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ABSTRACT
Numerous questions in phylogenetic comparative biology revolve around the
correlated evolution of two or more phenotypic traits on a phylogeny. In many cases,
it may be sufficient to assume a constant value for the evolutionary correlation
between characters across all the clades and branches of the tree. Under other
circumstances, however, it is desirable or necessary to account for the possibility that
the evolutionary correlation differs through time or in different sections of the
phylogeny. Here, we present a method designed to fit a hierarchical series of models
for heterogeneity in the evolutionary rates and correlation of two quantitative traits
on a phylogenetic tree. We apply the method to two datasets: one for different
attributes of the buccal morphology in sunfishes (Centrarchidae); and a second for
overall body length and relative body depth in rock- and non-rock-dwelling South
American iguanian lizards. We also examine the performance of the method for
parameter estimation and model selection using a small set of numerical simulations.
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INTRODUCTION
The evolutionary correlation is defined as the tendency of two phenotypic characteristics
to co-evolve over evolutionary time or on a phylogenetic tree (Felsenstein, 1985; Revell &
Collar, 2009; O’Meara, 2012; Caetano & Harmon, 2017; Harmon, 2019; Revell & Harmon,
2022). Many hypotheses about evolution that are tested using phylogenetic comparative
methods involve the evolutionary correlation between traits. For instance, when Garland,
Harvey & Ives (1992) tested the hypothesis of a correlation between phylogenetically
independent contrasts (Felsenstein, 1985) for home range size and body mass in mammals,
they were really asking if evolutionary increases in body size tend to be associated with
increases in home range size, as well as the converse. In effect, they asked if the two traits
were evolutionarily correlated. Likewise, when Ruiz-Robleto & Villar (2005) used
phylogenetic contrasts to explore the relationship between relative growth rate and leaf
longevity in woody plants, they were in fact investigating the tendency of these two traits to
co-evolve on the phylogeny. They were measuring the evolutionary correlation between
different phenotypic characteristics of plant leaves (Ruiz-Robleto & Villar, 2005).
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Most analyses of the evolutionary correlation assume that the tendency of traits to
co-evolve is constant over all of the branches and clades of the phylogeny. Revell & Collar
(2009), however, proposed a new (at the time) likelihood-based method for testing a
hypothesis of a discrete shift in the evolutionary correlation or correlations between two or
more traits in certain predefined parts of the phylogeny. According to this method, which
was a relatively simple multivariate extension of an important related approach by
O’Meara et al. (2006; also see Thomas, Freckleton & Székely, 2006; Revell & Harmon, 2008),
the rate of evolution for individual traits, and the evolutionary correlation between them,
were free to vary among different regimesmapped onto the phylogeny by the user. Revell &
Collar (2009) applied the method to a phylogeny and dataset for the buccal morphology of
sunfishes (Centrarchidae) to test the hypothesis that the evolutionary tendency of gape
width and buccal length to co-evolve was different in the highly piscivorous Micropterus
clade (black bass) compared to other sunfishes.

Revell & Collar’s (2009) approach is implemented in the phytools R package (Revell,
2012) and has been applied to various questions since its original publication. For instance,
Damian-Serrano, Haddock & Dunn (2021) used the method to test whether the
evolutionary correlation between different aspects of the prey capture apparatus in
siphonophore hydrozoans changes as a function of the type of prey they consume.
The method has also been updated or adapted in different ways (e.g., Clavel, Escarguel &
Merceron, 2015; Caetano & Harmon, 2017, 2019). For example, Clavel, Escarguel &
Merceron (2015) developed software for modeling multivariate evolution, but with
different types of constraints on the evolutionary rates or correlations between traits.
Subsequently, Caetano & Harmon (2017, 2019) implemented an extension of Revell &
Collar (2009) that uses Bayesian MCMC (instead of maximum likelihood) to account for
several important sources of uncertainty.

The underlying model of Revell & Collar (2009) is multivariate Brownian motion
(Felsenstein, 1985; Revell & Harmon, 2008; Harmon, 2019). Brownian motion is a
continuous-time stochastic diffusion process in which the variance that accumulates
between diverging lineages is proportional to the time since they shared a common
ancestor (O’Meara et al., 2006; Revell & Harmon, 2008, 2022). The amount of covariance
between species related by the tree is a direct function of the distance above the root of
their most recent ancestor. At the tips of the tree, species values for a trait, x, are anticipated
to have a multivariate normal distribution with a mean equal to the value at the root node
of the phylogeny, and a variance-covariance matrix equal to σ2C in which C is an n × n
matrix (for n total taxa) that contains the height above the root node of the common
ancestor of each i, jth species pair for i ≠ j; and the total length of the tree from the root to
each ith tip, otherwise (O’Meara et al., 2006; Revell, Harmon & Collar, 2008; Revell &
Harmon, 2022).

In the case of multivariate Brownian motion, the diffusion process can no longer be
described by a single parameter, σ2. Now, Brownian motion evolution is governed by
an m × m matrix, for m traits, sometimes referred to as the evolutionary rate matrix
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(Revell & Harmon, 2008; Revell & Collar, 2009; Caetano & Harmon, 2017, 2019).
An example of a simple, 2 × 2 Browian evolutionary rate matrix is given by Eq. (1).

R ¼ r21 r1;2
r2;1 r22

� �
(1)

In this expression, r21 and r22 are the instantaneous variances, or Brownian motion rates
(O’Meara et al., 2006), for traits 1 and 2, respectively. Meanwhile σ1,2 (and σ2,1 – which
always has the same value; i.e., R is a symmetric matrix) is the instantaneous covariance of
the traits 1 and 2 (Revell & Harmon, 2008). The evolutionary correlation between traits 1
and 2, in turn, is calculated as follows.

r ¼ r1;2ffiffiffiffiffiffiffiffiffi
r21r

2
2

p (2)

Alternatively then, of course, Eq. (1) can be recomposed and expressed uniquely in
terms of r, σ1, and σ2.

