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ABSTRACT
In recent years it has become increasingly popular to use phylogenetic comparative
methods to investigate heterogeneity in the rate or process of quantitative trait
evolution across the branches or clades of a phylogenetic tree. Here, I present a new
method for modeling variability in the rate of evolution of a continuously-valued
character trait on a reconstructed phylogeny. The underlying model of evolution is
stochastic diffusion (Brownian motion), but in which the instantaneous diffusion
rate (σ2) also evolves by Brownian motion on a logarithmic scale. Unfortunately, it’s
not possible to simultaneously estimate the rates of evolution along each edge of the
tree and the rate of evolution of σ2 itself using Maximum Likelihood. As such, I
propose a penalized-likelihood method in which the penalty term is equal to the
log-transformed probability density of the rates under a Brownian model, multiplied
by a ‘smoothing’ coefficient, λ, selected by the user. λ determines the magnitude
of penalty that’s applied to rate variation between edges. Lower values of λ penalize
rate variation relatively little; whereas larger λ values result in minimal rate variation
among edges of the tree in the fitted model, eventually converging on a single value of
σ2 for all of the branches of the tree. In addition to presenting this model here, I have
also implemented it as part of my phytools R package in the function multirateBM.
Using different values of the penalty coefficient, λ, I fit the model to simulated data
with: Brownian rate variation among edges (the model assumption); uncorrelated
rate variation; rate changes that occur in discrete places on the tree; and no rate
variation at all among the branches of the phylogeny. I then compare the estimated
values of σ2 to their known true values. In addition, I use the method to analyze a
simple empirical dataset of body mass evolution in mammals. Finally, I discuss the
relationship between the method of this article and other models from the
phylogenetic comparative methods and finance literature, as well as some
applications and limitations of the approach.

Subjects Bioinformatics, Computational Biology, Evolutionary Studies, Zoology, Statistics
Keywords Brownian motion, Phylogenetic comparative method, Phylogeny

INTRODUCTION
As the quantity and quality of data for phylogenetic inference multiplies rapidly in the
current genomic age (Philippe et al., 2005), so too has grown the popularity of using
estimated phylogenetic trees to make inferences about the history of life on Earth (Harvey,
1996; Nunn, 2011; O’Meara, 2012). This endeavor, usually referred to as phylogenetic
comparative biology, involves taking an evolutionary tree or set of trees obtained from
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phylogenetic inference, often combined with phenotypic trait data for the species in the
tree, and then making some kind of quantitative inference about evolution (Garamszegi,
2014; Harmon, 2019). A wide variety of different methodologies now comprise the
field of phylogenetic comparative biology. These are often collectively referred to as
‘phylogenetic comparative methods’ (Felsenstein, 1985; Nunn, 2011; O’Meara, 2012;
Garamszegi, 2014; Harmon, 2019).

A significant advance that’s occurred over about the past 15 years has been the
development and implementation in software of statistical methodologies that allow the
user to model, or explicitly take into consideration, heterogeneity in the tempo and mode
of evolution across the branches or clades of our evolutionary tree (e.g., Butler & King,
2004; summarized in Harmon, 2019). For instance, in a now classic paper, O’Meara et al.
(2006; also see Thomas, Freckleton & Székely, 2006) published an innovative model in
which the rate of evolutionary change for a trait (normally denominated σ2 in this type of
study) was permitted to differ between different parts of the phylogeny, such as specific
branches or clades, as determined a priori by the investigator. In the years since the
publication of that seminal paper, a wide variety of different related approaches have been
developed and implemented in software, such as methods that permit the process or
mode of evolution, and not just its tempo, to differ in different parts of a reconstructed
phylogeny (e.g., Revell & Harmon, 2008; Revell & Collar, 2009; Revell et al., 2012; Beaulieu
et al., 2012; Uyeda & Harmon, 2014; Caetano & Harmon, 2017).

The predominant model that’s been used to study quantitative trait evolution on
phylogenetic trees is called Brownian motion (Felsenstein, 1985; O’Meara et al., 2006;
Revell, Harmon & Collar, 2008; Harmon, 2019). Brownian motion is a model of stochastic
diffusion in which the trait changes randomly and continuously through time.
The expected value of the trait is constant and equal to the starting value, x0; and the
variance (either between two or more lineages diverging by the process, or between the
current state of a lineage and its ancestor) increases linearly with a rate of σ2 (O’Meara
et al., 2006; Harmon, 2019). Because σ2 is the rate of increase in variance with time under
our evolutionary process, our estimate of σ2 is typically referred to as the rate of evolution
of the trait (O’Meara et al., 2006). Brownian motion is described in much greater detail
in other articles and books, such as Felsenstein (2004), O’Meara et al. (2006), Revell,
Harmon & Collar (2008), and Harmon (2019).

