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Abstract

Wireless x-haul networks rely on microwave and millimeter-wave links between 4G and/or 5G
base-stations to support ultra-high data rate and ultra-low latency. A major challenge associated with
these high frequency links is their susceptibility to weather conditions. In particular, precipitation may
cause severe signal attenuation, which significantly degrades the network performance. In this paper, we
develop a Predictive Network Reconfiguration (PNR) framework that uses historical data to predict the
future condition of each link and then prepares the network ahead of time for imminent disturbances.
The PNR framework has two components: (i) an Attenuation Prediction (AP) mechanism; and (ii)
a Multi-Step Network Reconfiguration (MSNR) algorithm. The AP mechanism employs an encoder-
decoder Long Short-Term Memory (LSTM) model to predict the sequence of future attenuation levels
of each link. The MSNR algorithm leverages these predictions to dynamically optimize routing and
admission control decisions aiming to maximize network utilization, while preserving max-min fairness
among the base-stations sharing the network and preventing transient congestion that may be caused
by re-routing. We train, validate, and evaluate the PNR framework using a dataset containing over 2
million measurements collected from a real-world city-scale backhaul network. The results show that
the framework: (i) predicts attenuation with high accuracy, with an RMSE of less than 0.4 dB for a
prediction horizon of 50 seconds; and (ii) can improve the instantaneous network utilization by more than
200% when compared to reactive network reconfiguration algorithms that cannot leverage information

about future disturbances
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(a) City-scale backhaul network (b) Network Abstraction

Fig. 1. (a) A wireless backhaul network in Gothenborg, Sweden (the map area is of approximately 10x10 km?). The data
utilized in this paper was collected from this network by Ericsson AB. (b) An abstraction of the network topology (described

in Sec. II).
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I. INTRODUCTION

4G and 5G networks often use high bandwidth microwave and millimeter-wave (mmWave)
links in their fronthaul, midhaul, and backhaul (x-haul) networks [1] for supporting applications
that require high data rate and ultra-low latency. These wireless x-haul networks can connect a
large number of base-stations, covering entire cities, as depicted in Fig. 1(a). A main challenge
of using microwave and mmWave links is their high susceptibility to weather conditions. The
signal attenuation due to different atmospheric and weather phenomena is described by the
International Telecommunication Union (ITU) in [2]-[5] and depicted in Fig. 2. It can be seen
that, apart from the oxygen resonance frequency at 60 GHz, the dominant factor affecting link
attenuation is precipitation. This implies that signal attenuation may vary significantly over time
and over geographic locations. Hence, the need for a high bandwidth wireless x-haul that is
robust to variations in the network conditions calls for the development of a predictive network
reconfiguration framework that can dynamically allocate resources based on current and future
estimated network conditions.

Until recently, only local Physical/Link layer mechanisms were employed to alleviate the
impact of the time-varying conditions of the links on the network performance. For example, the
Automatic Transmit Power Control is a commonly used mechanism that adjusts the transmitter
power based on measurements of the link attenuation [6]. However, with the emergence of

Software-Defined Networking (SDN) [7]-[9], it is now possible to develop global Network
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Fig. 2. Signal attenuation (in dB/km) for various atmospheric phenomena as a function of frequency [2]. The commonly used

bands of 640 GHz (K-band) and 60-90 GHz (E-band) are highlighted.

layer mechanisms (such as NEC’s backhaul solution in [10]) that monitor the entire network
and react to performance drops caused by weather-induced disturbances. A main drawback
of reactive reconfiguration mechanisms is their delay in recovering from performance drops,
which may severely affect time-sensitive applications. To overcome this challenge, predictive
reconfiguration mechanisms can be employed.

Prior work on predictive network reconfiguration algorithms (see [11] for a survey) focused
mainly on alleviating the effects of node mobility [12]-[17], traffic demand variability [18]-[25],
and link quality degradation due to multi-path reflection, line-of-sight occlusion, and interference
[26]—-[33]. Weather effects pose fundamentally different challenges. In particular, weather-induced
attenuation can be severe, affect large contiguous geographic areas, and last for extended periods
of time. The literature on the prediction of microwave and mmWave signal attenuation due to
weather conditions uses meteorological data (e.g., weather-radar echo measurements) to predict
the current/future attenuation levels [34], [35] or uses past attenuation measurements to predict
future attenuation levels [36]—[40]. Most relevant to this paper is our prior work in [37] which
employs an encoder-decoder LSTM model to predict future link attenuation levels. The main
drawbacks of [37] are that: (i) its prediction mechanism does not capture the significant spatial
correlation of the rain-induced attenuation; and (ii) its prediction mechanism is not employed to
inform any algorithm or protocol.

The literature on predictive weather-aware reconfiguration algorithms contains only a few
works [34]—[36], [41]. Most of these works, in particular [34], [35], [41], develop modifications to
standard distributed routing protocols such as Open Shortest Path First (OSPF) which due to the



lack of centralized coordination may converge slowly, making them unsuitable for networks that
support time-sensitive applications. Only [36] leverages SDN to perform centralized predictive
network-wide reconfiguration. The framework proposed in [36] predicts future link attenuation
levels using a model specific to rain fading and then computes current and future routing decisions
aiming to maximize throughput. Some limitations of the solution proposed in [36] are that: (i) its
attenuation prediction mechanism does not capture the spatial correlation of the weather-effects;
(i1) its prediction mechanism can only be employed during periods of rain; (iii) its network
reconfiguration mechanism allows transient link congestion (i.e., it allows flows to temporarily
exceed the link capacity); (iv) its network reconfiguration mechanism does not take fairness into
account; and (v) its re-routing mechanism does not support flow splitting.

Our contributions: In this paper, we develop and evaluate, based on a real dataset, a Predictive
Network Reconfiguration (PNR) framework that leverages existing local Physical/Link layer
mechanisms and adds two new components: an Attenuation Prediction (AP) mechanism; and a
Multi-Step Network Reconfiguration (MSNR) algorithm.

The AP mechanism employs an encoder-decoder LSTM model to predict the sequence of future
attenuation levels based on past measurements, capturing both time and spatial correlation that
are typical of weather-effects without incorporating weather-related models, which allows it to
be used both in dry and rain periods, and without relying on meteorological data from external
sources such as weather radars. To train, validate, and evaluate the AP mechanism, we use a
unique dataset obtained from the real-world city-scale backhaul network in Gothenborg, Sweden
(see Fig. 1(a)) collected by Ericsson AB. The dataset contains 2,295,000 measurements of link
attenuation. In Fig. 3(a), we display the evolution of the measured attenuation for every link in
the backhaul network over a period of 1.9 hours. Notice that in the interval between ¢ = 300
and 600 time-steps there is an increased attenuation due to rain. The spatio-temporal correlation
is evident. The AP mechanism leverages this correlation to achieve high prediction accuracy. In
particular, the AP mechanism achieves a Root Mean Square Error (RMSE) of less than 0.4 dB for
a prediction horizon of 50 seconds. We evaluate two benchmark time series prediction methods
that do not capture the spatial correlation of the weather-effects and show that both of them can
perform 30% worse than the AP mechanism in terms of RMSE.

The MSNR algorithm leverages the predictions from the AP mechanism and uses Model
Predictive Control (MPC) [42] to compute the sequence of current and future routing and

admission control decisions that: (1) maximize network utilization, while (i1) achieving max-min



fairness among the base-stations sharing the network and (iii) preventing transient congestion
that may be caused by re-routing. This sequence of routing and admission control decisions are
employed by the centralized SDN controller to reconfigure the network over time. For example,
based on a prediction that a set of links will become unavailable in 30 seconds, the MSNR
algorithm can determine when it is optimal for the SDN controller to redirect flows in order to
avoid potential interruptions to service and can decide whether or not it is necessary to revoke
network slices from low priority services. An important challenge associated with the MSNR
algorithm is computational complexity. In Sec. IV-C, we proposed a principled implementation
of the MSNR algorithm which has a computational complexity that grows polynomially with the
prediction horizon, as opposed to a naive implementation that can have exponential complexity.