R ¼ r21 rr1r2
rr2r1 r22

� �
(3)

The primary innovation of Revell & Collar (2009), as well as related methods (such as
Adams, 2013; Clavel, Escarguel & Merceron, 2015; Caetano & Harmon, 2017, 2019), was to
permit the instantaneous evolutionary variances and covariances of the Brownian motion
process to differ in different parts of the tree that had been specified a priori by the
investigator. Figure 1 shows just this type of analysis for a phylogeny of Centrarchidae
(sunfishes), a discrete pair of evolutionary regimes (feeding mode: piscivorous or non-
piscivorous), and a quantitative phenotypic trait dataset comprised of two different
attributes of the feeding morphology: relative gape width and relative buccal length (Collar,
Near & Wainwright, 2005; Revell & Collar, 2009). Note that this is a slightly different
analysis from that of Revell & Collar (2009; also see Caetano &Harmon, 2019) in which the
authors compared only the Micropterus clade to the rest of the phylogeny.

Figure 1A gives the phylogeny with a hypothesis about how the evolutionary regime
(feeding mode) may have evolved on the tree. In this case, we arbitrarily set the ancestral
regime to be non-piscivory and shift points between regimes at halfway along each edge
leading to a tip or clade in the derived (piscivorous) condition; however, under many
circumstances, this hypothesis could be generated using a more rigorous technique, such
as stochastic character mapping (Huelsenbeck, Nielsen & Bollback, 2003). If this was done
and there was a lot of variability in the stochastically mapped character histories, it would
probably make sense to integrate our inference over this uncertainty (e.g., described in
Revell, 2013a; see Appendix for a worked example). Figure 1B shows the phylogeny
projected into the trait space. Finally, Fig. 1C shows the results of fitted Brownian
evolutionary one- and two-rate matrix models (Fig. 1).

The simpler of these two models, with only one value for the evolutionary
variance-covariance matrix of the Brownian process, contains a total of five parameters to
be estimated: r21 and r22 for the two traits; σ1,2, the evolutionary covariance (or, in the
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equivalent reparameterization given by Eq. (3), r); and ancestral values at the root node for
each trait (O’Meara et al., 2006; Hohenlohe & Arnold, 2008; Revell & Collar, 2009).
By contrast, the more complex model of Fig. 1C contains a total of eight estimated
parameters: r21, r

2
2, σ1,2 for each of two modeled regimes (non-piscivory and piscivory),

plus two ancestral states at the root.
Based on an approximately 8.1 log-likelihood unit difference between the two fitted

models of our example (Fig. 1), we would conclude that the two-matrix model significantly
better explains the trait data than a model in which the evolutionary rates (variances) and
covariances are constant across all the branches of the phylogeny (P < 0.001; Revell &
Collar, 2009). We obtain a similar result if we use information theoretic model selection

(a) (b)

(c)

Figure 1 (A) Phylogeny of centrarchid fishes with feeding mode (piscivory or non-piscivory) mapped onto the edges of the tree; (B) projection
of the tree in (A) into a phenotypic trait space defined by different aspects of the mouth morphology in Centrarchidae; and (C) fitted one- and
two-matrix evolutionary models. The evolutionary covariance between relative gape width and buccal length is higher in piscivorous compared to
non-piscivorous fishes, and this model fits significantly better than a model in which the evolutionary covariance is assumed to be equal for the two
regimes. Note that although this analysis is similar to the one that accompanied Revell & Collar (2009), here we’ve used a slightly different set of taxa
and a different mapping of regimes onto the phylogeny. The phylogenetic tree is modified from Near, Bolnick & Wainwright (2005).

Full-size DOI: 10.7717/peerj.13910/fig-1
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(such as the Akaike Information Criterion, AIC, see below; Akaike, 1974) instead of
likelihood-ratio hypothesis testing.

Looking specifically at the evolutionary correlation (r), based on Eq. (2), above, we
estimate that the correlation between gape width and buccal length changes from being
very slightly negative (r = −0.05) in non-piscivorous taxa, to quite strongly positive in their
piscivorous kin (r = 0.80). This is consistent with stronger selection for functional
integration of the different elements of the feeding apparatus in piscivorous vs.
non-piscivorous lineages (Collar, Near & Wainwright, 2005; Revell & Collar, 2009).

METHODS AND RESULTS
A hierarchical set of models
One obvious limitation of the approach illustrated in Fig. 1 is that it only considers two
possible alternative models for the evolutionary variance-covariance matrix among traits:
one in which both the evolutionary variances and the evolutionary correlation are
constant; and a second in which the two mapped regimes have no similarity in
evolutionary process for the two traits (Fig. 1C). In fact, it is possible to identify a number
of different alternative models between these two extremes. We refer to these models as
hierarchical in a similar way to how the set of sequence evolution models used for
phylogeny estimation is hierarchical (Posada & Crandall, 1998): each model of increasing
complexity has another simpler model as a special case.

Table 1 lists a total of eight alternative models (our original two models, from above, and
six others). In square parentheses after each model, we have also provided the
alphanumeric code that has been used to denominate the different models in the phytools
(Revell, 2012) R software function evolvcv.lite where these models are implemented.

The eight models of Table 1 are as follows: model (1) common rates, common
correlation; model (2) different rates, common correlation; model (2b) different rates for

Table 1 Model description, model parameter estimates, log-likelihood, log(L), and AIC for one homogeneous and seven heterogeneous rate or
correlation multivariate Brownian evolution models fit to the centrarchid feeding morphology evolution data of Fig. 1. r2i;j gives the
instantaneous variance of the Brownian process (evolutionary rate) for the ith trait and jth regime. Note that this is a different use of subscripts as
compared to Eq. (1) in which only traits, and not regimes, were being indicated. rj gives the evolutionary correlation between traits 1 and 2 for
evolutionary regime j. In the table, regime 1 is non-piscivory and regime 2 is piscivorous feeding mode, while trait 1 is relative gape width and trait 2
is relative buccal length (Fig. 1). The best-supported model using AIC as our model selection criterion, highlighted in bold font, is model 3c: different
rates for trait 2, different correlations.

