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Ecography Reliable estimates of the distribution of species abundance are a key element in wild-
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approach using the Royle—Nichols model for detection—non-detection data to obtain
population abundance indices from WVC. Relative abundance and individual detect-
ability were modeled for two species, wild boar Sus scrofa and roe deer Capreolus cap-
reolus at 10 X 10 km cells in mainland Spain from WVC data using environmental,
anthropological and temporal covariates. For each cell, a detection was annotated if
at least one WVC was recorded at each month (used as survey occasion). The pre-
dicted abundance indices were compared with raw hunting statistics at region level to
assess the performance of the modeling approach. Site specific covariates such as road
density or administrative region and the month of the year, affected individual detect-
ability, with higher WVC probability between October and December for wild boar
and between April and July for roe deer. Wild boar and roe deer abundance can be
explained by both, bioclimatic and land cover covariates. Abundance indices obtained
from WVC data were significantly positively correlated with regional raw hunting
yields for both species. We presented empirical evidence supporting that accurate wild-
life abundance indices at fine spatial resolution can be generated from WVC data
when individual detectability is considered in the modeling process.
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Introduction

Reliable estimates of species distribution and abundance are
key elements in wildlife studies (Jones 2011). They allow
for well-informed conservation plans, but also wildlife man-
agement, pest control or assessing epidemiological risks
(Vicente et al. 2019). However, this basic information is not
always easy to obtain due either to logistical constraints or
intrinsic difficulties inherent to the studied species (i.e. noc-
turnal, elusive species, inaccessible habitats, complex social
structure, etc.; Pearce and Boyce 20006).

Wildlife vehicle collisions (WVC) are an important prob-
lem for both, motorist security and wildlife conservation
(Gunson et al. 2011, Ascensio et al. 2021). Roadkills can be
one of the most important conservation threats for many ani-
mal populations specially reptiles and amphibians (Rytwinski
and Fahrig 2012), but also birds or endangered mammals
(Garrote et al. 2018, Grilo et al. 2020). In addition, when
fatalities involve large species such as wild ungulates they
constitute a serious risk for drivers that could led in injuries
or human losses (Bissonette et al. 2008). In most countries
with a well-developed road system, these events are recorded
on a systematic basis. Despite of these obvious negative
effects, WVC also represent a useful source of information for
study species biology. Although the major focus of road ecol-
ogy has been to study the fact of roadkills (Barrientos et al.
2021), in the simplest case a WVC indicates the presence of
a species in a specific time and location (Colino-Rabanal and
Peris 2016). They also could be used as a proxy of population
abundance if the number of WVC increases with the popula-
tion abundance (Baker et al. 2004). This spatial and tempo-
ral relationship has been already proved in different groups
such as reptiles and amphibians (D’Amico et al. 2015), mar-
supials (Perameles gunnii, Mallick et al. 1998), carnivores
(Vulpes vulpes, Baker et al. 2004; Mustela putorius, Barrientos
and Miranda 2012) or ungulates (Odocoileus virginianus,
McCaftery 1973; Cervus elaphus, Capreolus capreolus and
Sus scrofa, Saint-Andrieux et al. 2020), showing the broad
range of species to which this index could be applied (but see
Ascensio et al. 2019a). WVC data have some interesting fea-
tures to study population abundance: for large species, much
information is systematically recorded by administrations or
insurance companies across many countries, producing long
historical time series at broad spatial scales (Vanlaar et al.
2012). However, despite their potential, WVC have not been
widely used in wildlife population monitoring mainly due to
specific singularities that prevent them from being directly
used as abundance indices. Covariates such as road type and
density, traffic intensity or vehicle speed have been often
proven as the most important factors affecting animal road
fatalities (Gunson et al. 2011). Thus, all these singularities
should be accounted for in order to use WVC data as a popu-
lation abundance index.

In the last decades, a novel modeling framework that
integrates species detectability to study species distribution
and abundance has become popular in wildlife monitoring
programs (MacKenzie et al. 2002). Hierarchical modeling

approaches account for false negatives in data samples using
repetitive surveys to model both, the observational process
(species detectability) and the underlying ecological pro-
cess of interest (species occurrence or abundance; Royle and
Nichols 2003). This framework would allow to effectively
control for those non abundance-related (or collision-spe-
cific) factors affecting WVC to obtain accurate population
abundance estimates. Such approach offers a new source of
information for wildlife monitoring that could be easily com-
pared across space and time with other different and comple-
mentary sources (Santos et al. 2018).