Herein, I propose a new method for modeling variation in the rate of character
evolution across the branches and clades of a phylogeny. Under this model, we assume that
Brownian evolution has a different value (r2i ) on each of the branches of the tree, and
that the log-values of these rates, in turn, have evolved via a separate Brownian process,
also called geometric Brownian motion, theoretically with a separate rate, r2BM—although
I’ll describe later why it may not be possible to estimate this rate. I will show how to fit
this model to data using a penalized-likelihood approach (Sanderson, 2002) in which the
penalty term is proportional to the logarithm of the probability of the log rates (logðr2i Þ)
across edges under our model. I’ll also apply the model to a classic empirical dataset
for mammalian body size evolution from Garland, Harvey & Ives (1992), and discuss both
applications and limitations of the approach. I envision the primary use of this method to
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be in exploratory data analysis—although it may also be possible to employ it in examining
specific alternative hypotheses for evolutionary change through time.

METHODS AND RESULTS
In this section I’ll begin by introducing our model of evolution, then I’ll apply it to several
different simulated datasets, and, finally, I’ll use the method to analyze a simple empirical
dataset and tree.

The model
The model of this article is as follows. We assume that the phenotypic trait of interest, x,
evolves by a process of Brownian motion (Felsenstein, 1985; O’Meara et al., 2006; Harmon,
2019). Under standard Brownian motion evolution, changes are random and normally
distributed, with a mean value of 0 and a variance of σ2t, in which σ2 is the instantaneous
variance of the Brownian process and t is the elapsed time over which change is presumed
to have occurred (Felsenstein, 2004; Harmon, 2019).

In this scenario, we expect that the values for our trait at the tips of the phylogeny will
have a multivariate normal distribution with an expectation equal to the value of the trait
at the start of the process, x0, and a variance-covariance matrix given by σ2C (e.g., O’Meara
et al., 2006; Revell & Collar, 2009). Here, C is an n × n matrix for n species containing the
height above the root of the common ancestor of each pair of terminal taxa, i and j, in the
matrix position Ci,j (e.g., Rohlf, 2001; Revell, Harmon & Collar, 2008). σ2 is the rate of
evolution, as previously defined.

With just data and our phylogeny, we can find Maximum Likelihood estimates of the
two parameters of the Brownian model, σ2 and x0, simply by maximizing the following
expression giving the likelihood (O’Meara et al., 2006). This equation may be familiar to
many readers because it’s based on the multivariate normal probability density (O’Meara
et al., 2006; Revell & Harmon, 2008).

lðr2; x0jx;CÞ ¼
exp

�
� 1
2
ðx � 1x0Þ0ðr2CÞ�1ðx � 1x0Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pnjr2Cjp (1)

In our Eq. (1), x is an n × 1 vector containing species values of x for each of the n taxa in
our phylogeny. 1 is an n × 1 vector of 1.0 s. Finally, |σ2C| is the determinant of σ2C.

On a log-scale, this is equivalent to the following—in which L (now and henceforward)
is used to indicate the log-likelihood, as opposed to the likelihood on its original scale.

L ¼ �ðx � 1x0Þ0ðr2CÞ�1ðx � 1x0Þ=2� logðjr2CjÞ=2� logð2pnÞ=2 (2)

According to my penalized-likelihood approach, instead of computing the log
probability density of just the species data at the tips of the tree under our model, we allow
each edge of the tree to have a different value of the Brownian rate parameter, σ2. Then we
compute the penalized log-likelihood of the set of rates (r20, r

2
1, r

2
2, and so on), and the root

state of our trait (x0), given our tip data and reconstructed phylogeny.
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We do this by maximizing the following expression—in which the penalty coefficient, λ,
is set by the user, rather than estimated from the data. This is exactly equal to the
log-likelihood of our model of evolution given the data; minus the negative log probability
density of the log rates (logðr20Þ, logðr21Þ. logðr22Þ, etc.) under a model in which the
logarithm of the rate of evolution evolves by Brownian motion.

Lðr20;r21;…; x0jx;Cext; �Þ ¼ �ðx � 1x0Þ0T�1ðx � 1x0Þ=2� logðjTjÞ=2� logð2pnÞ=2
��ðs� 1s0Þ0C�1

extðs� 1s0Þ=2� � logðjCextjÞ=2� � logð2pnþm�1Þ=2 (3)

Reviewing Eq. (3), we can see that the first part of the expression is almost exactly the
same as Eq. (2), except that we’ve substituted T for σ2C. The second part is also similar
(because it’s based on a multivariate normal probability density), and gives λ times the
negative log probability density of the set of values for r2i at all of the nodes and tips of our
phylogenetic tree. This latter part of the equation is our ‘roughness penalty’ (e.g.,
Sanderson, 2002) as it increases for a given value of λ (that is, penalizing the likelihood
more) when σ2 varies more from edge to edge, or decreases when it varies less.