We evaluate the PNR framework using the data collected from the backhaul network. Our
results show that the PNR framework can improve the instantaneous network utilization by more
than 200% when compared to reactive network reconfiguration algorithms that do not prepare
the network for future disturbances. To the best of our knowledge, this is the first attempt to
propose and evaluate, based on a real dataset, an integrated framework for x-haul network
reconfiguration that leverages the spatio-temporal correlation of the weather-effects to jointly
optimize routing and admission control decisions. A patent including some of the results is
pending [43].

This paper is organized as follows. Section II describes the network model and the dataset.
In Sec. III, we develop the AP mechanism. In Sec. IV, we develop the MSNR algorithm. In
Sec. V, we evaluate the performance of the PNR framework. Section VI concludes the paper

and discussed future work.

II. PROBLEM FORMULATION AND DATASET

In this section, we present the network model used to develop the PNR framework. We first
describe the model in general and then establish the connection between the model and the
real-world backhaul network. Let G = (V, E) be the directed graph that represents an x-haul
communication network with base-stations, also called nodes, n € V' = {1, 2, ..., N}, connected
by wireless links (k,!) € E where k,l € V and (k,[) represents the link & — [. Time is divided
into time-steps with index ¢ € {1,2,...,T}, where T is the time-horizon and the time interval
between t and t + 1 is A = 10 seconds. Let d,, > 0 be the demand associated with commodity

n € V. The demand d,, represents the uplink traffic that base-station n aggregates from its



associated users. Let z,; € [0, 1] be the fraction of the demand d,, admitted during time-step t.
It follows that the admitted demand from base-station n during time ¢ is given by z, .d,,. For
simplicity, we assume that demands d,, remain fixed over time and that node N is the common
destination for all commodities n € V' \ N. Naturally, for the common destination N, we have
dy = 0 and zy, = 0,Vt. Let f,; (kD) € [0, 1] be the fraction of the admitted demand z, ;d,, that

flows through link (k,[) during time ¢. By definition

FEW = 0,%(k,n) € B,V ; (1)
Y =0,Yn € V,Y(N,I) € BVt ; 2)
FED = 0,90 € V,Y(k,1) ¢ B,Vt, 3)

where (1) is a constraint on the incoming flows at the source nodes, (2) is a constraint on the
outgoing flows at the destination node N, and (3) enforces zero flow on non-existing links. It
follows that the fotal flow in link (k,l) € F during time ¢ is given by 3" 2, ,d, fﬁt’l).
Feasibility and Fairness. We assume that G = (V, F) and d,, are given and remain fixed over
time. We assume that routing and admission control decisions implemented by the centralized

SDN controller at time-step ¢, namely f,; e

and z, ., respectively, remain fixed in the interval
between ¢t and ¢ + 1. Routing and admission control decisions at each time-step ¢ are feasible
when they satisfy flow conservation and capacity constraints. The flow conservation associated

with commodity n € V' and node [ € V' at time ¢ is given by

-1, l=n

N N
S-S =41 =N 4)

k=1 m=1
0, otherwise

where [ = n indicates that node [ is the source of commodity n and [ = N indicates that node [

is the destination of commodity n. Let cgk’l) > 0 be the capacity of link (k,[) at time ¢ and let

Aﬁﬂ) > 0 be the predicted capacity of link (k,) at time ¢+ 1. Since the exact moment between ¢

and t+1 in which the capacity changes from cg D to cgﬂ) is unknown, we assume the worst-case
and represent the capacity in this interval by mm{ct ct 1 } Hence, the capacity constraint

associated with link (k,l) € E at time ¢ is given by

SNV o £ < min{ el Y 5)



Definition 1 (Feasibility): The set of routing and admission control decisions at time ¢, namely
{fé{ft’l),zn,t}, Vn € V, V(k,l) € E, is feasible when it satisfies the flow constraints in (1)-(3),
the flow conservation in (4) and the capacity constraints in (5).

Definition 2 (Max-Min Fairness): The feasible set { f,(ft’l), Znt} at time-step ¢ has admission
rates z,, that are max-min fair if, in order to maintain feasibility, an increase of any =z,
necessarily results in the decrease of z,,, of another source m for which z,,; < z,;.

The goal of the PNR framework is to dynamically optimize routing and admission control
decisions over time, taking into account future predicted network conditions, aiming to maximize
the cumulative sum of admission rates Zthl 22:11 zn+» While ensuring that, in each and every
time-step t, the selected feasible set { fT(ft’l), Znt} 18 max-min fair and can be implemented without
inducing transient congestion. Recall that transient congestion can cause increased delay which
can severely affect time-sensitive applications. This challenging optimization problem and its
computational complexity are addressed in Sec. IV.

Real-World Network and Dataset. Consider the backhaul network in Fig. 1(a) composed of
17 wireless links whose lengths vary from 0.6 to 5.9 km and that operate between 18 and 40 GHz.
The directed graph G = (V, E') with N = 13 nodes in Fig. 1(b) is generated by assuming that
link endpoints in Fig. 1(a) that are in close proximity (up to 300 m apart) are connected by fiber
which is not capacity-limited. Under this assumption', a node in G' = (V, F)) represents one or
more neighboring link endpoints in Fig. 1(a).

The backhaul network in Sweden contains a centralized data collection system (described in
detail in [44]) that periodically gathers measurements from each link (k,l) € E in intervals of
A = 10 seconds. Each measurement in time-step ¢ includes the transmitted and received signal

levels (in dB) represented by P}’;lg

and Pg;lg , respectively. According to [44], the extra load
associated with the transmission of measurements via the backhaul network is insignificant.

In this paper, we consider that, in each time-step ¢, the following events occur: (i) the data
collection system shares the latest measurements with the centralized PNR framework; (ii) the
AP mechanism predicts the future attenuation levels xgk’l) = P}i”lg - Pg;lg of every link and
the MSNR algorithm generates new routing f,gﬁ;l) and admission control z,; decisions; and
(iii) the SDN controller implements the new network configuration by propagating { fyft’l), Znt}

to the corresponding base-stations. We assume that both the transmission of measurements

"Notice that other assumptions could have been made but they should not affect the generality of the results.



{PT’;lt , Pg‘;lg } and the propagation of routes and admission control updates { fT(Llft’l), Znt} utilize
a negligible amount of resources from the backhaul network. It is important to emphasize that
these control packets are transmitted at most once in every 10 seconds.

To train, validate, and evaluate the PNR framework we use the directed graph G = (V, E)
together with a dataset containing 2,295, 000 measurements (i.e., 135,000 per link) and a train-
validation-test split of 80-10-10. The test data utilized to evaluate the PNR framework in Sec. V
i1s composed of three sequences of measurements, each containing a period of rain: 7Test Seq. 1
with 87,890 measurements collected over a period of 14.3 hours on 2015-06-02, Test Seq. II
with 11,900 measurements collected over a period of 1.5 hours on 2015-05-19, and Test Seq. 111
with 94, 690 measurements collected over a period of 15.5 hours on 2015-06-17.

III. ATTENUATION PREDICTION MECHANISM

In this section, we present the AP mechanism which predicts future link attenuation lev-
els based on historical data, capturing both fime and spatial correlation that are typical of
weather-effects. Next, we describe the encoder-decoder LSTM model and the training process.
In Sec. V-A, we compare the performance of the AP mechanism with two benchmark time series

prediction methods.

