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Reliable estimates of the distribution of species abundance are a key element in wild-
life studies, but such information is usually difficult to obtain for large spatial or long 
temporal scales. Wildlife–vehicle collision (WVC) data is systematically registered in 
many countries and could be used as a proxy of population abundance if the number 
of WVC in each territory increase with the population abundance. However, factors 
such as road density or human population should be controlled to obtain accurate 
abundance estimations from WVC data. Here, we propose a hierarchical modeling 
approach using the Royle–Nichols model for detection–non-detection data to obtain 
population abundance indices from WVC. Relative abundance and individual detect-
ability were modeled for two species, wild boar Sus scrofa and roe deer Capreolus cap-
reolus at 10 × 10 km cells in mainland Spain from WVC data using environmental, 
anthropological and temporal covariates. For each cell, a detection was annotated if 
at least one WVC was recorded at each month (used as survey occasion). The pre-
dicted abundance indices were compared with raw hunting statistics at region level to 
assess the performance of the modeling approach. Site specific covariates such as road 
density or administrative region and the month of the year, affected individual detect-
ability, with higher WVC probability between October and December for wild boar 
and between April and July for roe deer. Wild boar and roe deer abundance can be 
explained by both, bioclimatic and land cover covariates. Abundance indices obtained 
from WVC data were significantly positively correlated with regional raw hunting 
yields for both species. We presented empirical evidence supporting that accurate wild-
life abundance indices at fine spatial resolution can be generated from WVC data 
when individual detectability is considered in the modeling process.

Keywords: Capreolus capreolus, detection–non-detection data, road ecology, roe deer, 
Sus scrofa, ungulates, wild boar, wildlife abundance estimation
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Introduction

Reliable estimates of species distribution and abundance are 
key elements in wildlife studies (Jones 2011). They allow 
for well-informed conservation plans, but also wildlife man-
agement, pest control or assessing epidemiological risks 
(Vicente et al. 2019). However, this basic information is not 
always easy to obtain due either to logistical constraints or 
intrinsic difficulties inherent to the studied species (i.e. noc-
turnal, elusive species, inaccessible habitats, complex social 
structure, etc.; Pearce and Boyce 2006).

Wildlife vehicle collisions (WVC) are an important prob-
lem for both, motorist security and wildlife conservation 
(Gunson et al. 2011, Ascensão et al. 2021). Roadkills can be 
one of the most important conservation threats for many ani-
mal populations specially reptiles and amphibians (Rytwinski 
and Fahrig 2012), but also birds or endangered mammals 
(Garrote et al. 2018, Grilo et al. 2020). In addition, when 
fatalities involve large species such as wild ungulates they 
constitute a serious risk for drivers that could led in injuries 
or human losses (Bissonette et al. 2008). In most countries 
with a well-developed road system, these events are recorded 
on a systematic basis. Despite of these obvious negative 
effects, WVC also represent a useful source of information for 
study species biology. Although the major focus of road ecol-
ogy has been to study the fact of roadkills (Barrientos et al. 
2021), in the simplest case a WVC indicates the presence of 
a species in a specific time and location (Colino-Rabanal and 
Peris 2016). They also could be used as a proxy of population 
abundance if the number of WVC increases with the popula-
tion abundance (Baker et al. 2004). This spatial and tempo-
ral relationship has been already proved in different groups 
such as reptiles and amphibians (D’Amico et al. 2015), mar-
supials (Perameles gunnii, Mallick  et  al. 1998), carnivores 
(Vulpes vulpes, Baker et al. 2004; Mustela putorius, Barrientos 
and Miranda 2012) or ungulates (Odocoileus virginianus, 
McCaffery 1973; Cervus elaphus, Capreolus capreolus and 
Sus scrofa, Saint-Andrieux  et  al. 2020), showing the broad 
range of species to which this index could be applied (but see 
Ascensão et al. 2019a). WVC data have some interesting fea-
tures to study population abundance: for large species, much 
information is systematically recorded by administrations or 
insurance companies across many countries, producing long 
historical time series at broad spatial scales (Vanlaar  et  al. 
2012). However, despite their potential, WVC have not been 
widely used in wildlife population monitoring mainly due to 
specific singularities that prevent them from being directly 
used as abundance indices. Covariates such as road type and 
density, traffic intensity or vehicle speed have been often 
proven as the most important factors affecting animal road 
fatalities (Gunson  et  al. 2011). Thus, all these singularities 
should be accounted for in order to use WVC data as a popu-
lation abundance index.

In the last decades, a novel modeling framework that 
integrates species detectability to study species distribution 
and abundance has become popular in wildlife monitoring 
programs (MacKenzie  et  al. 2002). Hierarchical modeling 

approaches account for false negatives in data samples using 
repetitive surveys to model both, the observational process 
(species detectability) and the underlying ecological pro-
cess of interest (species occurrence or abundance; Royle and 
Nichols 2003). This framework would allow to effectively 
control for those non abundance-related (or collision-spe-
cific) factors affecting WVC to obtain accurate population 
abundance estimates. Such approach offers a new source of 
information for wildlife monitoring that could be easily com-
pared across space and time with other different and comple-
mentary sources (Santos et al. 2018).