Model description r21;1 r21;2 r22;1 r22;2 r1 r2 log(L) AIC

Common rates, common correlation [1] 0.11 – 0.056 – 0.41 – 72.2 −134.4

Different rates, common correlation [2] 0.18 0.05 0.02 0.09 0.45 – 78.0 −142.0

Different rates (trait 1), common correlation [2b] 0.20 0.04 0.06 – 0.55 – 76.0 −140.0

Different rates (trait 2), common correlation [2c] 0.11 – 0.02 0.10 0.33 – 75.3 −138.7

Common rates, different correlation [3] 0.10 – 0.06 – 0.16 0.68 73.6 −135.2

Different rates (trait 1), different correlation [3b] 0.17 0.05 0.06 – 0.36 0.65 76.5 −139.0

Different rates (trait 2), different correlation [3c] 0.11 – 0.01 0.16 0.00 0.85 80.7 −147.4

No common structure [4] 0.14 0.08 0.01 0.13 −0.05 0.80 81.2 −146.5
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trait 1 only, common correlation; model (2c) different rates for trait 2 only, common
correlation; model (3) common rates, different correlation; model (3b) different rates for
trait 1 only, different correlation; model (3c) different rates for trait 2 only, different
correlation; finally, model (4) no common structure between the two different evolutionary
variance-covariance matrices of the multivariate Brownian process.

When we analyze this complete set of models for our centrarchid dataset of Fig. 1, we
find that the best fittingmodel (that is, the model with the highest log-likelihood) is the no
common structure model in which the Brownian evolutionary variance-covariance matrix
is free to differ in all possible ways depending on the mapped regime. It is, in fact, a logical
necessity that model 4 has a log-likelihood that is greater than or equal to the next best
model. This is because model 4, our no common structure model, has all of our other seven
models as special cases. On the other hand, the best supported model (that is, the model
that’s best-justified by our data taking into account model complexity; Burnham &
Anderson, 2002) is model 3c (different rates in trait 2, relative buccal length, and different
correlations; Table 1), indicated with bold font in the table.

Note that some other software, such as themvMORPH R package of Clavel, Escarguel &
Merceron (2015) and the ratematrix package of Caetano & Harmon (2017), also fits
alternative models for multivariate Brownian evolution – such as a model in which the rate
of evolution for different traits or for different regimes are constrained to be equal, a model
in which the evolutionary correlation between traits, r, is constrained to be 0, or alternative
matrix decompositions (such as models in which matrix “shape” or “orientation” are
permitted to differ between regimes).

An empirical example: South American rock- and non-rock-dwelling
lizards
In addition to the centrarchid data, above, we also applied the method to a morphological
dataset of South American iguanian lizards (members of the lizard family Tropiduridae
sensu lato; Toyama, 2017). For this example, we mapped habitat use of rock-dwelling vs.
non-rock-dwelling (Revell et al., 2007; Goodman, Miles & Schwarzkopf, 2008) on a
phylogeny of 76 lizard species. Our phylogeny was obtained from Pyron, Burbrink &
Wiens (2013), but pruned to contain only the taxa of the present study, and rescaled to
have a total length of 1.0. (We rescaled the tree to unit length merely so that our parameter
wouldn’t need to be represented using scientific notation. Relative model fits should be
completely unaffected by this rescaling.)

To set our regimes, we used a single Maximum Parsimony reconstruction of the discrete
trait (rock- vs. non-rock-dwelling) on our phylogeny, in which we fixed all transitions
between regimes to be located at the precise midpoint of each edge containing a state
change in our reconstruction (Fig. 2). Just as in the centrarchid case, in an empirical study
we would probably recommend using multiple reconstructions from a statistical method
such as stochastic character mapping (Huelsenbeck, Nielsen & Bollback, 2003), and then
averaging the results across stochastic maps (e.g.,O’Meara et al., 2006; but see Revell, 2013a
and the Discussion for some limitations associated with this common practice). This
general workflow is illustrated in the Appendix.
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We next fit all eight of the models listed in Table 1 to a dataset consisting of body size
and relative dorsoventral body depth from Toyama (2017), both calculated using
geometrical definitions for size and shape (Mosimann, 1970; Klingenberg, 2016). Since
rock-dwelling has previously been suggested to favor the evolution of dorsoventral
flattening (e.g., Revell et al., 2007; Goodman, Miles & Schwarzkopf, 2008), we hypothesized
that the evolutionary correlation between body size and depth, while generally positive
across this group, could decrease or become negative in rock-dwelling forms due to
ecological selection to decouple body depth from size. In Table 2, we show the parameter
estimates, model fits, and Akaike weights (see section below) of all eight models from this
analysis, sorted by model weight.

Although the weight of evidence is distributed among our top four models in the table,
the most notable aspect of all of the best-supported models for these data is that they each
allow the evolutionary correlation (r) to differ between the two different mapped regimes
on the tree. Models that do not allow the evolutionary correlation to differ by regime
(models 1, 2, 2b, and 2c from Table 1) each received less than 10% support.

