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Abstract—Electric vehicles (EVs) are finally making their way
onto the roads, but the challenges concerning long charging times
and impact on congestion of the power distribution grid are still
not resolved. Proposed solutions depend on heavy communication
and rigorous computation and mostly need real-time connectivity
for optimal operation; thereby, they are not scalable. With the
availability of historical measurement data, EV chargers can
take better-informed actions while staying mostly off-line. This
study develops a distributed and data-driven congestion detection
methodology together with the Additive Increase Multiplicative
Decrease (AIMD) algorithm to control mass EV charging in
a distribution grid. The proposed distributed AIMD algorithm
performs very closely to the ideal AIMD in terms of fairness and
congestion handling, and its communication need is significantly
low. The results can provide crucial insights on how data can be
used to reveal the inner dynamics and structure of the power
grid and help develop more advanced data-driven algorithms for
grid integrated power electronics control.

I. INTRODUCTION

High penetration of electric vehicles (EVs) with uncon-

trolled charging will cause transformer and line congestion

in the power distribution grid. Among some adverse effects of

this congestion are severe voltage drops, increased peak load-

ing, thermal overheating, and even failure of equipment [1]–

[5]. Therefore, control of EV charging has become an impor-

tant research effort to mitigate these issues. Demand-side load

management is a technique that is used to modify customer

demand through various tools and methods. Curtailing this

demand at peak hours is known as peak-shaving. It is used

to eliminate short-term demand spikes by smoothing out peak

loads, preventing equipment overloading. This study will in-

vestigate a peak-shaving methodology to reduce the substation

peak loading caused by mass EV integration.

Conventional methods for EV charging control require

excessive system information, e.g., the grid topology, load

forecasting, and customer preferences [6]–[10]. Uninterrupted

connectivity is also needed to communicate this informa-

tion to the EV chargers and send/receive control commands

to/from the chargers. Assuming these are available, various

optimization problems have been formulated to achieve cer-

tain objectives (e.g. minimizing generation cost, losses, and

peak load; maximizing capacity utilization and total charging

power) while respecting system constraints such as voltage

limits and equipment overloading.

A traditional approach is to form an optimal power flow

(OPF) problem and deterministically solve it using forecasted

This material is based upon work supported by the National Science
Foundation under Award No 1755996.

generation and demand values to determine the control set-

points. Recently, machine learning (ML) has also been used

to develop control algorithms that can evolve based on OPF

simulations [11]. The idea is to develop local controller

rules from a dataset generated by OPF solutions. In general,

performing these optimization tasks is challenging since the

required system model and inputs are either missing or very

hard to obtain completely. In [12] and [13], data-driven local

controllers are proposed by solving an off-line OPF prob-

lem using ML regression models. Since these controllers are

trained based on a historical dataset, they are vulnerable to

novel scenarious as well as instances caused by policy and

natural shifts [14].

On the other hand, model-free approaches are generic and

not dependant on the OPF model, i.e., system topology and

variables. They usually use measurements (voltage, frequency,

etc.) or historical data to obtain information regarding the

grid’s dynamic behavior. In this line of work, we presented a

decentralized EV charging solution that uses the local voltage

measurements and adapts the Internet’s TCP/IP protocol for

congestion detection [15]. This protocol implements the Addi-

tive Increase Multiplicative Decrease (AIMD) algorithm based

on local measurements by implicitly detecting the congestion

event (CE) without requiring any explicit feedback signal or

system knowledge. In the context of distribution grid, the

CE corresponds to the overloading of substation transformer

feeder that powers the distribution network. Note that the

CE can also be triggered when there is a need to shave the

peak loading in a demand side load management scenario.

