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Abstract. For G = GL(n, q), the proportion Pn,q of pairs (χ, g) in Irr(G)×G

with χ(g) ̸= 0 satisfies Pn,q → 0 as n → ∞.

1. Introduction

A few years ago, it was shown [5] that for G = Sn the proportion Pn of pairs
(χ, g) in Irr(G)×G with χ(g) ̸= 0 satisfies

(1) Pn → 0 as n → ∞.

Here we prove the analogous statement for GL(n, q):

Theorem 1. The proportion Pn,q, in Irr(GL(n, q))×GL(n, q), of pairs (χ, g) with
χ(g) ̸= 0 satisfies

(2) sup
q

Pn,q → 0 as n → ∞.

To prove (2) for GL(n, q), we compare conjugacy class sizes sg and character
degrees dχ. In Section 3, we prove the general inequality (3). In Section 7, using
technical information from Sections 4–6, we prove that for most pairs (χ, g) con-
sisting of an irreducible character of G and an element of G, the greatest common
divisor (dχ, sg) is much smaller than dχ. In Section 2, we prove that these two facts
imply the theorem. The precise statements are as follows.

Lemma A. For each finite group G and ε > 0, the proportion P , in Irr(G) × G,
of pairs (χ, g) with χ(g) ̸= 0 satisfies

(3) P ≤ Q(ε) + ε2,

with Q(ε) the proportion, in Irr(G)×G, of pairs (χ, g) with (dχ, sg)/dχ ≥ ε.

Lemma B. For all δ, ε > 0, there exists N such that if n ≥ N , q is a prime power,
and G = GL(n, q), then for (χ, g) in Irr(G)×G,

(4)
(dχ, sg)

dχ
< ε,

except for (χ, g) in a subset R ⊂ Irr(G)×G such that

(5) |R| ≤ δ|Irr(G)×G|.
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2. Proof of Theorem 1 using Lemmas A and B

For G = GL(n, q) and ε > 0, Lemma A gives

Pn,q ≤ Qn,q + ε2,

with Pn,q the proportion of pairs (χ, g) with χ(g) ̸= 0 and Qn,q the proportion
of pairs with (dχ, sg)/dχ ≥ ε. Lemma B gives Qn,q ≤ δ for n ≥ N . Thus for n
sufficiently large,

Pn,q ≤ δ + ε2,

from which Theorem 1 follows. □

3. Proof of Lemma A by a device of Burnside

We follow [2]. For χ ∈ Irr(G) and g ∈ G, it is well-known that χ(g) ([6, Prop. 15])
and sgχ(g)/dχ ([6, Ex. 6.9]) are algebraic integers, and, of course, both lie in the

cyclotomic field Q(ζ|G|) with ζ|G| = e2πi/|G|. Thus, for all a, b ∈ Z,

(adχ + bsg)χ(g)

dχ

is an algebraic integer. Choosing a and b so that adχ + bsg is the greatest common
divisor (dχ, sg) of dχ and sg, this gives

(6) χ(g) =
dχ

(dχ, sg)
αχ,g,

with αχ,g an algebraic integer in Q(ζ|G|).
From (6), for each χ,

(7)
∑︂
g∈G

(︁ dχ
(dχ, sg)

)︁2|αχ,g|2 = |G|.

To (7), apply elements σ of the Galois group Γ = Gal(Q(ζ|G|)/Q), average over Γ,

and use the fact, due to Burnside, that the average over Γ of |σ(α)|2 is ≥ 1 for each
non-zero algebraic integer α ∈ Q(ζ|G|), [2, p. 459]. This gives, for each χ,

(8)
∑︂
g∈G

′(︁ dχ
(dχ, sg)

)︁2 ≤ |G|,

the dash meaning that the sum is over those g with χ(g) ̸= 0, [2, p. 460]. From (8),

(9)
∑︂

χ∈Irr(G)

∑︂
g∈G

′
(

dχ
(dχ, sg)

)2 ≤ |Irr(G)||G|.

From (9), the proportion, in Irr(G) × G, of pairs (χ, g) with both χ(g) ̸= 0 and
(dχ, sg)/dχ ≤ ε is at most ε2, from which (3) follows. □

4. Number theoretic lemmas: partitions

We denote by p(n) the number of partitions of a non-negative integer n.

