MANY ZEROS OF MANY CHARACTERS OF GL(n,q)

PATRICK X. GALLAGHER*, MICHAEL J. LARSEN, AND ALEXANDER R. MILLER

ABSTRACT. For G = GL(n, q), the proportion Py 4 of pairs (x, g) in Irr(G) x G
with x(g) # 0 satisfies P,y — 0 as n — oo.

1. INTRODUCTION
A few years ago, it was shown [5] that for G = S,, the proportion P, of pairs
(x,9) in Irr(G) x G with x(g) # 0 satisfies
(1) P, — 0asn— oo.
Here we prove the analogous statement for GL(n, q):
Theorem 1. The proportion P, 4, in Irt(GL(n, q)) x GL(n, q), of pairs (x, g) with
x(g) # 0 satisfies

(2) sup P, 4 — 0 as n — oo.
q

To prove for GL(n, ¢), we compare conjugacy class sizes s, and character
degrees d,. In Section |3 we prove the general inequality . In Section |7} using
technical information from Sections we prove that for most pairs (x, g) con-
sisting of an irreducible character of G and an element of G, the greatest common
divisor (dy, s4) is much smaller than d,. In Section[2] we prove that these two facts
imply the theorem. The precise statements are as follows.

Lemma A. For each finite group G and € > 0, the proportion P, in Irr(G) x G,
of pairs (x,g) with x(g) # 0 satisfies

(3) P <Q(e) + ¢,

with Q(e) the proportion, in Irr(G) x G, of pairs (x,g) with (dy,sg)/dy > €.
Lemma B. For all 6,6 > 0, there exists N such that if n > N, q is a prime power,
and G = GL(n, q), then for (x,g) in Irr(G) x G,

(4) (dxd’;g) <e,

except for (x,g) in a subset R C Irr(G) x G such that
(5) IR| < é|Irr(G) x G.
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2. ProOF oF THEOREM [I] usiNnG LEMMAS [A] AND [B]
For G = GL(n,q) and £ > 0, Lemma gives
Pn,q S Qn,q + €2a

with P, , the proportion of pairs (x,¢) with x(g) # 0 and @, , the proportion
of pairs with (dy,sg)/dy > €. Lemma [B| gives @, 4 < 6 for n > N. Thus for n
sufficiently large,

Png<6+¢,
from which Theorem [I] follows. O

3. PrROOF OF LEMMA [A] BY A DEVICE OF BURNSIDE

We follow [2]. For x € Irr(G) and g € G, it is well-known that x(g) ([6, Prop. 15])
and sgx(g)/dy ([6l Ex. 6.9]) are algebraic integers, and, of course, both lie in the
cyclotomic field Q((|¢) with (|| = e2 /Gl Thus, for all a,b € Z,

(ady + bsg)x(9)
dX

is an algebraic integer. Choosing a and b so that ad, + bs, is the greatest common
divisor (dy, sq) of d, and s, this gives

d
(6) X(9) = 5y
(dys5g) 7
with o, 4 an algebraic integer in Q((|¢/).
From @, for each Yy,
d 2
7 = 2 =1q|.
( ) Z((dxasg)) ‘ax,g | |

geG

To , apply elements o of the Galois group I' = Gal(Q((|¢)/Q), average over T,
and use the fact, due to Burnside, that the average over I' of |o(a)|? is > 1 for each
non-zero algebraic integer a € Q((|g), [2, p. 459]. This gives, for each ¥,

0 > () <l

geG

the dash meaning that the sum is over those g with x(g) # 0, [2 p. 460]. From ,
rood
(9 > X < @Gl
x€Irr(G) gG X279

From @, the proportion, in Irr(G) x G, of pairs (x,g) with both x(g) # 0 and
(dy,8g)/dy < e is at most €2, from which follows. O

4. NUMBER THEORETIC LEMMAS: PARTITIONS
We denote by p(n) the number of partitions of a non-negative integer n.

Lemma 1. For each positive integer n, p(n) < 271,
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Proof. The base case n = 1 is trivial. For n > 1, the number of partitions with
smallest part m is at most p(n —m), so

pn) ST4p(1) +p(2) - 4pn —1) STH1+24- 42777 =277,

and the lemma follows by induction. [

Lemma 2. Let ¢ := % Then p(n) < ¢™ for all non-negative integers n.