In this study we evaluated the utility of WVC to obtain
population abundance indices of two widely distributed
ungulates in mainland Spain, wild boar Sus scrofa and roe
deer Capreolus capreolus, which are the two wildlife species
most involved in vehicle collisions in this country (Sdenz-
de-Santa-Marfa and Tellerfa 2015). The Royle—Nichols
model (RN) was used to infer abundances from repetitive
WVC data accounting for individual detectability due to
road related covariates such as road type or density (Royle
and Nichols 2003). Model predictions were then projected to
national scale to explore their relationship with an indepen-
dent broadly used abundance index for game species at large
spatial scales, namely the hunting yields (HY, ENETWILD
Consortium et al. 2019).

Material and methods

Study area

Our study area spanned mainland Spain (493 518 km?), in
the Iberian Peninsula, southwestern Europe. Continental
Spain is divided in 15 autonomous communities (thereafter
regions) which are subdivided in 47 provinces, correspond-
ing to the level 3 of the Nomenclature of Territorial Units
for Statistics from the European Union (NUTS3). Spain is
crossed by 666 677 km of paved roads heterogeneously dis-
tributed (Ministry of Transport, Mobility and Urban Agenda
2021; Supporting information). Human population in main-
land Spain is distributed unevenly across the country, with
higher densities in coastal areas an around the capital city in
central Spain, Madrid, with a mean of 94 inhabitants km™
(Spanish Statistical Office — INE 2021).

The study area was divided in 10 X 10 km cell grid which
was used to assess the relationship between WVC and covari-
ate predictors (environmental variables, road density, etc.).
A total of 5184 cells were used in our analyses. A finer cell
resolution could be used to obtain more precise abundance
estimates but led to problems linked to sample size (number
WVC per cell) and thus it was discarded.

Wildlife vehicle collision data

Two species were selected for abundance modeling from WVC
data: wild boar and roe deer. These are the wildlife species
most reported in vehicle collisions in mainland Spain, with



35% of wildlife collisions involving wild boar and 24.9% in
the case of the roe deer during 2017. Note that those species
are the most reported because their impact for human road
safety, given their size, but other species are probably more
affected by road kills (D’Amico et al. 2015). Populations of
these two ungulates have increased during the last decades
mainly due to rural abandonment, and their distribution
ranges have also expanded significantly (Acevedo et al. 2011,
Massei et al. 2015).

Wildlife vehicle collision data from 2017 January to
December were obtained from the Direccién General de
Trafico (DGT) of the Spanish Ministry of the Interior that
compiled traffic reports produced by the road safety authori-
ties. This information is complete for 13 of the 15 regions,
no data was obtained from Basque Country, and only a par-
tial data set was obtained from Catalonia because both have
a data collection system in place that is independent from
the rest of the country. Data represented only those colli-
sions that generated police report due to vehicle damages or
motorist injuries. Road nomenclature and kilometer point
was transformed in geographic coordinates (longitude and
latitude) and then associated to a 10 X 10 km grid. WVC
with a location error > 5 km were discarded. A total of 9508
WVC distributed in 2311 10 X 10 km cells were obtained
for wild boar (see Supporting information), while up to 7029
WVC located in 1419 10 X 10 km cells were collected for
roe deer.

Covariate predictors

Several bioclimatic and land cover covariates that usually
affect ungulate abundance in Spain were obtained for each