A. Encoder-Decoder LSTM Model

The encoder-decoder LSTM model is a Recurrent Neural Network designed to address sequence-
to-sequence prediction problems such as machine translation, natural language generation, and
speech recognition [45]-[47]. The model is composed of two main parts: the encoder, which
maps the input sequence into a state vector and the decoder, which maps the state vector into
a sequence of predictions.

The AP mechanism employs the sliding-window method and the encoder-decoder LSTM
model illustrated in Figs. 3(a) and 3(b), respectively, to predict the next / attenuation levels
based on the previous W measurements. In particular, let acgk’l) = P}i’ft) —Pg;’lt) be the attenuation
measurement for link (k,[) € E at time ¢, and let x; = (a:,gk’l)) and &4 p = (xtﬂ)) be the vector
of attenuation measurements and the vector of h-steps-ahead attenuation predictions for all
links at time ¢, respectively. In each time-step ¢, the encoder-decoder LSTM model employs
the sequence of measurements in the input window {xi—w1, Tt—w42,..., &} to predict the

sequence of attenuation levels in the prediction window {&yy1,%¢+2, .. ., T++m}- Notice that the
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Fig. 3. (a) Measured attenuation for all the 17 links in the network in Fig. 1 with time-steps ¢ separated by 10 seconds
(adding up to 1.9 hours) together with an illustration of the sliding-window method with input window size of W time-steps and
prediction window size of H time-steps. The different baseline attenuation levels are due to the different characteristics of the
links in terms of distance between base-stations and transmission frequency. An increased attenuation due to rain is observed
in the interval between ¢ = 300 and 600 time-steps. (b) Encoder-decoder LSTM model that employs the last W measurements
{Zi—w41,Te—w+2,..., ¢} from every link in the network (i.e., the input window) to predict the future H attenuation levels

{&t+1,&t+42,..., Bt m} in each link (i.e., the prediction window).

measurements contained in the input window allow the encoder-decoder LSTM model to capture
the spatio-temporal correlation that is typical of weather-induced attenuation. We employ an input
window size of W = 12 and a prediction window size of H = 5, which corresponds to 120
seconds and 50 seconds, respectively.

We train the encoder-decoder LSTM model to minimize the prediction error. In particular,
consider a dataset with a sequence of attenuation measurements in the interval ¢ € {1,...,T}.

The encoder and decoder are jointly trained to minimize the objective function:

L£O) =" S0 |l @esn — Beqn || (6)

where ||| represents the Euclidean norm, and O represents the parameters of the encoder-decoder
LSTM model, i.e., weights and biases. We implement the encoder and the decoder LSTM with
one hidden layer containing 128 units. We use the dataset collected from the backhaul network to
train, tune, and evaluate the AP mechanism. We train the AP mechanism using Backpropagation
Through Time [48] and Adaptive Moment Estimation (Adam) [49] with a batch size of 150.

The prediction accuracy of the AP mechanism is evaluated in Sec. V-A.

IV. MULTI-STEP NETWORK RECONFIGURATION ALGORITHM

SDN enables the design of algorithms that dynamically reconfigure the entire network. Build-

ing on that, in this section, we develop the MSNR algorithm, which leverages information about



links’ future conditions to compute the sequence of current and future routing and admission
control decisions that attempt to maximize network utilization, while achieving max-min fairness
(in every time-step t) among the base-stations sharing the network and preventing transient
congestion that may be caused by re-routing. Hereafter, we denote this sequence of routing and
admission control decisions as the optimal sequence of network configurations.

The problem of finding the optimal sequence of network configurations is a generalization of
the well-known Maximum Concurrent Flow (MCF) problem [50], [51] for the more challenging
setting where: (i) a sequence of predictions of future network conditions are available and (ii)
transient congestion due to re-routing is taken into account. The MSNR algorithm employs
MPC to address this generalized MCF optimization problem. In particular, in each time-step ¢,
the MSNR algorithm uses its knowledge of future (predicted) network conditions to evaluate
and compare the performance of different congestion-free sequences of network configurations
{fr(L]ft’Qh, Znith ), V€ V,Y(k,1) € E, Vh € {0,1,..., H — 1} and then it selects the max-min
fair sequence that maximizes the cumulative sum of admission rates ZhH:_Ol 252—11 Znt+h- The
SDN controller implements the first configuration in the selected sequence, i.e., the configuration
{ f,(l]fgl), Zn1} associated with the current time ¢. This iterative process allows the SDN controller
to account for future predicted network conditions when optimizing the current network config-
uration.

An important challenge associated with the MSNR algorithm is computational complexity. A
naive implementation of the MSNR algorithm computes and compares the performance of all
possible sequences of network configurations within the prediction window {¢,...,t+ H}. The
number of such sequences grows exponentially with /7, as we will discuss in Sec. IV-C, which
could render the MSNR algorithm impractical. To overcome this challenge, we develop a prin-
cipled implementation of the MSNR algorithm which employs the structure of the optimization
problem to recursively explore the space of all possible sequences of network configurations.
This recursive method reduces the complexity from exponential O(2) to polynomial O(H?).

Prior to introducing the MSNR algorithm, we describe: (i) the adaptive modulation mechanism
in [52], which is a Physical layer mechanism employed by the backhaul network in Sweden to
maximize link capacity over time; and (i1) the SWAN mechanism developed in [53], which is a
Network layer mechanisms that eliminates transient congestion that may be caused by re-routing.
The MSNR algorithm builds upon both these existing solutions to address the generalized MCF

problem, enabling the optimization of routing and admission control decisions over time in a



setting where predictions of future network conditions are available.

A. Adaptive Modulation Mechanism

Three parameters that can be dynamically adjusted to compensate for high attenuation levels in
microwave and mmWave links are: the transmission power, the coding rate, and the modulation
scheme. The dataset utilized in this paper was collected for a backhaul network that uses radios
similar to the ones described in [44], [52] which: (i) employ a constant transmit power P}Z’ft)
and a constant coding rate over time; (ii) use Quadrature Amplitude Modulation (QAM) with
adaptive constellation size M; and (iii) use a fixed channel bandwidth of 28 MHz that achieves
a capacity of 45Mbps when M = 4. Recall that when M is increased by a factor of k, the
capacity cﬁk’l)

to [54, Eq. (18)].

increases by a factor of log, k£ and the Bit Error Rate (BER) decreases according

The adaptive modulation (AM) mechanism adjusts the constellation size M over time, aiming
to maximize link capacity c§’“” while keeping the BER above a given threshold. For complying
with the description of the radios in [52, Sec. II.B], hereafter in this paper, we consider a
wireless x-haul network that employs the AM mechanism with hysteresis represented in Table I.
In particular, we consider that every link (k,[) € E uses radios that adapt their constellation size
M at each time-step ¢ based on Table I and on their measured received signal level Pg;t) The
limit up in Table I represents the received signal level in which the adopted M should increase.
The limit down represents the received signal level in which the adopted M should decrease
to keep the BER above the set threshold. Notice that Table I represents a mapping from the

evolution of the received signal levels P}({’;lg over time to the evolution of the link capacities

k.l .
c,g ) over time.