Our previous works [15]–[18] investigated implicit ways of

estimating CE in the distribution grid and proposed algorithms

that work with only local voltage measurements. However,

the previously proposed algorithms can detect a fictitious con-

gestion if their parameters are poorly tuned. True congestion

detection requires proper tuning of the parameters, which is

only possible via heuristics or by simulating the system if

topology and load profiles are known. Thus, they can primarily

operate sub-optimal. For this reason, we developed and pre-

sented a data-driven feeder loading estimation method in [19]

that only requires historical data, and we verified the method

with real field measurements. As a next step, this work further

develops and integrates the data-driven loading estimation idea

presented in [19] into our AIMD based EV charging algorithm,

and implements it in a realistically modeled distribution grid

simulation to asses its performance and effectiveness.

In this study, we explore how local historical measurement
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Figure 1: Single feeder, radial distribution grid model.

data can be utilized to learn the grid’s dynamic status and

how AIMD-based EV charging control can operate through

this learned behavior. In particular, we propose to learn the

relation between local measurements (i.e., voltage and phase)

and the substation feeder loading using ML on historical

data so that EVs can better estimate when CE occurs by

observing their local voltage. Our methodology is to develop

an ML model that maps local voltage to feeder loading and

use this model as feedback for the AIMD controller. This

will help us estimate the substation load in real-time using

local voltage measurements without requiring connectivity to

a central controller. Hence, our approach differs from other

studies because we do not require system topology and loading

information for operation (model-free), and we do not need a

real-time feedback signal (reduced communication). We also

do not develop rules for optimum controller actions using ML.

II. ANALYSIS OF END-NODE VOLTAGE VS. FEEDER

POWER RELATIONSHIP IN A RADIAL DISTRIBUTION GRID

In the ideal AIMD algorithm, end nodes need to be notified

by the CE. This could be performed by a direct and uninter-

rupted communication network, making it vulnerable during

communication failures. It is much less demanding in terms

of communication needs if the local end-nodes can detect

grid congestion. In this regard, local voltage measurements

can be an indicator of congestion information. The voltage

varies depending on the loading level on the grid. Therefore,

each node can make an estimation of the substation loading by

observing their voltage if they have a guideline that maps their

voltage level to the total power drawn from the substation.

This guideline can be referred to as the voltage and power

relationship [19], [20].

We demonstrate this relationship between node voltage and

total demand power on a single feeder, radial distribution

grid model shown in Fig. 1. In this model, Vo represents

the substation voltage magnitude, {V1, ..., Vn} are magnitudes

of node voltages at nodes 1, . . . , n, and Si
L = P i

L + jQi
L

(subscript L stands for line) denotes the complex power

flowing from node i to node i + 1 over a line impedance

of Zi = ri + jxi. Si
N = P i

N + jQi
N (subscript N stands for

node) is the complex power drawn from node i. This model

can be solved for an end-node voltage Vi using the distribution

grid branch flow equations (DistFlow [21]) as shown in (1).

By further simplifying the equations using the LinDistFlow
approximation [21], we can derive an expression for the

voltage of ith node as in (2). The equation (2) shows that

the end-node voltage (Vi) can be expressed as a combination

of total and individual active and reactive power components

scaled by the topology parameters. The goal is to learn the

parameters of a function that maps the end-node voltage (Vi)

to substation power such that f(Vi) → P 0
L, Q

0
L.

P i+1
L =P i

L−ri+1
P i
L
2
+Qi

L
2

V 2
i

−P i+1
N ,

Qi+1
L =Qi

L−xi+1
P i
L
2
+Qi

L
2

V 2
i

−Qi+1
N ,

V 2
i+1=V 2

i −2(ri+1P
i
L+xi+1Q

i
L)+(r2i+1+x2

i+1)
P i
L
2
+Qi

L
2

V 2
i

.

(1)

Utilizing the historical local voltage data (Vi) and total feeder

power data (P 0
L and Q0

L), the problem of estimating grid

loading level using local voltage information turns into a

supervised learning problem. One reasonable simplification

can be made based on the fact that total reactive power

consumption Q0
L in a distribution power grid is relatively much

smaller relative to total active power consumption P 0
L. Thus,

total apparent power S0
L=|S0

L| can be assumed to be very close

to P 0
L. Therefore, we can construct the mapping from Vi to S0

L

such that f(Vi) → S0
L. This assumption reduces the mapping

output to a single variable (S0
L).