Lemma 1. For each positive integer n, p(n) ≤ 2n−1.
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Proof. The base case n = 1 is trivial. For n > 1, the number of partitions with
smallest part m is at most p(n−m), so

p(n) ≤ 1 + p(1) + p(2) + · · ·+ p(n− 1) ≤ 1 + 1 + 2 + · · ·+ 2n−2 = 2n−1,

and the lemma follows by induction. □

Lemma 2. Let ϕ := 1+
√
5

2 . Then p(n) ≤ ϕn for all non-negative integers n.

Proof. The partition function is non-decreasing since the number of partitions of
n+ 1 with a part of size 1 is p(n). The lemma holds for n ∈ {0, 1}. For n ≥ 2, the
pentagonal number theorem implies

(10) p(n) = p(n− 1) + p(n− 2)− p(n− 5)− p(n− 7) + p(n− 12) + · · · ,

with sign pattern + +−−++−−++−− · · · and where the sum on the right-
hand side terminates at the last term ±p(n−m), where m is the largest generalized
pentagonal number for which n ≥ m. By monotonicity, the right-hand side of (10)
is at most p(n− 1) + p(n− 2), so the lemma follows by induction on n. □

Lemma 3. There exists γ < 1 such that if q ≥ 2 and a and b are positive integers
such that a(b− 1) ≥ N ≥ 0, then

p(b)

qa(b−1)
< 2γN .

Proof. It suffices to prove the lemma for q = 2. For a = 1, we have b − 1 ≥ N , so
Lemma 2 implies

p(b)

2a(b−1)
=

p(b)

2b−1
< 2(ϕ/2)N .

For a ≥ 2, a(b− 1) ≤ 2(a− 1)(b− 1), so by Lemma 1,

p(b)

2a(b−1)
≤ 2−(a−1)(b−1) ≤ (1/

√
2)N < 2(1/

√
2)N .

Therefore, we may take γ = ϕ/2 > 1/
√
2. □

5. Number theoretic lemmas: cyclotomic polynomials

For n a positive integer, let Φn(x) denote the minimal polynomial overQ of e2πi/n.
Thus

(11) xn − 1 =
∏︂
d|n

Φd(x),

so by Möbius inversion,

(12) Φn(x) =
∏︂
d|n

(xn/d − 1)µ(d).

For any prime ℓ, let ordℓ(x) denote the largest integer e such that ℓe divides x.

Lemma 4. Let ℓ be a prime, e a positive integer, and n an integer such that
ordℓ(n− 1) = e.

(i) If k is a positive integer prime to ℓ, then ordℓ(n
k − 1) = e.

(ii) If ℓ is odd and ordℓ(k) = 1, then ordℓ(n
k − 1) = e+ 1.
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Proof. Let n = 1 +mℓe, where ℓ ∤ m. By the binomial theorem,

nk ≡ 1 + kmℓe (mod ℓ2e),

which implies claim (i). For claim (ii), using part (i), it suffices to treat the case
k = ℓ, for which we have

nℓ ≡ 1 +mℓe+1 +
m2(ℓ− 1)

2
ℓ2e+1 (mod ℓ3e). □

Lemma 5. Suppose n > 0 and a > 1 are integers. We factor Φn(a) as Pn(a)Rn(a),
where Pn(a) is relatively prime to n and Rn(a) factors into prime divisors of n.

(i) Every prime divisor of Pn(a) is ≡ 1 (mod n).
(ii) If n ≥ 3, Rn(a) is a square-free divisor of n.

(iii) For n ≥ 3, Pn(a) > 2
√

n/2−log2 n−2.
(iv) If mℓ > n and ℓ is a prime divisor of Pm(a), then

ordℓ(a
n − 1) =

{︄
ordℓPm(a) if m | n,
0 otherwise.

Proof. Fix any prime ℓ which divides Φn(a). As ℓ | an − 1, a is not divisible by ℓ,
so it represents a class in F×

ℓ . Let j be the order of this class. As an ≡ 1 (mod ℓ),
j | n. Let s denote the largest square-free divisor of n/j. By (12),

ordℓΦn(a) = ordℓ
∏︂
d|s

(an/d − 1)µ(d).

Now, if s can be written ps′ for some prime p ̸= ℓ,

(13)
∏︂
d|s

(an/d − 1)µ(d) =
∏︂
d|s′

(︂ an/d − 1

an/pd − 1

)︂µ(d)

.

Applying part (i) of Lemma 4 with k = p, the above formula implies ordℓΦn(a) = 0,
contrary to assumption. Since s is square-free, it follows that it can only be 1 or ℓ.