B. The Cost of Re-routing

One possible approach to dynamically optimizing the network configuration without resorting
to predictions of links’ future conditions is for the SDN controller to carry out, in each time ¢,
the following procedure: (i) gather information about the current link capacities cgk’l); (i1) employ
existing solutions to the MCF optimization problem (e.g., [50], [51]) to find the configuration
{ fé’ft’”, Zn+} that maximizes the current network utilization; and (iii) implement the new routing

decisions fé’;’l) and admission rates z,, by sending control packets to the base-stations in the x-

haul network. Upon reception of these control packets, the base-stations add/remove entries from



TABLE I
PARAMETERS ASSOCIATED WITH THE ADAPTIVE MODULATION MECHANISM WITH HYSTERESIS FOR A BER THRESHOLD OF
1079,

M Bitrate (Mbps) Limit up (dBm) Limit down (dBm)

4 45 =72 N/A
16 90 -66 -74
64 135 -62.5 -68
128 157 -61 -64
256 180 -57 -62
512 202.5 -53 -58
1024 225 N/A -54

their routing tables and adjust their network slice admission and provisioning accordingly. Two
important drawbacks of this approach are the delay to recover from performance drops, which is
characteristic of reactive reconfiguration mechanisms, and that it does not take into account the
transient congestion that may be caused by re-routing. Both drawbacks may severely affect time-
sensitive traffic. The MSNR algorithm proposed in Sec. IV-C addresses both drawbacks. In this
section, we discuss the negative effects that re-routing may have on the network performance.
To update routes from fT(Zlft’Ql to f,gi’l), the SDN controller may have to send control packets

to multiple base-stations. Due to communication and processing delays, some base-stations may
(k1)

.t While others still employ old routes f, (Ift’l_)l, which may cause significant

apply the new routes "

transient congestion and over-utilization of communication links, namely violation of the capacity
constraints in (5). Depending on the duration and magnitude of the congestion, data packets
may be severely delayed or even lost. In this case, the re-routing process is clearly imposing a
performance cost that should be taken into account when the SDN controller decides whether
or not to re-route.

In order to reduce the transient congestion associated with re-routing, a common approach
(e.g., [36], [53], [55]) is to subdivide the re-routing process into multiple stages. In each stage,
the SDN controller updates a small number of base-stations, instead of updating all of them
at the same time. Each stage is designed to generate zero (or little) transient congestion and

the complete sequence of stages is designed to lead to the desired final routing configuration.



An important constraint is that the time for completing the re-routing process should be shorter
than the interval between two consecutive time-steps, e.g., t and ¢ + 1, which in this paper is of
A = 10 seconds. In [36], [53], [55], the authors propose different route implementation systems
that attempt to minimize the transient congestion. Yet, these route implementation systems can
only guarantee that re-routing is performed with zero congestion when a portion of the network
capacity is vacant before the update. Naturally, when all links are fully utilized, the first update
to take effect will always congest at least one link.

In this paper, we consider an SDN controller that implements any given set of new routes
féﬁ;l) by employing the SWAN mechanism developed in [53]. The SWAN mechanism leverages
scratch capacity in every link to perform congestion-free re-routing. In particular, the authors
of [53] show that SWAN can update routes, i.e., change from f,g’ft’l_)l to any given f,(blft’l), with
zero transient congestion in at most [1/s,] — 1 stages, where s; € (0, 1] represents the scratch

capacity of the network at time t. Formally, sy 1s given by

S = argmax{ (0,1] sz W fID < (1 - )c,E’“”),V(k,Z)eE}. 7

For details on how the SWAN route implementation mechanism works, we refer the reader to
[53]. Notice that when the network has no scratch capacity, i.e., s; — 0, the SWAN mechanism
needs [1/s;] — 1 — oo stages to complete a single congestion-free re-routing process. To limit
the re-routing time, we impose a lower bound of s,,,;,, = 0.05 on the scratch capacity, s;, needed
for a re-route. Hereafter in this paper, we assume that the SDN controller is allowed to re-route
at time ¢ if and only if s; > s,,;,, = 0.05.

The SDN controller employs the MSNR algorithm to compute the optimal sequence of network
configurations over time and, when necessary, it employs the SWAN mechanism to implement
new routes. In particular, in each time-step ¢, given the prior routing and admission control
decisions, { fgft’l_)l, Zni-1}, the SDN controller employs (7) to calculate the current scratch
capacity s;. If s; > S0, the SDN controller employs the MSNR algorithm to compute the
optimal sequence of network configurations and then it employs SWAN to implement the optimal
configuration { f,(l’fgl), Zpt} at the current time t. Alternatively, if s; < S, the SDN controller
is not allowed to re-route at time ¢, but it can still optimize the admission rates z, ;. In this case,
the SDN controller employs the MSNR algorithm with fixed routing parameters f,sﬁgl) = ,(thl_)l
to compute the optimal sequence of network configurations and then it implements the optimal

admission rates z,: at time . It is easy to see that admission rates can be updated from z,;;



to z,; with zero transient congestion in at most two stages, irrespective of the value of s;. In
the first stage, the SDN controller updates all base-stations in which z,; 1 > 2, and, in the
last stage, the SDN controller updates all base-stations in which 2, ;1 < 2, ;.

The routing and admission control decisions at time t determine the scratch capacity s; 1 at
time t + 1, which determines whether or not the SDN controller will be allowed to re-route at
time ¢+ 1. Hence, if the SDN controller plans to re-route at time ¢+ 1, it should select a network

k,l)

configuration {f (t , Znt} that will lead to S;y1 > Sy, This can be achieved by employing, at

time ¢, the following capacity constraint for every link (k,[) € E

SV 2 £ < min{e™ (1 = sy )iV} 8)

Alternatively, if the SDN controller plans to keep the same routes in the next time-step, i.e.,
féi’fl = ffblft’l), it should attempt to fully utilize the links, leaving no scratch capacity. This can
be achieved by employing the capacity constraints in (5). Intuitively, this means that, in order to
re-route in the next time-step ¢ + 1, the SDN controller may need to reduce the admission rates
Zn+ 1In the current time-step ¢. This potential reduction of z,: represents the cost of re-routing,
as illustrated in the following example.

Example: consider the network in Fig. 4 with N = 3 nodes, three links {(1,2),(2,3),(1,3)},
and fixed demands d; = 1 and dy = 0.5. Assume that this network has capacities cﬁk’l) = 0.5 for
all links and predicted capacities égi? = 0.5 for all links and prediction horizons h. Moreover,
assume that s; > S,,;, = 0.05, meaning that the SDN controller is allowed to re-route at the
current decision time t.

Plan to not re-route. If the SDN controller plans to keep the same routes in future time-
steps, then it adopts the capacity constraints in (5). In this toy example, it is easy to see that
the corresponding max-min fair admission rates are z;, = 2o, = 2/3. Notice that there exists
feasible configurations { fffft’l), Znt} With higher sum Zizl Zn.t, but their admission rates are not
max-min fair. An example of such unfair feasible admission rates are z;; = 0.5, 22, = 1.

Plan to re-route. Alternatively, if the SDN controller plans to re-route in the next time-
step, then it adopts the capacity constraints in (8) with s,,;,, = 0.05. It 1s easy to see that
the corresponding max-min fair admission rates are z;; = 22 = 2/3 % (1 — 0.05).

Two important observations are: (i) Planning to re-route at time ¢ 4 1 does not guarantee that
the SDN controller will be able to re-route at time ¢+ 1. In particular, if the capacity prediction

is inaccurate and (by chance) égﬂ) > cg +1), the SDN controller may not have enough scratch



Fig. 4. Illustration of a network with N = 3 nodes (two commodities and a destination) and three links. The admitted demands
Zn,tdy at time-step ¢ are shown within the corresponding nodes. The total flows and capacities at time-step ¢t are shown next to

the corresponding links.

capacity at time ¢+ 1 to re-route. (ii) Planning to re-route at time ¢+ 1, can only hurt the network
performance at the current time ¢ due to the provision of the scratch capacity, as illustrated in
the example. The potential benefits of planning to re-route at time ¢ 4+ 1 can only be assessed

by computing the performance of the network at future time-steps.

C. Optimal Sequence of Network Configurations

In this section, we develop the MSNR algorithm which leverages information about current
and future predicted link capacities {cgk’l), cgi? cey G +H} to dynamically optimize routing
and admission control decisions aiming to maximize the cumulative sum of admission rates
S SN 2, while ensuring that, in every time-step t, the selected feasible set { f,(ft’l), Znt}
is max-min fair and can be implemented by the SDN controller without inducing transient
congestion. The MSNR algorithm addresses a generalization of the MCF problem [50], [51] for
the more challenging setting where: (i) a sequence of predictions of future network conditions
are available and (ii) transient congestion due to re-routing is taken into account.

