MANY ZEROS OF MANY CHARACTERS OF GL(n,q)

PATRICK X. GALLAGHER*, MICHAEL J. LARSEN, AND ALEXANDER R. MILLER

ABSTRACT. For $G=\mathrm{GL}(n,q)$, the proportion $P_{n,q}$ of pairs (χ,g) in $\mathrm{Irr}(G)\times G$ with $\chi(g)\neq 0$ satisfies $P_{n,q}\to 0$ as $n\to\infty$.

1. Introduction

A few years ago, it was shown [5] that for $G = S_n$ the proportion P_n of pairs (χ, g) in $Irr(G) \times G$ with $\chi(g) \neq 0$ satisfies

(1)
$$P_n \to 0 \text{ as } n \to \infty.$$

Here we prove the analogous statement for $\mathrm{GL}(n,q)$:

Theorem 1. The proportion $P_{n,q}$, in $Irr(GL(n,q)) \times GL(n,q)$, of pairs (χ, g) with $\chi(g) \neq 0$ satisfies

(2)
$$\sup_{q} P_{n,q} \to 0 \text{ as } n \to \infty.$$

To prove (2) for $\mathrm{GL}(n,q)$, we compare conjugacy class sizes s_g and character degrees d_χ . In Section 3, we prove the general inequality (3). In Section 7, using technical information from Sections 4–6, we prove that for most pairs (χ,g) consisting of an irreducible character of G and an element of G, the greatest common divisor (d_χ,s_g) is much smaller than d_χ . In Section 2, we prove that these two facts imply the theorem. The precise statements are as follows.

Lemma A. For each finite group G and $\varepsilon > 0$, the proportion P, in $Irr(G) \times G$, of pairs (χ, g) with $\chi(g) \neq 0$ satisfies

$$(3) P < Q(\varepsilon) + \varepsilon^2,$$

with $Q(\varepsilon)$ the proportion, in $Irr(G) \times G$, of pairs (χ, g) with $(d_{\chi}, s_g)/d_{\chi} \geq \varepsilon$.

Lemma B. For all $\delta, \varepsilon > 0$, there exists N such that if $n \ge N$, q is a prime power, and G = GL(n,q), then for (χ,g) in $Irr(G) \times G$,

$$\frac{(d_{\chi}, s_g)}{d_{\chi}} < \varepsilon,$$

except for (χ, g) in a subset $\mathcal{R} \subset \operatorname{Irr}(G) \times G$ such that

$$(5) |\mathcal{R}| \le \delta |\mathrm{Irr}(G) \times G|.$$

We are grateful to the referees for several suggestions which improved the exposition.

^{*}Paper finished posthumously.

 $^{\,}$ ML was partially supported by the NSF grant DMS-1702152. AM was partially supported by the Austrian Science Foundation.

2. Proof of Theorem 1 using Lemmas A and B

For $G = \operatorname{GL}(n,q)$ and $\varepsilon > 0$, Lemma A gives

$$P_{n,q} \leq Q_{n,q} + \varepsilon^2$$

with $P_{n,q}$ the proportion of pairs (χ, g) with $\chi(g) \neq 0$ and $Q_{n,q}$ the proportion of pairs with $(d_{\chi}, s_g)/d_{\chi} \geq \varepsilon$. Lemma B gives $Q_{n,q} \leq \delta$ for $n \geq N$. Thus for n sufficiently large,

$$P_{n,q} \leq \delta + \varepsilon^2$$
,

from which Theorem 1 follows.

3. Proof of Lemma A by a device of Burnside

We follow [2]. For $\chi \in \text{Irr}(G)$ and $g \in G$, it is well-known that $\chi(g)$ ([6, Prop. 15]) and $s_g \chi(g)/d_{\chi}$ ([6, Ex. 6.9]) are algebraic integers, and, of course, both lie in the cyclotomic field $\mathbb{Q}(\zeta_{|G|})$ with $\zeta_{|G|} = e^{2\pi i/|G|}$. Thus, for all $a, b \in \mathbb{Z}$,

$$\frac{(ad_{\chi} + bs_g)\chi(g)}{d_{\chi}}$$

is an algebraic integer. Choosing a and b so that $ad_{\chi} + bs_g$ is the greatest common divisor (d_{χ}, s_g) of d_{χ} and s_g , this gives

(6)
$$\chi(g) = \frac{d_{\chi}}{(d_{\chi}, s_g)} \alpha_{\chi, g},$$

with $\alpha_{\chi,g}$ an algebraic integer in $\mathbb{Q}(\zeta_{|G|})$.