Proof. The partition function is non-decreasing since the number of partitions of
n + 1 with a part of size 1 is p(n). The lemma holds for n € {0,1}. For n > 2, the
pentagonal number theorem implies

(10) p(n)=p(n—1)+pn—2)—pn—>5)—pn—"7) +pn—12) +---,

with sign pattern + + - — ++ — — + 4+ — — - -+ and where the sum on the right-
hand side terminates at the last term £p(n—m), where m is the largest generalized
pentagonal number for which n > m. By monotonicity, the right-hand side of
is at most p(n — 1) + p(n — 2), so the lemma follows by induction on n. O

Lemma 3. There exists v < 1 such that if ¢ > 2 and a and b are positive integers
such that a(b—1) > N > 0, then

p(b)

<29V,
qa(b—l)

Proof. Tt suffices to prove the lemma for ¢ = 2. For a = 1, we have b—1 > N, so
Lemma [2 implies

20— PO o).

For a > 2, a(b—1) < 2(a—1)(b— 1), so by Lemmall]
)

p(b
2a(b—1)

Therefore, we may take v = ¢/2 > 1/+/2. O

< 2—(a—1)(b—1) < (1/\/§)N < 2<1/\/§)N.

5. NUMBER THEORETIC LEMMAS: CYCLOTOMIC POLYNOMIALS
For n a positive integer, let ®,, (x) denote the minimal polynomial over Q of 27#/™.
Thus

(11) a" =1 =[] ®a(x),
d|n
so by Mobius inversion,
(12) @, (2) = [/ — 1)1,
d|n
For any prime ¢, let ord,(x) denote the largest integer e such that ¢¢ divides z.

Lemma 4. Let ¢ be a prime, e a positive integer, and n an integer such that
ordg(n — 1) =e.

(i) If k is a positive integer prime to ¢, then ordy(n* — 1) = e.

(ii) If £ is odd and orde(k) = 1, then ordg(n*® —1) = e + 1.
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Proof. Let n =1+ mt¢, where £{m. By the binomial theorem,
n® =1+ kme¢ (mod ¢%9),

which implies claim . For claim , using part , it suffices to treat the case
k = ¢, for which we have

nt=1+meett 4 )€2€+1 (mod £3¢). O

m2(0—1
2

Lemma 5. Supposen > 0 and a > 1 are integers. We factor ®,,(a) as P,(a)R,(a),

where Pp(a) is relatively prime to n and Ry (a) factors into prime divisors of n.
(i) Every prime divisor of P,(a) is =1 (mod n).

(ii) If n > 3, Ry(a) is a square-free divisor of n.

(ifi) Forn >3, Py(a) > 2V"/2-logan—2,

(iv) If m€ > n and £ is a prime divisor of Py, (a), then

0 otherwise.

ordy(a™ — 1) = {orngm(a) if m|n,

Proof. Fix any prime ¢ which divides ®,,(a). As £ | a™ — 1, a is not divisible by ¢,
so it represents a class in F,*. Let j be the order of this class. As " =1 (mod ¢),
j | n. Let s denote the largest square-free divisor of n/ j. By (12),

ordy®,,(a) = ordy H n/d _ (d)

Now, if s can be written ps’ for some prime p # £,

(13) [J(am/ — 1y = H(%)Md).

d|s d|s’
Applying part (i) of Lemma[d with k& = p, the above formula implies ord,®,,(a) = 0,
contrary to assumption. Since s is square-free, it follows that it can only be 1 or /.

If ¢ divides P, (a), then it does not divide n. That means s = 1, so the class of
a has order n in a group of order £ — 1. This implies part . Conversely, if £ does
divide n, it cannot be 1 (mod n), so s = /.

If s = ¢ > 2, then d square-free and ord,(a™/¢ — 1) > 0 implies d € {1,¢}.
Therefore, part of Lemma [4| implies that the left-hand side of has ord,
equal to 1. If s = ¢ = 2, then k = 1, so we need only consider the case that n is
a power of 2. For t > 2, o (z) = (22" )2 + 1, so plugging in a, the result has at
most one factor of 2. This gives claim .

By (12),

(oo} (oo}
(14) O (a) > a®® [J(1—a™") = a®™ [J(1 -2~
=1

i=1

2¢(n)
T

As ¢(p°©) > \/> except when p® = 2, the multiplicativity of ¢ implies ¢(n) > /n/2.
By part (ii)), R,(a) < n, and claim (il . ) follows.