If ℓ divides Pn(a), then it does not divide n. That means s = 1, so the class of
a has order n in a group of order ℓ− 1. This implies part (i). Conversely, if ℓ does
divide n, it cannot be 1 (mod n), so s = ℓ.

If s = ℓ > 2, then d square-free and ordℓ(a
n/d − 1) > 0 implies d ∈ {1, ℓ}.

Therefore, part (ii) of Lemma 4 implies that the left-hand side of (13) has ordℓ
equal to 1. If s = ℓ = 2, then k = 1, so we need only consider the case that n is

a power of 2. For t ≥ 2, Φ2t(x) = (x2t−2

)2 + 1, so plugging in a, the result has at
most one factor of 2. This gives claim (ii).

By (12),

(14) Φn(a) ≥ adeg Φn

∞∏︂
i=1

(1− a−i) ≥ aϕ(n)
∞∏︂
i=1

(1− 2−i) ≥ 2ϕ(n)

4
.

As ϕ(pe) ≥
√
pe except when pe = 2, the multiplicativity of ϕ implies ϕ(n) ≥

√︁
n/2.

By part (ii), Rn(a) ≤ n, and claim (iii) follows.
If ℓ divides Pm(a), then the image of a in F×

ℓ is of orderm, so ℓ divides an−1 only
if n is divisible by m. In that case, Pm(a) divides Φm(a), which is a divisor of am−1
and therefore an − 1. Moreover, ℓ does not divide m, so ordℓPm(a) = ordℓΦm(a).
To prove (iv), it remains to show that an − 1 has no additional factors of ℓ beyond
those in am−1. It suffices to prove that Φn′(a) is not divisible by ℓ if n′ is a divisor
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of n and m is a proper divisor of n′. Indeed, ℓ does not divide Pn′(a) because a is
not of order exactly m′ (mod ℓ). If it divides Φn′(a), it must divide Rn′(a), so it
must divide n′. It does not divide m, so it must divide n′/m ≤ m. This is ruled
out by (i). □

6. Irreducible characters of GL(n, q)

In what follows, G = GL(n, q). By [1, Proposition 3.5],

(15)
qn

2
≤ |Irr(G)| ≤ qn.

Denote by P the set of all partitions λ of integers |λ| ≥ 0 (including the empty
partition ∅) and by F the set of all non-constant monic irreducible polynomials
f(x) ∈ Fq[x] with non-zero constant term. We define the degree of a map ν : F → P
as follows:

deg(ν) :=
∑︂
f∈F

deg(f)|ν(f)|.

By Jordan decomposition, there is a natural bijection between conjugacy classes in
G and maps ν : F → P of degree n. Green [3] introduced the set G of simplices
and proved (Theorem 12) that Irr(G) has a parametrization by maps ν : G → P
satisfying ∑︂

f∈G

deg(f)|ν(f)| = n.

By fixing in a compatible way multiplicative generators of finite fields, he gave
a degree-preserving bijection between F and G. We will ignore the distinction
between F and G henceforward. The same theorem of Green also gave a formula
for the degree of the irreducible character χ associated to ν. It can be written

(16) dχ = qNν

∏︁n
i=1(q

i − 1)∏︁
f∈F

∏︁|ν(f)|
i=1 (qhν(f),i deg(f) − 1)

,

where Nν is a certain non-negative integer, and the hλ,i are the hook lengths of the
partition λ; in particular these are positive integers ≤ |λ|.

By the support of ν, which we denote supp ν, we mean the set of f ∈ F such
that ν(f) ̸= ∅.
Lemma 6. Let γ be defined as in Lemma 3, and let N be a positive integer. Then
the number of degree n functions ν : F → P satisfying deg(f)(|ν(f)| − 1) ≥ N for

some f is less than 2NγN

(1−γ)2 q
n.

Proof. It suffices to prove that for each m, the number of choices of ν of degree
n such that for some f ∈ F , deg(f)(|ν(f)| − 1) = m is less than 2mγmqn. Since
there are at most m ways of expressing m as a(b − 1) for positive integers a and
b, it suffices to prove that there are less than 2γmqn such ν of degree n for which
|ν(f)| = b for some f ∈ F of degree a. Since there are fewer than qa elements of
F of degree a, it suffices to prove that for given f ∈ F of degree a, there are at
most 2γmqn−a possibilities for ν with |ν(f)| = b. For each partition λ of b, the
functions ν of degree n with ν(f) = λ can be put into bijective correspondence
with ν′ of degree n − ab with ν′(f) = ∅. By (15), the number of possibilities for
ν′ and therefore for ν is at most qn−ab = qn−m−a. Summing over the possibilities
for λ, which by Lemma 3 number less than 2γmqm, we obtain less than 2γmqn−a

possibilities for ν with |ν(f)| = b, as claimed. □
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We define the deficiency of a character of G or of the associated ν : F → P to
be the maximum of deg(f)(|ν(f)|−1) over all f ∈ F . Together, Lemma 6 and (15)
imply that for all ε > 0 there exists an N such that for all n and q, the proportion
of irreducible characters of GL(n, q) with deficiency < N is at least 1− ε.