In this study we evaluated the utility of WVC to obtain 
population abundance indices of two widely distributed 
ungulates in mainland Spain, wild boar Sus scrofa and roe 
deer Capreolus capreolus, which are the two wildlife species 
most involved in vehicle collisions in this country (Sáenz-
de-Santa-María and Tellería 2015). The Royle–Nichols 
model (RN) was used to infer abundances from repetitive 
WVC data accounting for individual detectability due to 
road related covariates such as road type or density (Royle 
and Nichols 2003). Model predictions were then projected to 
national scale to explore their relationship with an indepen-
dent broadly used abundance index for game species at large 
spatial scales, namely the hunting yields (HY, ENETWILD 
Consortium et al. 2019).

Material and methods

Study area

Our study area spanned mainland Spain (493 518 km2), in 
the Iberian Peninsula, southwestern Europe. Continental 
Spain is divided in 15 autonomous communities (thereafter 
regions) which are subdivided in 47 provinces, correspond-
ing to the level 3 of the Nomenclature of Territorial Units 
for Statistics from the European Union (NUTS3). Spain is 
crossed by 666 677 km of paved roads heterogeneously dis-
tributed (Ministry of Transport, Mobility and Urban Agenda 
2021; Supporting information). Human population in main-
land Spain is distributed unevenly across the country, with 
higher densities in coastal areas an around the capital city in 
central Spain, Madrid, with a mean of 94 inhabitants km−2 
(Spanish Statistical Office – INE 2021).

The study area was divided in 10 × 10 km cell grid which 
was used to assess the relationship between WVC and covari-
ate predictors (environmental variables, road density, etc.). 
A total of 5184 cells were used in our analyses. A finer cell 
resolution could be used to obtain more precise abundance 
estimates but led to problems linked to sample size (number 
WVC per cell) and thus it was discarded.

Wildlife vehicle collision data

Two species were selected for abundance modeling from WVC 
data: wild boar and roe deer. These are the wildlife species 
most reported in vehicle collisions in mainland Spain, with 
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35% of wildlife collisions involving wild boar and 24.9% in 
the case of the roe deer during 2017. Note that those species 
are the most reported because their impact for human road 
safety, given their size, but other species are probably more 
affected by road kills (D’Amico et al. 2015). Populations of 
these two ungulates have increased during the last decades 
mainly due to rural abandonment, and their distribution 
ranges have also expanded significantly (Acevedo et al. 2011, 
Massei et al. 2015).

Wildlife vehicle collision data from 2017 January to 
December were obtained from the Dirección General de 
Tráfico (DGT) of the Spanish Ministry of the Interior that 
compiled traffic reports produced by the road safety authori-
ties. This information is complete for 13 of the 15 regions, 
no data was obtained from Basque Country, and only a par-
tial data set was obtained from Catalonia because both have 
a data collection system in place that is independent from 
the rest of the country. Data represented only those colli-
sions that generated police report due to vehicle damages or 
motorist injuries. Road nomenclature and kilometer point 
was transformed in geographic coordinates (longitude and 
latitude) and then associated to a 10 × 10 km grid. WVC 
with a location error > 5 km were discarded. A total of 9508 
WVC distributed in 2311 10 × 10 km cells were obtained 
for wild boar (see Supporting information), while up to 7029 
WVC located in 1419 10 × 10 km cells were collected for 
roe deer.

Covariate predictors

Several bioclimatic and land cover covariates that usually 
affect ungulate abundance in Spain were obtained for each  

10 × 10 km cell (Table 1). After accounting for multicol-
linearity in an original set of 51 predictors (ENETWILD 
Consortium et  al. 2020), three bioclimatic variables (BIO) 
related with seasonality, temperature and precipitations were 
obtained from the Worldclim 2 project (<https://worldclim.
org/version2>; Fick and Hijmans 2017). Percentage of rel-
evant vegetation land cover type (LC) at each cell was cal-
culated from the ESA/CCI-LC project, ver. v2.1.1 (2017) 
database (<www.esa-landcover-cci.org/?q=node/158>). A 
correlation plot of the final selected predictors for species 
abundance is shown in Supporting information. In addition, 
other predictors potentially involved in WVC were obtained. 
For each cell, kilometers of three kinds of roads were com-
puted: highways (HWY), conventional roads (primary and 
secondary, ROAD) and urban (URB) roads (see Supporting 
information; National Geographic Institute, Ministry of 
Transport, Mobility and Urban Agenda 2021, <http://
centrodedescargas.cnig.es/CentroDescargas/catalogo.
do?Serie=CAANE>). Road km of each type at each cell were 
transformed into a three-level categorical factor (low, medium 
and high densities of each type of road). We used this clas-
sification as a simple proxy of average speed (HWY = 101.99 
km h−1, ROAD = 72.93 km h−1, URB < 50 km h−1; aver-
age for 2017) and traffic density (HWY = 25 584.17 vehicles 
per day (vh d−1), ROAD = 4106 vh d−1, URB = 9204 vh d−1; 
average for 2017) since speed and traffic data for all roads 
in the whole study area were not available. Moreover, some 
authors have highlighted that the annual average daily traf-
fic not always performs well as a predictor of WVC, since 
it does not account actual traffic density at the time when 
the collision took place (Bíl et al. 2020). Human influence 
index (HFP), obtained from The Last of the Wild Project  

Table 1. Site specific covariates used to model the abundance and individual detectability of wild boar Sus scrofa and roe deer Capreolus 
capreolus based on wildlife–vehicle collisions data. Land cover variables represented percentage of cover per 10 × 10 km cells.