10 X 10 km cell (Table 1). After accounting for multicol-
linearity in an original set of 51 predictors (ENETWILD
Consortium et al. 2020), three bioclimatic variables (BIO)
related with seasonality, temperature and precipitations were
obtained from the Worldclim 2 project (<https://worldclim.
org/version2>; Fick and Hijmans 2017). Percentage of rel-
evant vegetation land cover type (LC) at each cell was cal-
culated from the ESA/CCI-LC project, ver. v2.1.1 (2017)
database  (<www.esa-landcover-cci.org/?q=node/158>). A
correlation plot of the final selected predictors for species
abundance is shown in Supporting information. In addition,
other predictors potentially involved in WVC were obtained.
For each cell, kilometers of three kinds of roads were com-
puted: highways (HWY), conventional roads (primary and
secondary, ROAD) and urban (URB) roads (see Supporting
information; National Geographic Institute, Ministry of
Transport, Mobility and Urban Agenda 2021, <htep://
centrodedescargas.cnig.es/CentroDescargas/catalogo.
do?Serie=CAANE>). Road km of each type at each cell were
transformed into a three-level categorical factor (low, medium
and high densities of each type of road). We used this clas-
sification as a simple proxy of average speed (HWY=101.99
km h™', ROAD=72.93 km h™!, URB < 50 km h7!; aver-
age for 2017) and traffic density (HWY =25 584.17 vehicles
per day (vh d™'), ROAD =4106 vh d™', URB=9204 vh d"};
average for 2017) since speed and traffic data for all roads
in the whole study area were not available. Moreover, some
authors have highlighted that the annual average daily traf-
fic not always performs well as a predictor of WVC, since
it does not account actual traffic density at the time when
the collision took place (Bil et al. 2020). Human influence
index (HFP), obtained from The Last of the Wild Project

Table 1. Site specific covariates used to model the abundance and individual detectability of wild boar Sus scrofa and roe deer Capreolus
capreolus based on wildlife-vehicle collisions data. Land cover variables represented percentage of cover per 10 x 10 km cells.

Code Covariate description Type

Abundance predictors
BIO4 Temperature seasonality (temperature standard deviation x 100) Continuous
BIOT11 Mean temperature of coldest quarter Continuous
BIO17 Precipitation of driest quarter Continuous
LC10 Cropland, rainfed Continuous
LC11 Herbaceous cover Continuous
LC12 Tree or shrub cover Continuous
LC20 Cropland, irrigated or post-flooding Continuous
LC40 Mosaic natural vegetation (tree, shrub, herbaceous cover)/cropland Continuous
LC60 Tree cover, broad-leaved, deciduous, closed to open Continuous
LC70 Tree cover, needle leaved, evergreen, closed to open Continuous
LC100 Mosaic tree and shrub/herbaceous cover Continuous
LC120 Shrubland Continuous
LC130 Grassland Continuous

Individual detectability predictors
HYW Density of highways Categorical
ROAD Density of conventional roads Categorical
URB Density of urban roads Categorical
MONTH Month Categorical
REG Autonomous community (region) Categorical
HFP Human influence index Continuous
TRI Topographic ruggedness index Continuous




ver. 2 (<http://sedac.ciesin.columbia.edu/data/collection/
wildareas-v2>), was used as a human population density
proxy. A topographic ruggedness index (TRI) was also com-
puted for each cell from a digital elevation model (National
Geographic Institute, Ministry of Transport, Mobility and
Urban Agenda 2021, <https://www.ign.es/web/seccion-
elevaciones>). Finally, each cell was assigned to the corre-
sponding autonomous community (REG), since the WVC
data availability was different for each region. Other specific
factors related to the different regions can also affect to the
WVC data, such as specific legislation about data reporting
or policies about wildlife management like types of fences in
hunting grounds (Gunson et al. 2011).

Royle and Nichols model (RN)

Single season site-occupancy models (MacKenzie et al. 2002)
are a hierarchical modeling approach to model species occu-
pancy (probability of a site is actually occupied, ¥) that
account for imperfect detection in response variable:

2z; ~Bernoulli(y)

where z, is the random variable presence or absence of spe-
cies in site 7. They relay in detection/non-detection data from
repetitive K surveys at each site to model species detectability
(MacKenzie et al. 2002):

by |z ~ Bernoulli(zipj)

where bij is the outcome of the jth survey in site 7 (detection/
non-detection), z, is the random variable presence or absence
of species in site 7 and p, is the detection probability for the
jth survey. With this framework both presence probability
¥ and detection probability p can be modeled as function
of site and survey specific covariates using any adequate link
function (logit, etc.).