From (6), for each χ ,

(7)
$$\sum_{g \in G} \left(\frac{d_{\chi}}{(d_{\chi}, s_g)}\right)^2 |\alpha_{\chi, g}|^2 = |G|.$$

To (7), apply elements σ of the Galois group $\Gamma = \operatorname{Gal}(\mathbb{Q}(\zeta_{|G|})/\mathbb{Q})$, average over Γ , and use the fact, due to Burnside, that the average over Γ of $|\sigma(\alpha)|^2$ is ≥ 1 for each non-zero algebraic integer $\alpha \in \mathbb{Q}(\zeta_{|G|})$, [2, p. 459]. This gives, for each χ ,

(8)
$$\sum_{g \in G}' \left(\frac{d_{\chi}}{(d_{\chi}, s_g)}\right)^2 \le |G|,$$

the dash meaning that the sum is over those g with $\chi(g) \neq 0$, [2, p. 460]. From (8),

(9)
$$\sum_{\chi \in \operatorname{Irr}(G)} \sum_{g \in G}' \left(\frac{d_{\chi}}{(d_{\chi}, s_g)}\right)^2 \le |\operatorname{Irr}(G)||G|.$$

From (9), the proportion, in $\operatorname{Irr}(G) \times G$, of pairs (χ, g) with both $\chi(g) \neq 0$ and $(d_{\chi}, s_g)/d_{\chi} \leq \varepsilon$ is at most ε^2 , from which (3) follows.

4. Number theoretic lemmas: partitions

We denote by p(n) the number of partitions of a non-negative integer n.

Lemma 1. For each positive integer n, $p(n) \leq 2^{n-1}$.

Proof. The base case n=1 is trivial. For n>1, the number of partitions with smallest part m is at most p(n-m), so

$$p(n) \le 1 + p(1) + p(2) + \dots + p(n-1) \le 1 + 1 + 2 + \dots + 2^{n-2} = 2^{n-1},$$
 and the lemma follows by induction. \Box

and the lemma follows by induction.

Lemma 2. Let $\phi := \frac{1+\sqrt{5}}{2}$. Then $p(n) \le \phi^n$ for all non-negative integers n.

Proof. The partition function is non-decreasing since the number of partitions of n+1 with a part of size 1 is p(n). The lemma holds for $n \in \{0,1\}$. For $n \geq 2$, the pentagonal number theorem implies

(10)
$$p(n) = p(n-1) + p(n-2) - p(n-5) - p(n-7) + p(n-12) + \cdots,$$

with sign pattern $++--++--++--\cdots$ and where the sum on the righthand side terminates at the last term $\pm p(n-m)$, where m is the largest generalized pentagonal number for which $n \geq m$. By monotonicity, the right-hand side of (10) is at most p(n-1) + p(n-2), so the lemma follows by induction on n.

Lemma 3. There exists $\gamma < 1$ such that if $q \geq 2$ and a and b are positive integers such that $a(b-1) \geq N \geq 0$, then

$$\frac{p(b)}{q^{a(b-1)}} < 2\gamma^N.$$

Proof. It suffices to prove the lemma for q=2. For a=1, we have $b-1\geq N$, so Lemma 2 implies

$$\frac{p(b)}{2^{a(b-1)}} = \frac{p(b)}{2^{b-1}} < 2(\phi/2)^N.$$

For $a \ge 2$, $a(b-1) \le 2(a-1)(b-1)$, so by Lemma 1,

$$\frac{p(b)}{2^{a(b-1)}} \le 2^{-(a-1)(b-1)} \le (1/\sqrt{2})^N < 2(1/\sqrt{2})^N.$$

Therefore, we may take $\gamma = \phi/2 > 1/\sqrt{2}$.