V 2
i = V 2

0 − 2(

Substation
Total P︷︸︸︷
P 0
L

i∑
1

ri

︸ ︷︷ ︸
Constant

+

Substation
Total Q︷︸︸︷
Q0

L

i∑
1

xi

︸ ︷︷ ︸
Constant

)

+ 2 [P 1
NP 2

N · · ·P i−1
N ]︸ ︷︷ ︸

End-node Active Powers

⎡
⎢⎢⎢⎣

r2 + r3 + · · ·+ ri
r3 + · · ·+ ri

...

ri

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
Constant

+ 2 [Q1
NQ2

N · · ·Qi−1
N ]︸ ︷︷ ︸

End-node Reactive Powers

⎡
⎢⎢⎢⎣

x2 + x3 + · · ·+ xi

x3 + · · ·+ xi

...

xi

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
Constant

(2)

However, several factors affect this mapping. First, V0 will

have some variations throughout the day even though it is

usually highly regulated at the feeder level. Second, voltage

regulation devices such as on-load tap changers (OLTCs),

voltage regulators (VRs), and capacitor banks operate at

different points in the network. They can change the end-node

voltage and thus affect the relationship. Third, distribution

grid topology can change due to various reasons, including

system reconfiguration and expansion. Fourth, end-node active

and reactive power ([P 1
NP 2

N · · ·P i−1
N ] and [Q1

NQ2
N · · ·Qi−1

N ])
are stochastic parameters that change in time creating a

noise effect for the mapping model. Last, significant reactive

power consumption and generation will also deteriorate the

relationship impacting the parameters.

All these factors make the problem very challenging and

therefore require rigorous analysis. To eliminate the effects of

some of these factors and improve the accuracy of mapping,
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we introduced two more feature variables, namely phase angle

(δi) and time interval (Tk). The phase angle of end-nodes

changes in proportion to the total power due to the reactance of

distributions lines. Also, splitting time into different intervals

can help identify time dependencies of total power consump-

tion with the aid of ML.

III. AIMD-BASED EV CHARGING ALGORITHM

By providing historical substation loading information to

end-users, every user can learn the relationship between its

local variables and substation loading by locally building an

ML regression model. For this reason, the historical substation

loading data is made to be accessible to every end-node via

a communication network (e.g., the Internet), and end-nodes

can download this data only when they need to train their ML

model. We note that this is not a real-time feedback signal

for our controller. Instead, it is historical power measurements

collected at the substation feeder level.

For the ML model, a fully connected neural network (NN)

with 4 layers of 30, 20, 10, and 5 neurons are constructed

as shown in Fig. 2. End-users train their ML models where

the inputs to the ML model are the time-series local voltage

measurements (Vi=[Vi(1) · · ·Vi(M)]T ), phase measurements

(δi = [δi(1) · · · δi(M)]T ), and time interval vector (Tk =
[Tk(1) · · ·Tk(M)] where Tk(t) = � tk

24×3600�, k is the number

of time intervals during a day and t is in seconds). The

outputs (labels) are time-series total substation feeder apparent

power measurements (S0
L). As an additional feature, we also

included the voltage square (V 2
i ) in the inputs since (2) directly

relates to V 2
i . After training the model, the new real-time local

measurements can be fed to the NN in the implementation

phase to estimate the substation loading S0
L(t) as illustrated

in Fig. 3.

The simulation time step was chosen as one second. Con-

sidering the grid dynamics and fast load fluctuations, the

estimation of S0
L(t) is performed every minute by collecting 60

samples of input features (Vi, V
2
i , δi, Tk) and averaging them.

The averaged quantities are normalized and fed through the

NN generating the estimated substation total demand power,

Input Layer
(30 neurons)

Hidden Layer
(20 neurons)

Hidden Layer
(10 neurons)

Output Layer
(5 neurons)

Vi

δi
Vi

2

Tk

SL
0

Figure 2: Neural network structure.