We found that the evolutionary correlation between body size and size-adjusted body
depth was positive in non-rock-dwelling lizards, indicating that larger lizards tended to
evolve proportionally greater body depth (Table 2). By contrast, rock-dwelling forms

Figure 2 Phylogenetic tree of 76 South American iguanian lizards species based on Pyron, Burbrink & Wiens (2013). Colors indicate two
different mapped ecological regimes: rock-dwelling (in black) and non-rock-dwelling (white). The tree has been rescaled to have a total depth of
1.0. Full-size DOI: 10.7717/peerj.13910/fig-2
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actually exhibited a negative evolutionary correlation between body size and size-adjusted
body depth. This is because larger rock-dwelling animals do not tend to evolve
proportionally greater body depths. To the contrary, their size-adjusted body depth
actually decreases. This is largely consistent with what’s expected given behavioral and
biomechanical considerations (Revell et al., 2007; Goodman, Miles & Schwarzkopf, 2008).

A small simulation test of the method
In addition to the empirical applications given above, we tested the method using a small
simulation experiment as follows. We first generated forty 100-taxon pure-birth random
phylogenetic trees. On each of these trees, we simulated the history of a three-state discrete
character. We rejected and repeated any simulation in which any of the three states of the
trait was not observed in at least 20 tips. An example simulated tree with evolutionary
regimes is given in Fig. 3A.

For all of the forty random trees, we simulated data under each of the eight models of
Table 1. To begin each simulation, we first drew values for logðr21Þ and logðr22Þ for the two
traits from a standard normal distribution (that is to say, r21 and r22 were randomly
sampled from a log-normal distribution); and we drew a random value or values of the
correlation coefficient (r) from a uniform distribution on the interval −1 to 1. Naturally, we
sampled different numbers of values for logðr21Þ, logðr22Þ, and r depending on the model
that was being used for simulation. For instance, a model with three mapped regimes (e.g.,
Fig. 3A) and different rates for trait 1, equal rates for trait 2, and different correlations
between traits 1 and 2, would involve randomly sampling three values for logðr21Þ, one
value for logðr22Þ, and three values for r from their respective distributions. Our simulation
procedure does not fix any specific difference in the rates or evolutionary correlations
between regimes. Nonetheless, it will on average result in a geometric mean ratio of the
highest evolutionary rate over the lowest (for any variable σ2 simulation) of around 5.4;
and a mean difference between the highest evolutionary correlation and the lowest (for any
variable r simulation) of about 1.0.

Table 2 Model rank, model name, model parameter estimates, log-likelihood, log(L), AIC, and
Akaike weights for all eight heterogeneous rate or correlation multivariate Brownian evolution
models of Table 1, fit to overall size and relative body depth in South American iguanian lizards
(Fig. 2). Column headers are as in Table 1, except for w, which indicates Akaike weight as calculated
using Eq. (4).

Rank Model r21;1 r21;2 r22;1 r22;2 r1 r2 log(L) AIC w

1 model 3 0.23 – 0.06 – 0.34 −0.31 55.11 −98.22 0.28

2 model 3c 0.23 – 0.05 0.10 0.33 −0.31 56.04 −98.08 0.26

3 model 3b 0.21 0.27 0.06 – 0.33 −0.32 55.32 −96.63 0.13

4 model 4 0.21 0.28 0.05 0.10 0.32 −0.34 56.29 −96.58 0.12

5 model 2c 0.22 – 0.05 0.13 0.18 – 53.90 −95.79 0.08

6 model 2 0.20 0.30 0.05 0.13 0.20 – 54.40 −94.79 0.05

7 model 1 0.22 – 0.06 – 0.13 – 52.31 −94.61 0.05

8 model 2b 0.20 0.30 0.06 – 0.15 – 52.78 −93.55 0.03
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An example simulated dataset generated using our procedure for different rates (trait 1),
and different correlations (model 3b) is shown in Fig. 3B. In this example, we simulated the
data using an evolutionary correlation between traits x1 and x2 that was positive for
regimes 1 and 3, but strongly negative for regime 2 (Fig. 3B).

After completing the numerical simulations, we then proceeded to fit each of the same
eight models to each simulated dataset. For each fitted model, we computed AIC and
Akaike weights as follows (Akaike, 1974; Burnham & Anderson, 2002).

AICi ¼ 2k� 2 lnðliÞ wi ¼ e�DAICi=2

�e�DAICj=2
(4)

Here, AICi is the value of AIC for the ith model; k is the number of parameters in the
model; ln(li) is the log-likelihood of the ith model; and DAICi is the difference in AIC
between the ith model and the model with the minimum AIC score in the set. In general,
we should prefer the model with the lowest overall value for AIC, and can interpret the
Akaike model weights (w), from Eq. (4), as a measure of the strength of evidence
supporting each of the models in our set (Akaike, 1974; Wagenmakers & Farrell, 2004).

regime 1
regime 2
regime 3

(a)

−2 −1 0 1 2

−3

−2

−1

0

1

2

x1

x 2

(b)

Figure 3 (A) Example simulated phylogenetic tree with three mapped evolutionary regimes; and (B) the phylogeny of (A) projected into a two
dimensional phenotypic trait space. The trait data in (B) were simulated under model 3b from Table 1 (different rates in trait 1, different cor-
relations), in which the simulated evolutionary correlation between traits x1 and x2 was positive in regimes 1 and 3, but strongly negative in regime
2. Full-size DOI: 10.7717/peerj.13910/fig-3
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After fitting all eight models to each of our 40 × 8 = 320 simulated datasets, we next
simply calculated the fraction of times in which the generating model was selected as the
‘best’model (as well as second best, third best, and so on). These results are summarized in
Table 3. In general, we found that the generating model tended to be selected as the best or
second best model over 86% of the time in simulation, under the simulation conditions
described above (Table 3).

In addition, we also calculated the average weight (w) of each of the forty datasets for
each model. These results are summarized in Fig. 4. This analysis shows that the generating
model (in rows) also tended to have the highest average Akaike model weight (in columns;
Fig. 4).

For each generating model, the next highest average Akaike model weights tended to be
observed in models of similar complexity. For instance, when the generating model was
model 4 (no common structure), we found the highest average model weight for model 4

Table 3 Model name and the fraction of times from 40 simulations in which the generating model
(in rows) was identified as the best, 2nd best, 3rd best, or worse than 3rd best model using AICmodel
selection.