5. Number theoretic lemmas: cyclotomic polynomials

For n a positive integer, let $\Phi_n(x)$ denote the minimal polynomial over \mathbb{Q} of $e^{2\pi i/n}$. Thus

(11)
$$x^n - 1 = \prod_{d|n} \Phi_d(x),$$

so by Möbius inversion,

(12)
$$\Phi_n(x) = \prod_{d|n} (x^{n/d} - 1)^{\mu(d)}.$$

For any prime ℓ , let $\operatorname{ord}_{\ell}(x)$ denote the largest integer e such that ℓ^{e} divides x.

Lemma 4. Let ℓ be a prime, e a positive integer, and n an integer such that $\operatorname{ord}_{\ell}(n-1) = e.$

- (i) If k is a positive integer prime to ℓ , then $\operatorname{ord}_{\ell}(n^k-1)=e$.
- (ii) If ℓ is odd and $\operatorname{ord}_{\ell}(k) = 1$, then $\operatorname{ord}_{\ell}(n^k 1) = e + 1$.

Proof. Let $n = 1 + m\ell^e$, where $\ell \nmid m$. By the binomial theorem,

$$n^k \equiv 1 + km\ell^e \pmod{\ell^{2e}},$$

which implies claim (i). For claim (ii), using part (i), it suffices to treat the case $k = \ell$, for which we have

$$n^{\ell} \equiv 1 + m\ell^{e+1} + \frac{m^2(\ell-1)}{2}\ell^{2e+1} \pmod{\ell^{3e}}.$$

Lemma 5. Suppose n > 0 and a > 1 are integers. We factor $\Phi_n(a)$ as $P_n(a)R_n(a)$, where $P_n(a)$ is relatively prime to n and $R_n(a)$ factors into prime divisors of n.

- (i) Every prime divisor of $P_n(a)$ is $\equiv 1 \pmod{n}$.
- (ii) If $n \geq 3$, $R_n(a)$ is a square-free divisor of n.
- (iii) For $n \ge 3$, $P_n(a) > 2^{\sqrt{n/2} \log_2 n 2}$.
- (iv) If $m\ell > n$ and ℓ is a prime divisor of $P_m(a)$, then

$$\operatorname{ord}_{\ell}(a^{n}-1) = \begin{cases} \operatorname{ord}_{\ell}P_{m}(a) & \text{if } m \mid n, \\ 0 & \text{otherwise.} \end{cases}$$

Proof. Fix any prime ℓ which divides $\Phi_n(a)$. As $\ell \mid a^n - 1$, a is not divisible by ℓ , so it represents a class in $\mathbb{F}_{\ell}^{\times}$. Let j be the order of this class. As $a^n \equiv 1 \pmod{\ell}$, $j \mid n$. Let s denote the largest square-free divisor of n/j. By (12),

$$\operatorname{ord}_{\ell} \Phi_n(a) = \operatorname{ord}_{\ell} \prod_{d \mid s} (a^{n/d} - 1)^{\mu(d)}.$$

Now, if s can be written ps' for some prime $p \neq \ell$,

(13)
$$\prod_{d|s} (a^{n/d} - 1)^{\mu(d)} = \prod_{d|s'} \left(\frac{a^{n/d} - 1}{a^{n/pd} - 1}\right)^{\mu(d)}.$$

Applying part (i) of Lemma 4 with k = p, the above formula implies $\operatorname{ord}_{\ell}\Phi_n(a) = 0$, contrary to assumption. Since s is square-free, it follows that it can only be 1 or ℓ .

If ℓ divides $P_n(a)$, then it does not divide n. That means s=1, so the class of a has order n in a group of order $\ell-1$. This implies part (i). Conversely, if ℓ does divide n, it cannot be 1 (mod n), so $s=\ell$.