Figure 3: Training and implementation phases of the ML

network using historical voltage and substation power data.

Figure 4: Control structure for EV charging.

i.e., Ŝ0
L(t). The comparison result of Ŝ0

L(t) with the rated

substation capacity S0
L(rated) is used in the AIMD algorithm

to decide whether there is a CE. This comparison check

is performed at the same period of 60s (algorithm period)

and EV charging current is either increased additively or

decreased multiplicatively based on the CE decision. The

additive (α) and multiplicative (β) parameters are set to 1 and

0.5, respectively. The proposed control algorithm is presented

in Algorithm 1, and its implementation is illustrated in Fig. 4.

Algorithm 1 AIMD algorithm for EV charging network

Input: Substation rated capacity: S0
L(rated)

Input: Voltage meas. : Vi(t), V
2
i (t)

Input: Phase meas. : δi(t)
Calculate: Time interval : Tk(t)
Estimate: Ŝ0

L(t) using (Vi, V
2
i , δi, Tk) thru NN

Parameter: Additive parameter: αi = 1
Parameter: Multiplicative parameter: βi = 0.5
Parameter: Minimum voltage threshold: Vmin = 0.9 pu

Input: Previous charging current: Ii(t)
Output: New charging current: Ii(t+ 1)

1: while SOC < 100% do
2: if Ŝ0

L(t) < S0
L(rated)

and Vi(t) > Vmin then
3: Ii(t+ 1) = Ii(t) + αi

4: else
5: Ii(t+ 1) = βi × Ii(t)
6: end if
7: end while

IV. TEST SYSTEM MODELING

The simulations are performed in an IEEE-37 test distri-

bution grid illustrated in Fig. 5. Each red circle in the figure

represents a neighborhood that is connected to the primary

network. There are a total of 26 neighborhoods, each of

which is modeled as a secondary network following a similar

procedure described in [22]. Each neighborhood contains four

25 kVA transformers (26 × 4 = 104 transformers in total)

powering four inner nodes. The transformers step down the

primary feeder voltage of 4.8 kV to a secondary voltage level

of split-phase 120/240 V. Each inner node consists of 4 houses

making 16 houses in a neighborhood and 416 houses in the

overall distribution model. Each house is modeled as two

separate nodes; one node is dedicated only to EV connection,

and the other node is reserved for the uncontrollable household
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Figure 5: Primary and secondary distribution network imple-

mented in the MATLAB model.

Figure 6: An example of real active and reactive power profile.

load. Hence, there are 416 × 2 = 832 separate nodes in the

distribution network. Each end-node represents a residential

customer that has a unique household power consumption

profile and an EV that is modeled separately. The capacity

of the substation transformer is rated at 2.5 MVA, and the

grid operates slightly over 1.36 MVA at peak hours without

any EV charging event, i.e. the base load.

These residential power consumption profiles are based on

actual field measurements collected at a household located

in Alabama for over 500 days using eGauge smart energy

metering system. The collected data contains a one-second

resolution active and reactive power consumption profile. An

example profile is demonstrated in Fig. 6.

V. RESULTS AND DISCUSSION

For the training phase, we simulated for 30 subsequent days

with different load profiles for each node chosen from a set

of 500+ days of collected data. EV penetration was increased

by 3.3% every day from 0 to 100, and EVs were charged at

the rated power of 7.2 kW. The end-node voltage and phase

measurements as well as the substation loading were saved to

train a NN for each end-node. Algorithm 1 is implemented

for each EV in a day-long simulation with a step time of 1 s

at 100% EV penetration. To better assess the performance of

the proposed AIMD method, the ideal version of AIMD where

the CE is directly sent to end-nodes is implemented. We also

included the results for the No Control case where EVs are

charged at rated power without any control.

