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While reliable estimates of species abundance distribution are required for wildlife management and are greatly
needed at broad spatial scales, such information is scarce. In this context, the usefulness of spatial modelling as a
tool for predicting game species relative abundance and distribution from hunting yield data was studied.
Hunting yield data is affected by several factors related to species management, hunting regulations, and hunting
efficacy and some doubts have been raised about the use or reliability of this data for large-scale modelling. Some
years ago, Acevedo et al. (2014) calibrated five spatially explicit models (one per bioregion) by using hunting
yield data for wild boar Sus scrofa (from hunting seasons 2006 to 2009) for approximately 60% of mainland
Spain. After internal validation, the models were extrapolated to produce predictions of species relative abun-
dance for the whole mainland country. Here, we reviewed these previous models to evaluate their predictive
performance on new data (from hunting seasons 2014 to 2018) in areas where the models had been calibrated
(interpolation areas) and also when projected into new ones (extrapolation areas). Our results showed that the
previous models were able to forecast current general patterns of wild boar relative abundance with population
growth rates equivalent to those reported by other authors, although differences between bioregions were
observed. Performance on interpolation areas was higher than that obtained on extrapolation areas. Accuracy of
model predictions decreased when fine resolution assessment at hunting ground level was carried out. Our re-
sults suggest that spatial models calibrated on hunting yields could be a good option to predict general wild boar
relative abundance distribution patterns, although critical assessment is needed, since models can fail when they
are extrapolated to areas for which no information is available and at fine scale resolution. These results
represent a step forward in the use of hunting yields for describing ranges of species relative abundance at large
spatial scales.

1. Introduction

The wild boar (Sus scrofa Linnaeus, 1758) is a species involved in

reliable spatial information about wild boar abundance is greatly needed
today to manage and control their populations and disease spread (e.g.
O’Neill et al., 2020).

numerous conflicts affecting human safety, species conservation and
animal health, among others (Melletti and Meijaard, 2017). Reliable
estimates of the abundance distribution of this species are essential for
sound decision-making. The spread of African Swine Fever (ASF), as an
example, has highlighted the need for information on the spatial dis-
tribution and abundance of this species for risk assessment (Vicente
et al., 2019). Since 2007, more than 10 European Union countries have
been affected, with Germany, Greece and Serbia being the latest to
report the disease in 2020 (MAPA, 2021; OIE, 2020). The availability of
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Spatial modelling has become almost the only option employed to
produce estimates of game species abundance and distribution at large
spatial scales. With respect to wild boar, several models based on both
distribution (i.e. occurrences) and abundance data (i.e. number of ani-
mals per area unit) have been developed at regional and continental
scales in recent years (for a review see ENETWILD Consortium et al.,
2018). Many approaches have already been applied to this species in an
effort to exploit the wide range of data sources. Depending on the data
source, models can be classified into two main categories: those which

Received 8 October 2021; Received in revised form 31 May 2022; Accepted 2 June 2022

Available online 21 June 2022
0304-3800/© 2022 Elsevier B.V. All rights reserved.



C. Ruiz-Rodriguez et al.

Ecological Modelling 471 (2022) 110041

Wild boar predicted abundance
1-30

30 - 60

. 60 - 120

. 120 - 240

I 120 - 1000

Wild boar hunting yields
1-30
30 - 60
. 60 - 120
. 120 - 240
. 120 - 1000

Fig. 1. A) Mainland Spain is divided into the five bioregions defined by the Spanish Wildlife Disease Surveillance Scheme (Internal Report to the Spanish Ministry of
Agriculture 2008). Provinces used for model calibration in Acevedo et al. (2014) are highlighted in grey. B) Predicted relative abundance of wild boar (number of
animals hunted annually per 100 km?) at hunting ground level according to previous models (Acevedo et al., 2014). C) New data of wild boar hunting yields
(2014-2015 to 2017-2018) used here to assess the predictive performance of the previous models.

