of parameters is 2,241,859. The model size is 8.6 MB.
While for SAE, the total number of parameters with full mesh
is 51,050, which means the model size of SAE is about 268 KB.
Thus, the CAE model is over 30 times larger than that of SAE.
This indicates that SAE not only delivers better quality, but also
has better portability, particularly when the quality demand is
high. The total number of parameters of p-SAE model for partial
mesh implementation is 47,604, which translates into the model
size of P-SAE around 250 KB. Note that when training the model
with Level-9 full mesh, we will have to load about 2 GB Level-
9 spherical mesh that requires a lot of GPU memory. This will
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Table 1: PSNR result of CAE, SAE, p-SAE, c-SAE, c-p-SAE with different compression rates

Model CAE SAE p-SAE
Model Compression Ratio none none 26.01% | 41.54% | 58.30% none 36.03% | 45.97% | 55.11%
Indoor 24.7384 || 39.2887 | 41.2183 | 39.0652 | 38.3835 || 37.8229 | 37.7869 | 36.4909 | 35.9083
City 17.1524 || 39.7354 | 38.9868 | 38.5078 | 37.6546 || 33.4587 | 33.6031 | 32.7565 | 31.8372
Roller-Coaster 17.8414 || 34.1936 | 32.8375 | 32.0299 | 31.5185 || 32.5046 | 32.1746 | 31.5830 | 30.3547
Football 20.6538 || 36.2050 | 36.3093 | 36.2165 | 36.1787 || 34.4323 | 33.9375 | 33.7339 | 33.2091

Model “ co-CAE “ c-SAE c-p-SAE
Model Compression Ratio || 37.21% none 26.01% | 41.54% | 58.30% none 36.03% | 45.97% | 55.11%
Indoor 20.1124 || 40.5602 | 41.3595 | 39.7724 | 38.7182 || 38.6803 | 38.5517 | 37.6399 | 37.5349
City 15.0681 || 40.3514 | 39.4804 | 39.1991 | 38.9915 || 34.5360 | 36.4247 | 33.6042 | 33.0823
Roller-Coaster 13.5168 || 35.5432 | 33.8656 | 33.4480 | 32.6312 || 33.2020 | 32.2679 | 32.1994 | 31.0052
Football 14.8910 || 35.5992 | 36.8822 | 36.4333 | 36.0842 || 36.6811 | 36.8463 | 36.4243 | 36.1195

Table 2: Model size and GPU usage of different models

Model CAE SAE p-SAE

Model Compression Ratio none none | 26.01% | 41.54% | 58.30% || none | 36.03% | 45.97% | 55.11%

Model Size (KB) 8600 268 195 154 110 250 180 152 126

GPU Usage 4702 13261 | 13053 | 12371 | 11647 2973 2619 2578 2477

l Model “ co-CAE “ c-SAE c-p-SAE

Model Compression Ratio || 37.21% || none | 26.01% | 41.54% | 58.30% || none | 36.03% | 45.97% | 55.11%

Model Size (KB) 5400 330 207 174 135 321 202 187 131

GPU Usage 3514 15479 | 15291 14695 14027 1692 1447 1397 1375

Table 3: VI-VMATF scores

Model CAE SAE p-SAE

Model Compression Ratio none none 26.01% | 41.54% | 58.30% none 36.03% | 45.97% | 55.11%
Indoor 34.6512 || 73.4501 | 73.2218 | 72.6442 | 72.6351 || 70.4519 | 70.1362 | 69.8044 | 69.2314
City 34.0079 || 72.7804 | 72.6419 | 71.9773 | 71.0025 || 70.7577 | 70.5893 | 69.7488 | 69.6832
Roller-Coaster 28.5093 || 68.1255 | 68.1238 | 67.9836 | 67.4821 || 66.2091 | 65.9343 | 65.4290 | 65.1028
Football 29.8409 || 68.8549 | 68.6027 | 68.4981 | 68.0195 || 67.5121 | 67.4982 | 67.0034 | 66.2105