This framework was extended by Royle and Nichols
(2003) to account for heterogeneity in detection probabili-
ties as function of species abundance at each site. This model
assumes a relationship between probability of detection p,
and abundance (V, number of individuals in site 7) in the way

N; ~ Poisson(k,—)

Vi | Ni ~ Bernoulli(pij ),

Ni

P =1-(1-%)

where y, is the detection outcome at unit 7 in the j survey
and 7, is the per-individual detection probability. Note that

in our case the abundance is modeled through a Poisson dis-
tribution with A parameter since we preferred to keep the
modelling procedure as simple as possible and other distri-
bution not always lead in easily interpretable results (for a
discussion about unestable maximum likelihood estima-
tions in RN models under negative binomial distribution see
Royle and Nichols 2003), but this framework can accomplish
any other discrete-valued distribution (negative-binomial,
zero-inflated Poisson, etc.). Therefore, this model offers the
possibility to estimate species abundance from detection/
non-detection data registered in repetitive surveys. In addi-
tion, as in site-occupancy models, covariates affecting to
abundance /N and individual detectability 7 can be included
by using link functions. Nevertheless, it is important to men-
tion that V, obtained for each site might be interpreted as a
random effect yielding variation in p,, not an abundance per
se (MacKenzie et al. 2017). For this reason, /N obtained from
our RN models should be interpreted as an abundance index
rather than actual individual abundance at each site (but see
Linden et al. 2017).

Model fitting, selection and validation with hunting
yield statistics

We used RN models (Royle and Nichols 2003) to obtain
population abundance indices for wild boar and roe deer
in mainland Spain from WVC data. We considered each
month of 2017 as a survey occasion. For each 10 X 10 km
cell (sites), a detection was annotated if at least one WVC
was recorded at each month (survey). Otherwise, a non-
detection was established. Site specific (bioclimatic, land
cover, road km, etc.) and survey specific (month) covariates
were used to fit a RN model accounting for heterogene-
ity in detectability driven by species abundance (Table 2).
In a first step, we focused on modeling species abundance,
using a general model for detection probability (all covari-
ates included for individual detection process modeling).
Firstly, we modeled abundance only as function of biocli-
matic covariates (BIO), then only as function of land cover
covariates (LC), and finally as function of both (BIO + LC).
This strategy avoids constrains imposed in detection prob-
ability to focus on abundance as the ecological parameter of
interest (MacKenzie et al. 2017). Once the abundance was
fitted, we followed a similar procedure with the detectabil-
ity, modeling it as function of road density and month first
(HWY + ROADS + URB+ MONTH), as function of road
density, month, region and human influence (HWY + RO
ADS + URB+ MONTH + REG + HFP) and finally as func-
tion of road density, month, region, human influence and
topographic ruggedness index (HWY + ROADS + URB + M
ONTH + REG + HFP + TRI). All continuous variables were
standardized before to perform the analyses.

We used the function occuRN from the R package
unmarked to fit all models by maximum likelihood estima-
tion (Fiske and Chandler 2011). Model selection based on
Akaike’s information criterion (AIC) was used to select the
most appropriate model (Burnham and Anderson 2002). To
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assess the goodness-of-fit for the RN model we used para-
metric bootstrapping (MacKenzie and Bailey 2004) and cal-
culated the overdispersion parameter (¢) using the function
mb.gof-test from the R package AICcmodavg (Mazerolle 2020).
We generated spatial predictions (abundance and detectabil-
ity) for each species for the grid cells in the whole study area.
It is important to mention that one of the assumptions of
RN models is that animal populations are geographically and
demographically closed, that is, number of animals at each
cell does not change overtime within the season, which means
no deaths, births, immigration or emigration. Although this
is presumably not true in our study, we assume that RN mod-
els are robust to slight variations in population size as long
as occupancy state does not change, which is mostly true in
our case.

To assess abundance index values obtained from WVC
data for each species, we aggregated cell predictions at
province level for mainland Spain and compared it with
raw hunting yields obtained for 2017 season using a least-
squares regression (total number of hunted animal per each
region, Ministry of Agriculture, Food and Environment
published “Yearbooks of Forestry Statistics’ (<www.mapa.
gob.es/es/desarrollo-rural/estadisticas/forestal_anuarios_
todos.aspx>), compiled from the reports submitted by the
provincial hunting departments).
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Results
Model fitting and selection

The results for model selection using AIC are shown in
Table 2. For the two species, the first stage in the ficting proce-
dure indicated that variation in abundance index was driven
by both, bioclimatic and land cover predictors. For wild boar,
model with only land cover covariates obtained a lower AIC
than the model with only bioclimatic predictors, while the
opposite pattern was obtained for roe deer (Table 2). The sec-
ond step focused on individual detectability showed similar
results for both species, being the best model the one with
all covariates (Table 2). Therefore, we selected the saturated
model in both processes to predict wild boar and roe deer
abundance index across mainland Spain.