If e d1v1des P, ( ), then the image of a in F* is of order m, so ¢ divides a™—1 only
if n is divisible by m. In that case, Py, (a) divides ®,,,(a), which is a divisor of a™ —1
and therefore a™ — 1. Moreover, ¢ does not divide m, so ord; P, (a) = ord¢®,,(a).
To prove , it remains to show that a™ — 1 has no additional factors of £ beyond
those in a™ — 1. Tt suffices to prove that @, (a) is not divisible by £ if n’ is a divisor
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of n and m is a proper divisor of n’. Indeed, ¢ does not divide P, (a) because a is
not of order exactly m’ (mod ¢). If it divides ®,,(a), it must divide R, (a), so it
must divide n’. It does not divide m, so it must divide n’/m < m. This is ruled

out by . [
6. IRREDUCIBLE CHARACTERS OF GL(n,q)

In what follows, G = GL(n, q). By [I, Proposition 3.5],
(15) T < (@) < g

Denote by P the set of all partitions A of integers |A| > 0 (including the empty
partition () and by F the set of all non-constant monic irreducible polynomials
f(z) € Fy[z] with non-zero constant term. We define the degree of amap v : F — P

as follows:
deg(v) == 3 deg(f)v(f)]-
fer

By Jordan decomposition, there is a natural bijection between conjugacy classes in
G and maps v : F — P of degree n. Green [3] introduced the set G of simplices
and proved (Theorem 12) that Irr(G) has a parametrization by maps v : G — P
satisfying

S deg(f)|v(f)] = n.

feg
By fixing in a compatible way multiplicative generators of finite fields, he gave
a degree-preserving bijection between F and G. We will ignore the distinction
between F and G henceforward. The same theorem of Green also gave a formula
for the degree of the irreducible character x associated to v. It can be written

N, H?:1(qi —1)
[jer IR (ghn st 1)
where [V, is a certain non-negative integer, and the hy ; are the hook lengths of the

partition A; in particular these are positive integers < |A|.
By the support of v, which we denote supp v, we mean the set of f € F such

that v(f) # 0.

Lemma 6. Let vy be defined as in Lemmal[3, and let N be a positive integer. Then
the number of degree n functions v: F — P satisfying deg(f)(|v(f)| — 1) > N for

some f is less than %q”.

(16) dy =q

Proof. Tt suffices to prove that for each m, the number of choices of v of degree
n such that for some f € F, deg(f)(|v(f)| —1) = m is less than 2m~y™¢™. Since
there are at most m ways of expressing m as a(b — 1) for positive integers a and
b, it suffices to prove that there are less than 27" ¢"™ such v of degree n for which
lv(f)| = b for some f € F of degree a. Since there are fewer than ¢* elements of
F of degree a, it suffices to prove that for given f € F of degree a, there are at
most 27™¢"~® possibilities for v with |v(f)| = b. For each partition A of b, the
functions v of degree n with v(f) = A can be put into bijective correspondence
with +/ of degree n — ab with v/(f) = 0. By (5], the number of possibilities for
v' and therefore for v is at most ¢"~* = ¢" ™%, Summing over the possibilities
for A, which by Lemma [3] number less than 2y ¢™, we obtain less than 2y™¢"~¢
possibilities for v with |v(f)| = b, as claimed. O
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We define the deficiency of a character of G or of the associated v: F — P to
be the maximum of deg(f)(|v(f)|—1) over all f € F. Together, Lemma[6and
imply that for all € > 0 there exists an N such that for all n and ¢, the proportion
of irreducible characters of GL(n, q) with deficiency < N is at least 1 — e.

Lemma 7. Let m be a positive integer and ¢ a prime such that fm > n and
ord¢P,(q) = e > 0. Let x be a character whose deficiency is less than m/2. Then

orded, = e[n/m] —el{f € suppv | deg(f) € mZ}|
= ordy|G| — e|{f € suppv | deg(f) € mZ}|.

Proof. If f is in the support of v and deg(f)|v(f)] < m, then by part of
Lemma f does not contribute any factor of ¢ to the denominator of . So we
need only consider the case deg(f)|v(f)| > m, in which case deg(f)(|v(f)| —1) >
m/2if |[v(f)| > 2. Since the deficiency of  is less than m /2, this is impossible, which
means that all f contributing factors of ¢ in (|16) satisfy v(f) = (1). Moreover, by
Lemma ¢ divides ¢* — 1 if and only if m divides &, in which case ordy(¢* — 1) = e.
Thus, the factors in contributing to ord, are ¢™ —1,¢*™ —1,...,gn/mIm 1,
each of which contributes e, and ¢%2(/) — 1 for each f € supp v of degree divisible
by m, again each contributing e. O

Lemma 8. For any positive integer m, the number of v: F — P of degree n for
which there exist f € F of degree m with v(f) = (1) is less than " /m.