More specifically, in Eq. (3), T is a matrix giving the sum of the edge lengths leading
from the root to each common ancestor of each pair of species, i and j (in position Ti,j),
multiplied by the branch-specific rates for each corresponding edge on that path
(Fig. 1). Cext is an extended version of the matrix C, above, but of dimension n +m − 1 for n
species and m internal nodes. s is an n + m − 1 × 1 vector of the logarithms of each rate
at each node or terminal taxon, except the root node (that is to say,
s ¼ ½logðr21Þ; logðr22Þ;…; logðr2nþm�1Þ�). Lastly, s0 is the logarithm of the rate of evolution
at the root of the tree, logðr20Þ. Other terms are defined as in Eqs. (1) and (2).

Although we compute T by multiplying the average rate of evolution for each edge in
the tree by the length of the edge, as noted above, and then by summing these quantities up
the phylogeny, our penalized-likelihood Eq. (3) is given in terms of node and tip (as
opposed to edge) values of logðr2i Þ. As such, to calculate T we need to first compute the
average rate for each edge as a function of the rates at the nodes that subtend it. To do this,
we integrate the log-linear function between each pair of ancestor-descendant nodes
(or between an internal node and a tip, for a terminal edge of the phylogeny). This is done
by calculating a(b)/b − a/b, in which a ¼ r22 and b ¼ logðr21Þ � logðr22Þ for each pair of two
rates (r21 and r22, in this example) that begin and end a specific edge of our tree.

We define Cext as a matrix of dimension n + m − 1 × n + m − 1 containing the height
above the root of the most recent common ancestor of every pair of terminal taxa (of
which the tree contains n) and internal nodes (of which the tree contains m), except
for the global root of the tree (hence the − 1). This is proportional to the expected
variance-covariance matrix of the tips and internal nodes under a Brownian evolutionary
process (O’Meara et al., 2006; Harmon, 2019).

Inspection of Eq. (3) leads us to some predictions about how our estimation method
should behave as a function of the smoothing parameter value, λ. Firstly, as λ is increased
by the user we expect that the estimated rate of evolution, σ2, should converge towards
a single value for all edges of the phylogeny—and, furthermore, that this value of σ2 will
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also be the Maximum Likelihood Estimate (MLE) of σ2 in a single-rate Brownian evolution
model. Secondly, we conversely expect that as λ is decreased towards 0, σ2 should vary
freely from edge to edge in the tree. If the rate of evolution does indeed evolve by geometric
Brownian motion, then some intermediate value of λ will lead to our best estimates of the
values of σ2 for each edge; however, this specific ‘best’ value of λ is very likely to differ from
case to case. I’ll discuss possible strategies for selecting appropriate values of λ in a
subsequent section.

Simulated example 1: Brownian rates
For the first example of applying the method of this article, I will suppose that evolution of
our phenotypic trait, x, occurs by Brownian motion, and that the logarithm of the rate of
evolution also evolves in a Brownian fashion (i.e., by geometric Brownian motion, see
above). This type of evolution can be seen in Fig. 2.

For panel (A) of the figure, I simulated different rates of Brownian evolution for each
edge of the tree under our model. In panel (B), I’ve obtained a trait vector (x) based on
the rates simulated for panel (A). Then, I projected my phylogeny into this trait space using
a visualization technique called a ‘traitgram’ plot (Schluter et al., 1997; Evans et al., 2009;
Revell, 2013), but in which each edge has been colored by the generating rate. From
the figure it can be pretty clearly seen that redder branches, with higher evolutionary rates
in panel (A), tend to be associated with larger changes on the traitgram of panel (B)—
precisely as one would expect under our model (Fig. 2).
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Figure 1 (A) Simple phylogeny of five taxa with the total edge length (above each branch) and σ2

rates (below it); (B) calculation of the expected variance covariance matrix of tip values for the
trait x, T, given the branch length and rates of panel (A). Each i, jth element corresponds to the
sum of the products above and below each edge along all the branches leading from the root to the
common ancestor of taxa i and j. Full-size DOI: 10.7717/peerj.11997/fig-1
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In my simulation, rate variation among edges varies by more than three orders of
magnitude: from σ2 < 0.2 to σ2 = 368. Although I generated these data mainly for
illustrative purposes, this magnitude of rate variation among edges or clades is not entirely
inconsistent with what has been found in empirical studies. For instance, Puttick, Thomas
& Benton (2014) measured a rate of body size evolution more than 9,000 times higher
than the background rate on the edge leading to extant avian reptiles. Using different
methodology, Rabosky et al. (2014) found a nearly twenty-fold difference in the rate of
body shape evolution between different lizard clades. Finally, Martin (2016) found more
than a thousand-fold difference in the rate of jaw morphology evolution in Caribbean
pupfishes (genus Cyprinidon). On the other hand, not every study looking for rate
variation finds it. LeRoy et al. (2019), for example, found relatively little evidence for
heterogeneity in the evolutionary rate of leaf litter decomposition rates across a phylogeny
of 239 species of angiosperms.