Prior to describing the MSNR algorithm, we introduce the concept of a re-routing plan. For
a given time ¢ and a prediction window size H, let 1, be an indicator function that is equal to
1, if the plan is to re-route in time-step ¢ + h, Vh € {0,1,..., H}, and 7, ), = 0, otherwise. The
re-routing plan at time ¢ is given by the vector ry = (r 0,71, ..., ). Notice that if s; < Spin,
then r;o = 0 and if s; > Sy, then 7o € {0,1}. Next, we use an example to show how the
re-routing plan ry can be utilized to separate the problem of finding the optimal sequence of
network configurations into simpler sub-problems.

Example: consider a network with a prediction window size of / = 5 and a plan ry =

(0,1,0,0,1,0) to re-route only at times ¢ + 1 and ¢ + 4. The network parameters associated



TABLE II

EVOLUTION OF NETWORK PARAMETERS ASSOCIATED WITH THE RE-ROUTING PLAN ry = (0,1,0,0, 1,0).

plan capacity constraints in (9) admis.  routing
re0 =0 min{c(k’” (1 = smin) éﬁii)} Znt fT(thl)l
T =1 mln{cgi?,égié)} Zn,t+1 féktfgl
ri2 =0 min{éf’y), &y CRSEIN e
res =0 min{es, (1= smin)&iy} znes S
rea =1 mln{cgii), Agié)} Zn,t+4 fT(thQ4
r,5 =0 ciiﬁ) is unknown N/A N/A

with this particular plan ry are displayed in Table II. The capacity constraints in time-step ¢+ h
depend on whether the plan is to re-route in the next time-step ¢ + h + 1 or not, according to

the following expression

ny—ll Zn,t+hln fn t+h < mm{cﬁi?, (1 = SminTt h+1)Ct+h+1} V(k,l) e E . )]

Equation (9) is a generalization of (5) and (8). The second column of Table II represents the
RHS of the capacity constraint in (9). Notice from Table II that f h can be updated only at
the re-routing times ¢ + 1 and ¢ + 4 while z, ,,, can be updated at every time-step. Hence, the
routing decisions at time ¢ + 1, namely f,gﬁ;_?l, affect not only 2,11, but also 2,2 and 2, ;3.
It follows that the optimization problem associated with ry = (0,1,0,0,1,0) can be subdivided
at the re-routing times, resulting in three simpler sub-problems, each of which jointly optimizes:
) f,(l’ft’l and z,; (ii) f t+1, Znt41s Znt+2, and zp, 133 and (iii) f,(l it and 2, 1y,

In general, the optimization problem associated with any re-routing plan ry can be subdivided
at the re-routing times (i.e., times ¢+ in which r,, = 1) without loss of optimality. Let {t+hy, t+
hi+1, ..., t+hs} represent a subdivision of a re-routing plan r¢. The Generalized-MCF (G-MCF)
algorithm described in Algorithm 1 jointly optimizes the routing decisions fflkt_?h ,n, V(k, 1)
at the initial time ¢ + h; and the admission rates z, s, Vn,Vh € {hy,..., ho}. To address
this joint optimization, G-MCF solves a sequence of MCF problems with increasing admission
rates z, .4+, until all commodities in the network become saturated. In particular, let k& be the
iteration index of the algorithm, let U be the set of unsaturated commodities at the beginning
of iteration k, let (n,h) be the tuple that represents the index of the (N — 1)(hy — hy + 1)

different commodities in this subdivision of r¢, and let zfn n) be the admission rate z, ;. that



saturates commodity (n, ). Initially, we have U = {(n,h)},Vn, h. In each iteration k, the
algorithm solves the MCF problem associated with the unsaturated commodities, i.e., it assigns
Znath — 2, V(n,h) € U, and 2, 411, < z&’h),V(n, h) ¢ U, and finds the feasible configuration
(Output 1) with maximum value of z € [0,1] which we denote by z*. Then, the algorithm
identifies the commodities that become saturated? in the current iteration, stores their saturation
values z(sn’h) < z*, updates the set U accordingly, and proceeds to the next iteration k£ + 1. The
algorithm terminates when U = () and the admission rates z(é;%h) that saturate every commodity
in the network have been determined. The G-MCF algorithm finds the optimal routing and
admission control decisions within a subdivision {t + hy, t +hy + 1, ..., t + hy} of the re-
routing plan ry. To compute the optimal routing and admission control decisions associated with
an entire re-routing plan ry = (7¢0, 711, .. .,7.m), the G-MCF algorithm is utilized in each of
its subdivisions.

MSNR algorithm. To find the optimal sequence of network configurations at time-step
t, the MSNR algorithm selects the plan ri with highest cumulative sum of admission rates

212—01 2711\/:—11 Znt+h- A naive implementation of the MSNR algorithm computes and compares
the performance of the (at least) 27 admissible re-routing plans. To reduce the computational
complexity from exponential O(2f) to polynomial O(H*), we propose a principled imple-
mentation of the MSNR algorithm based on backward induction which leverages the fact that
the optimization problem can be subdivided at the re-routing times without loss of optimality.
Specifically, the algorithm separates re-routing plans ry into 4 + 1 disjoint sets and then finds
the best plan within each set. The first set contains plans that re-route for the first time at
step t + H — 1, the second set contains plans that re-route for the first time at step t + H — 2,
and so on, until the last set which contains a plan that never re-routes. A key observation is that
computations for earlier sets can be used to simplify computations for later sets. A description
of this computation is provided below.

First Set. Consider plans r that re-route for the first time at step t + H — 1, i.e., r¢y €
{(0,...,0,1,0), (0,...,0,1,1)}. The MSNR algorithm employs the G-MCF algorithm to com-
pute the optimal routing and admission control decisions for these 2 re-routing plans and then

selects the plan r,(sl) with highest cumulative sum of admission rates at time ¢t + H — 1, namely

YIdentifying the commodities that become saturated in iteration k is not straightforward. The authors in [50] developed a

saturation test which we adapt to our network setting in lines 10 - 23 of Algorithm 1.



Algorithm 1: Generalized-MCF (G-MCF) algorithm

1 % Let {t+ hq,...,t+ ha} be the subdivision of the re-routing plan ry under consideration and let U be

the set of unsaturated commodities at the beginning of iteration k;

2 Initialization: U = {(n,h)}, Vn € {1,2,...,N — 1}, Vh € {hq,...,ho} and k = 0;
3 while U # 0 do

4

5

6

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

% Find z that solves the joint optimization;
forne{l,...,.N —1} and h € {hy,...,hs} do
if (n,h) € U then z, 1y}, < Z;
else 2, ;15 < zfn’h);
Solve: max z, s.t. Z € [0, 1], and (1)-(4), and capacity constraints in (9) for h € {hq,..., ha};
Output 1: values of z* and fékti-)h’
% Identify the new saturated commodities (n, h);
Determine the set D of disconnected commodities in the residual graph associated with Output 1;
Saturation Flag = 0,
for (n,h) € D do
% Find Z,, ,y that solves the joint optimization;
ASSIgN: 2p t4n < Z(n,h)s
for (m,j) € U\ (n,h) do zp, 14, 2%
Solve: max Z(,, 1), 8.t. Z(n,1) € [0, 1], and (1)-(4), and constraints in (9) for h € {h1,..., ha};
Output 2: values of z(,, ,, and f(ktih;
if Z(n,h) = z* then
Saturation Flag < Saturation Flag U (n, h);
for (n,h) € Saturation Flag do
Assign: z( hy € z*

