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Abstract—Optical fiber transmission systems form the back-
bone of today’s communication networks and will be of high
importance for future networks as well. Among the prominent
noise effects in optical fiber is phase noise, which is induced by
the Kerr effect. This effect limits the data transmission capacity of
these networks and incurs high processing load on the receiver.
At the same time, quantum information processing techniques
offer more efficient solutions but are believed to be inefficient in
terms of size, power consumption and resistance to noise. Here we
investigate the concept of an all-optical joint detection receiver.
We show how it contributes to enabling higher baud-rates for
optical transmission systems when used as a pre-processor, even
under high levels of noise induced by the Kerr effect.

I. INTRODUCTION

The present and the future of our societies relies more and

more on high speed connectivity between a growing number of

services. Advanced communication systems support the oper-

ation of everything from communication between machines to

communication between humans. Real-time video services as

well as emerging applications like telemedicine and connected

cars will further increase the demand for connectivity, which

can be anticipated from the Cisco annual internet report [1].

At the same time, increasingly smaller wireless cells will put a

tremendous load on the optical fiber backbone, where not only

increasing data rates but also reduced latency and lower power

consumption are demanded at the same time [2].

In recent works [3] it has thus been speculated that quantum

information processing (QIP) technologies should play a larger

role in the development of the next generation of mobile

networks. Quantum primitives such as squeezed light and en-

tanglement at transmitter and receiver can significantly improve

communication rates. However, the drawback of QIP is that

many solutions only exist on paper, with many mathematical

constructs lacking their physical counterpart, and existing ones

being bulky and requiring excessive cooling to combat envi-

ronmental noise, which make them hard to use in practice.

In this work, we investigate a QIP technique, namely the

concept of the joint detection receiver (JDR), which promises

a practical realization. In the same way as Shannon’s work led

engineers to perform error correction over multiple received

bits to reach superior performance, the work [4], [5] of Holevo

and follow-up research motivates to perform error correction

over multiple received pulses. This latter operation will in

practice be carried out by a JDR. Such JDR can be thought of

as operating fully in the optical domain, ultimately producing a

bit which is handed over to a higher layer for processing. In [6]

the first proposal for the design of a JDR has been made. Due

to its superior performance in the low photon number regime,

this device has previously be seen as an optimal choice for

deep space communications. While this is certainly true, in

the recent work [7] it has been pointed out that power-limited

communication under high baud-rates also inevitably leads to a

low number of received photons per pulse. Observed trends for

baud-rates [8] let us conjecture that future systems ten to twenty

years from now will likely operate at baud-rates in the area

from 300GBd to well above 400GBd. As techniques emerge

which even allow the conversion of entire frequency domains

(e.g. C- to O-band) [9], there does not seem to be a natural limit

for increasing baud-rates, but rather technological hurdles to be

overcome. However, when increasing baud-rates under a power

limit, current systems fall short of realizing any reasonable gain

[7]. In sharp contrast, systems utilizing the QIP technique of

joint detection can be expected to benefit from the observed

trend [8].

Data transmission techniques utilizing optical fiber need to

deal with fiber nonlinearities. In this domain, the recent work

[10] has discovered corresponding capacities. As any realiza-

tion of the QIP potential will have to be based on practical

design, we study here the performance limits of a practically

implementable design based on phase shift keying rather than

information-theoretic bounds. Under any fixed power limit,

high baud-rates will eventually induce the low photon numbers

where the JDR technology outperforms its classical analog, and

in such domain it is inevitably at some point optimal to use,

among all phase shift keying formats, the one with the lowest

modulation order. Thus in this work, we study binary phase

shift keying (BPSK).

Our model for phase noise is derived from the Kerr effect,

which results in so-called phase noise and has been the subject

of investigation for example in the recent work [11]. In our

analysis, we utilize this model in simulations and in the

derivation of an analytical channel model.
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II. SYSTEM MODEL AND NOTATION

Consider a channel with complex valued input and output

ĕ = ă · Ĕ · ěi¨, Ĕ ∈ C, č ∈ [0, 2ÿ) (1)

where Ĕ is the signal, ă = ě−ė·Ĉ ∈ [0, 1] the transmittivity,

ė the attenuation coefficient, Ĉ the fiber length in ġģ, and

ě−i¨ a random phase noise term [12]. When investigating the

potential of a JDR for such system, it is sufficient to replace

Ĕ by a coherent state |Ĕð which is an element of the Fock

space F [13]. The sender encodes their message into coherent

states |Ăð = exp(−|Ă |2/2)∑∞
Ĥ=0 Ă

Ĥ/
√
Ĥ!|Ĥð, where {|Ĥð}Ĥ∈N is

the photon number basis of F . For binary phase shift keying

(BPSK), the set of signals states is ď1 = {|Ăð, | − Ăð}. The

signal energy per pulse is given by ā = ℏĈ0 |Ă |2, with ℏĈ0

being the energy of a single photon at carrier frequency Ĉ0.