use occurrence data to predict environmental suitability (sometimes
interpreted as a proxy for the relative abundance of the species) and
those that directly model abundance data, mainly hunting yields
(namely, the records of the number of animals hunted annually in a
given territory). A few remarks should be made about these two cate-
gories. In the case of Europe, models based on occurrence data have not
produced reliable patterns, mainly due to the lack of presence records in
Eastern countries and the lack of reliable absences at continental scale
for this ubiquitous species (e.g. Alexander et al., 2016; ENETWILD
Consortium et al., 2019). On the other hand, hunting yield data has been
widely explored for modelling wild boar abundance since it usually
performs well as a relative abundance index (e.g. Imperio et al., 2010)
and is available for large spatial scales (e.g. ENETWILD Consortium
et al., 2020). However, there are territories that do not record hunting
yields, or when recorded, the spatial resolution of the data is variable
(from regional scale to hunting ground levels) and hunting pressure may
not be comparable between territories (e.g., Bosch et al., 2012; but see
Vajas et al., 2020). Their usefulness for large scale spatial modelling has
therefore been questioned (but see Pittiglio et al., 2018). It should be
noted at this point that using spatial models to predict wild boar
abundance patterns for large territories is not an easy task nor one that
has been resolved (see Alexander et al., 2016).

Studies assessing the predictive capability of hunting yield-based
models on new territories and time periods are scarce but necessary to
assess model performance and improve accuracy in results interpreta-
tion. Our working hypothesis is that, given that hunting yields are an
approximate abundance index, different sources of variability in the
data may limit the spatial transferability of hunting yield-based models
(bioregion-related factors, for example). To assess this hypothesis, we

revisited the models reported by Acevedo et al. (2014), which were
parameterized on data (from hunting seasons 2006 to 2009) for
approximately 60% of mainland Spain and then transferred to the whole
mainland country (hereafter “previous models™). After testing different
modelling approaches, they calibrated five independent models in
mainland Spain (one per bioregion) to allow for flexibility in predictor
effects and contribution (see Material and Methods section and Acevedo
et al., 2014). Using new hunting yield data (hunting seasons 2014 to
2018), the aim of the present study was to assess the predictive capa-
bility of the previous models from Acevedo et al. (2014), looking for
differences in performance between territories where the models were
parameterized (interpolation area) and projected into (extrapolation
area). Specifically, we tested if model predictions produced by Acevedo
et al. were able (i) to produce accurate geographic abundance patterns,
(ii) to match observed data when a few abundance categories are
delimited and (iii) to produce fine scale relative abundance estimates at
hunting ground level. These analyses, used as a case study, would make
it possible to assess the generalisability of spatial models parameterised
on hunting yields and their transferability to non-sampled territories.

2. Material and methods

Five bioregions defined in the Spanish Wildlife Disease Surveillance
Scheme (Internal report to the Spanish Ministry of Agriculture 2008)
were used for wild boar relative abundance modelling, based on their
environmental characteristics and wildlife management practices. Ace-
vedo et al. (2014) considered three approaches to account for potential
variation in hunting effort between bioregions: (i) a model fitted with
data from all bioregions; (ii) a model fitted using bioregion as a
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controlling factor in the model; (iii) independent models fitted for each
bioregion. The authors obtained the best performance from approach
(iii): five independent models, one per bioregion (see Appendix 1 and
Fig. 1A).

Briefly, the previous models were parameterized by using the mean
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Fig. 2. Assessment of the calibration of the
previous statistical models (see Acevedo
et al., 2014) over the whole study area and
per bioregion in interpolation and extrap-
olation areas. Plots show the relationship
between predicted and observed wild boar
relative abundance on the new datasets.
Wild boar relative abundance refers to the
number of animals hunted annually per
100 km?. Red dots in mainland Spain and
Bioregion 1 correspond to the relationship
between predicted and observed wild boar
relative abundance, excluding the results
from Galicia. Solid black lines correspond
to identity lines (1:1). (For interpretation
of the references to colour in this figure
legend, the reader is referred to the web
version of this article.)

number of wild boar annually hunted per 100 km? from hunting seasons
2006-2007 to 2009-2010 as response variable, and a set of 21 predictor
variables related to geography, clime and land cover (Appendix 1;
Acevedo et al., 2014). Negative binomial distribution was used for
model calibration and a forwards-backwards stepwise procedure based
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Fig. 3. Results of the subsample procedure for Pearson correlations over the whole study area and per bioregion in interpolation and extrapolation areas. Histograms
show r Pearson values from each subsample (N = 50, repeated 10,000 times). Red solid line shows the most frequent value (mode).
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Table 1
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Evaluation of the predictive performance of the previous models (Acevedo et al., 2014) using Pearson correlations and subsample procedure. Mode of Pearson r values
is presented. The evaluation was carried out at bioregion level for the overall territory of the bioregion (whole area) as well as separately for territories used to
parameterize the previous models (interpolation area, int) and those to which the models were extrapolated (extrapolation area, ext). Finally, the performance ob-
tained by Acevedo et al. (2014) when the models were assessed on independent datasets is also provided.