Model name Best 2nd best 3rd best ≥4th

model 1 0.65 0.12 0.05 0.17

model 2 0.70 0.17 0.10 0.02

model 2b 0.70 0.05 0.15 0.10

model 2c 0.55 0.20 0.15 0.10

model 3 0.75 0.17 0.02 0.05

model 3b 0.75 0.10 0.10 0.05

model 3c 0.52 0.30 0.12 0.05

model 4 0.65 0.35 0.00 0.00

model 1

model 1

model 2

model 2b

model 2c

model 3

model 3b

model 3c

model 4

model 2 model 2b model 2c model 3 model 3b model 3c model 4
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Mean Akaike weight by model
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Figure 4 Mean Akaike weight for all eight models (in columns) for each of the eight generating
models (in rows). Simulation conditions were as described in the text.

Full-size DOI: 10.7717/peerj.13910/fig-4
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(0.65); and then the next highest average model weights for models 3b (different rates for
trait 1, different correlations; 0.14) and 3c (different rates for trait 2, different correlations;
0.13). Likewise, when the generating model was model 1 (common rates, common
correlation), we found the highest average model weight for model 1 (0.37), and the next
highest average model weight for model 3 (common rates, different correlation; 0.14).

Lastly, having established that the method tends to select the generating model used for
simulation, we also proceeded to assess parameter estimation. Here, we computed both the
correlation between the generating and estimated values for each model (to measure
precision); and the mean difference (to measure accuracy or bias). Correlations for all
parameters and all models are given in Table 4. Table 5 shows the mean difference between
the generating and estimated parameter values for each model.

Table 4 Model name and correlation between the generating and estimated parameter values
(rounded to two digits) for each model. For σ2 both the generating and estimated values were trans-
formed to a log scale before computing the correlation. Simulation conditions were as described in the
text and illustrated in Fig. 3. In all cases, the generating model was used for estimation.

Model r1 r2 r3 r21;1 r21;2 r21;3 r22;1 r22;2 r22;3

model 1 0.99 – – 0.99 – – 0.99 – –

model 2 0.99 – – 0.95 0.95 0.97 0.93 0.96 0.97

model 2b 0.99 – – 0.96 0.97 0.97 0.98 – –

model 2c 1.00 – – 0.99 – – 0.97 0.94 0.94

model 3 0.98 0.96 0.98 0.99 – – 0.99 – –

model 3b 0.98 0.94 0.95 0.98 0.96 0.98 0.99 – –

model 3c 0.98 0.95 0.96 0.99 – – 0.98 0.95 0.96

model 4 0.97 0.96 0.97 0.97 0.97 0.97 0.94 0.96 0.96

Table 5 Model name and mean difference between the generating and estimated parameter values
(rounded to two digits) for each model. Just as in Table 4, for σ2 both the generating and estimated
values were transformed to a log scale before computing the differences. As such the reported differences
are proportional to the generating values. (That is to say, a log difference of 0.04, for example, indicates a
mean error of e0:04 or ∼4.1%.) Simulation conditions were as described in the text and illustrated in Fig. 3.
In all cases, the generating model was used for estimation.

Model r1 r2 r3 r21;1 r21;2 r21;3 r22;1 r22;2 r22;3

model 1 −0.01 – – 0.04 – – −0.01 – –

model 2 −0.03 – – 0.10 0.07 0.02 0.10 0.09 0.02

model 2b −0.00 – – 0.10 0.02 0.06 0.02 – –

model 2c −0.01 – – 0.02 – – 0.02 −0.02 0.09

model 3 0.01 0.02 −0.03 −0.00 – – 0.01 – –

model 3b −0.02 0.01 0.03 0.02 0.03 0.01 0.03 – –

model 3c −0.00 0.03 0.03 0.04 – – −0.01 0.05 0.07

model 4 −0.02 −0.04 −0.01 0.04 0.07 0.11 0.07 0.11 0.07
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Notes on implementation
The model and methods of this study have been implemented for the R statistical
computing environment (R Core Team, 2021), and all simulations and analyses for this
study were done using R.

The method that we describe in the article is implemented as the function evolvcv.lite of
the phytools R package (Revell, 2012). phytools in turn depends on the core phylogenetics R
packages ape (Paradis & Schliep, 2019) and phangorn (Schliep, 2011), as well as on a
number of other R libraries (Venables & Ripley, 2002; Ligges & Mächler, 2003; Lemon,
2006; Plummer et al., 2006; Chasalow, 2012; Becker et al., 2018; Gilbert & Varadhan, 2019;
Azzalini & Genz, 2020; Qiu & Joe, 2020; Warnes, Bolker & Lumley, 2020; Goulet et al.,
2021; Pinheiro et al., 2021).

Though the simulations and empirical analyses presented herein use only two or three
mapped regimes, the current implementation of this method in phytools, evolvcv.lite,
permits an unlimited number of mapped regimes. The reader should keep in mind,
however, that the number of parameters to be estimated will rise in direct proportion to the
number of regimes.

DISCUSSION
The evolutionary correlation is defined as the tendency of two different phenotypic traits
to co-evolve (Harmon, 2019; Revell & Harmon, 2022). Traits are said to have a positive
evolutionary correlation if a large increase in the value of one trait tends to be a
accompanied by a similarly large increase in the second, and vice versa. Traits can be
evolutionarily correlated for a wide variety of reasons. For instance, a genetic correlation
between traits, if persistent over macroevolutionary time periods, will tend to cause two
phenotypic characteristics to evolve in a correlated fashion, even under genetic drift
(Schluter, 1996; Blows & Hoffmann, 2005; Hohenlohe & Arnold, 2008; Revell & Harmon,
2008). Genetic correlations between traits in turn tend to be caused by pleiotropy, such as
when one quantitative trait locus affects the expressed value of two different phenotypic
attributes (e.g., Gardner & Latta, 2007).