If $s = \ell > 2$, then d square-free and $\operatorname{ord}_{\ell}(a^{n/d} - 1) > 0$ implies $d \in \{1, \ell\}$. Therefore, part (ii) of Lemma 4 implies that the left-hand side of (13) has $\operatorname{ord}_{\ell}$ equal to 1. If $s = \ell = 2$, then k = 1, so we need only consider the case that n is a power of 2. For $t \geq 2$, $\Phi_{2^t}(x) = (x^{2^{t-2}})^2 + 1$, so plugging in a, the result has at most one factor of 2. This gives claim (ii).

By (12),

(14)
$$\Phi_n(a) \ge a^{\deg \Phi_n} \prod_{i=1}^{\infty} (1 - a^{-i}) \ge a^{\phi(n)} \prod_{i=1}^{\infty} (1 - 2^{-i}) \ge \frac{2^{\phi(n)}}{4}.$$

As $\phi(p^e) \ge \sqrt{p^e}$ except when $p^e = 2$, the multiplicativity of ϕ implies $\phi(n) \ge \sqrt{n/2}$. By part (ii), $R_n(a) \le n$, and claim (iii) follows.

If ℓ divides $P_m(a)$, then the image of a in $\mathbb{F}_{\ell}^{\times}$ is of order m, so ℓ divides a^n-1 only if n is divisible by m. In that case, $P_m(a)$ divides $\Phi_m(a)$, which is a divisor of a^m-1 and therefore a^n-1 . Moreover, ℓ does not divide m, so $\operatorname{ord}_{\ell}P_m(a)=\operatorname{ord}_{\ell}\Phi_m(a)$. To prove (iv), it remains to show that a^n-1 has no additional factors of ℓ beyond those in a^m-1 . It suffices to prove that $\Phi_{n'}(a)$ is not divisible by ℓ if n' is a divisor

of n and m is a proper divisor of n'. Indeed, ℓ does not divide $P_{n'}(a)$ because a is not of order exactly m' (mod ℓ). If it divides $\Phi_{n'}(a)$, it must divide $R_{n'}(a)$, so it must divide n'. It does not divide m, so it must divide $n'/m \leq m$. This is ruled out by (i).

6. Irreducible characters of GL(n,q)

In what follows, G = GL(n, q). By [1, Proposition 3.5],

(15)
$$\frac{q^n}{2} \le |\operatorname{Irr}(G)| \le q^n.$$

Denote by \mathcal{P} the set of all partitions λ of integers $|\lambda| \geq 0$ (including the empty partition \emptyset) and by \mathcal{F} the set of all non-constant monic irreducible polynomials $f(x) \in \mathbb{F}_q[x]$ with non-zero constant term. We define the *degree* of a map $\nu : \mathcal{F} \to \mathcal{P}$ as follows:

$$\deg(\nu) := \sum_{f \in \mathcal{F}} \deg(f) |\nu(f)|.$$

By Jordan decomposition, there is a natural bijection between conjugacy classes in G and maps $\nu : \mathcal{F} \to \mathcal{P}$ of degree n. Green [3] introduced the set \mathcal{G} of simplices and proved (Theorem 12) that Irr(G) has a parametrization by maps $\nu : \mathcal{G} \to \mathcal{P}$ satisfying

$$\sum_{f \in \mathcal{G}} \deg(f)|\nu(f)| = n.$$

By fixing in a compatible way multiplicative generators of finite fields, he gave a degree-preserving bijection between \mathcal{F} and \mathcal{G} . We will ignore the distinction between \mathcal{F} and \mathcal{G} henceforward. The same theorem of Green also gave a formula for the degree of the irreducible character χ associated to ν . It can be written

(16)
$$d_{\chi} = q^{N_{\nu}} \frac{\prod_{i=1}^{n} (q^{i} - 1)}{\prod_{f \in \mathcal{F}} \prod_{i=1}^{|\nu(f)|} (q^{h_{\nu(f),i} \deg(f)} - 1)},$$

where N_{ν} is a certain non-negative integer, and the $h_{\lambda,i}$ are the hook lengths of the partition λ ; in particular these are positive integers $\leq |\lambda|$.

By the support of ν , which we denote supp ν , we mean the set of $f \in \mathcal{F}$ such that $\nu(f) \neq \emptyset$.