Bioregion N° hunting grounds (int / ext area) Whole area Interpolation area Extrapolation area Performance reported in Acevedo et al., 2014

1-5 13,807 0.075 0.175 0.05 0.37
(6797 / 7010)

1 1,004 -0.05 0.15 -0.375 0.54
(547 / 457)

2 3,061 0.375 0.375 0.175 0.50
(1633 / 1428)

3 3,945 0.125 0.175 0.075 0.26
(1777 / 2168)

4 2,084 0.375 0.325 0.275 0.28
(366 / 1718)

5 3,713 0.25 0.25 0.075 0.38

(2474 / 1239)

on Akaike Information Criteria was used for predictor variables selec-
tion. Hunting yield data covered approximately 60% of mainland Spain
(Fig. 1A), and model predictions were internally validated on a 20%
data subset not used in calibration, and then extrapolated to predict wild
boar relative abundance also in non-sampled territories. Modelling
approach selection was conducted by correlations between predicted
and observed relative abundance in validation data subset.

In the present study, those previous models were used to predict wild
boar relative abundance (hunted animals per 100 km?) at hunting
ground level in mainland Spain (n = 13,807; Fig. 1B). Thus, predictions
were obtained from the previous models for territories considered for
model parameterization (hereafter the interpolation area) and for those
not considered in modelling (without data) to which the models were
extrapolated (hereafter the extrapolation area).

We collected recent hunting yield data at hunting ground level for all
areas in mainland Spain (Fig. 1C). Specifically, we obtained data for
hunting seasons 2014-2015 to 2017-2018, provided by the hunting and
fishing services of each autonomous region in Spain. Averaged annual
hunting yields (hunted animals per 100 km?; hereafter, observed rela-
tive abundance) were used to assess the predictive performance of the
previous models.

Model predictions at hunting ground level were performed by solv-
ing the model equation (see Appendix 1) at each hunting ground by
using the predict() function from the “stats” R package. Following Rykiel
(1996), we used three approaches to evaluate different features of the
predictive performance of models, i.e., if model predictions match
observed hunting yields. First, observed and predicted relative abun-
dances were cartographically mapped, in order to visually assess if the
geographic pattern of observed relative abundance matched model
predictions. Second, we compared observed and predicted relative
abundances by using calibration plots, in which observed and predicted
values were plotted with bins of fixed size using the ggplot2 R package
(Wickham, 2009). This allow us to determine if model predictions match
observed data when a few relative abundance categories are stablished,
and therefore if they produce accurate general abundance patterns.
Finally, Pearson correlations were also used to compare observed and
predicted relative abundances at fine resolution level (hunting ground
level). Calibration plots and Pearson correlations were carried out both
globally for mainland Spain and for each bioregion separately. In
addition, the interpolation and extrapolation areas used for assessments
were disaggregated, and the results were compared for the whole study
area and excluding the region of Galicia from Bioregon 1, which had
been detected as problematic in the previous models (see below). To
avoid misleading P-values in correlations due the high size sample for
the most regions, we conducted a subsample procedure to reduce the
number of observation in correlations. For each comparison, we
randomly subsampled 50 observations and conducted Pearson correla-
tions. We repeated this procedure 10,000 times, storing Pearson r values

and producing histograms to discuss models predictive power and to
account for uncertainty in correlations. Then, statistical mode for
Pearson r was computed for each comparison.

3. Results

In average, predicted values were 1.35 times lower than the observed
relative abundances. Geographical patterns of model predictions are
shown in Fig. 1B and the mean of observed hunting yields for hunting
seasons 2014-2015 to 2017-2018 are shown in Fig. 1C. Although
observed hunting yields were higher than predicted ones, in general
similar geographic abundance patterns were found for mainland Spain
(but see northwest area i.e. Galicia). Calibration plots for mainland
Spain and each bioregion are provided in Fig. 2. Model performance
strongly depended on bioregion and interpolation/extrapolation areas.
In general, r values from the subsample procedure for Pearson correla-
tions were normally distributed (Fig. 3). Most frequent r values for the
subsample procedure ranged from -0.375 (extrapolated area of Biore-
gion 1, Fig. 3) to 0.375 (whole area of Bioregions 2 and 4 and interpo-
lation area of Bioregion 2, Fig. 3). Standard deviations for all subsamples
ranged 0.14-0.15. Table 1 shows the differences in the strength of the
relationship between predicted and observed relative abundances at
hunting yield level amongst the bioregions, and between interpolation
and extrapolation areas in comparison to r values reported by Acevedo
et al., 2014.