Code Covariate description Type

Abundance predictors
 BIO4 Temperature seasonality (temperature standard deviation × 100) Continuous
 BIO11 Mean temperature of coldest quarter Continuous
 BIO17 Precipitation of driest quarter Continuous
 LC10 Cropland, rainfed Continuous
 LC11 Herbaceous cover Continuous
 LC12 Tree or shrub cover Continuous
 LC20 Cropland, irrigated or post-flooding Continuous
 LC40 Mosaic natural vegetation (tree, shrub, herbaceous cover)/cropland Continuous
 LC60 Tree cover, broad-leaved, deciduous, closed to open Continuous
 LC70 Tree cover, needle leaved, evergreen, closed to open Continuous
 LC100 Mosaic tree and shrub/herbaceous cover Continuous
 LC120 Shrubland Continuous
 LC130 Grassland Continuous
Individual detectability predictors
 HYW Density of highways Categorical
 ROAD Density of conventional roads Categorical
 URB Density of urban roads Categorical
 MONTH Month Categorical
 REG Autonomous community (region) Categorical
 HFP Human influence index Continuous
 TRI Topographic ruggedness index Continuous
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ver. 2 (<http://sedac.ciesin.columbia.edu/data/collection/
wildareas-v2>), was used as a human population density 
proxy. A topographic ruggedness index (TRI) was also com-
puted for each cell from a digital elevation model (National 
Geographic Institute, Ministry of Transport, Mobility and 
Urban Agenda 2021, <https://www.ign.es/web/seccion-
elevaciones>). Finally, each cell was assigned to the corre-
sponding autonomous community (REG), since the WVC 
data availability was different for each region. Other specific 
factors related to the different regions can also affect to the 
WVC data, such as specific legislation about data reporting 
or policies about wildlife management like types of fences in 
hunting grounds (Gunson et al. 2011).

Royle and Nichols model (RN)

Single season site-occupancy models (MacKenzie et al. 2002) 
are a hierarchical modeling approach to model species occu-
pancy (probability of a site is actually occupied, Ψ) that 
account for imperfect detection in response variable:

zi ~ Bernoulli y( )

where zi is the random variable presence or absence of spe-
cies in site i. They relay in detection/non-detection data from 
repetitive K surveys at each site to model species detectability 
(MacKenzie et al. 2002):

h z z pij i i j| ~ Bernoulli ( )

where hij is the outcome of the jth survey in site i (detection/
non-detection), zi is the random variable presence or absence 
of species in site i and pj is the detection probability for the 
jth survey. With this framework both presence probability 
Ψ and detection probability p can be modeled as function 
of site and survey specific covariates using any adequate link 
function (logit, etc.).

This framework was extended by Royle and Nichols 
(2003) to account for heterogeneity in detection probabili-
ties as function of species abundance at each site. This model 
assumes a relationship between probability of detection pi 
and abundance (Ni number of individuals in site i) in the way

Ni i~ Poisson l( )

y N pij i ij| ,~ Bernoulli ( )

p rij ij
Ni

= - -( )1 1

where yij is the detection outcome at unit i in the j survey 
and rij is the per-individual detection probability. Note that 

in our case the abundance is modeled through a Poisson dis-
tribution with λ parameter since we preferred to keep the 
modelling procedure as simple as possible and other distri-
bution not always lead in easily interpretable results (for a 
discussion about unestable maximum likelihood estima-
tions in RN models under negative binomial distribution see 
Royle and Nichols 2003), but this framework can accomplish 
any other discrete-valued distribution (negative-binomial, 
zero-inflated Poisson, etc.). Therefore, this model offers the 
possibility to estimate species abundance from detection/
non-detection data registered in repetitive surveys. In addi-
tion, as in site-occupancy models, covariates affecting to 
abundance N and individual detectability r can be included 
by using link functions. Nevertheless, it is important to men-
tion that Ni obtained for each site might be interpreted as a 
random effect yielding variation in pi, not an abundance per 
se (MacKenzie et al. 2017). For this reason, N obtained from 
our RN models should be interpreted as an abundance index 
rather than actual individual abundance at each site (but see 
Linden et al. 2017).

Model fitting, selection and validation with hunting 
yield statistics

We used RN models (Royle and Nichols 2003) to obtain 
population abundance indices for wild boar and roe deer 
in mainland Spain from WVC data. We considered each 
month of 2017 as a survey occasion. For each 10 × 10 km 
cell (sites), a detection was annotated if at least one WVC 
was recorded at each month (survey). Otherwise, a non-
detection was established. Site specific (bioclimatic, land 
cover, road km, etc.) and survey specific (month) covariates 
were used to fit a RN model accounting for heterogene-
ity in detectability driven by species abundance (Table 2). 
In a first step, we focused on modeling species abundance, 
using a general model for detection probability (all covari-
ates included for individual detection process modeling). 
Firstly, we modeled abundance only as function of biocli-
matic covariates (BIO), then only as function of land cover 
covariates (LC), and finally as function of both (BIO + LC). 
This strategy avoids constrains imposed in detection prob-
ability to focus on abundance as the ecological parameter of 
interest (MacKenzie et al. 2017). Once the abundance was 
fitted, we followed a similar procedure with the detectabil-
ity, modeling it as function of road density and month first 
(HWY + ROADS + URB + MONTH), as function of road 
density, month, region and human influence (HWY + RO
ADS + URB + MONTH + REG + HFP) and finally as func-
tion of road density, month, region, human influence and 
topographic ruggedness index (HWY + ROADS + URB + M
ONTH + REG + HFP + TRI). All continuous variables were 
standardized before to perform the analyses.