With the simulated phylogeny and data in hand, we can then proceed to fit a
rate-variable model to the data of Fig. 2 using our approach of penalized-likelihood.
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Figure 2 (A) Simulated evolutionary rates, σ2, in which the logarithm of the rate of evolution evolves by Brownian motion on the tree; (B) the
phylogeny of panel (A) projected into a space defined by time (on the horizontal axis) and a simulated trait vector, x, obtained using the rates of
panel (A). Full-size DOI: 10.7717/peerj.11997/fig-2
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Our penalized-likelihood method, remember, requires that we select a value of λ, the
penalty coefficient or ‘smoothing’ parameter. Higher values of λ correspond to more
smoothing, such that adjacent branches of the tree will tend to have more similar values of
σ2. If we do this for four different values of λ (λ = 0.01, 0.1, 1, and 10), and then each
time compare our estimated rates to their known true values from Fig. 2, we obtain the
result shown in Fig. 3.

We can see that the estimated values of σ2 are in all cases quite strongly correlated
with their generating values; however, (at least here) the strongest relationship is for an
‘intermediate’ value of λ (λ = 1), on the range that we chose to use. Readers should keep in
mind, of course, that this should not generally be expected to be the case even if our rates
have indeed evolved under the assumed process. I’ll explain more about selecting
appropriate values of λ in the Discussion.

Simulated example 2: uncorrelated rates
In addition to generating data under our assumed model of Brownian evolution of the
rates on a log scale, I also simulated uncorrelated rate variation among edges. In this case,

1e−03 1e−01 1e+01 1e+03

1e−03

1e−02

1e−01

1e+00

1e+01

1e+02

1e+03

true σ2

es
tim

at
ed

σ
2

a) λ= 0.01

1e−02 1e−01 1e+00 1e+01 1e+02 1e+03

1e−02

1e−01

1e+00

1e+01

1e+02

1e+03

true σ2

es
tim

at
ed

σ
2

b) λ= 0.1

0.2 0.5 1.0 2.0 5.0 20.0 50.0 200.0

0.2

0.5

1.0

2.0

5.0

10.0

20.0

50.0

100.0

200.0

true σ2

es
tim

at
ed

σ
2

c) λ= 1.0

0.2 0.5 1.0 2.0 5.0 20.0 50.0 200.0

0.2

0.5

1.0

2.0

5.0

10.0

20.0

50.0

100.0

200.0

true σ2

es
tim

at
ed

σ
2

d) λ= 10

Figure 3 Estimated values of σ2 (y) compared to their known true values (x) for the data of Fig. 2
obtained using the penalized-likelihood approach with four different values of the penalty term
coefficient, λ: (A) λ = 0.01; (B) λ = 0.1; (C) λ = 1; and (D) λ = 10. The 1:1 line is indicated.

Full-size DOI: 10.7717/peerj.11997/fig-3

Revell (2021), PeerJ, DOI 10.7717/peerj.11997 7/22



I simply took the values simulated in example 1, above, and randomized them among
nodes. This resulted in exactly the same range of simulated range of values for σ2 as in
Fig. 2, but with rates that were uncorrelated among different parts of the tree. To simulate
data on the tree using my new rates, I simply computed the mean rate for the subtending
edge of each pair of nodes or tips using the same procedure as outlined above.

My simulated data for this example are given in Fig. 4. Just as in Fig. 2, above, panel (A)
shows the simulated rates on each edge of the phylogeny, while panel (B) gives a projection
of the tree into phenotype space in which the data vector used for the projection, x,
was obtained using the rates of panel (A). It should be evident from both figure panels that
in this case there is little autocorrelation of nearby rates of evolution on the tree, just as
we’d expect based on our simulation procedure (Fig. 4).

With my phylogeny and these simulated data, I next repeated exactly the same analysis
that I undertook for the data of Fig. 2 (once again, with four different values of λ: 0.01, 0.1,
1, and 10). I then, likewise, compared the estimated values of σ2 to each of the values
used in simulation. The results of this comparison are shown in Fig. 5. Strikingly, the
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Figure 4 (A) Simulated evolutionary rates, σ2, in which the logarithm of the rate of evolution is uncorrelated between nodes and tips on the
phylogeny; (B) the tree projected into a space defined by time (on the horizontal axis) and a simulated trait vector, x, obtained using the rates of
panel (A). Full-size DOI: 10.7717/peerj.11997/fig-4
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correlations between our generating and estimated values of σ2 are much weaker than they
were in Fig. 3 when the generating process for the simulated rates was the assumed model
in our estimation method: geometric Brownian motion evolution.

Simulated example 3: discrete rate shifts
In addition to Brownian evolution of σ2 (from the first simulation example), and
uncorrelated σ2 (from the second), I also simulated discrete shifts in the rate of Brownian
evolution on the phylogeny. This is analogous to the fitted model in O’Meara et al. (2006;
also see Thomas, Freckleton & Székely, 2006; Revell & Collar, 2009; Beaulieu et al., 2012).
Here, however, when I fit my model using penalized-likelihood, I will not inform my
model-fitting method of the specific locations of the rate shifts on our phylogeny.