We found that, in general, model performance was higher when the
assessment was carried out in the interpolation areas. Nevertheless, we
found differences between bioregions, detecting positive correlations
only for bioregions 2 and 4 (Fig. 3).

The exclusion of Galicia region from the evaluation analysis yielded
improved assessments of predictive performance for mainland Spain and
bioregion 1 (Fig. 2).

4. Discussion

In the short and medium terms, modelling wild boar abundance data
is the only feasible option to produce large-scale distribution data of
species abundance, which is greatly needed today for population and
health management in Europe (Vicente et al., 2019). In this study, we
showed that models based on hunting-yield data were able to produce
general patterns of wild boar relative abundance over new time periods,
and also when used to predict for new territories. Nevertheless, we ob-
tained differences in performance between bioregions and a critical
assessment should be carried out before interpreting the predicted pat-
terns. We also showed that while models performed well at large scale,
their predictive power decreased at fine scale resolution (hunting
ground level).

Predictions from previous models underestimated current hunting
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yields (Fig. 1), which could be explained by the growth in wild boar
populations in Europe generally, and Spain in particular (Massei et al.,
2015). The observed hunting yields were 1.35 times higher on average
than those predicted by models parameterized with data from a decade
ago. The growth rate obtained in our study is equivalent to 1.5 times the
increase per decade that can be derived from the data reported by
Massei et al. (2015) for Spain, and 1.7 times the increase reported by
Quiros-Fernandez et al. (2017) for northern Spain. This provides evi-
dence that the current management of the species has not been able to
slow down the expansion of wild boar in recent decades in Spain and
that more effective management strategies based on more accurate data
are needed to avoid the consequences caused by excess population at
different ecosystem scales (Carpio et al., 2021).

In general terms, the previous models were able to predict the spatial
pattern of wild boar relative abundance at a national scale (Fig. 1B,C).
When the assessment was carried out across the set of bioregions, this
trend was much clearer in three of the five bioregions (bioregions 2, 4
and 5), obtaining supports for seven wild boar relative abundance
classes as in Acevedo et al. (2014). Pearson correlations at hunting
ground level were also stronger for those bioregions (2, 4 and 5, Fig. 3).
For bioregion 3, the correlation between observed and predicted hunt-
ing yields was fairly lower (Fig. 3), and predicted relative abundance
was much lower than observed relative abundance (Fig. 2). This result
may have been influenced by hunting management, since hunting es-
tates with perimeter fencing and supplementary feeding predominate in
this region and these actions are aimed at maintaining populations even
above the carrying capacity of the environment (e.g., Acevedo et al.,
2007). Environmental models alone are probably not generalizable
enough, since abundance depends more on management interests that
can change over the time than on the environmental potential for the
species (see also Acevedo et al., 2014). In the case of bioregion 1, the
correlation between predicted and observed relative abundance at
hunting ground was negative (Fig. 3). Looking for patterns of difference
between observed and predicted relative abundance, a high discrepancy
was observed in Galicia, which is a region that was not considered for
calibrating the previous model (i.e. within the extrapolation area). Even
when the performance of previous models on extrapolation areas was
not significantly worse than on interpolation areas, the result for Galicia
suggests that the previous model of Bioregion 1 was not able to capture
the general response of species in this bioregion, and strongly recom-
mends the need to critically assess predictions, mainly when they have
potential to be used for management (e.g. Bosch et al., 2017; Vicente
etal., 2019). This is a region where Eucalyptus spp. is abundant and these
plantations can lead to errors in predictions of patterns of wild boar
abundance (see ENETWILD Consortium et al., 2020), since Eucalyptus
plantations are often mapped to resemble forests, although they are not
suitable since they are not a favourable habitat for wild boar. We found
that when Galicia was excluded from the analysis, the performance of
the previous model increased and achieved values comparable to those
obtained in the other bioregions (Fig. 2).