Lemma 6. Let γ be defined as in Lemma 3, and let N be a positive integer. Then the number of degree n functions $\nu \colon \mathcal{F} \to \mathcal{P}$ satisfying $\deg(f)(|\nu(f)|-1) \geq N$ for some f is less than $\frac{2N\gamma^N}{(1-\gamma)^2}q^n$.

Proof. It suffices to prove that for each m, the number of choices of ν of degree n such that for some $f \in \mathcal{F}$, $\deg(f)(|\nu(f)|-1)=m$ is less than $2m\gamma^mq^n$. Since there are at most m ways of expressing m as a(b-1) for positive integers a and b, it suffices to prove that there are less than $2\gamma^mq^n$ such ν of degree n for which $|\nu(f)|=b$ for some $f \in \mathcal{F}$ of degree a. Since there are fewer than q^a elements of \mathcal{F} of degree a, it suffices to prove that for given $f \in \mathcal{F}$ of degree a, there are at most $2\gamma^mq^{n-a}$ possibilities for ν with $|\nu(f)|=b$. For each partition λ of b, the functions ν of degree n with $\nu(f)=\lambda$ can be put into bijective correspondence with ν' of degree n-ab with $\nu'(f)=\emptyset$. By (15), the number of possibilities for ν' and therefore for ν is at most $q^{n-ab}=q^{n-m-a}$. Summing over the possibilities for λ , which by Lemma 3 number less than $2\gamma^mq^m$, we obtain less than $2\gamma^mq^{n-a}$ possibilities for ν with $|\nu(f)|=b$, as claimed.

We define the deficiency of a character of G or of the associated $\nu \colon \mathcal{F} \to \mathcal{P}$ to be the maximum of $\deg(f)(|\nu(f)|-1)$ over all $f \in \mathcal{F}$. Together, Lemma 6 and (15) imply that for all $\varepsilon > 0$ there exists an N such that for all n and q, the proportion of irreducible characters of $\operatorname{GL}(n,q)$ with deficiency < N is at least $1 - \varepsilon$.

Lemma 7. Let m be a positive integer and ℓ a prime such that $\ell m > n$ and $\operatorname{ord}_{\ell} P_m(q) = e > 0$. Let χ be a character whose deficiency is less than m/2. Then

$$\operatorname{ord}_{\ell} d_{\chi} = e \lfloor n/m \rfloor - e | \{ f \in \operatorname{supp} \nu \mid \deg(f) \in m\mathbb{Z} \} |$$

=
$$\operatorname{ord}_{\ell} |G| - e | \{ f \in \operatorname{supp} \nu \mid \deg(f) \in m\mathbb{Z} \} |.$$

Proof. If f is in the support of ν and $\deg(f)|\nu(f)| < m$, then by part (iv) of Lemma 5, f does not contribute any factor of ℓ to the denominator of (16). So we need only consider the case $\deg(f)|\nu(f)| \geq m$, in which case $\deg(f)(|\nu(f)|-1) \geq m/2$ if $|\nu(f)| \geq 2$. Since the deficiency of χ is less than m/2, this is impossible, which means that all f contributing factors of ℓ in (16) satisfy $\nu(f) = (1)$. Moreover, by Lemma 5, ℓ divides $q^k - 1$ if and only if m divides k, in which case $\gcd(q^k - 1) = e$. Thus, the factors in (16) contributing to \gcd_{ℓ} are $q^m - 1, q^{2m} - 1, \ldots, q^{\lfloor n/m \rfloor m} - 1$, each of which contributes e, and $q^{\deg(f)} - 1$ for each $f \in \operatorname{supp} \nu$ of degree divisible by m, again each contributing e.

Lemma 8. For any positive integer m, the number of $\nu \colon \mathcal{F} \to \mathcal{P}$ of degree n for which there exist $f \in \mathcal{F}$ of degree m with $\nu(f) = (1)$ is less than q^n/m .