Assign: U + U \ (n, h);

k+—k+1

% Find the max-min fair feasible configuration;

forne{l,...,N—1} and h € {hy,...,ha} do

o s .
Assign: zn tth S 200y

28 Obtain: f7) (k, 4 +h that satisfy (1)-(4) and capac1ty constraints in (9) for h € {hq,..., ha};

29 Output 3: values of 2z, 14, = z(n n) and f t+h;
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Second Set. Consider plans that re-route for the first time at step ¢t + H — 2, ie., ry €
{(0,...,0,1,0,0), (0,...,0,1,0,1), (0,...,0,1,1,0), (0,...,0,1,1,1)}. Notice that in the sub-

set of plans that re-route both at times ¢t + H — 2 and ¢t + H — 1, we know from the First

Set that ry = ril) +(0,...,0,1,0,0) has the best performance and, hence, all other plans in

this particular subset can be excluded from consideration. The MSNR algorithm computes the

optimal routing and admission control decisions for the remaining 3 re-routing plans and selects
the plan r?) with highest cumulative sum of admission rates at times t + H —2 and ¢t + H — 1,

1 H—1 N—1
namely Zh:H72 n=1 “n,t+h:

Third Set. Consider plans that re-route for the first time at step t + H — 3, ie., ry €
{(0,...,0,1,0,0,0), ..., (0,...,0,1,1,1,0), (0,...,0,1,1,1,1)}. Notice that in the subset of
plans that re-route both at times t + H — 3 and t + H — 2, we know from the Second Set

that ry = r,(:2) +(0,...,0,1,0,0,0) has the best performance and, hence, all other plans in this

particular subset can be excluded from consideration. Similarly, in the subset of plans that re-

route both at times ¢+ H —3 and ¢+ H — 1, but do not re-route at time ¢+ H —2, we know from the

First Set that ry = r,(cl) +(0,...,0,1,0,0,0) has the best performance and, hence, all other plans

in this particular subset can be excluded from consideration. The MSNR algorithm computes

the optimal routing and admission control decisions for the remaining 4 re-routing plans and

selects the plan r,(:?’) with highest cumulative sum of admission rates from times ¢ + H — 3 to

H-1 N-1
t+H —1,namely >, 5 3> "1 Znith

Subsequent Sets. The MSNR algorithm considers the set of plans that re-route for the first

time at steps t + H —4,t+ H — 5, ..., t and employs an analogous procedure in order to
determine the best plans r,(:4), rﬁs), - rEH).

Last Set. The MSNR algorithm compares the performance of the best plans rih),Vh €
{1,2,--- , H} with the performance of the never re-route plan (0,...,0,0) and then selects
the plan r; with highest cumulative sum of admission rates hH:_Ol Zf:f:_ll Znt+n 10 the entire
prediction window. The routing and admission control decisions associated with r; are the
optimal sequence of network configurations.

Remark 3 (Computational Complexity): To find the best plans ril), r?), rEH) in each
of the corresponding backward induction steps, the MSNR algorithm computes and compares
the performance of 2,3,..., H + 1 re-routing plans, respectively. Then, in the last step of

the induction, the MSNR algorithm computes and compares the performance of H + 2 re-
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routing plans in order to find the plan r{ and the associated optimal sequence of network
configurations { fff;’?h, Znitn}s Yh € {0,1,..., H — 1}, at time ¢. In total, the MSNR algorithm
employing backward induction computes the performance of (H + 1)(H +4)/2 re-routing plans,
as opposed to the (at least) 277 computations associated with the naive implementation. Notice
from Algorithm 1 that to compute the performance of any given re-routing plan ry, the G-
MCEF algorithm solves O(H?N?) MCF optimization problems, each of which can be solved in
polynomial time [50], [51]. It follows that the MSNR algorithm has polynomial computational
complexity which grows as O(H*?).

Proposition 4 (Max-Min Fairness of the MSNR algorithm): The optimal sequence of network
configurations { ffllft’i)h, Zntsn} given by the MSNR algorithm has admission rates {z, 4, )=}
that are max-min fair in every time-step ¢+ h for any given h € {0,1,..., H — 1}, irrespective of

the network topology G = (V, E), demands d,,, and current and predicted link capacities {c{"",

(k1) (k1)
Ct+17 oy St4+HS

Proof: Proposition 4 holds by the design of the MSNR algorithm. In the first iteration,
Algorithm 1 finds the lowest admission rate z* that saturates at least one commodity (n,h),
assigns z .4, < 2%, and removes the new saturated commodities from the set of unsaturated
commodities, i.e., U \ (n, k). Similarly, in each subsequent iteration k, Algorithm 1 finds the
lowest admission rate z* that saturates at least one unsaturated commodity (n,h) € U, assigns
Znit+n < 2%, and performs U \ (n,h). The algorithm terminates when all commodities are
saturated, i.e. U = ().

Consider one of the commodities (n, h) that became saturated during iteration k. To increase
its admission rate beyond saturation z, ;.,, we would have to reduce the admission rate of at
least one other commodity (n’,h) that became saturated either in iteration %k or in a previous
iteration®. Notice that, by the design of Algorithm 1, the saturation admission rate of commodity
(n',h) is lower or equal to z,,.,. This means that, in each iteration k, the set of saturated
admission rates {2 s4s}(n,n)¢v 1S max-min fair. It follows that, upon termination, Algorithm 1

yields admission rates {2, 45}, that are max-min fair. [

*Notice that if we could increase the admission rate of (n, h) beyond saturation z, ;15 without reducing the admission rates

of another saturated commodity (n’, h), then (n, h) was not saturated.
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V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the PNR framework. In particular, in Sec. V-A
we evaluate the prediction accuracy of the AP mechanism and compare it with two benchmark
time series prediction methods. Then, in Sec. V-B, we evaluate the performance of the MSNR

algorithm and compare it with two reactive algorithms using a small network with N = 3 nodes,

synthetically generated attenuation levels xik’l) and synthetically generated attenuation predictions

A(kvl)
Lith

and controllable setting. Finally, in Sec. V-C, we evaluate the PNR framework (with both the AP

with different (adjustable) prediction accuracies. The goal is to draw insight from this small

mechanism and the MSNR algorithm) using the backhaul network with N = 13 nodes illustrated

in Fig. 1 and the attenuation measurements from the dataset.

A. Evaluation of the AP mechanism

The prediction accuracy of the AP mechanism is evaluated using the test sequences of
attenuation measurements described in Sec. II. In this section, we show the results associated
with Test Seq. I and Test Seq. II, both of which include a period of rain. We first assess the
prediction error of a given link, then we analyze the prediction RMSE of the entire network
and, finally, we assess the empirical probability of large prediction errors.

Let egch’l) = xiif} — ﬁ:gﬁ? be the h-steps-ahead prediction error associated with link (k,1) at

time t. In Fig. 5(a), we compare the evolution of the attenuation measurements 3:&;3) from link

(9,13) with the 3-steps-ahead attenuation predictions fg’;g) generated by the AP mechanism
during an interval of 300 time-steps from 7Zest Seq. I. In Fig. 5(b), we display the relative
frequency distribution of the 3-steps-ahead prediction error eg?g’l?’) from link (9, 13) associated
with the entire 7est Seq. I. The results in Fig. 5 suggest that: (i) the attenuation predictions
accurately track the measurements and (ii) the distribution of the prediction error eggh’l) is similar
to a normal distribution with zero mean.