We used the function occuRN from the R package 
unmarked to fit all models by maximum likelihood estima-
tion (Fiske and Chandler 2011). Model selection based on 
Akaike’s information criterion (AIC) was used to select the 
most appropriate model (Burnham and Anderson 2002). To 
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assess the goodness-of-fit for the RN model we used para-
metric bootstrapping (MacKenzie and Bailey 2004) and cal-
culated the overdispersion parameter (ĉ) using the function 
mb.gof.test from the R package AICcmodavg (Mazerolle 2020). 
We generated spatial predictions (abundance and detectabil-
ity) for each species for the grid cells in the whole study area. 
It is important to mention that one of the assumptions of 
RN models is that animal populations are geographically and 
demographically closed, that is, number of animals at each 
cell does not change overtime within the season, which means 
no deaths, births, immigration or emigration. Although this 
is presumably not true in our study, we assume that RN mod-
els are robust to slight variations in population size as long 
as occupancy state does not change, which is mostly true in  
our case.

To assess abundance index values obtained from WVC 
data for each species, we aggregated cell predictions at 
province level for mainland Spain and compared it with 
raw hunting yields obtained for 2017 season using a least-
squares regression (total number of hunted animal per each 
region, Ministry of Agriculture, Food and Environment 
published ‘Yearbooks of Forestry Statistics’ (<www.mapa.
gob.es/es/desarrollo-rural/estadisticas/forestal_anuarios_
todos.aspx>), compiled from the reports submitted by the 
provincial hunting departments).

Results

Model fitting and selection

The results for model selection using AIC are shown in 
Table 2. For the two species, the first stage in the fitting proce-
dure indicated that variation in abundance index was driven 
by both, bioclimatic and land cover predictors. For wild boar, 
model with only land cover covariates obtained a lower AIC 
than the model with only bioclimatic predictors, while the 
opposite pattern was obtained for roe deer (Table 2). The sec-
ond step focused on individual detectability showed similar 
results for both species, being the best model the one with 
all covariates (Table 2). Therefore, we selected the saturated 
model in both processes to predict wild boar and roe deer 
abundance index across mainland Spain.

All model estimates and their standard errors for the abun-
dance and individual detectability for both species are shown 
in the Supporting information. In the abundance process 
from wild boar model, confident intervals of estimates for 
BIO11, LC11, LC12, LC100 and LC120 overlapped with 
0, which indicated a low effect of these covariates (Fig. 1). 
The rest of covariates showed a positive relationship with 
the abundance process (Fig. 1). For roe deer, none of the 
estimate’s confident intervals overlapped with 0. Bioclimatic 

Figure 1. Results for full models (including all covariates in both processes) for wild boar (A, C) and roe deer (B, D). Covariate estimates 
for abundance process (A, B) and effect of the survey specific covariate (month) in individual detectability process (C, D). Bioclimatic and 
land cover variables are defined in Table 1. Bars represent standard errors of estimates.
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variables BIO4, BIO11 and BIO17 showed a negative rela-
tion with roe deer abundance process, while all the land 
cover variables showed a positive relationship (Fig. 1). 
Detectability of both species highly varied among months, 
being October, November and December those with higher 
detectability for wild boar, while April–July was the period 
with higher detectability for roe deer (Fig. 1). For wild boar 
the three types of roads (highways, conventional roads and 
urban roads) increased the detectability at higher road den-
sities. Similar results were obtained for roe deer excepting 
for highways, which showed a non-linear effect decreasing 
detectability at medium highways densities (see Supporting 
information). Two regions showed especially low detect-
ability values for wild boar, Basque Country and Catalonia, 
while Murcia Region obtained the lowest detectability for roe 
deer. Human index (positive) and topographic ruggedness 
(negative) showed a similar effect over individual detectabil-
ity for both species. The goodness-of-fit statistics indicated 

non overdispersion for wild boar (ĉ = 1.09), nor for roe deer 
(ĉ = 0.99).

Model predictions and comparison with hunting 
yield statistics

Model predictions for wild boar and roe deer abundance 
and individual detectability are shown in Fig. 2. To spatially 
predict individual detectability, both models were fitted to 
January for the month covariate. Spatial pattern of wild boar 
abundance index described a northeast–southwest gradient 
with the highest abundances in Pyrenean and pre-Pyrenean 
Mountains (see Supporting information, provinces 32, 9, 29 
and 28). Wild boar was also abundant in the rest of North 
Spain, with a significant decrease for the interior of north-
ern plateau (Castilla y León region; Fig. 2A). Roe deer was 
abundant in Cantabrian, Iberian and Pyrenean Mountains, 
while the southern Spain obtained the lowest abundances 

Figure 2. Results for full models (including all covariates in both processes) for wild boar (A, C) and roe deer (B, D). Abundance index (A, 
B) and individual detectability (C, D) predictions for wild boar and roe deer respectively. Note that individual detectability was fixed for
month = January.
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(Fig. 2B). Individual detectability showed a scattered pattern 
for both species due to differences in road densities at each 
10 × 10 km cell. In general, the northern half of mainland 
Spain obtained higher detectability, especially for the regions 
of Galicia and Castilla y León (Fig. 2C and D).

Least square regression results and correlation plots 
between model predictions and raw hunting yields at prov-
ince level are shown in Fig. 3. Both abundance models 
showed a positive correlation with raw hunting yields (wild 
boar R = 0.78; n = 47 and p < 0.01; roe deer R = 0.63, n = 47 
and p < 0.01), but the relationship was stronger for wild boar 
than for roe deer.