More often, however, when an evolutionary correlation between traits is observed,
natural selection tends to be purported. For instance, the evolutionary correlation between
water-related plant traits, such as pseudobulb length and stomatal volume, observed by
Sun et al. (2020), was interpreted by the authors as evidence for natural selection acting to
favor certain combinations of trait values over others. Likewise, when Goodwillie et al.
(2009) found an evolutionary correlation between reproductive outcrossing rate and the
product of flower number and size in plants, they hypothesized that this was due to
selection favoring increased investment in structures to attract pollinators in outcrossing
compared to selfing taxa. Numerous questions in evolutionary research involve measuring
the evolutionary correlations between traits (Felsenstein, 1985; Harmon, 2019), and in
many cases it may be sufficient to fit a single value of the evolutionary correlation between
characters for all the branches and nodes of the phylogeny. Under other circumstances,
however, it is useful or necessary to permit the evolutionary correlation to assume different
values in different parts of the tree.
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For example, in the present study we used data for centrarchid fishes to test whether
feeding mode influences the evolutionary tendency of two different aspects of the buccal
morphology to co-evolve (Revell & Collar, 2009). We hypothesized that natural selection
for functional integration of the feeding apparatus constrains different buccal traits to
evolve in a coordinated fashion in piscivorous lineages, but not in their non-piscivorous
kin (Collar, Near & Wainwright, 2005). Indeed, although we used a slightly different
dataset and phylogeny here (focusing on all piscivorous centrarchids, rather than just the
Micropterus clade), our analysis largely reiterates the finding of Revell & Collar (2009) in
showing that a model with different evolutionary correlations between traits depending on
feeding mode significantly better explains our morphological trait data, compared to a
model in which the evolutionary correlation is forced to have a constant value across all
the branches of the phylogeny. Like Revell & Collar (2009), we also found that the
evolutionary correlation between buccal traits is high and positive in piscivorous but not
non-piscivorous lineages (Table 1). Unlike Revell & Collar (2009), however, we found that
the best-supported model was one in which the evolutionary rate (σ2) for buccal length, but
not gape width, was also free to differ in different parts of the phylogeny.

Likewise, we present data for the evolution of overall body size and size-adjusted
dorsoventral body depth in South American iguanian rock-dwelling and non-rock-
dwelling lizards, a group rich in habitat transitions (Fig. 2; Toyama, 2017). Based on prior
research (Revell et al., 2007; Goodman, Miles & Schwarzkopf, 2008), we hypothesized that
selection might favor the decoupling of a normally positive evolutionary correlation
between the two traits to permit the evolution of greater dorsoventral compression in
rock-dwelling species. Indeed, all four of the best-fitting models in our analysis were ones
in which the evolutionary correlation was permitted to differ by habitat use, rock or
non-rock—and the evolutionary correlation differed between regimes in exactly the
predicted direction (Table 2). Models where the evolutionary rates (σ2), but not the
evolutionary correlation (r), differed across the tree received very little support.

Finally, we undertook a small simulation study of our method. We found that the
generating model in simulation also tended to be the model that was most often chosen via
our model selection procedure (Table 3; Fig. 4). When the generating model was not best-
supported, a model of similar parameterization tended to be selected instead (Fig. 4).
We also showed that the accuracy and precision of parameter estimation was reasonably
high (Tables 4 and 5).

Limitations
Although we believe that the method of this article extends existing methodology in an
interesting way, it comes with its own limitations.

The most evident limitation of the approach described herein and implemented in the
phytools evolvcv.lite function is that it is restricted to analyzing no more than two
quantitative traits at a time. This practical constraint arises from the fact that we have
chosen to parameterize our set of nested models using a common (or different) correlation
and common (or different) evolutionary rates paradigm. This paradigm does not extend as
easily to more than two traits. The reasons for this are entirely pragmatic. With only two
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quantitative traits, the likelihood function is defined (and can thus be evaluated) for any
values of r21 and r22 > 0 in each regime, and for any −1 < r < 1. For three or more
quantitative traits, on the other hand, many combinations of the correlation coefficients
r1,2, r1,3, and so on, can lead to an evolutionary covariance matrix that is uninvertible (non-
positive definite), and thus a likelihood that cannot be computed. This is a solvable
problem and one of us [LJR] is presently working to extend evolvcv.lite to an arbitrary
number of continuous characters; however, this has required implementing numerical
optimization with dynamic bounds and has thus far proved challenging. Ultimately, we
hope that this functionality will be added to the phytools R package at some time in the not
too distant future.

Likewise, evolvcv.lite only includes multivariate Brownian motion as a model of trait
evolution. Expanding beyond Brownian motion, for instance to include the
Ornstein-Uhlenbeck (OU) model (e.g., Butler & King, 2004; Beaulieu et al., 2012), is a
highly interesting future direction. Even more so than extending to more than two traits,
this addition would present a number of additional challenges and is thus beyond the
scope of our present work. Not least among these is the substantial increase in model
complexity that a multi-regime multivariate OUmodel would entail. (In particular, each of
σ and a, the stochastic and stabilizing selection or ‘rubber band’ parameter in the OU
model, respectively, would require a separate m × m matrix for each regime.)

Finally, our approach requires that different regimes on the tree are hypothesized a
priori by the investigator. In this way, it follows a paradigm established in Butler & King
(2004) and O’Meara et al. (2006), and re-described in a variety of other places since (e.g.,
Revell, 2008; Beaulieu et al., 2012; Revell et al., 2021; and others). An alternative approach
would be to, for example, use reversible-jump Markov Chain Monte Carlo (rjMCMC) to
allow our data to inform the location of regime shifts on the tree (e.g., Eastman et al., 2011;
Uyeda & Harmon, 2014; also see Revell, 2021 for a different approach using penalized
likelihood). In fact, you could go one step further still and sample both the number and
position of regime shifts, and model complexity (as given in Table 1) from their joint
posterior probability distribution. We feel that this is certainly an intriguing future
direction, but out of scope for this relatively modest contribution.