To use the joint detection concept discovered in [6] for BPSK

signals one can construct a code book of 2 ·Ĥ signals |Ĭġ (ĩĂ)ð,
ġ = 1, . . . , Ĥ, ĩ = ±1 with code-words taking the form

|Ĭġ (Ă)ð = ¹Ĥ−1
Ġ=0 | (ĄĤ) Ġ ,ġĂð, (2)

where the symmetric matrix ĄĤ is defined as

(ĄĤ) Ġ ,ġ = (−1) Ġ ·ġ , Ġ · ġ =
∑log2 Ĥ

Ī=0
ĠĪ ġĪ , (3)

with Ġ · ġ being the bitwise scalar product of the binary

representations of Ġ , ġ = 0, ..., Ĥ−1 [14]. The receiver employs

a Hadamard transformation đ̂
(Ĥ)
ĄėĚ

, resulting in the state

đ̂
(Ĥ)
ĄėĚ

|Ĭġ (Ă)ð = |ĭġ (Ă)ð = |
√
ĤĂðġ

(

¹ Ġ≠ġ |0ð Ġ
)

. (4)

As can be seen, all but one output mode of the Hadamard

receiver are in the vacuum state, and the desired phase can be

decoded from the ġ-th output mode in state |
√
ĤĂð. In this work,

we employ homodyne detection for this task. đ̂
(Ĥ)
ĄėĚ

can be

implemented using an array of beamsplitters. Each beamsplitter

đþď transforms an incoming pair of coherent states as

đþď |Ăð ¹ |ăð = | (Ă + ă)/
√

2ð ¹ |(Ă − ă)/
√

2ð. (5)

The receiver’s performance can be evaluated by using classical

statistical tools applied to the complex numbers Ă, ă. To

account for the Kerr effect, we consider phase noise. This leads

to states of the form |Ăěičð with č a random phase. For a

sequence ¨Ĥ := (č1, . . . , čĤ) of such phases, the output of the

Hadamard receiver of order Ĥ = 2ć at port ġ ′ given input Ďġ (Ă)
is

|ΛĤġ,ġ′ (Ă)ð := |2−ć/2Ă

(

Ĥ
∑

ģ=1

Ąġ,ģĄģ,ġ′ě
ičģ

)

ð. (6)

In order to quantify the distribution of the phases č, we

consider the phase noise model derived in [11], which lets č be

distributed according to a normal distribution with a variance

that is with our parameter choices estimated as

Ă2 ≈ 6 · 10−19 · Ę, (7)

where Ę is the baud-rate (see Section V-A). Each of the

homodyne detectors at the output ports of the receiver operates

based on a threshold Ć > 0 as follows: If ģ is the measurement

result of the detector, then the received signal will be set to Ă

if ģ > Ć, 0 if ģ ∈ (−Ć, Ć) and −Ă, else. This yields a statistical

input-output relation (see Subsection V-B for details)

ħ(įĤ |Ă, ġ) = Ħ Ċÿ (įġ |Ă)
∏

ġ′≠ġ

Ħ Ċą (įġ′ |Ă) (8)

where įĤ ∈ {−Ă, 0, Ă} are detection results at the Ĥ = 2ć output

ports of the receiver. Ħÿ and Ħą denote the correct and incorrect

detection probabilities respectively. The capacity of the system

without the JDR is calculated as ÿ (Ę, ā) := Ę · maxĦý ą (ĕ ; ý)
where Ħý is the distribution of the phases, and as

ÿ (Ę, ā, Ĥ) := Ę · ą (ĕĤ; ýĊ)/Ĥ (9)

with ý and Ċ uniformly distributed over {−Ă, Ă} and

{1, . . . , Ĥ} if quantum pre-processing, JDR, is used.

III. RESULTS

To analyze the statistical properties of the received signal we

set Ī (ğ, ġ) := (Ąğ,ģĄġ,ģ)Ĥģ=1
. It holds Ī (ğ, ġ)ģ ∈ {−1, 1} and

∑

ģ Ī (ğ, ġ)ģ = ą(ğ, ġ). The received signal then reads as

|ΛĤġ,ġ′ (Ă)ð =
{

|2−ć/2Ă
∑

ģ ě
ičģð , ġ = ġ ′

|2−ć/2Ă
∑

ģ Ī (ġ, ġ ′)ģěičģð , else
. (10)

Equation (10) naturally allows us to state the following:

Theorem 1. Let for each ć ∈ N Ĥ := 2ć and let the random

variables ¨1, . . . ,¨Ĥ be i.i.d according to a measure č on

[0, 2ÿ) and Ī > 0. For all ġ, ġ ′ = 1, . . . , Ĥ:

P

(�

�

�

�

Λ
Ĥ
ġ,ġ′ (Ă) −

√
ĤĂą(ġ, ġ ′)Eč [ěi¨]

�

�

�

�

g Ī |Ă |√
Ĥ

)

f 4ě−Ī
2/Ĥ. (11)

We conclude the Hadamard receiver asymptotically trans-

forms any signal ĂĄ1ġ , . . . ĂĄĤġ into output ≈
√
ĤĂEč [ěi¨]

at output port ġ , whereas at output port ġ ′ ≠ ġ one receives

almost no signal. To optimize the overall system performance

we approach the problem of optimizing the homodyne detectors

at the output ports of the system as follows:

Ćmax := arg max
Ć

Ħ Ċÿ (Ă |Ă)
∏

ġ≠ġ′
Ħ Ċą (0|0). (12)

This approach is motivated from three observations: 1. The cal-

culation of Ċ in (8) is becoming more challenging as Ĥ grows.

2. As Ĥ grows, the central limit theorem predicts that ΛĤ
ġ,ġ′ (Ă)

will be approximately a normal distribution. 3. the variance Ă

of said normal distribution can be efficiently computed. Turning

the observation 2. into a quantitative assumption, we can prove

that setting the detection parameters according to the solution

of (12) yields near-optimal results once the solution Ćmax yields

Ħ
Ċmax

ÿ
(Ă |Ă)∏ġ≠ġ′ Ħ

Ċmax

ą
(0|0) ≈ 1:
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interval between Ă
√
ĤEč [ěi¨] (1±Ĥ−1/4) while the received sig-

nal at every other port is in another interval between numbers

Ă
√
ĤEč [ěi¨] (0 ± Ĥ−1/4). Based on the detection probabilities

listed in Subsection V-B, we see that for every ą > 0 and large

enough Ĥ a threshold ĆĤ := Ă
√
ĤEč [ěi¨]/2 is asymptotically

good enough to simultaneously achieve Ě (0) g 1 − ą and

ĦĆ
ÿ
(Ă |Ă) g 1 − ą.

4) Detector Optimization Procedure: Finding the optimal

solution to (12) for arbitrary distributions is a challenging

task. For the simulations, we thus used a semi-heuristic ap-

proach which makes use of the Gaussian shape ΛĤ (Ă) when

Ĥ grows. The basic idea is as follows: For an empirical mean

Ĕ̄Ĥ = 1/Ĥ∑

Ĥ Ĕğ , with Ĕğ being the phases ěi¨ğ , with mean

Eč [ěi¨] and variance Ă2 of Ĕğ , we know from the central

limit theorem that, asymptotically, Ĕ̄Ĥ will be distributed as

Ċ (Eč [ěi¨], Ă2/Ĥ). Since we have ΛĤ
ġ,ġ

(Ă) = Ă
√
ĤĔ̄Ĥ we

thus know that (asymptotically) ΛĤ
ġ,ġ

(Ă) will be distributed as

Ċ (Ă
√
ĤEč [ěi¨], |Ă |2Ă2), and similarly we get for ġ ≠ ġ ′ that

ΛĤ
ġ,ġ′ (Ă) will be distributed according to Ċ (0, 2|Ă |2Ă2).
Since the expectation value and variance of the von Mises

distribution with zero mean is given by the first and second

raw moment respectively (see Lemma 3 and Equation (24))

Eč [ěi¨] =
ą1 (ċ)
ą0 (ċ)

(14)

Ă2
Ĭĉ =

(

ą2 (ċ)
ą0 (ċ)

− ą1 (ċ)2

2ą0 (ċ)2

)

− ą1 (ċ)2

2ą0 (ċ)2
, (15)

we can find, for every Ĥ = 2ć , the optimal Ć in (12) by

taking into account the detection probability (28) as well as

the assumed Gaussian shape

ĜĪ (ă |Ă) := 1

Ī ĂĬĉ

√
2ÿ

exp−
(

ă−
√
Ĥāč [ěi¨ ]Ă
2Ī ĂĬĉ

)2

(16)

of the received signal, to arrive at

ĦĆÿ (Ă |Ă) =
∫

R

Ĝ1 (ă |Ă)
1

2
(1 − erf (

√
2(ă − Ć)))Ěă (17)

Ě (0) =
∫

R

Ĝ2 (ă |0)
2

1
∑

Į=0

erf (
√

2(Ć + (−1)Įă))Ěă, (18)

with erf (ė) being the error function

erf (ė) = 2
√
ÿ

∫ ė

0

Ěďě−ď
2

. (19)

As the computation of ĦĆ
ÿ
(Ă |Ă)Ě (0)Ĥ−1 does not depend crit-

ically on Ĥ anymore, the calculation of Ćmax is efficient even

for large values of Ĥ. This is important for the regime where

the ratio Ă
√
Ĥ/Ă becomes low. When baud-rate and noise level

are low, Ć = Ă
√
ĤEč [ěi¨]/2 will be a sufficient choice.