Proof. Any degree m element of F splits completely in Fym, so there are less than
q™/m such elements. For each f, there is a bijective correspondence between v of
degree n with v(f) = (1) and v/ of degree n —m with v/(f) = 0. By (15)), there are
at most ¢"~™ such v/, so the total number of v is less than ¢™/m. [

Lemma 9. For all e > 0, if n is sufficiently large in terms of €, m is a sufficiently
large positive integer, £ is a prime divisor of Pp,(q), and ¢m > n, then the probability

is at least
2+ 2logn —2logm

1
m
that a random element x chosen uniformly from Irr(G) satisfies
(17) orded, = ord,|G].

Proof. Choose N in Lemma |§| such that NyV < (1 —v)%¢/4. By , the prob-
ability that x has deficiency > N is less than €. We assume m > 2N, so with
probability greater than 1 — g, the deficiency of a random x € Irr(G) is less than
m/2. By Lemma [7} this implies provided that no element in the support of
v has degree a multiple of m. If f € suppv has degree km, then the deficiency
condition on v implies v(f) = (1). By Lemma [8 the probability that there exists
an element in the support of v of degree km is less than 2/km, so the probability
that there is an element in the support of v with degree in mZ is less than

n/m] 2 - 24 2logn — 2logm

km m
k=1

O

Lemma 10. For all § > 0, if n is sufficiently large in terms of 6, m > /n, and £
is any prime divisor of P, (q), then the probability of is greater than 1 — §/2.



MANY ZEROS OF MANY CHARACTERS OF GL(n,q) 7

Proof. By part (i) of Lemma £ > m, so fm > n. Applying Lemma@for e=4/4,
the claim holds if

2+42logn —2logm ¢

< —.

m 4
For n > 8 and m > /n, the left-hand side is less than 2n~1/?logn, which goes to
zero as n goes to oco. O

7. PrROOF OF LEMMA [B

Let Fact f denote the total number of factors in the decomposition of f(z) € F,[z]
into irreducibles. For each g € GL(n,q), let py(x) denote the characteristic poly-
nomial of g.

Lemma 11. There exist constants A and B such that for all m, n, and q, at most
AnBq=™|GL(n, q)| elements of GL(n,q) have a characteristic polynomial with a
repeated irreducible factor of degree > m.

Proof. By [4, Proposition 3.3], the number of elements of GL(n, q) with any given
characteristic polynomial is at most (A4/8)n” q”Q*” for some absolute constants A
and B. (Actually, the statement is proven only for “classical” groups, but the proof
for GL(n, q) is identical.) For any given f of degree m, there are ¢"~2™ polynomials
of degree < n divisible by f2, so there are less than ¢"~™ polynomials of degree n
with a repeated irreducible factor of degree m and less than ¢" ™ 4+¢" ™ 1 4+... <
2q¢™~"™ polynomials with a repeated irreducible factor of degree > m. On the other
hand, by the same argument as ,

S RN
IGL(mq)IfZ_]:[l(q @) >

The lemma follows. (]

Proof of Lemma[B. By [4, Proposition 3.4], for all § > 0 there exists k such that

(18) P[Factp, > klogn] < g,
where P denotes probability with respect to the uniform distribution on G =
GL(n,q). (Actually, the cited reference proves the analogous claim for SL(n,q),
but the proof goes through the GL(n,q) case.) Choose k so that this holds and
assume that n is large enough that

(a) v/n > klogn,

(b) AnP27V™ < 2 where A and B are defined as in Lemma

(¢) V/m/2>logym + 2 for all m > /n,

(d) m > 1/e for all m > \/n.

Let X denote the set of elements g for which py(x) has < klogn irreducible
factors and no repeated factor of degree > /n. By condition (@ on n, every pg
with g € X has a simple irreducible factor of degree > /n. By equation and
condition (b)), |G\ X| < (6/2)|G|. For each g € X, fix an irreducible factor of degree
mg > \/n of p,. By condition and part of Lemma P, (q) > 1, so for
each g, we may fix a prime divisor £, of P, (¢q). We define R to consist of all pairs
(x,g) where g € X or where g € X but »

ordg,d, # ordy,|G].
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By Lemma for each g € X, there are at most (§/2)|Irr(G)| pairs (x,g) € R.
Thus, R satisfies equation (5).

For pairs (x,9) € R, we have g € X’ and ordy,d, = ordy,|G|. As py(z) has an
irreducible factor of degree m, which occurs with multiplicity 1, the centralizer of
g has order divisible by ¢"s — 1 and therefore by ¢,. Therefore, ordy, s, < ord, |G|.
This implies that ¢, is a divisor of the denominator of (dy,sy)/dy. As {, =1
(mod my), we have ¢, > m,. By condition @ on n, mg > 1/e. Thus, equation
holds. (]
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