Discussion

Accurate information about wildlife population abundance 
is necessary for management and/or conservation plans. 
However, for broadly distributed or non-emblematic gen-
eralist species, this information is not always easy to obtain 
at national or regional scale due to the important sampling 
effort needed to cover the whole study area. Thus, the search 
for different and complementary sources of wildlife abun-
dance information and the development of methodological 
frameworks to deal with them is a key stage in broad scale 
monitoring programs (ENETWILD Consortium  et  al. 
2018). Wildlife vehicle collisions offer the possibility to 
study not only factors affecting road casualties (Gunson et al. 
2011), but also the drivers of wildlife abundance if the eco-
logical process is disentangled from the collision (detection) 
process. We presented empirical evidence that, when indi-
vidual detectability is considered in the modeling process, 
wildlife abundance indices can be generated from WVC data 
with similar performance than other commonly used at large 
spatial scale abundance indices, such as hunting statistics 
(Imperio et al. 2010). Although similar methods have been 

used to study animal roadkill occurrence (Santos et al. 2018), 
as far as we know this is the first time using Royle–Nichols 
models to derive large scale species abundance indices from 
WVC data.

Royle–Nichols model for wildlife population 
abundance index modeling from WVC data

Our results suggest that the Royle–Nichols modeling 
approach produce accurate indices of wildlife population 
abundance from WVC data. It is important to note the 
effect of accounting for detectability in the predicted abun-
dance pattern from WVC data (Supporting information and 
Fig. 3A). In the case of wild boar, we can observe that higher 
abundances not always correspond to those areas with higher 
WVC (interior of northern plateau, Castilla y León region; 
Fig. 2A). Higher WVC rates can be due to higher individual 
detectability (Fig. 2C) and therefore, the lack of control of this 
process could led in misleading results when using directly 
WVC as wildlife abundance index (Rodríguez-Morales et al. 
2013). Similarly, the absence of WVC is not always produced 
by low population abundance index. Our approach correctly 
detected lower detectability in some regions where WVC 
were underrepresented in our database (Basque Country 
and Catalonia for wild boar, south of Andalusia for roe 
deer), and predicted accurate abundance indices for those  
regions (Fig. 3).

Although other authors have reached accurate absolute 
abundance estimations using RN models (Linden  et  al. 
2017), only relative abundance indices were obtained in our 
study case. Royle–Nichols model simply accommodates het-
erogeneity in detection probability that is formally attributed 
to variation in abundance, but other sources of heterogeneity 
could be affecting our data (MacKenzie et al. 2017). Absolute 
abundance estimates from our model predictions are far to 
reach the actual population densities estimated by other more 

Figure 3. Relationship between abundance index derived from full models using wildlife vehicle collision data and raw hunting yields 
(number of hunted animals) at province level for mainland Spain in 2017 (A, wild boar R = 0.78, R2 = 0.61; B, roe deer R = 0.63, R2 = 0.4).
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specific methods (hunting yields, telemetry, camera trap, etc.) 
and therefore our predictions should be interpreted as abun-
dance indices. Despite this, the potential of RN model to 
predict abundance indices from WVC opens a promising 
field that in combination to other data sources will lead in 
more accurate absolute abundance estimates.

In addition to population abundance, RN model allow us 
to obtain spatial and temporal predictions on detectability, 
which can be used as a wildlife vehicle collision risk index 
to detect black spots for animal and motorist casualties in 
roads (van der Grift  et  al. 2013). However, this is condi-
tioned to the systematic register of WVC in our databases, 
since low detectability can be also due to low rate of WVC 
report by administrations or incomplete databases as in our 
case (Basque Country and Catalonia).

Factors affecting wild boar and roe deer vehicle 
collisions

One of the advantages of the RN modeling approach is the 
possibility to disentangle abundance and individual detect-
ability processes. The most important covariates affecting 
wild boar abundance were precipitation of driest quarter, 
mosaic natural vegetation/cropland and evergreen tree cover 
(Fig. 2, Supporting information). This is in accordance with 
previous studies about wild boar abundance in Mediterranean 
regions, where water and therefore resource availability dur-
ing the driest season strongly affects wild boar and other 
ungulates abundances (ENETWILD Consortium  et  al. 
2020). Similarly, mosaic or transition areas between natural 
vegetation and croplands usually provide both refugee and 
feeding resources and have been already related to higher wild 
boar abundances (Acevedo et al. 2014). Seasonality in both 
temperature and precipitation were negatively related to roe 
deer abundance (Fig. 2). It has been already described the 
relationship between roe deer distribution and Atlantic influ-
enced areas in the Iberian Peninsula, in which water avail-
ability is more constant across the year and temperatures are 
milder (Aragón  et  al. 1995, Acevedo  et  al. 2005). On the 
contrary, croplands-herbaceous and patched landscape with 
tree or shrub and herbaceous cover were related to higher roe 
deer abundances. This cervid has experienced a range expan-
sion during the last decades in the Iberian Peninsula from 
forest areas (Virgós and Tellería 1998). It has promoted the 
colonization of heterogeneous habitats and grasslands previ-
ously used in agriculture which could explain higher abun-
dances related to croplands and herbaceous covers (Acevedo 
et al. 2005).