In line with our results, when the models were projected over
interpolation areas, they predicted the relative abundance of wild boar
with some accuracy. This result was expected, as the models showed
good predictive power when compared to the evaluation dataset by
Acevedo et al. (2014). The previous study found that models were able
to predict different classes of wild boar relative abundance and a nu-
merical trend. In this one, we did not find the same relative abundance
classes at hunting estate level, but we were able to account for the
general spatial patterns. On the other hand, when the predictions of the
previous models were compared with observed relative abundance in
extrapolation areas, there were differences between bioregions, but
returned generally lower performance than in interpolated areas
(Figs. 2, 3). In this case, we detected a higher positive correlation be-
tween predicted and observed relative abundance in bioregions 2 and 4.
These correlation coefficients could be attributed to the representability
of the areas sampled in each bioregion when the previous models were
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Appendix 1

Table of variables included in the models (generalized linear models with
negative binomial distribution and log link function) according to order of entry
in the stepwise procedure and table listing variable descriptions below. Hunting
bag statistics were used as a response variable and geographical, climate and
land cover covariates were used as predictors. All predictor covariates were
obtained at 1 km x 1 km resolution. Temporal ranges in predictors comprised
1981-2010. N denotes the number of hunting grounds at interpolation area (I)
and extrapolation area (E).

Bioregion Model

Bioregion 1 N(I/E) = — 0.03*LC3 - 0.04*LC1 - 0.02*LC7 - 0.11*L.C8 — 0.9*TR

547/457 + 0.001*P

Bioregion 2 N(I/E) = —0.02*LC5 - 0.02*LC6 — 0.01*LC3 + 0.16*LON —
1633/1428 0.03*LC7 + 0.29*LAT - 0.01*LC1

Bioregion 3 N(I/E) = —0.01*LC5 - 0.07*TJN + 0.02*HJL + 0.003*LC4
1777/2168

Bioregion 4 N(I/E) = —0.02*LC5 - 0.01-*LC3 - 0.25*LON - 0.17*TR —0.001 P
366/1718 - 0.16*TJN + 0.01*SR - 0.03*DFG

Bioregion 5 N(I/E) = 0.01*LC2 - 0.01*LC5 - 0.01*LC6 + 0.04*LON —
2474/1239 0.002*SR - 0.01*LC8 — 0.0003*P — 0.03*TJL

Factors Codes  Variable description

Geographical ~ LAT Mean latitude (°N)
LON Mean longitude (°E)
Climate P Mean annual precipitation (mm)*
DFG Mean annual number of foggy days”
HJIN Mean relative air humidity in January at 07:00 h (%)"
HJL Mean relative air humidity in July at 07:00 h (%)*

SR Mean annual solar radiation (kWh m — 2 day—1)"
TIN Mean temperature in January ( °C)"
TJL Mean temperature in July ( °C)*
TR Annual temperature range ( °C) (=TJL-TJN)
DFT Mean annual number of frost days (minimum temperature
<0°C)"
I Continentality index”
I Mean annual insolation (h year—1)"
Land cover LC1 Coniferous forest (%)
LC2 Broadleaf and mixed forest (%)“
LC3 Scrubland (%)“
LC4 Transitional woodland-shrub (%)°
LC5 Agricultural areas (%)°
LC6 Heterogeneous agricultural areas (%)°
LC7 Pastures (%)°
LC8 Artificial surfaces (%)

2 Source: Font (1983).
b Source: Font (2000).
¢ Source: EEA (2006).

parameterized. Possible causes of the lower correlations in extrapolation
areas from bioregions 1land 3 have been already mentioned above. In
bioregion 5 the extrapolation area includes the Community of Valencia,
which is a region where there has recently been significant wild boar
population growth and expansion, as the hunting yields showed (Lizana
et al., 2021). This extrapolation area may not therefore be well char-
acterised according to the sampling carried out by Acevedo et al. (2014).

Wild boar hunting yields are a potential data source for parameter-
isation of models explaining and predicting relative abundance patterns
at large spatial scales. Modelling hunting yields is not an easy task and
requires further development to integrate data at different spatial res-
olutions with different levels of reliability, which is the case today at
European scale (e.g. ENETWILD Consortium et al., 2020; Pittiglio et al.,
2018). Our results represent a step forward in the use of this kind of data
since they support that the models are generalizable and can be used for
predicting general abundance patterns over new time periodsand large
scales. However, caution should be taken when fine resolution abun-
dance estimates are obtained from this models due to differences in
hunting efforts, underreported hunting yields, etc. Further assessment of
the predictions is required before they can be applied to policy making,
especially in the case of wildlife diseases, such as ASF, in which
knowledge of the pattern of wild boar abundance is essential to manage
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the spread of the disease. (Appendix Table 1)
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