Fig. 7 shows the total substation power loading for all

simulation results. No EV and No Control cases are included

for comparison purposes. We see that the proposed AIMD
performs similar to the ideal AIMD and manages to keep

the substation loading below the capacity limit of 2.5 MVA

without using any real-time communication but only local

voltage measurements.

In Fig. 8, we plot the minimum voltage observed in the

grid among all 416 nodes at a given time for all simulations.

We see that the voltage goes significantly below the critical

Figure 7: Total substation loading for all use cases.

Figure 8: Minimum voltage profiles for all use cases.

level of 216 V when EVs are not controlled. It is clear that

the grid experiences this voltage drop during the substation

overloading, and by preventing the overloading, the proposed
AIMD also avoided the severe voltage drop.

Fig. 9 shows the estimated substation loading (Ŝ0
L(t)) of a

randomly selected node during the simulation. The trained NN

model successfully predicted the substation loading, especially

during the peak time (6:00 PM-12:00 AM). Noisy predictions

could be eliminated by increasing the averaging window of

voltage at the expense of more delayed responses.

Fig. 10 shows the average charging power distributions

for the simulated cases. The proposed AIMD resulted in an

average charging power of 4.58kW, which is very close to

4.60kW of the ideal AIMD. The standard deviations of average

charging powers for the proposed AIMD and ideal AIMD are

1 kW and 0.71 kW, respectively. This is mainly due to the

nodes receiving the true congestion signal simultaneously in

the ideal AIMD case, resulting in a fairer charging.

Finally, Table I summarizes some key performance scores

for the two algorithms along with the No Control case.

Max. Substation Overload refers to how much the substation

capacity is overloaded in percentage. The proposed AIMD is

slightly over the capacity (2.73%), but this is certainly toler-

Figure 9: Estimated substation loading of a random end-node.
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Figure 10: An example of real active and reactive power

profile.

Table I: Performance comparison with different algorithms.
Algorithm Max. Substation Avg. Avg. Fairness # of Comm.

Overload (%) Power (kW) SOC (%) Score Exchange

No-Control 65.48 6.47 99.00 0.999 0
Proposed AIMD 2.73 4.58 96.04 0.955 1
Ideal AIMD 0.15 4.60 98.72 0.976 86400

able, especially for the considered overload duration (Fig. 7).

Moreover, this can also be avoided by setting a margin for the

CE condition such that Ŝ0
L(t) < S0

L(rated)
− ε for ε > 0. Avg.

SOC is the average of the final State of Charge (SOC) of EVs.

The results show that the proposed AIMD manages to satisfy

more than 96% of all EV customers’ energy demand. Fairness

Score is Jain’s fairness index [23], which represents how fair a

resource is allocated among N users. One (1) means the fairest

allocation (equal share per user), and 1/N is the least fair

index. The proposed AIMD has a very high fairness score of

0.955, slightly below the ideal AIMD but requires no real-time

communication whereas the ideal AIMD has to receive the CE

signal every second, resulting in a Number of Communication

Exchange of 86400. The proposed AIMD must receive the

substation loading data only once for training and then operate

on its own by solely using local voltage measurements.

Our findings show that the proposed AIMD performs very

close to its ideal counterpart in terms of grid constraints (i.e.,

overloading, voltage violation, etc.) and customer satisfaction

(i.e., avg. charging power, SOC, fairness, etc.). It also leads

to more scalable and autonomous EV integration due to its

model-free and real-time communication-free features.

VI. CONCLUSION

This study proposed a local, data-driven EV charging con-

trol method based on the AIMD algorithm. To eliminate

the real-time communication and feedback for the CE, we

proposed a method to estimate the substation loading power

using local voltage measurements. We tested the proposed

algorithm against the ideal AIMD and concluded that our

algorithm performs very close to the ideal AIMD in peak-

load management, voltage regulation, and average charging

(fairness). In the future, we plan to improve the estimation

algorithm further to make it robust to grid-related disturbances

such as On-Load Tap Changer (OLTC) and capacitor-bank

switching actions.
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