Model co-CAE c-SAE c-p-SAE
Model Compression Ratio || 37.21% none 26.01% | 41.54% | 58.30% none 36.03% | 45.97% | 55.11%
Indoor 32.8001 || 75.8872 | 75.4571 | 74.7633 | 73.8041 || 72.6344 | 72.1874 | 71.0801 | 70.3342
City 31.5367 || 75.0090 | 74.6623 | 74.1342 | 73.3103 || 71.9523 | 71.6345 | 70.7638 | 70.1020
Roller-Coaster 25.0956 || 71.8376 | 71.0186 | 71.0123 | 70.8327 || 69.7491 | 68.4566 | 68.1483 | 67.3970
Football 26.7573 || 72.9037 | 71.9642 | 71.6107 | 70.9362 || 69.9907 | 69.6016 | 69.2106 | 68.6433

limit the speed of training. Instead, when using p-SAE with partial
mesh, this will speed up significantly. It does come with a cost
of slightly decreased PSNR result. On the other hand, comparing
c-SAE models to SAE models, we also find that the model size
slightly increases. This is because of the orthogonal regularizer and
spectral normalization used in compressive sensing, the cost for
the improved PSNR results. Thus, there is a clear trade-off here
that should be taken into consideration when choosing different
models.

Voronoi VMAF In addition to PSNR, we also evaluate the result us-
ing the recently developed Video Multimethod Assessment Fusion
(VMAF) metric [34]. The VMAF metric is a support vector machine

(SVM) regressor which assigns weights to each elementary metric.
The final metric could preserve all the strengths of the individual
metrics and deliver a more accurate final score. The elementary
metrics include visual information fidelity (VIF) [39], detail loss
metric (DLM) [33], and mean co-located pixel difference.

VMAF was originally developed for traditional 2D content. To
properly use VMAF in our evaluation, we further adopt the Voronoi
objective metric [26]-based VMAF that is developed recently to
evaluate the quality of experience for spherical videos. In this eval-
uation, a spherical video is divided into M patches using the spher-
ical Voronoi diagram [15] of M evenly distributed points on the
sphere [25]. Table 3 shows the Voronoi VMAF (VI-VMAF) scores. It
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(b) CAE frame samples

(c) SAE frame samples
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(d) c-SAE frame samples

Figure 5: Sample frames from four videos

is clear from the table that all SAE models outperform CAE signifi-
cantly, even with a high compression rates. Overall, these results
are consistent with the PSNR results. Compared to the PSNR based
results, the score difference between different model outputs is
more pronounced with VI-VMAF.

Visual Comparisons Figure 5 shows some examples of frames
extracted from these videos. We can observe that, for CAE, since it
is trained by first projecting a spherical surface onto a rectangular
plane and then dividing that into patches, the boundary and details
of the image are relatively still clear, but the image clarity and
colors are affected. For SAE, the quality of the original frame is well
maintained, the borders are clearer and the clarity of the picture
is high. We did not include p-SAE as it only shows a partial view
like Figure 3. These results indicate that spherical processing of
360-degree videos is more effective than the projection plus the
conventional 2D processing approach, potentially preserving more
critical spherical information during the processing.

7 CONCLUSION

Spherical video content is getting more and more popular in vari-
ous applications. Compared to the traditional 2D video, spherical
video content not only demands more bandwidth to transmit, but

also more efficient techniques for content processing, e.g., for video
analytics engines. In this work, we explore a new approach to ef-
fectively process spherical content. Compared to the traditional
approach where a spherical frame is mapped to a 2D space, we
have investigated processing the spherical content directly using
a spherical autoencoder (SAE). Motivated by the fact that mobile
devices are widely used for video accesses, we further propose
two optimizations to make SAE better fit for resource constrained
mobile devices while maintaining the video quality. Our experi-
mental results show that our proposed approaches can significantly
outperform the traditional approach and both the partial view sup-
ported SAE, i.e., p-SAE, and compressive sensing integrated SAE,
i.e., c-SAE, are effective in delivering high quality videos.
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