Lemma 7. Let m be a positive integer and ℓ a prime such that ℓm > n and
ordℓPm(q) = e > 0. Let χ be a character whose deficiency is less than m/2. Then

ordℓdχ = e⌊n/m⌋ − e|{f ∈ supp ν | deg(f) ∈ mZ}|
= ordℓ|G| − e|{f ∈ supp ν | deg(f) ∈ mZ}|.

Proof. If f is in the support of ν and deg(f)|ν(f)| < m, then by part (iv) of
Lemma 5, f does not contribute any factor of ℓ to the denominator of (16). So we
need only consider the case deg(f)|ν(f)| ≥ m, in which case deg(f)(|ν(f)| − 1) ≥
m/2 if |ν(f)| ≥ 2. Since the deficiency of χ is less thanm/2, this is impossible, which
means that all f contributing factors of ℓ in (16) satisfy ν(f) = (1). Moreover, by
Lemma 5, ℓ divides qk−1 if and only if m divides k, in which case ordℓ(q

k−1) = e.
Thus, the factors in (16) contributing to ordℓ are qm − 1, q2m − 1, . . . , q⌊n/m⌋m − 1,
each of which contributes e, and qdeg(f) − 1 for each f ∈ supp ν of degree divisible
by m, again each contributing e. □

Lemma 8. For any positive integer m, the number of ν : F → P of degree n for
which there exist f ∈ F of degree m with ν(f) = (1) is less than qn/m.

Proof. Any degree m element of F splits completely in Fqm , so there are less than
qm/m such elements. For each f , there is a bijective correspondence between ν of
degree n with ν(f) = (1) and ν′ of degree n−m with ν′(f) = ∅. By (15), there are
at most qn−m such ν′, so the total number of ν is less than qn/m. □

Lemma 9. For all ε > 0, if n is sufficiently large in terms of ε, m is a sufficiently
large positive integer, ℓ is a prime divisor of Pm(q), and ℓm > n, then the probability
is at least

1− 2 + 2 log n− 2 logm

m
− ε

that a random element χ chosen uniformly from Irr(G) satisfies

(17) ordℓdχ = ordℓ|G|.

Proof. Choose N in Lemma 6 such that NγN < (1 − γ)2ε/4. By (15), the prob-
ability that χ has deficiency ≥ N is less than ε. We assume m > 2N , so with
probability greater than 1 − ε, the deficiency of a random χ ∈ Irr(G) is less than
m/2. By Lemma 7, this implies (17) provided that no element in the support of
ν has degree a multiple of m. If f ∈ supp ν has degree km, then the deficiency
condition on ν implies ν(f) = (1). By Lemma 8, the probability that there exists
an element in the support of ν of degree km is less than 2/km, so the probability
that there is an element in the support of ν with degree in mZ is less than

⌊n/m⌋∑︂
k=1

2

km
<

2 + 2 log n− 2 logm

m
. □

Lemma 10. For all δ > 0, if n is sufficiently large in terms of δ, m ≥
√
n, and ℓ

is any prime divisor of Pm(q), then the probability of (17) is greater than 1− δ/2.
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Proof. By part (i) of Lemma 5, ℓ > m, so ℓm > n. Applying Lemma 9 for ε = δ/4,
the claim holds if

2 + 2 log n− 2 logm

m
<

δ

4
.

For n ≥ 8 and m ≥
√
n, the left-hand side is less than 2n−1/2 log n, which goes to

zero as n goes to ∞. □

7. Proof of Lemma B

Let Fact f denote the total number of factors in the decomposition of f(x) ∈ Fq[x]
into irreducibles. For each g ∈ GL(n, q), let pg(x) denote the characteristic poly-
nomial of g.

Lemma 11. There exist constants A and B such that for all m, n, and q, at most
AnBq−m|GL(n, q)| elements of GL(n, q) have a characteristic polynomial with a
repeated irreducible factor of degree ≥ m.