Weather-induced attenuation varies over time and geographical location, and also depends
on link’s characteristics such as frequency, polarization, and length, meaning that prediction

errors may differ considerably across different links. To capture the prediction error in the entire
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Fig. 5. (a) Comparison of the attenuation measurements from link (9, 13) with the corresponding 3-steps-ahead predictions. (b)

Relative frequency distribution of the 3-steps-ahead prediction error.

network, we employ
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which calculate the RMSE associated with the h-steps-ahead prediction errors of all links over
the entire time-horizon and the RMSE associated with the largest h-steps-ahead prediction error
among all the links in each time-step ¢, respectively. In Fig. 6, we display the RMSE;"® and
RMSEM™* (in dB) as a function of the prediction horizon h € {1,..., H} for Test Seq. I
and /I for three prediction mechanisms: (i) the AP mechanism; (ii) the naive AP method, also
called random-walk method, which is a commonly used benchmark [56] that employs the latest
measurement as future predictions, namely igi? (naive) = xik’l), Vh; and (iii) the ARIMA model,
which is a well-known time series prediction model. For an example of the ARIMA model being
employed to predict rain-induced attenuation in Ku-band satellite links, we refer the reader
to [39]. It is important to emphasize that both benchmark methods (i.e., naive and ARIMA)
consider each link in isolation when predicting future attenuation levels and, thus, they do not
capture the spatial correlation that is typical of weather-induced attenuation. The results in
Fig. 6 suggest that the AP mechanism outperforms the benchmark methods in both Test Segs. 1
and II and that this performance improvement increases as the prediction horizon h increases.
In particular, when h = 1, the performance improvement (in terms of RM SE;"®) of employing
the AP mechanism as opposed to any of the benchmark methods is between 0% and 12%, and

when h = 5, the performance improvement is between 12% and 34%.
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Fig. 6. RMSE}® and RMSE}]™ of the prediction error for different prediction horizons h and for the AP mechanism, naive
AP method, and ARIMA model.

To analyze the empirical probability of large prediction errors, we compute the percentile
associated with the modulus of the h-steps-ahead predictions errors |eg€h’l)|. In particular, for a
given test sequence with attenuation measurements xii,? and associated predictions igifl) from the
AP mechanism, the 7 th percentile value represents the lowest ]egjﬂ that is larger than or equal
to n% of all the values of |eg€h’l)| in the considered dataset. For example, if the 95 th percentile
value for Test Seq. I and h = 3 is 1dB, it means that 95% of all the values of |eg€,;l)| computed
for the entire Test Seq. I are lower than or equal to 1dB. In Fig. 7, we show the percentile
values for different prediction horizons h € {1,...,5} for Test Seq. I and II. The results in
Fig. 7 suggest that, as expected, the percentile values increase with the prediction horizon h.
Moreover, the results show that 95% of the one-step-ahead and 5-steps-ahead prediction errors
are lower than 0.5dB and 1.5dB, respectively.

In summary, the results in Figs. 5, 6, and 7 show that the AP mechanism predicts future link

attenuation with high accuracy. Next, we show that prediction accuracy has a significant impact

on the performance of the MSNR algorithm.

B. Evaluation of reconfiguration algorithms in a small and controllable network

We compare the performance of the MSNR algorithm with two reactive network recon-
figuration algorithms, namely NEVER RE-ROUTE and ALWAYS RE-ROUTE, in terms of their
network utilization, which is captured by the evolution of the node-average admission rate
2711\7:—11 Znt/(IN — 1) over time ¢. The considered network reconfiguration algorithms are:

1) MSNR algorithm: leverages future predicted capacities to decide when to re-route. In

particular, in each time-step ¢, it compares the performance of different re-routing plans
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Fig. 7. Percentile for the modulus of the prediction error.

and selects the plan r; with highest cumulative sum of admission rates, as described in
Sec. IV-C.
i1) NEVER RE-ROUTE algorithm: attempts to maximize the admission rates z,; by never

provisioning scratch capacity and, thus, fully utilizing links whenever possible. This reactive
algorithm operates based on the MSNR algorithm. However, instead of selecting ry, it
selects, in every time-step ¢, the re-routing plan ry = (0,...,0). Under this algorithm, the
SDN controller is rarely* allowed to re-route, but it is continually optimizing the admission
rates.

1i1) ALWAYS RE-ROUTE algorithm: attempts to provision scratch capacity s; > Sy = 0.05
at every time-step ¢, enabling the SDN controller to optimize routing decisions often. This
reactive algorithm operates based on the MSNR algorithm. However, instead of selecting
r;, it selects, in every time-step ¢ with s; > S,.in, the re-routing plan ry = (1,1,...,1), and
in every time-step ¢ with s; < S,,,, the re-routing plan ry = (0,1,...,1).

Notice that all three network reconfiguration algorithms select max-min fair admission rates

Znt at every time-step t. The main difference between them is that only the MSNR algorithm

employs the predictions of the links’ future condition to decide when to re-route. Both the NEVER

RE-ROUTE and ALWAYS RE-ROUTE algorithms simply react to the time-varying conditions of

the network. The comparison with the predictive SDN-based routing framework developed in

[36] is not possible due to the incompatible assumptions. Recall that the framework in [36]

can only be employed during periods of rain, it allows flows to temporarily exceed the link

*Notice that if the predicted capacities égi? are inaccurate, in particular if égi? < cii’?, it may happen that s;11 > Smin

and the NEVER RE-ROUTE algorithm is allowed to re-route at time ¢ + 1.
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capacity, and it does not take fairness into account, thus, making the comparison unfit. Next, we
evaluate the three reconfiguration algorithms in a small and controllable setting using synthetic
data. In Sec. V-C, we evaluate the same three algorithms using measurements collected from the
backhaul network.

The results in this section are associated with the network in Fig. 4 with N = 3 nodes and
three links {(1,2),(2,3), (1,3)}. The normalized® demands associated with nodes 1 and 2 remain
fixed at d; = 1 and dy = 0.5, respectively, during the time-horizon of 1,000 time-steps. The

(actual) attenuation levels xgk’l) and predicted attenuation levels fc(k’,ll) are synthetically generated

t+
according to the following stochastic processes
2" = min{max{z"Y 4+ §*V. ~100}; —50} : (12)
igi? = min{max{xgﬂ) + Sf’lzl); —100}; =50} , (13)

for all links (k,1) € E, for all time-steps ¢ € {1,...,1,000}, for all values of h € {1,..., H},

and with xék’l) sampled from a uniform distribution in the interval (—100, —50). Notice that (12)

establishes the variation of the attenuation xik’l) over time, while (13) establishes the noise in the

Ei? () The sequence of Gaussian random variables 5§k’l)

of the future attenuation , )

prediction &
is i.i.d. over time ¢, independent across links, and sampled according to A(0,6.25). Similarly,

. (k.1 . ~ . .. . ~9 ..
the sequence of random variables 5§ h) are Gaussian A (0,5%) with positive variance G2, i.i.d.

over time, and independent across different links. Notice from (13) that, a high variance 52

represents an AP mechanism with poor accuracy, i.e. large prediction error. The choice of
Gaussian distribution for &fi’l) was inspired by the relative frequency distribution of the prediction

error shown in Fig. 5(b).

To determine the (actual) capacities cﬁk’l) and the predicted capacities ¢

synthetic values of z\*" and :Eﬁf“;f),

of P:(F’;’ft) = 0 dBm and use the AM mechanism described in Sec. IV-A. In Fig. 8(a), we display

the evolution of the normalized values of cgk’l) employed to obtain the results in this section.

Notice that this is a network with highly dynamic link capacities cgk’l).

(k1)

i h associated with the

respectively, we adopt a constant transmission signal level

In Fig. 8(b), we compare the evolution of the node-average admission rate (21, + 22;)/2 over

time ¢ for different reconfiguration algorithms operating with ideal attenuation predictions, i.e.,

~(k,l) (k1) ~(k,0) (k

with 7, =Ty and, as a result, ¢, ’Q. In Fig. 8(c) and in Table III, we show the time-

+h T Gy

>Both demands and capacities are normalized with respect to the maximum achievable bitrate of 225 Mbps from Table I.
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Fig. 8. Performance of the MSNR algorithm for the network in Fig. 4 with N = 3 nodes. (a) Evolution of the normalized link

capacity cik’l) over time. (b) Node-average admission rate (z1,: + 22,¢)/2 for different reconfiguration algorithms with ideal

attenuation prediction (52 = 0). (c) Time-average admission rate ZtT:l(ZLt + 22,t)/2T for MSNR with different prediction

window sizes H € {2,3,4,5} and attenuation prediction accuracies 5% e {0,0.0025,...,9}.

average admission rates Zthl(th + 224)/2T for different reconfiguration algorithms operating
with attenuation predictions with different accuracies % € {0, 0.0025, 0.25, 1, 4, 9, 25} and
different prediction window sizes H € {2,3,4,5}.