To generate data of this type, I first simulated the evolution of discrete regimes on the
same tree as I used to create the data of Figs. 2 and 4 under a continuous-time Markov
chain (the Mk model of (Lewis, 2001; Harmon, 2019)). Simply for the sake of convenience
in subsequent calculations, I filtered any simulation in which more than one transition
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Figure 5 Estimated values of σ2 (y) compared to their known true values (x) for the data of Fig. 4
obtained using the penalized-likelihood approach using four different values of the penalty term
coefficient, λ: (A) λ = 0.01; (B) λ = 0.1; (C) λ = 1; and (D) λ = 10. The 1:1 line is indicated.

Full-size DOI: 10.7717/peerj.11997/fig-5
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between regimes occurred on a single branch. In addition, I moved the transition between
regimes to the precise midpoint of each edge. Since our model for rate evolution is one in
which nodes and tips have values of σ2, this simply makes for an easier comparison
between our simulation and our estimated rates. I also constrained the substitution model
of my rate regimes to be ordered. That is, transitions were only allowed to occur from low
rate to medium rate, and vice versa; and frommedium to high rate, and vice versa—but not
directly between the lowest and highest rate categories.

Having generated different stochastic regimes on the phylogeny, I then proceeded to
simulate phenotypic trait evolution given these regimes. For my low, medium, and high
rates, I arbitrarily set σ2 to be equal to 0.1, 1, and 10, respectively. The resultant phylogeny
and simulated data are given in Fig. 6.

Just as for the previous two examples, I fit our multi-rate Brownian motion model to
these data using penalized-likelihood for four different values of the smoothing penalty
coefficient, λ (λ = 0.01, 0.1, 1, and 10). I then compared the estimated values from our fitted
models to the generating values from simulation. The results can be seen in Fig. 7.
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Figure 6 (A) Simulated evolutionary rates, σ2, in which rate of evolution shifts discretely under a continuous-time Markov process; (B) the tree
of panel (A) projected into a space defined by time (on the horizontal axis) and a simulated trait vector, x, obtained using the rates of panel
(A). Full-size DOI: 10.7717/peerj.11997/fig-6
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One substantive difference between Fig. 7 and those prior to it is that in this case
our nodes and tips all belong to one of only three, distinct rate categories: σ2 = 0.1, 1, or 10.
As such, I thought it would also be reasonable to compute the mean estimated value of σ2

for each of the regimes, and then graph these mean values onto our plot. This analysis
is also included in the figure. What’s striking about the result is the close alignment
between the mean estimated and generating values of σ2, particularly for lower values of
the smoothing parameter λ. On the other hand, many of the individual edge-specific σ2

estimates are very far from the true, generating rate values (Fig. 7).

Simulated example 4: invariant rates
For my last simulated example, I generated data for a single trait in which the rate of
evolution, σ2, was constant (and set to σ2 = 1) over all the nodes and branches of the
phylogeny. I then proceeded to fit a multi-rate model using penalized-likelihood, just as I
did for all three of the previous simulations. Finally, I compared the estimated values, and
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Figure 7 Estimated values (grey points) of σ2 (y) compared to their known true values (x) for the data
of Fig. 6 obtained using the penalized-likelihood approach using four different values of the penalty
term coefficient, λ: (A) λ = 0.01; (B) λ = 0.1; (C) λ = 1; and (D) λ = 10. Black points give the mean
estimated value of σ2 for each simulated regime. The 1:1 line is also indicated.
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their means, to the known, true value of σ2 for the same four levels of our smoothing
coefficient, λ (λ = 0.01, 0.1, 1, and 10). The result of this analysis can be seen in Fig. 8.

In this figure, and in contrast to the equivalent plots from prior simulations, I’ve
intentionally kept the x and y axes consistent between each figure panel. What the plots
show is, firstly, that the mean σ2 across all edges of the phylogeny under our multi-rate
penalized-likelihood analysis (shown using the heavy black dot on each panel) tends to be
quite similar to the true single rate across each of the four values of λ explored here, as
well as to the MLE of σ2 for a single rate model (shown using the horizontal dotted line;
Fig. 8), as estimated using the geiger R package (Pennell et al., 2014). Secondly, the plot
shows that for increasing values of λ, variation among edges of the tree decreases and
eventually converges on the MLE for a single rate (Fig. 8). Both of these results are
properties that we expected for our estimation procedure.
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Figure 8 Estimated values (grey points) of σ2 (y) compared to their known true values (x) for data
simulated with a constant rate of evolution, σ2 = 1. Vertical and horizontal lines show the true
rate of evolution from the simulation, and the Maximum Likelihood Estimate of the rate obtained
in a single-rate analysis (respectively). The black points in each panel shows the mean estimated value of
σ2 across all edges of the tree. Full-size DOI: 10.7717/peerj.11997/fig-8
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Analysis of body mass evolution in mammals
Finally, I also analyzed a simple dataset for overall body mass evolution in a small
phylogeny of mammals. These data, which consist of values for mass in kg transformed to
the log scale and a phylogeny of 49 mammalian species, are from Garland, Harvey & Ives
(1992) and come packaged with the R phylogenetics library phytools (Revell, 2012). I fit
our variable-rate Brownian model with penalized-likelihood using the same four values of
λ as I employed with simulated data (λ = 0.01, 0.1, 1, and 10). Then, I graphed the fitted
models using the corresponding phytools plotting method for our fitted model object.
This maps the estimated rates onto the edges of the tree and can use a color gradient that is
specified by the user. Here, I used an inverted heat.colors gradient from the R package
grDevices (R Development Core Team, 2020).