All model estimates and their standard errors for the abun-
dance and individual detectability for both species are shown
in the Supporting information. In the abundance process
from wild boar model, confident intervals of estimates for
BIO11, LC11, LC12, LC100 and LC120 overlapped with
0, which indicated a low effect of these covariates (Fig. 1).
The rest of covariates showed a positive relationship with
the abundance process (Fig. 1). For roe deer, none of the
estimate’s confident intervals overlapped with 0. Bioclimatic
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Figure 1. Results for full models (including all covariates in both processes) for wild boar (A, C) and roe deer (B, D). Covariate estimates
for abundance process (A, B) and effect of the survey specific covariate (month) in individual detectability process (C, D). Bioclimatic and
land cover variables are defined in Table 1. Bars represent standard errors of estimates.



variables BIO4, BIO11 and BIO17 showed a negative rela-
tion with roe deer abundance process, while all the land
cover variables showed a positive relationship (Fig. 1).
Detectability of both species highly varied among months,
being October, November and December those with higher
detectability for wild boar, while April-July was the period
with higher detectability for roe deer (Fig. 1). For wild boar
the three types of roads (highways, conventional roads and
urban roads) increased the detectability at higher road den-
sities. Similar results were obtained for roe deer excepting
for highways, which showed a non-linear effect decreasing
detectability at medium highways densities (see Supporting
information). Two regions showed especially low detect-
ability values for wild boar, Basque Country and Catalonia,
while Murcia Region obtained the lowest detectability for roe
deer. Human index (positive) and topographic ruggedness
(negative) showed a similar effect over individual detectabil-
ity for both species. The goodness-of-fit statistics indicated
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Model predictions and comparison with hunting
yield statistics

Model predictions for wild boar and roe deer abundance
and individual detectability are shown in Fig. 2. To spatially
predict individual detectability, both models were fitted to
January for the month covariate. Spatial pattern of wild boar
abundance index described a northeast—southwest gradient
with the highest abundances in Pyrenean and pre-Pyrenean
Mountains (see Supporting information, provinces 32, 9, 29
and 28). Wild boar was also abundant in the rest of North
Spain, with a significant decrease for the interior of north-
ern plateau (Castilla y Ledn region; Fig. 2A). Roe deer was
abundant in Cantabrian, Iberian and Pyrenean Mountains,
while the southern Spain obtained the lowest abundances

Roe deer abundance index
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Figure 2. Results for full models (including all covariates in both processes) for wild boar (A, C) and roe deer (B, D). Abundance index (A,
B) and individual detectability (C, D) predictions for wild boar and roe deer respectively. Note that individual detectability was fixed for

month = January.



(Fig. 2B). Individual detectability showed a scattered pattern
for both species due to differences in road densities at each
10 X 10 km cell. In general, the northern half of mainland
Spain obtained higher detectability, especially for the regions
of Galicia and Castilla y Ledn (Fig. 2C and D).

Least square regression results and correlation plots
between model predictions and raw hunting yields at prov-
ince level are shown in Fig. 3. Both abundance models
showed a positive correlation with raw hunting yields (wild
boar R=0.78; n=47 and p < 0.01; roe deer R=0.63, n=47
and p < 0.01), but the relationship was stronger for wild boar
than for roe deer.

Discussion

Accurate information about wildlife population abundance
is necessary for management and/or conservation plans.
However, for broadly distributed or non-emblematic gen-
eralist species, this information is not always easy to obtain
at national or regional scale due to the important sampling
effort needed to cover the whole study area. Thus, the search
for different and complementary sources of wildlife abun-
dance information and the development of methodological
frameworks to deal with them is a key stage in broad scale
monitoring programs (ENETWILD Consortium et al.
2018). Wildlife vehicle collisions offer the possibility to
study not only factors affecting road casualties (Gunson et al.
2011), but also the drivers of wildlife abundance if the eco-
logical process is disentangled from the collision (detection)
process. We presented empirical evidence that, when indi-
vidual detectability is considered in the modeling process,
wildlife abundance indices can be generated from WVC data
with similar performance than other commonly used at large
spatial scale abundance indices, such as hunting statistics
(Imperio et al. 2010). Although similar methods have been
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used to study animal roadkill occurrence (Santos et al. 2018),
as far as we know this is the first time using Royle—Nichols
models to derive large scale species abundance indices from

WVC data.