Our modeling approach was able to control the lack 
of data for some regions (namely Basque Country and 
Catalonia) which is represented by the low detectability at 
those regions for both species (Supporting information). We 
obtained a low detectability for roe deer in Murcia region, in 
which it is certainly absent for the most of the territory. We 
also captured the temporal variation in individual detectabil-
ity for wild boar and roe deer. While autumn was the season 
with higher probabilities for wild boar vehicle collisions, roe 

deer causalities were more likely in spring and early sum-
mer (Fig. 2). This pattern has been previously reported and 
could be due to several factors apart from traffic variation 
(Jacobson  et  al. 2016). Collective hunting activities dur-
ing October–December in Spain can increase the wild boar 
movements (Maillard and Fournier 1995), which can lead in 
higher frequency of road-crossing and therefore higher colli-
sion probabilities. However, other confounding factors such 
as longer nights in these months or reproductive behavior 
could also play a role (Lagos et al. 2012). In the case of roe 
deer, Lagos  et  al. (2012) related higher collision probabili-
ties in April–June and July to the mother–fawn separation 
prior to the calving and to the rutting season, respectively. 
Like wild boar, high animal mobility in these periods could 
increase the probability of WVC. The rest of covariate effects 
were expected, included the decrease of detectability at higher 
densities of highways for roe deer (Supporting information), 
since many authors have described roe deer roads avoidance 
(Madsen et al. 2002, Torres et al. 2011, Kušta et al. 2017).

Hunting yields versus wildlife vehicle collision data 
as abundance indices

Hunting yields statistics are used for game species abun-
dance monitoring at regional and broader spatial scales 
(ENETWILD Consortium et al. 2019). Thus, HY were used 
in our study as validation dataset to assess abundance index 
obtained from WVC. Positive linear correlations indicated 
similar outcomes when comparing raw HY with model abun-
dance predictions from WVC for both species (Fig. 3). We 
found stronger relation in wild boar than roe deer, which 
could be related to the broader distributional range of wild 
boar compared to roe deer. Nevertheless, those relationships 
have been already observed for other ungulates in Europe 
(Wiebke et al. 2020) or North America (McCaffery 1973). 
This validation process should be replicated for other coun-
tries to empirically assess the robustness of wildlife abundance 
indices derived from WVC data (Ascensão  et  al. 2019b). 
Wildlife monitoring programs at large scales require sys-
tematic sampling effort across different regions or countries. 
Establishing coordinated networks of collaborators to apply 
specific sampling methods such as camera tramp or direct 
counts across different countries is usually unaffordable due 
to cost expenses (Burton et al. 2015). For this reason, hunt-
ing statistics in combination with another calibrated method 
such as drive counts have been proposed as a low-cost meth-
odology to infer species abundance at regional or boarder 
scales, offering the possibility to provide long term trends 
in population dynamics (ENETWILD Consortium  et  al. 
2018). However, not all species, nor all regions can benefit 
from these approaches. In this study, we illustrated that RN 
models using detection/non-detection data from WVC pro-
duce similar inferences about relative abundance to hunting 
statistics in mainland Spain. Wildlife vehicle collision data 
also share several useful features for large scale monitoring 
programs: data is systematically registered by administrations 
or other organizations in countries with a well-developed 
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primary and secondary road systems, the volume of data is 
often enormous among large species and historical or long 
time series can be easily obtained (Romin and Bissonette 
1996, Brockie et al. 2009). Detection/non-detection models 
that account for imperfect detectability can control those fac-
tors that could affect abundance estimates from WVC data 
such as traffic density or vehicles speed. At the same time, 
they provide spatially and temporal explicit predictions about 
individual detectability, that is, wildlife vehicle collision risk, 
which can be used in mitigation programs to avoid animal 
and motorist mortality.

Concluding remarks and recommendations

The Royle–Nichols model applied to WVC data can identify 
the main drivers of the wild boar and roe deer abundance in 
mainland Spain (ecological process) as well as those factors 
affects the animal vehicle collision probability (observational 
process). Abundance indices obtained from WVC are like 
those obtained from the hunting yield statistics, one of the 
most important data sources for abundance monitoring in 
game species. Our approach provides new opportunities in 
the study of wildlife abundance distribution for those terri-
tories where hunting bag information is not accurate enough 
or such data is not available. In addition, time series of WVC 
data could be used for monitoring population trends in a 
multi season framework. In this context, abundance predic-
tions from the Royle–Nichols models should be evaluated to 
study their ability to be extrapolated, down or upscaled, etc., 
using other independent sources such as telemetry or camera 
trapping studies (Palencia et al. 2021).

Acknowledgements – We thank Dirección General de Tráfico (DGT) 
of the Spanish Ministry of the Interior for data collection and 
supply. Sonia Illanas and Pablo Palencia helped with overdispersion 
parameter computation through Servicio de Supercomputacion 
from Univ. de Castilla – La Mancha.
Funding – This research was funded by the Spanish Ministry of 
Science (Project: ‘Armonización de los datos poblacionales de la 
fauna silvestre en España: aplicaciones a la vigilancia sanitaria 
y control de enfermedades compartidas con el ganado.’ Ref. 
PID2019-111699RB-I00, HAWIPO). JFL was partially funded by 
the grant NSF – 1759940, and currently by the grant Margarita 
Salas from the European Union – NextGenerationEU through the 
Complutense University.