What’s most notable about the result (shown in Fig. 9) is that estimated rates are highly
correlated between analyses using different values of λ, even if their absolute magnitudes
differ. Qualitatively, this analysis consistently reveals that the highest rates of body mass
evolution in our tree are found among the Artiodactyla (even toed ungulates, such as deer,
moose, bison, etc.), while the lowest rates of body mass evolution are observed for the
Perissodactyla (odd-toed ungulates, such as horses and tapirs; Fig. 9).

Notes on implementation
The model and methods of this study have been implemented for the R statistical
computing environment (R Development Core Team, 2020), and all simulations and
analyses were conducted in R. The penalized-likelihood method that I describe in the
article is implemented as the function multirateBM of my phytools R package (Revell,
2012). phytools in turn depends on the important R phylogenetics packages ape (Paradis &
Schliep, 2019) and phangorn (Schliep, 2011), as well as on a number of other R libraries
(Venables & Ripley, 2002; Ligges & Mächler, 2003; Lemon, 2006; Plummer et al., 2006;
Chasalow, 2012; Becker et al., 2018; Gilbert & Varadhan, 2019; Azzalini & Genz, 2020; Qiu
& Joe., 2020; Warnes, Bolker & Lumley, 2020; Goulet et al., 2021; Pinheiro et al., 2021).
Finally, some analyses in the latter part of the article were done with the help of the geiger
package (Pennell et al., 2014).

DISCUSSION
Phylogenetic comparative analysis is one of the leading weapons in the arsenal of
evolutionary biologists interested in understanding and characterizing the history of life on
this planet (Nunn, 2011; Garamszegi, 2014; Harmon, 2019). Many phylogenetic
comparative methods have been developed in recent years, and a number of these are
specifically designed to model heterogeneity in the tempo or mode of evolution among
branches and clades of the tree (e.g., O’Meara et al., 2006; Revell & Harmon, 2008; Revell
et al., 2012; Beaulieu et al., 2012; Uyeda & Harmon, 2014; Caetano & Harmon, 2017).

In the present article, I describe a new phylogenetic comparative method—
implemented as a function in my phytools R package (Revell, 2012). In this method, which
I’ve developed to analyze the evolution of a single continuously-valued trait on the
phylogeny, the rate of evolution (σ2) is free to vary from branch to branch in the tree.
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Model-fitting is done using the technique of penalized-likelihood, in which the penalty
term is a function of the negative log probability density of the rates, assuming that the
rates themselves evolve by a geometric Brownian process on the phylogeny.
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Figure 9 Fitted variable-rate Brownian motion model for log(body mass) evolution in 49 species of mammals. Different values of λ correspond
to different penalty coefficients for rate variation among edges of the tree. Note that each panel has a different scale.
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Revell (2021), PeerJ, DOI 10.7717/peerj.11997 14/22



I have applied this method to datasets simulated under a variety scenarios of potential
interest to biologists that might consider using this approach with their own data. The first
of these, in which the logarithm of the rate of evolution (log(σ2)) evolves by Brownian
motion, is the underlying model that is assumed by the analysis method of this article.
I show that for a range of different values of the smoothing parameter, λ, estimated
evolutionary rates are correlated with the generating rates of the simulation (Fig. 3).

Under other simulation conditions we see different results. For instance, when the
evolutionary rates are random and uncorrelated among edges, our estimated rates from the
penalized-likelihood method also tend to be correlated with the generating rates used for
simulation (Fig. 5)—though this correlation is much weaker than when the generating rates
evolved via a geometric Brownian process. This behavior is understandable. When
evolutionary rates are uncorrelated across the tree, there is simply not enough information in
the tip data for a single character to reliably estimate the rates of evolution at each edge or node.

When data were generated with discrete rate shifts on the tree, the mean estimated rate
across edges in each regime closely matched the generating value of the rate (Fig. 7).
Finally, when there was no variation at all in rate among the edges of the phylogeny, the
arithmetic mean estimated rate tended to quite closely match the MLE of σ2 from a simple,
one-rate model (Fig. 8).

In addition to this simulation, I applied the model to a classic empirical dataset of log
body mass in 49 species of mammals (Garland, Harvey & Ives, 1992). Although the
variation in estimated rates among edges decreased with increasing λ, the qualitative
pattern of variation was quite similar among different λ values—generally showing the
highest rates of evolution of body mass in artiodactyls (even-toed ungulates, such as deer,
cows, and antelopes), and the lowest estimated values of σ2 for the perissodactyls (odd-toed
ungulates, such as horses and tapirs).