Other considerations
In the current article we have focused on our model for quantitative trait evolution and
have left consideration about how regimes are obtained or set on the tree mostly aside. It is
entirely appropriate to use this method for circumstances in which there is no ambiguity
about the mapping of regimes onto the edges and clades of the tree, such as, for instance,
when fitting a model with heterogeneous evolutionary correlations between monophyletic
groups or across difference time periods. Often, however, investigators may be inclined to
use our approach to study the influence of a mapped discrete character on the evolutionary
process for their quantitative traits. In that case, we would recommend considering an
approach that allows the explicit incorporation of uncertainty, such as integrating over a
set of character histories sampled in proportion to their probability under a model
(Huelsenbeck, Nielsen & Bollback, 2003; e.g., Price, Friedman & Wainwright, 2015), as
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illustrated in the Appendix of this article for our rock- and non-rock-dwelling lizard
empirical example. As shown in Revell (2013a), however, this common practice can also
result in certain biases, such as causing estimated evolutionary rates to resemble each other
more closely than the generating rates (Revell, 2013a; also see May & Moore, 2019).
An interesting approach that was suggested by Caetano & Harmon (2019) involves first
generating a posterior sample of discrete character histories using stochastic mapping, and
then sampling from this set during Bayesian MCMC. This seems worthy of further
examination.

In addition, herein we have focused on model selection under simulation conditions in
which the true, generating model is invariably included among the set of models we fit to
our data. Under these conditions, we tended quite strongly to select the correct model, or if
not the correct model, one very similar to it (Table 3; Fig. 4). We do not explicitly consider
the inevitable condition in which the true model is not among those of our model set.
For other types of comparative methods, model inadequacy can result in inference errors
that are quite grave (e.g., Rabosky & Goldberg, 2015; Beaulieu & O’Meara, 2016). Indeed,
the general problem of model adequacy is underappreciated in phylogenetic comparative
methods (Boettiger, Coop & Ralph, 2012). Some promising approaches to the problem have
already been developed (e.g., Pennell et al., 2015; Uyeda, Zenil-Ferguson & Pennell, 2018;
Duchene et al., 2018) and we recommend that it be the subject of continued research.

Lastly, we have chosen to concentrate on using maximum likelihood for estimation.
In fact, it would be entirely conceivable to take a Bayesian MCMC approach (e.g., following
Caetano & Harmon, 2017, 2019), or perhaps even use rjMCMC to integrate over the
different models of Table 1 in proportion to their posterior probability, as described in the
previous subsection. One advantage of this approach is that it provides a natural
framework within which to incorporate uncertainty about the fitted model and its
parameters. One disadvantage is that it requires us to decide on appropriate prior
distributions for our model parameters, evaluate convergence of the MCMC to the
posterior, and summarize the posterior sample (Caetano & Harmon, 2019). It does not
obviate any of the other limitations or considerations detailed above.

Relationship to existing methods
The method of this paper is an extension of an existing model described in Revell & Collar
(2009). In that article, the authors describe an approach to analyzing heterogeneity in the
evolutionary correlation, Brownian rate, and Brownian covariance between different
pre-specified branches or clades of a phylogenetic tree. In Revell & Collar (2009) the
authors compare two alternative models: one in which evolutionary rates and the
evolutionary correlation between characters are free to differ between regimes; and a
second in which they are not. Here, we add a set of six additional intermediate models (for
two quantitative traits) in which regimes are permitted to share various aspects of their
evolutionary process in common (rates for one character or another, evolutionary
correlation), while differing in others. This method was also extended to a Bayesian
framework by Caetano & Harmon (2017, 2019), and as such the work we present here is
also closely related to this research.
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Readers of this article who are familiar with phylogenetic comparative methods might
observe that it’s also possible to model multivariate trait evolution in which the
relationship between traits changes as a function of a discrete factor using a phylogenetic
generalized analysis of covariance (Grafen, 1989; Rohlf, 2001; Revell, 2010; Mundry, 2014;
Fuentes-G et al., 2016). In this case, we would simply fit a linear model in which a single
dependent variable (y) varied as a function of a discrete factor (the tip regime), a
continuous variable (x), and their interaction (to permit differences in slope between
regimes), while assuming that the residual error in y has a multivariate normal distribution
given by the structure of the tree (Rohlf, 2001; Revell, 2010; Fuentes-G et al., 2016). Indeed,
this is a valid approach for asking how the relationship between traits changes among
lineages of a reconstructed phylogeny. We nonetheless feel that our method adds value for
many investigators because it permits an arbitrary (not just tip) mapping of discrete
regimes, because it doesn’t require the user to specify dependent and independent variables
in the model, because it easily allows us to take into account sampling error in the
estimation of species’means (following Ives, Midford & Garland, 2007), because it’s readily
extensible to more than two traits whose correlations might also be expected to change as a
function of the mapped regimes, and, finally, because it’s more directly connected to a
hypothesized evolutionary process for the traits on our phylogeny (Hohenlohe & Arnold,
2008; Revell & Harmon, 2008).

CONCLUSIONS
The evolutionary correlation is defined as the tendency for changes in one phenotypic
attribute to be associated (positively or negatively) with changes in a second trait through
evolutionary time or on a phylogenetic tree (Harmon, 2019; Revell & Harmon, 2022).
Many questions in phylogenetic comparative biology involve measuring the evolutionary
correlations between characters using phylogenies. Often, it’s sufficient to assume a
constant value of this evolutionary correlation through time or among clades. Here,
however, we present a hierarchical series of models in which we permit the rate of
evolution for traits, and their evolutionary correlation, to differ in different parts of the
phylogeny that have been specified a priori by the investigator.