Proof. By [4, Proposition 3.3], the number of elements of GL(n, q) with any given

characteristic polynomial is at most (A/8)nBqn
2−n for some absolute constants A

and B. (Actually, the statement is proven only for “classical” groups, but the proof
for GL(n, q) is identical.) For any given f of degree m, there are qn−2m polynomials
of degree ≤ n divisible by f2, so there are less than qn−m polynomials of degree n
with a repeated irreducible factor of degree m and less than qn−m+qn−m−1+ · · · <
2qn−m polynomials with a repeated irreducible factor of degree ≥ m. On the other
hand, by the same argument as (14),

|GL(n, q)| =
n∏︂

i=1

(qn − qi) >
qn

2

4
.

The lemma follows. □

Proof of Lemma B. By [4, Proposition 3.4], for all δ > 0 there exists k such that

(18) P[Fact pg > k log n] <
δ

4
,

where P denotes probability with respect to the uniform distribution on G =
GL(n, q). (Actually, the cited reference proves the analogous claim for SL(n, q),
but the proof goes through the GL(n, q) case.) Choose k so that this holds and
assume that n is large enough that

(a)
√
n > k log n,

(b) AnB2−
√
n < δ

4 , where A and B are defined as in Lemma 11,

(c)
√︁
m/2 > log2 m+ 2 for all m ≥

√
n,

(d) m > 1/ε for all m ≥
√
n.

Let X denote the set of elements g for which pg(x) has ≤ k log n irreducible
factors and no repeated factor of degree ≥

√
n. By condition (a) on n, every pg

with g ∈ X has a simple irreducible factor of degree ≥
√
n. By equation (18) and

condition (b), |G\X | < (δ/2)|G|. For each g ∈ X , fix an irreducible factor of degree
mg ≥

√
n of pg. By condition (c) and part (iii) of Lemma 5, Pmg

(q) > 1, so for
each g, we may fix a prime divisor ℓg of Pmg

(q). We define R to consist of all pairs
(χ, g) where g ̸∈ X or where g ∈ X but

ordℓgdχ ̸= ordℓg |G|.
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By Lemma 10, for each g ∈ X , there are at most (δ/2)|Irr(G)| pairs (χ, g) ∈ R.
Thus, R satisfies equation (5).

For pairs (χ, g) ̸∈ R, we have g ∈ X and ordℓgdχ = ordℓg |G|. As pg(x) has an
irreducible factor of degree mg which occurs with multiplicity 1, the centralizer of
g has order divisible by qmg −1 and therefore by ℓg. Therefore, ordℓgsg < ordℓg |G|.
This implies that ℓg is a divisor of the denominator of (dχ, sg)/dχ. As ℓg ≡ 1
(mod mg), we have ℓg > mg. By condition (d) on n, mg ≥ 1/ε. Thus, equation (4)
holds. □

References

1. J. Fulman and R. Guralnick, Bounds on the number and sizes of conjugacy classes in finite
Chevalley groups with applications to derangements. Trans. Amer. Math. Soc. 364 (2012)

3023–3070.

2. P. X. Gallagher, Degrees, class sizes and divisors of character values. J. Group Theory 15
(2012) 455–467.

3. J. A. Green, The characters of the finite general linear groups. Trans. Amer. Math. Soc. 80

(1955) 402–447.
4. M. Larsen and A. Shalev, On the distribution of values of certain word maps.

Trans. Amer. Math. Soc. 368 (2016) 1647–1661.

5. A. R. Miller, The probability that a character value is zero for the symmetric group. Math. Z.
277 (2014) 1011–1015.

6. J-P. Serre, Linear representations of finite groups. Translated from the second French edition
by Leonard L. Scott. Graduate Texts in Mathematics, Vol. 42. Springer-Verlag, New York-

Heidelberg, 1977.

Department of Mathematics, Columbia University, New York, NY, USA

Email address: pxg@math.columbia.edu

Department of Mathematics, Indiana University, Bloomington, IN, USA

Email address: mjlarsen@indiana.edu

Fakultät für Mathematik, Universität Wien, Vienna, Austria

Email address: alexander.r.miller@univie.ac.at


	1. Introduction
	2. Proof of Theorem 1 using Lemmas A and B
	3. Proof of Lemma A by a device of Burnside
	4. Number theoretic lemmas: partitions
	5. Number theoretic lemmas: cyclotomic polynomials
	6. Irreducible characters of GL(n,q)
	7. Proof of Lemma B
	References