Proof. Any degree m element of \mathcal{F} splits completely in \mathbb{F}_{q^m} , so there are less than q^m/m such elements. For each f, there is a bijective correspondence between ν of degree n with $\nu(f)=(1)$ and ν' of degree n-m with $\nu'(f)=\emptyset$. By (15), there are at most q^{n-m} such ν' , so the total number of ν is less than q^n/m .

Lemma 9. For all $\varepsilon > 0$, if n is sufficiently large in terms of ε , m is a sufficiently large positive integer, ℓ is a prime divisor of $P_m(q)$, and $\ell m > n$, then the probability is at least

$$1 - \frac{2 + 2\log n - 2\log m}{m} - \varepsilon$$

that a random element χ chosen uniformly from Irr(G) satisfies

(17)
$$\operatorname{ord}_{\ell} d_{\chi} = \operatorname{ord}_{\ell} |G|.$$

Proof. Choose N in Lemma 6 such that $N\gamma^N < (1-\gamma)^2\varepsilon/4$. By (15), the probability that χ has deficiency $\geq N$ is less than ε . We assume m>2N, so with probability greater than $1-\varepsilon$, the deficiency of a random $\chi\in {\rm Irr}(G)$ is less than m/2. By Lemma 7, this implies (17) provided that no element in the support of ν has degree a multiple of m. If $f\in {\rm supp}\,\nu$ has degree km, then the deficiency condition on ν implies $\nu(f)=(1)$. By Lemma 8, the probability that there exists an element in the support of ν of degree km is less than 2/km, so the probability that there is an element in the support of ν with degree in $m\mathbb{Z}$ is less than

$$\sum_{k=1}^{\lfloor n/m\rfloor} \frac{2}{km} < \frac{2+2\log n - 2\log m}{m}.$$

Lemma 10. For all $\delta > 0$, if n is sufficiently large in terms of δ , $m \geq \sqrt{n}$, and ℓ is any prime divisor of $P_m(q)$, then the probability of (17) is greater than $1 - \delta/2$.

Proof. By part (i) of Lemma 5, $\ell > m$, so $\ell m > n$. Applying Lemma 9 for $\varepsilon = \delta/4$, the claim holds if

 $\frac{2+2\log n-2\log m}{m}<\frac{\delta}{4}.$

For $n \geq 8$ and $m \geq \sqrt{n}$, the left-hand side is less than $2n^{-1/2} \log n$, which goes to zero as n goes to ∞ .

7. Proof of Lemma B

Let Fact f denote the total number of factors in the decomposition of $f(x) \in \mathbb{F}_q[x]$ into irreducibles. For each $g \in GL(n,q)$, let $p_g(x)$ denote the characteristic polynomial of g.

Lemma 11. There exist constants A and B such that for all m, n, and q, at most $An^Bq^{-m}|\mathrm{GL}(n,q)|$ elements of $\mathrm{GL}(n,q)$ have a characteristic polynomial with a repeated irreducible factor of degree $\geq m$.

Proof. By [4, Proposition 3.3], the number of elements of $\mathrm{GL}(n,q)$ with any given characteristic polynomial is at most $(A/8)n^Bq^{n^2-n}$ for some absolute constants A and B. (Actually, the statement is proven only for "classical" groups, but the proof for $\mathrm{GL}(n,q)$ is identical.) For any given f of degree m, there are q^{n-2m} polynomials of degree $\leq n$ divisible by f^2 , so there are less than q^{n-m} polynomials of degree n with a repeated irreducible factor of degree m and less than $q^{n-m}+q^{n-m-1}+\cdots < 2q^{n-m}$ polynomials with a repeated irreducible factor of degree $\geq m$. On the other hand, by the same argument as (14),

$$|GL(n,q)| = \prod_{i=1}^{n} (q^n - q^i) > \frac{q^{n^2}}{4}.$$

The lemma follows.