APPENDIX
In the main text of this article, we intentionally focused on fitting heterogeneous
correlational trait evolution model in which regimes for the evolutionary correlation were
assumed to be ‘known’ a priori by the investigator.

Although this may sometimes be the case (for instance, in a study in which the regime is
based on membership to a specific clade, or in which the reconstructed history of a discrete
character is unambiguous), quite often our hypothesized regimes will be based on the
unknown history of a discrete character. In that case, a common practice is to first sample
plausible histories in proportion to their probability using a statistical procedure called
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stochastic character mapping (Huelsenbeck, Nielsen & Bollback, 2003), fit the model to
each history, and then average over this set (e.g., Price, Friedman & Wainwright, 2015).

Here, we illustrate this workflow using rock and non-rock dwelling in the tropidurid
lizards. To do this, we began by fitting a set of three, alternative discrete trait evolution
models: an equal-rates model (ER); an all-rates-different model (ARD); and a directional
model, in which evolution of the discrete character is allowed to proceed from non-rock to
rock dwelling, but not the reverse (Revell & Harmon, 2022). We found that the
best-supported model was the ARD model (Table A1).

We next sampled 100 stochastically mapped character histories in proportion to their
probability under our best-fitting model using the method of Huelsenbeck, Nielsen &
Bollback (2003), Bollback (2006) as implemented in the phytools R package (Revell, 2012).
Figure A1 shows (in A) a single, representative, haphazardly selected stochastic character
history of our rock-dwelling vs. non-rock-dwelling; and (in B) a continuous visualization
of the posterior probability that each edge of the tree was in each of the two states
(following Revell, 2013b), under our hypothesized discrete character evolution model.

With 100 stochastic character mapped trees in hand, we then fit all of our eight models
to each tree. Our findings were highly congruent with what we showed in Table 2 of the
main text. In particular, for 80% of stochastic character mapped trees, model 3 (common
rates, different correlation; Table 1) was the best-supported model (Table A2). Likewise,
across 96% of all stochastic character mapped histories, either model 3 or model 3c
(different rates for character 2, relative body dorsoventral, different correlation; Table 1)
was the best-supported model (Table A2).

Lastly, we computed model-averaged parameter estimates under each of the top four
ranked based on a rank-choice vote (most common best, second best, and so on; Table A2),
in which model averaging was done across all 100 stochastic character histories (Fig. A1).
This is similar to a simple average, but up-weights stochastic maps that make the observed
data for our quantitative traits more probable (under the model). The results from this
analysis are given in Table A3.

Table A1 Log-likelihoods and model support for three alternative models for discrete character
evolution of non-rock- or rock-dwelling in tropidurid lizards, assuming non-rock-dwelling as the
ancestral condition. ER: equal-rates model, assumes backward and forward transitions between habi-
tat types occur at the same rate. ARD: all-rates different, permits different forward and backward
transition rates. Directional: assumes that evolution invariably proceeds from non-rock-dwelling to rock-
dwelling, and never the reverse. Even after accounting for model complexity. ARD is the best-supported
of these three models.

Model log(L) d.f. AIC

ER −43.37 1 88.75

ARD −41.27 2 86.55

Directional −46.25 1 94.51
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In addition, it’s possible to use stochastic character mapping to obtain a measurement of
our degree of uncertainty in parameter estimation that is due to ambiguity in the discrete
character history. In this case, one would just compute a variance (or a weighted variance,
using Akaike weights) in each estimated parameter across the set of discrete character
histories. This measure of uncertainty in the values of estimated parameters does not,
however, include estimation error from any given character history, which must also be
measured (for instance, by using the Hessian matrix of second order partial derivatives of
the likelihood surface; e.g., following Price, Friedman & Wainwright, 2015). We do not
show this here, but it is relatively straightforward to accomplish in R.

(a) (b)

Figure A1 (A) Example stochastic character map for rock dwelling (vs. non-rock-dwelling) in tropidurid lizards; and (B) posterior probability
of rock-dwelling from 100 stochastic character histories. Full-size DOI: 10.7717/peerj.13910/fig-5
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Table A2 Frequency across all stochastic mapped trees with which each model ranked 1st, 2nd, 3rd,
and so on. w gives the mean Akaike model weights of each model, averaged across all stochastically
mapped trees. Models are as in Table 1.

Rank Model 1 Model 2 Model 2b Model 2c Model 3 Model 3b Model 3c Model 4

1st 0.01 0.01 0.00 0.02 0.73 0.00 0.23 0.00

2nd 0.00 0.02 0.00 0.09 0.09 0.20 0.54 0.06

3rd 0.03 0.07 0.00 0.11 0.04 0.46 0.19 0.10

4th 0.22 0.03 0.00 0.10 0.01 0.06 0.04 0.54

5th 0.33 0.08 0.05 0.17 0.12 0.05 0.00 0.20

6th 0.22 0.03 0.18 0.33 0.00 0.19 0.00 0.05

7th 0.18 0.22 0.36 0.18 0.00 0.03 0.00 0.03

8th 0.01 0.54 0.41 0.00 0.01 0.01 0.00 0.02

w 0.06 0.05 0.03 0.08 0.32 0.13 0.22 0.10

Table A3 Model-averaged parameter estimates for the top four ranked models.Model-averaging was
computed for a given model, across stochastic character maps.

Rank Model description r21;1 r21;2 r22;1 r22;2 r1 r2

1 common rates, different correlation [3] 0.22 – 0.06 – 0.38 −0.31

2 different rates (trait 2), different correlation [3c] 0.22 – 0.05 0.09 0.35 −0.24

3 different rates (trait 1), different correlation [3b] 0.22 0.24 0.06 – 0.37 −0.31

4 no common structure [4] 0.21 0.27 0.05 0.09 0.35 −0.23
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