Author contributions

Javier Fernández-López: Conceptualization (lead); Data 
curation (lead); Formal analysis (lead); Writing – original 
draft (lead); Writing – review and editing (lead). José A. 
Blanco-Aguiar: Conceptualization (equal); Data curation 
(equal); Resources (equal); Writing – review and editing 
(equal). Joaquín Vicente: Conceptualization (equal); Data 
curation (equal); Resources (equal); Writing – review and 
editing (equal). Pelayo Acevedo: Conceptualization (equal); 

Data curation (equal); Formal analysis (equal); Supervision 
(lead); Writing – review and editing (equal).

Transparent peer review

The peer review history for this article is available at <https://
publons.com/publon/10.1111/ecog.06113>.

Data availability statement

The dataset used in this study contains sensitive information 
and is available upon request from the Spanish General Traffic 
Agency (Dirección General de Tráfico - DGT). Requests 
regarding the dataset should be made to servicio.estadistica@
dgt.es.

Supporting information

The supporting information associated with this article is 
available from the online version.

References

Acevedo, P. et al. 2005. Environmental constraints in the colonization 
sequence of roe deer (Capreolus capreolus Linnaeus, 1758) across 
the Iberian Mountains, Spain. – J. Biogeogr. 32: 1671–1680.

Acevedo, P. et al. 2011. Past, present and future of wild ungulates 
in relation to changes in land use. – Landsc. Ecol. 26: 19–31.

Acevedo, P. et al. 2014. Spatial distribution of wild boar population 
abundance: basic information for spatial epidemiology and 
wildlife management. – Ecol. Indic. 36: 594–600.

Aragón, S. et al. 1995. Socioeconomic, physiognomic and climatic 
factors determining the distribution pattern of roe deer Capre-
olus capreolus in Spain. – Acta Theriol. 40: 37–43.

Ascensão, F. et al. 2019a. Beware that the lack of wildlife mortality 
records can mask a serious impact of linear infrastructures. – 
Global Ecol. Conserv. 19: e00661.

Ascensão, F. et al. 2019b. Validation data is needed to support 
modelling in Road Ecology. – Biol. Conserv. 230: 199–200.

Ascensão, F. et al. 2021. Wildlife collisions put a dent in road safety. 
– Science 374: 1208–1208.

Baker, P. J. et al. 2004. Is it possible to monitor mammal population 
changes from counts of road traffic casualties? An analysis using 
Bristol’s red foxes Vulpes vulpes as an example. – Mammal Rev. 
34: 115–130.

Barrientos, R. and Miranda, J. D. 2012. Can we explain regional 
abundance and road-kill patterns with variables derived from 
local-scale road-kill models? Evaluating transferability with the 
European polecat. – Divers. Distrib. 18: 635–647.

Barrientos, R. et al. 2021. The lost road: do transportation networks 
imperil wildlife population persistence? – Perspect. Ecol. Con-
serv. 19: 411–416.

Bíl, M. et al. 2020. Ungulate-vehicle collision risk and traffic vol-
ume on roads. – Eur. J. Wildl. Res. 66: 59.

Bissonette, J. A. et al. 2008. Assessment of costs associated with 
deer–vehicle collisions: human death and injury, vehicle dam-
age and deer loss. – Hum.-Wildl. Confl. 2: 17–27.

Brockie, R. E. et al. 2009. Long-term wildlife road-kill counts in 
New Zealand. – New Zeal. J. Zool. 36: 123–134.



11

Burnham, K. P. and Anderson, D. R. 2002. Model selection and 
multimodel inference: a practical information–theoretic 
approach. – Springer.

Burton, A. C. et al. 2015. Wildlife camera trapping: a review and 
recommendations for linking surveys to ecological processes. 
– J. Appl. Ecol. 52: 675–685.

Colino-Rabanal, V. J. and Peris, S. J. 2016. Wildlife roadkills: improv-
ing knowledge about ungulate distributions? – Hystrix 27: 91–98.

D’Amico, M. et al. 2015. Vertebrate road-kill patterns in Mediter-
ranean habitats: who, when and where. – Biol. Conserv. 191: 
234–242.

ENETWILD  consortium et al. 2018. Guidance on estimation of 
wild boar population abundance and density: methods, chal-
lenges, possibilities. – EFSA Support. Publ. 15: 1449E.

ENETWILD consortium et al. 2019. Harmonization of the use of 
hunting statistics for wild boar density estimation in different 
study areas: report based on comparison of case studies in dif-
ferent wild boar populations representative of the different 
management and habitat conditions across Europe. – EFSA 
Support. Publ. 16: 1706E.

ENETWILD consortium  et  al. 2020. Update of occurrence and 
hunting yield-based data models for wild boar at European 
scale: new approach to handle the bioregion effect. – EFSA 
Support. Publ. 17: 1871E.

Fick, S. E. and Hijmans, R. J. 2017. WorldClim 2: new 1-km 
spatial resolution climate surfaces for global land areas. – Int. 
J. Climatol. 37: 4302–4315.

Fiske, I. and Chandler, R. 2011. Unmarked: an R package for fit-
ting hierarchical models of wildlife occurrence and abundance. 
– J. Stat. Softw. 43: 1–23.

Garrote, G. et al. 2018. Prediction of Iberian lynx road–mortality 
in southern Spain: a new approach using the MaxEnt algo-
rithm. – Anim. Biodivers. Conserv. 41: 217–225.

Grilo, C. et al. 2020. Roadkill risk and population vulnerability in 
European birds and mammals. – Front. Ecol. Environ. 18: 
323–328.