Royle-Nichols model for wildlife population
abundance index modeling from WVC data

Our results suggest that the Royle-Nichols modeling
approach produce accurate indices of wildlife population
abundance from WVC data. It is important to note the
effect of accounting for detectability in the predicted abun-
dance pattern from WVC data (Supporting information and
Fig. 3A). In the case of wild boar, we can observe that higher
abundances not always correspond to those areas with higher
WVC (interior of northern plateau, Castilla y Le6n region;
Fig. 2A). Higher WVC rates can be due to higher individual
detectability (Fig. 2C) and therefore, the lack of control of this
process could led in misleading results when using directly
WVC as wildlife abundance index (Rodriguez-Morales et al.
2013). Similarly, the absence of WVC is not always produced
by low population abundance index. Our approach correctly
detected lower detectability in some regions where WVC
were underrepresented in our database (Basque Country
and Catalonia for wild boar, south of Andalusia for roe
deer), and predicted accurate abundance indices for those
regions (Fig. 3).

Although other authors have reached accurate absolute
abundance estimations using RN models (Linden et al.
2017), only relative abundance indices were obtained in our
study case. Royle—Nichols model simply accommodates het-
erogeneity in detection probability that is formally attributed
to variation in abundance, but other sources of heterogeneity
could be affecting our data (MacKenzie et al. 2017). Absolute
abundance estimates from our model predictions are far to
reach the actual population densities estimated by other more
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Figure 3. Relationship between abundance index derived from full models using wildlife vehicle collision data and raw hunting yields

(number of hunted animals) at province level for mainland Spain in 2017 (A, wild boar R=0.78, R*=

0.61; B, roe deer R=0.63, R?=0.4).



specific methods (hunting yields, telemetry, camera trap, etc.)
and therefore our predictions should be interpreted as abun-
dance indices. Despite this, the potential of RN model to
predict abundance indices from WVC opens a promising
field that in combination to other data sources will lead in
more accurate absolute abundance estimates.

In addition to population abundance, RN model allow us
to obtain spatial and temporal predictions on detectability,
which can be used as a wildlife vehicle collision risk index
to detect black spots for animal and motorist casualties in
roads (van der Grift et al. 2013). However, this is condi-
tioned to the systematic register of WVC in our databases,
since low detectability can be also due to low rate of WVC
report by administrations or incomplete databases as in our
case (Basque Country and Catalonia).

Factors affecting wild boar and roe deer vehicle
collisions

One of the advantages of the RN modeling approach is the
possibility to disentangle abundance and individual detect-
ability processes. The most important covariates affecting
wild boar abundance were precipitation of driest quarter,
mosaic natural vegetation/cropland and evergreen tree cover
(Fig. 2, Supporting information). This is in accordance with
previous studies about wild boar abundance in Mediterranean
regions, where water and therefore resource availability dur-
ing the driest season strongly affects wild boar and other
ungulates abundances (ENETWILD Consortium et al.
2020). Similarly, mosaic or transition areas between natural
vegetation and croplands usually provide both refugee and
feeding resources and have been already related to higher wild
boar abundances (Acevedo et al. 2014). Seasonality in both
temperature and precipitation were negatively related to roe
deer abundance (Fig. 2). It has been already described the
relationship between roe deer distribution and Adlantic influ-
enced areas in the Iberian Peninsula, in which water avail-
ability is more constant across the year and temperatures are
milder (Aragén et al. 1995, Acevedo et al. 2005). On the
contrary, croplands-herbaceous and patched landscape with
tree or shrub and herbaceous cover were related to higher roe
deer abundances. This cervid has experienced a range expan-
sion during the last decades in the Iberian Peninsula from
forest areas (Virgds and Telleria 1998). It has promoted the
colonization of heterogeneous habitats and grasslands previ-
ously used in agriculture which could explain higher abun-
dances related to croplands and herbaceous covers (Acevedo
et al. 2005).