Why not just estimate r2BM (or λ)?
Earlier in the article, I mentioned that it was probably not possible to simultaneously
estimate the evolutionary rates for each edge or node in the tree (r20, r

2
1, and so on) and the

rate of evolution of the rates themselves (let’s call it r2BM); however, at the time I didn’t say
why this seemed likely to be the case. An imaginable (but ultimately untractable, as
we’ll see) solution to this problem would be to simply take the following expression for the
likelihood (in which the first part is the probability density of our trait observations
given our rates; and the second part is the probability of our rates, given an underlying
model for their evolution) and maximize it.

lðr20; r21;…;r2BM; x0jx;CextÞ ¼
exp½� 1

2
ðx � 1x0Þ0T�1ðx � 1x0Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffi

2pnjTjp

�
exp½� 1

2
ðs� 1s0Þ0ðr2BMCextÞ�1ðs� 1s0Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pnjr2BMCextj
p

(4)
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In Eq. (4), all the terms are as previously defined for Eqs. (1), (2), and (3); plus r2BM is the
rate of geometric Brownian evolution of the rates (s0, s1, etc.), and 1 is a conformable vector
of 1.0 s (n × 1 in the first part of the equation, and n + m − 1 × 1 in the second).

The problem with this logic, unfortunately, is that Eq. (4) will always go to ∞ as
r2BM ! 0. This is simply because a proper probability density function integrates to 1.0,
and since the sis are not observed, the second part of Eq. (4) will have zero width and
infinite height when all values of si are equal and r2BM ¼ 0. A similar difficulty would apply
to any scaling coefficient (such as λ) that multiplied the second term in our likelihood
expression but not the first.

How to choose a value of λ
I have so far presented a new, penalized-likelihood approach for modeling heterogeneity in
the rate of evolution for a continuously-valued trait on the phylogeny. Unfortunately, since
neither λ nor the rate parameter of the Brownian evolutionary process of the rates are
estimable, our method requires that we simply assign a value for the penalty or smoothing
coefficient of our fitted model. Here, I employed the relatively simplistic tactic of trying
multiple values of λ for each simulated or empirical dataset, and then comparing the
results. Analyses like those shown in Fig. 9 suggest that it might be possible to draw some
credible inferences about evolution using this strategy.

Nonetheless, most readers are probably interested in a more rigorous approach to
identifying reasonable values of the penalty or smoothing coefficient, λ. Although I’ve not
yet explored it for the model of this paper, a tactic that seems to work well for other
penalized-likelihood methods is cross-validation (Stone, 1974; Efron & Gong, 1983).
In cross-validation we would first select a value of λ and fit the model using this value.
Next, we would successively drop one or more observations (tips) from our tree (either at
random or one-by-one), re-estimate rates for all nodes, and then compare our estimated
rates to their values from the model when it had been fit using the full dataset.
Our preferred value for λ would be the one that minimized the sum of squared differences
between the measured rates in the global estimate and those computed from our
subsampling procedure. This precise approach has proved successful in other
rate-smoothing methods, including in phylogenetics (Sanderson, 2002; Smith & O’Meara,
2012). I’ve not yet implemented cross-validation in phytools, but it would not be difficult to
script in R for phytools users already adept at such things. Unfortunately, model-fitting
using the phytools function in which this method is implemented (multirateBM) is
extremely time-consuming, and so this cross-validation procedure would take a very long
time to run on even a single dataset as it requires that the model be fit to our data hundreds
of times or more in one analysis (Smith & O’Meara, 2012).

Relationship to other methods
The penalized-likelihood method of this article is related to various other phylogenetic
methods designed to investigate how the rate or evolutionary process of a continuous
character changes over time or in different parts of a phylogeny. A very important
intellectual progenitor of the method is an approach developed by O’Meara et al. (2006;
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also see Thomas, Freckleton & Székely, 2006), and implemented first in the software
BROWNIE and subsequently in my phytools R package (Revell, 2012). According to the
O’Meara et al. (2006) method, we first specify different regimes on the tree, and then we
proceed to fit a Brownian motion model of evolution in which the rate of evolutionary
change, σ2, varies as a function of our mapped regimes. If each branch in the phylogeny
was assigned to a unique regime, this would be equivalent to setting λ = 0 in our
penalized-likelihood method—thus allowing σ2 to change from branch to branch without
penalty. (Although it’s unlikely that the parameter estimates would be sensible in this case.)

A variety of other approaches also allow the rate of evolution to vary discretely in
different parts of the phylogeny, but do not require that these regimes be specified a priori
by the investigator. For instance, Eastman et al. (2011) developed a method to identify the
locations of discrete Brownian evolution rate shifts on the phylogeny using Bayesian
reversible-jump Markov chain Monte Carlo (rjMCMC). This method was initially
implemented in the auteur R package, but then eventually incorporated into geiger
(Pennell et al., 2014). Subsequently, Uyeda & Harmon (2014) developed a similar rjMCMC
method, but extended it to evolutionary models other than Brownian motion, such as the
well-known Ornstein-Uhlenbeck process (Hansen, 1997; Butler & King, 2004). This
method is implemented in the R software bayou (Uyeda, Eastman & Harmon, 2020).