Gunson, K. E. et al. 2011. Spatial wildlife–vehicle collision models: 
a review of current work and its application to transportation 
mitigation projects. – J. Environ. Manage. 92: 1074–1082.

Imperio, S. et al 2010. Investigating population dynamics in ungu-
lates: do hunting statistics make up a good index of population 
abundance? – Wildl. Biol. 16: 205–214.

Jacobson, S. L. et al. 2016. A behavior-based framework for assess-
ing barrier effects to wildlife from vehicle traffic volume. – Eco-
sphere 7: e01345.

Jones, J. P. 2011. Monitoring species abundance and distribution 
at the landscape scale. – J. Appl. Ecol. 48: 9–13.

Kušta, T. et al. 2017. The effect of traffic intensity and animal activ-
ity on probability of ungulate-vehicle collisions in the Czech 
Republic. – Safety Sci. 91: 105–113.

Lagos, L. et al. 2012. Temporal pattern of wild ungulate-related 
traffic accidents in northwest Spain. – Eur. J. Wildl. Res. 58: 
661–668.

Linden, D. W. et al. 2017. Examining the occupancy–density relation-
ship for a low-density carnivore. – J. Appl. Ecol. 54: 2043–2052.

MacKenzie, D. I. and Bailey, L. L. 2004. Assessing the  
fit of site-occupancy models. – J. Agric. Biol. Environ. Stat. 9: 
300–318.

MacKenzie, D. I. et al. 2002. Estimating site occupancy rates when 
detection probabilities are less than one. – Ecology 83: 
2248–2255.

MacKenzie, D. I. et al. 2017. Occupancy estimation and modeling: 
inferring patterns and dynamics of species occurrence. – Elsevier.

Madsen, A. B. et al. 2002. Factors causing traffic killings of roe deer 
Capreolus capreolus in Denmark. – Wildl. Biol. 8: 55–61.

Maillard, D. and Fournier, P. 1995. Effects of shooting with hounds 
on size of resting range of wild boar (Sus scrofa L.) groups in 
Mediterranean habitat. – J. Mount. Ecol. 3: 102–107.

Mallick, S. A. et al. 1998. Road-kills of the eastern barred bandicoot 
Perameles gunnii in Tasmania: an index of abundance. – Wildl. 
Res. 25: 139–145.

Massei, G. et al. 2015. Wild boar populations up, numbers of 
hunters down? A review of trends and implications for Europe. 
– Pest Manage. Sci. 71: 492–500.

Mazerolle, M. J. 2020. AICcmodavg: model selection and multi-
model inference based on (Q)AIC(c). R package ver. 2.3-1. – 
<https://cran.r-project.org/package=AICcmodavg>.

McCaffery, K. R. 1973. Road-kills show trends in Wisconsin deer 
populations. – J. Wildl. Manage. 37: 212–216.

Palencia, P. et al. 2021. Assessing the camera trap methodologies 
used to estimate density of unmarked populations. – J. Appl. 
Ecol. 58: 1583–1592.

Pearce, J. L. and Boyce, M. S. 2006. Modelling distribution and 
abundance with presence-only data. – J. Appl. Ecol. 43: 
405–412.

Rodríguez-Morales, B. et al. 2013. Spatiotemporal analysis of vehi-
cle collisions involving wild boar and roe deer in NW Spain. 
– Accid. Anal. Prevent. 60: 121–133.

Romin, L. A. and Bissonette, J. A. 1996. Deer: vehicle collisions: 
status of state monitoring activities and mitigation efforts. – 
Wildl. Soc. Bull. 24: 276–283.

Royle, J. A. and Nichols, J. D. 2003. Estimating abundance from 
repeated presence–absence data or point counts. – Ecology 84: 
777–790.

Rytwinski, T. and Fahrig, L. 2012. Do species life history traits 
explain population responses to roads? A meta-analysis. – Biol. 
Conserv. 147: 87–98.

Sáenz-de-Santa-María, A. and Tellería, J. L. 2015. Wildlife–vehicle 
collisions in Spain. – Eur. J. Wildl. Res. 61: 399–406.

Saint-Andrieux, C. et al. 2020. Comparison of environmental, bio-
logical and anthropogenic causes of wildlife–vehicle collisions 
among three large herbivore species. – Popul. Ecol. 62: 64–79.

Santos, R. A. et al. 2018. Predicting wildlife road-crossing probabil-
ity from roadkill data using occupancy-detection models. – Sci. 
Total Environ. 642: 629–637.

Torres, R. T. et al. 2011. Factors affecting roe deer occurrence in a 
Mediterranean landscape, Northeastern Portugal. – Mammal. 
Biol. 76: 491–497.

van der Grift, E. A. et al. 2013. Evaluating the effectiveness of road 
mitigation measures. – Biodivers. Conserv. 22: 425–448.

Vanlaar, W. G. et al. 2012. Wildlife vehicle collisions in Canada: a 
review of the literature and a compendium of existing data 
sources. – Traffic Injury Research Foundation and Eco-Kare 
International, 69 pp.

Vicente, J. et al. 2019. Science-based wildlife disease response. – 
Science 364: 943–944.

Virgós, E. and Tellería, J. L. 1998. Roe deer habitat selection in 
Spain: constraints on the distribution of a species. – Can. J. 
Zool. 76: 1294–1299.

Wiebke, N. et al. 2020. Strength of correlation between wildlife 
collision data and hunting bags varies among ungulate species 
and with management scale. – Eur. J. Wildl. Res. 66: 86.