Our modeling approach was able to control the lack
of data for some regions (namely Basque Country and
Catalonia) which is represented by the low detectability at
those regions for both species (Supporting information). We
obtained a low detectability for roe deer in Murcia region, in
which it is certainly absent for the most of the territory. We
also captured the temporal variation in individual detectabil-
ity for wild boar and roe deer. While autumn was the season
with higher probabilities for wild boar vehicle collisions, roe

deer causalities were more likely in spring and early sum-
mer (Fig. 2). This pattern has been previously reported and
could be due to several factors apart from traffic variation
(Jacobson et al. 2016). Collective hunting activities dur-
ing October—December in Spain can increase the wild boar
movements (Maillard and Fournier 1995), which can lead in
higher frequency of road-crossing and therefore higher colli-
sion probabilities. However, other confounding factors such
as longer nights in these months or reproductive behavior
could also play a role (Lagos et al. 2012). In the case of roe
deer, Lagos et al. (2012) related higher collision probabili-
ties in April-June and July to the mother—fawn separation
prior to the calving and to the rutting season, respectively.
Like wild boar, high animal mobility in these periods could
increase the probability of WVC. The rest of covariate effects
were expected, included the decrease of detectability at higher
densities of highways for roe deer (Supporting information),
since many authors have described roe deer roads avoidance
(Madsen et al. 2002, Torres et al. 2011, Kusta et al. 2017).

Hunting yields versus wildlife vehicle collision data
as abundance indices

Hunting yields statistics are used for game species abun-
dance monitoring at regional and broader spatial scales
(ENETWILD Consortium et al. 2019). Thus, HY were used
in our study as validation dataset to assess abundance index
obtained from WVC. Positive linear correlations indicated
similar outcomes when comparing raw HY with model abun-
dance predictions from WVC for both species (Fig. 3). We
found stronger relation in wild boar than roe deer, which
could be related to the broader distributional range of wild
boar compared to roe deer. Nevertheless, those relationships
have been already observed for other ungulates in Europe
(Wiebke et al. 2020) or North America (McCaffery 1973).
This validation process should be replicated for other coun-
tries to empirically assess the robustness of wildlife abundance
indices derived from WVC data (Ascensio et al. 2019b).
Wildlife monitoring programs at large scales require sys-
tematic sampling effort across different regions or countries.
Establishing coordinated networks of collaborators to apply
specific sampling methods such as camera tramp or direct
counts across different countries is usually unaffordable due
to cost expenses (Burton et al. 2015). For this reason, hunt-
ing statistics in combination with another calibrated method
such as drive counts have been proposed as a low-cost meth-
odology to infer species abundance at regional or boarder
scales, offering the possibility to provide long term trends
in population dynamics (ENETWILD Consortium et al.
2018). However, not all species, nor all regions can benefit
from these approaches. In this study, we illustrated that RN
models using detection/non-detection data from WVC pro-
duce similar inferences about relative abundance to hunting
statistics in mainland Spain. Wildlife vehicle collision data
also share several useful features for large scale monitoring
programs: data is systematically registered by administrations
or other organizations in countries with a well-developed



primary and secondary road systems, the volume of data is
often enormous among large species and historical or long
time series can be easily obtained (Romin and Bissonette
1996, Brockie et al. 2009). Detection/non-detection models
that account for imperfect detectability can control those fac-
tors that could affect abundance estimates from WVC data
such as traffic density or vehicles speed. At the same time,
they provide spatially and temporal explicit predictions about
individual detectability, that is, wildlife vehicle collision risk,
which can be used in mitigation programs to avoid animal
and motorist mortality.

Concluding remarks and recommendations

The Royle—Nichols model applied to WVC data can identify
the main drivers of the wild boar and roe deer abundance in
mainland Spain (ecological process) as well as those factors
affects the animal vehicle collision probability (observational
process). Abundance indices obtained from WVC are like
those obtained from the hunting yield statistics, one of the
most important data sources for abundance monitoring in
game species. Our approach provides new opportunities in
the study of wildlife abundance distribution for those terri-
tories where hunting bag information is not accurate enough
or such data is not available. In addition, time series of WVC
data could be used for monitoring population trends in a
multi season framework. In this context, abundance predic-
tions from the Royle—Nichols models should be evaluated to
study their ability to be extrapolated, down or upscaled, etc.,
using other independent sources such as telemetry or camera
trapping studies (Palencia et al. 2021).
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