In parallel, Revell et al. (2012) developed a Bayesian method to identify discrete shifts in
the evolutionary rate that used standard (rather than reversible-jump) MCMC. Likewise,
Venditti, Meade & Pagel (2011) independently developed a similar rjMCMC method to
that of Eastman et al. (2011) or Uyeda & Harmon (2014), now implemented in the popular
software BayesTraits (Meade & Pagel, 2021). Since when we average across the posterior
sample of rates and rate regimes in any of these methods we can theoretically obtain a
different rate for each edge of the phylogeny, their results will in some ways resemble those
obtained from the penalized-likelihood approach I’ve presented herein. Nonetheless, these
different MCMC and rjMCMC techniques invariably involve discrete (rather than
continuous) changes in the evolutionary rate between (or along) branches of the
phylogeny. Finally, the Bayesian MCMC phylogenetics software BAMM, by Rabosky
(2014), includes a method for detecting both discrete rate shifts and continuous changes in
the evolutionary rate through time. This too is related to the approach that I have
presented in the current article.

Separately from phylogenetic biology, the method of this paper is also closely related to
an important model from the financial literature called a SABR volatility model, in which
SABR is an acronym for ‘stochastic a (alpha), β (beta), ρ (rho)’ (Hagan et al., 2002).
The SABR model is described by a set of stochastic differential equations in which the
derivative or stock price changes through time under a diffusion process, but where the
rate of diffusion also changes randomly with rate parameter a (Hagan et al., 2002). In fact,
one could say that model of this article is a special case of SABR, but in which the β term of
the model (which describes the skewness of stochastic volatility) and the ρ term (which
describes the correlation between the stochastic term for change in price and a in the
model) are both set to zero. Just as the model of this study reduces to a constant-rate
Brownian evolution model as the penalty coefficient, λ, is increased, SABR too reduces to a
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simpler model called the constant elasticity of variance (CEV) model (Cox, 1975; Beckers,
1980) if a (the volatility of stochastic volatity term) is fixed to 0. Seeing this connection
between stochastic volatility models in finance, such as the SABR model, and the method
of this study also opens up the possibility of adapting other parts of this class of model
to phylogenetic comparative analysis, such as correlation between rate volatility (r2BM in
our method) and the rate itself (r2i ). This would be equivalent to ρ ≠ 0 in the SABR model.

One important difference between the model of this study and SABR, is that I have
essentially assumed a single value of of σ2 for each edge of the tree—which evolves from
edge to edge under a process of geometric Brownian motion. I’ve then focused on
estimating the rates, r2i , for all the nodes and tips of the phylogeny, rather than the rate of
change of the rate itself, r2BM . This is because, as noted in a preceding section, allowing all
of the r2i and r2BM to vary freely guarantees that when we maximize the expression for
their joint likelihood (given by Eq. (4), above), all r2i will converge on a constant value
and r2BM on zero. There are clues in the financial literature that it may be possible to
calibrate our model and thus estimate r2BM (e.g., West, 2005; Fatone et al., 2013; Fatone
et al., 2014); however, I’ll leave it to others cleverer than I to figure out if this is possible
and how.

What about fossils?
In both the simulations and empirical example I’ve focused on observations for only extant
taxa. For better or for worse, this is extremely common in phylogenetic comparative
biology (see (Slater & Harmon, 2013; Blomberg, Rathnayake & Moreau, 2020) for a
discussion of the problem). In general, I would expect that the method of this paper will
perform relatively well, even absent information from the fossil record, in identifying
heterogeneity of the rate of evolution, σ2, when this occurs between clades of relatively
recently diverged lineages. On the other hand, under circumstances of both temporal and
among-clade rate heterogeneity, the lack of information from fossil lineages has the
potential to become much more problematic (Blomberg, Rathnayake & Moreau, 2020).
Fortunately, if their phylogenetic placement is unambiguous, it would be straightforward
to include trait measurements from fossils in the type of analysis presented here.
In that case, fossil species would be included as either terminal edges of zero length at the
node, or along the branch, in or onto which they’ve been placed, or as extinct relatives
of extant taxa. (This will depend on whether or not we’ve hypothesized that the fossil
species is a direct ancestor of a living taxon or belongs on a separate branch.)

CONCLUSIONS
Numerous phylogenetic comparative methods have been developed in recent years. Many
of these are designed to model heterogeneity in tempo and mode across the nodes and
branches of a phylogeny. Here, I present a simple penalized-likelihood method for
modeling and graphing variation in the tempo of evolutionary change across the edges of a
phylogeny. The method requires that we (arbitrarily) select a penalty or smoothing
coefficient, λ, that will in turn greatly affect our inference about the magnitude of rate
heterogeneity among branches in our tree. Nonetheless, I suggest that a cross-validation
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approach (following Smith & O’Meara (2012)) might prove useful for more rigorous
selection of this coefficient.
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