The results in Fig. 8(b) show that, as expected, NEVER RE-ROUTE has the worse performance,
while MSNR with prediction window size [ = 5 has the best performance in terms of network
utilization. The poor performance of NEVER RE-ROUTE, especially between time-steps 500 and
800, results from the SDN controller not being allowed to re-route. The lower performance of
ALWAYS RE-ROUTE when compared to MSNR is due to the frequent provisioning of scratch
capacity S,,;, = 0.05. By leveraging the prediction of links’ future conditions, MSNR can assess
the potential future benefits of re-routingﬁ, which allows it to choose when is the best time to
re-route. Throughout the 1, 000 time-steps, the SDN controller re-routes 31, 30, 28, and 29 times
when employing MSNR with prediction window sizes H € {2,3,4, 5}, respectively.

The results in Fig 8(c) and Table III suggest that: (i) the performance of MSNR improves as the
prediction accuracy improves and as the window size H increases and (ii) the performance gain
of improving the prediction accuracy is more significant than the performance gain of increasing
the prediction window size H, which highlights the importance of developing an accurate AP

mechanism.

®Recall from the discussion in Sec. IV-B that planning to re-route at the next time-step ¢ + 1, can only hurt the network

performance at the current time ¢ due to the provision of the scratch capacity.
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Fig. 9. Performance of the PNR framework using data collected from the backhaul network in Fig. 1. (a) Evolution of the
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normalized measured link capacity cgk" over time. (b)-(c): Evolution of the node-average admission rate 27]:’;11 Znt /(N —1)

over time for different network reconfiguration algorithms.

TABLE III
TIME-AVERAGE ADMISSION RATES >_/_ (21,+ + 22,+)/2T FOR DIFFERENT NETWORK RECONFIGURATION ALGORITHMS

AND FOR ATTENUATION PREDICTIONS WITH DIFFERENT ACCURACIES.

Prediction accuracy Ideal &°=1 &2=25

NEVER RE-ROUTE  (.362 0.359 0.343
ALWAYS RE-ROUTE  0.453  0.449 0.427
MSNR for H=2 0477 0473 0.447
MSNR for H =3 0478 0474 0.449
MSNR for H=4 0479 0476 0.449
MSNR for H =5 0479 0476 0.450

C. Evaluation of the PNR Framework with data from a real-world network

We now evaluate the performance of the PNR framework using the data collected from the
backhaul network in Fig. 1 with NV = 13 base-stations (12 commodities and one destination)
and 17 links. The normalized demands assigned to the commodities are chosen according to a
uniform distribution in the interval (0, 2). In particular, the twelve demand values’ are d = [1.111,
0.557, 1.124, 1.266, 0.174, 1.485, 0.947, 0.067, 0.140, 0.596, 1.413, 0.999]. The values of the

(actual) capacities cik’l) and future predicted capacities égig

are determined by the link attenuation
measurements in the dataset, by the AM mechanism described in Sec. IV-A, and by the AP
mechanism. To train, tune, and test the AP mechanism, we use a train-validation-test split of 80-
10-10. To assess the performance of the PNR framework in a challenging scenario, we choose a

sequence of more than 400 measurements (from 7Test Seq. I described in Sec. 1) that includes a

"Notice that similar results can be obtained for different vectors of demands.
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TABLE IV
PERFORMANCE GAIN OF MSNR WITH H € {2,5} WHEN COMPARED TO A REACTIVE ALGORITHM: NEVER RE-ROUTE OR

ALWAYS RE-ROUTE. THE PERFORMANCE GAIN METRICS IN COLUMNS 3, 4, AND 5 ARE DEFINED IN (14).

MSNR  Reactive  Time-average Node-average Instantaneous

H=5 ALWAYS 7.74% 18.00% 170.19%
H= ALWAYS 15.49% 26.84% 263.58%
H= NEVER 1.67% 10.37% 68.37%
H =2 NEVER 8.98% 22.04% 208.01%

period with high attenuation variability due to a rain event. Moreover, we consider transmission
signal levels P}th) that are 10dBm lower than the dataset measurements. In Fig. 9(a), we
display the evolution of the normalized capacities cgk’l) from three selected links. Notice that
the variation is significant. In Fig. 9(b), we show the evolution of the node-average admission
rates Zg:_ll Znt/ (N — 1) for different reconfiguration algorithms employing ideal attenuation

prediction, i.e., éﬁi? = cﬁiQ In Fig. 9(c), we display the node-average admission rates for

algorithms employing the AP mechanism to predict égﬁ,ll) over time. The results in Figs. 9(b)
and 9(c) show that MSNR outperforms both NEVER RE-ROUTE and ALWAYS RE-ROUTE.

In Table IV, we display the performance gain of MSNR with H € {2,5} employing the AP
mechanism when compared to reactive algorithms: NEVER RE-ROUTE or ALWAYS RE-ROUTE.

Let z,(ff) and z,(:? be the admission rates associated with MSNR and the reactive algorithm,

respectively. The third, fourth, and fifth columns of Table IV are associated with

SLSCH ) (S ) ey
_ R 2 _ R b R Y
ZtT:1 25:11 27(1,16) t 25:11 Z'r(z,t) mt Z'r(z,t)

which represent the time-average performance gain, the maximum node-average performance
gain, and the maximum instantaneous performance gain, respectively. The results in Table IV
show that the MSNR algorithm can improve the time-average admission rate ZtT:l (z14+224)/2T
by more than 7% when compared to either ALWAYS RE-ROUTE or NEVER RE-ROUTE and, more
importantly, they also show that the gain in terms of the instantaneous per commodity admission
rate z,, can exceed 200%. These significant instantaneous gains occur when severe rain-induced
attenuation occurs, showing that the PNR framework is able to prepare the network ahead of
time and alleviate the impact of these severe disturbances on the network performance, which

can be paramount to time-sensitive applications.
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An important observation from the results in Secs. V-B and V-C is that, when the AP mechan-
sism has high accuracy, the performance gap between MSNR with H = 2 and reactive algorithms
is significantly larger than the performance gain obtained from increasing the prediction window
size H. Adding to this observation the fact that the computational complexity of MSNR grows
with H, as discussed in Sec. IV-C, makes the PNR framework with H = 2 an attractive choice

both in terms of performance and complexity.

VI. CONCLUSION

We developed the PNR framework, that includes: (i) the AP mechanism that uses historical
data to predict the sequence of future attenuation levels, without incorporating any specific
weather-related models; and (i1) the MSNR algorithm that dynamically optimize routing félz’l)
and admission control z,, decisions over time aiming to maximize the cumulative sum of
admission rates ZtT:l Zg:_ll zn+» While ensuring that, in every time-step ¢, the selected feasible
set { féﬁ;l), Znt} 18 max-min fair in every time-step ¢ and can be implemented without inducing
transient congestion. We use a real-world dataset to thoroughly evaluate the PNR framework
and to show that it allows the SDN controllers to prepare the x-haul for imminent (and possibly
severe) weather-induced disturbances. There are several open problems that will be considered
in our future work, including consideration of time-varying traffic demands d,,, consideration of

downlink/uplink traffic, application to 5G slice admission and provisioning, and experimental

evaluation in city-scale testbeds.
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