Proof of Lemma B. By [4, Proposition 3.4], for all $\delta > 0$ there exists k such that

(18)
$$\mathbf{P}[\operatorname{Fact} p_g > k \log n] < \frac{\delta}{4},$$

where **P** denotes probability with respect to the uniform distribution on $G = \operatorname{GL}(n,q)$. (Actually, the cited reference proves the analogous claim for $\operatorname{SL}(n,q)$, but the proof goes through the $\operatorname{GL}(n,q)$ case.) Choose k so that this holds and assume that n is large enough that

- (a) $\sqrt{n} > k \log n$,
- (b) $An^B 2^{-\sqrt{n}} < \frac{\delta}{4}$, where A and B are defined as in Lemma 11,
- (c) $\sqrt{m/2} > \log_2 m + 2$ for all $m \ge \sqrt{n}$,
- (d) $m > 1/\varepsilon$ for all $m \ge \sqrt{n}$.

Let \mathcal{X} denote the set of elements g for which $p_g(x)$ has $\leq k \log n$ irreducible factors and no repeated factor of degree $\geq \sqrt{n}$. By condition (a) on n, every p_g with $g \in \mathcal{X}$ has a simple irreducible factor of degree $\geq \sqrt{n}$. By equation (18) and condition (b), $|G \setminus \mathcal{X}| < (\delta/2)|G|$. For each $g \in \mathcal{X}$, fix an irreducible factor of degree $m_g \geq \sqrt{n}$ of p_g . By condition (c) and part (iii) of Lemma 5, $P_{m_g}(q) > 1$, so for each g, we may fix a prime divisor ℓ_g of $P_{m_g}(q)$. We define \mathcal{R} to consist of all pairs (χ, g) where $g \notin \mathcal{X}$ or where $g \in \mathcal{X}$ but

$$\operatorname{ord}_{\ell_q} d_{\chi} \neq \operatorname{ord}_{\ell_q} |G|.$$

By Lemma 10, for each $g \in \mathcal{X}$, there are at most $(\delta/2)|\text{Irr}(G)|$ pairs $(\chi, g) \in \mathcal{R}$. Thus, \mathcal{R} satisfies equation (5).

For pairs $(\chi, g) \notin \mathcal{R}$, we have $g \in \mathcal{X}$ and $\operatorname{ord}_{\ell_g} d_{\chi} = \operatorname{ord}_{\ell_g} |G|$. As $p_g(x)$ has an irreducible factor of degree m_g which occurs with multiplicity 1, the centralizer of g has order divisible by $q^{m_g} - 1$ and therefore by ℓ_g . Therefore, $\operatorname{ord}_{\ell_g} s_g < \operatorname{ord}_{\ell_g} |G|$. This implies that ℓ_g is a divisor of the denominator of $(d_{\chi}, s_g)/d_{\chi}$. As $\ell_g \equiv 1 \pmod{m_g}$, we have $\ell_g > m_g$. By condition (d) on $n, m_g \geq 1/\varepsilon$. Thus, equation (4) holds.

References

- J. Fulman and R. Guralnick, Bounds on the number and sizes of conjugacy classes in finite Chevalley groups with applications to derangements. Trans. Amer. Math. Soc. 364 (2012) 3023–3070.
- P. X. Gallagher, Degrees, class sizes and divisors of character values. J. Group Theory 15 (2012) 455-467.
- J. A. Green, The characters of the finite general linear groups. Trans. Amer. Math. Soc. 80 (1955) 402–447.
- 4. M. Larsen and A. Shalev, On the distribution of values of certain word maps. Trans. Amer. Math. Soc. 368 (2016) 1647–1661.
- 5. A. R. Miller, The probability that a character value is zero for the symmetric group. *Math. Z.* **277** (2014) 1011–1015.
- J-P. Serre, Linear representations of finite groups. Translated from the second French edition by Leonard L. Scott. Graduate Texts in Mathematics, Vol. 42. Springer-Verlag, New York-Heidelberg, 1977.

DEPARTMENT OF MATHEMATICS, COLUMBIA UNIVERSITY, NEW YORK, NY, USA $Email\ address:$ pxg@math.columbia.edu

Department of Mathematics, Indiana University, Bloomington, IN, USA $\it Email\ address: mjlarsen@indiana.edu$

FAKULTÄT FÜR MATHEMATIK, UNIVERSITÄT WIEN, VIENNA, AUSTRIA Email address: alexander.r.miller@univie.ac.at