V. METHODS AND PROOFS

A. Noise Model

Setting ď := ĄℏĈ0/(ė · Ę) where Ą = 1 is a nonlinear

interaction coefficient (discussed below [11, Equation (7)]) and

ė the attenuation parameter we let Ċ be the transmitted number

of photons per second so that we get [11, Eq. (11)]

Ă2
= 4 · ď2 · Ċ · Ę−1 ·

(

2 − ă − ă(1 − log ă)2
)

, (20)

with ă ∈ (0, 1) being the transmittivity. Assuming transmission

at 1550nm over a standard SMF-28 fiber with attenuation

parameter ė = 0.046 [11, Table 1] we arrive at

ď = 2.8 · 10−18 · Ę, (21)

and thus since ă = ě−ė·250 j 1 we get

Ă2 ≈ 6 · 10−35 · Ę · Ċ. (22)

For ≈ 1ģē transmit power we use Ċ = 1016 and therefore

Ă2 ≈ 6 · 10−19 · Ę. (23)

In order to recover the dependence of the phase noise on the

signal energy we note that 1/Ă2 plays a role similar to that of

ċ in the von Mises distribution, so that we set

ċ = 1019 · Ę−1/6. (24)

As has been noted in [16] the difference between the two

models is negligible for sample sizes below 200. For large

sample sizes it is visible for values of ċ in the interval (0.1, 10).

B. Detection

We use the homodyne detector at each output port of the

receiver, with the following POVMs

ΠĮ = |ĮðïĮ |, (25)

with

|Įð = (2/ÿ) 1
4 ě−Į

2∑∞
Ĥ=0ĄĤ (

√
2Į)/

√
2ĤĤ!|Ĥð, (26)

with ĄĤ (Į) being Hermite polynomials. Then we have the

outcome Į of the homodyne detector as

Ħ(Į |ă) = tr{|ăðïă |ΠĮ} =
√

2/ÿ exp(−2(Į − ă))2, (27)

with ă being a coherent state. In the case of zero noise ă is

identical to either Ă, −Ă, or 0, if one listens at an output port

where the vacuum state is present. To distinguish between these

three events, a threshold Ċ > 0 is set and the detected value Į

is declared as Ă if Į g
√
ĤĂ − Ċ , as −Ă if Į f −

√
ĤĂ + Ċ and

as 0 if none of the above holds. The corresponding detection

probabilities are equal to

P(Ă |ă) = 1

2

{

1 − erf
(√

2(ă − Ċ)
)}

(28)

P(0|ă) = 1

2

{

erf
(√

2(Ċ − ă)
)

+ erf
(√

2(Ċ + ă)
)}

(29)
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P(−Ă |ă) = 1

2

{

1 − erf
(√

2(Ċ + ă)
)}

. (30)

The conditional distribution (8) of the output port events

given input (ă, ġ) and phase noise realization č1, . . . , čĤ can

- due to the i.i.d. property of ¨1, . . . ,¨Ĥ - be calculated as

Ħÿ (į |ă) = P(į |2−Ĥ/2ă
∑

ģ ě
−ičģ ) (31)

Ħą (į |ă) = P(į |2−Ĥ/2ă
∑

ģ Ĥ(−1)ģě−ičģ ). (32)

For the simulations, we sampled 1000 realizations of the phase

noise values (č1, . . . , čĤ) to obtain an empirical approximation

to (8).

C. Proofs

To prove the convergence of the joint detection receiver

towards the expected value and the normal distribution we will

have to first define the expected value and variance of the von

Mises distribution.

Lemma 3 (Raw Moments of the von Mises Distribution ). Let

Ĝ (ĉ; ă, ċ) =
1

2ÿą0 (ċ) ě
ċ cos(ĉ−ă) be the von Mises distribution,

with 0 f ă < 2ÿ and ċ g 0 being parameters and ąĤ the Bessel

function of order Ĥ. Then the raw moments of this distribution

are

ģĤ = ā [ĔĤ] =
ąĤ (ċ)
ą0 (ċ)

ěiĤă (33)

According to [17] the central trigonometric moments are

Ă∗Ĥ =
ąĤ (ċ)
ą0 (ċ)

· cos(Ĥă), (34)

whereas ă∗Ĥ = 0 due to the symmetry of the von Mises density.

For the proof see [17, Chapter 2.2.4].

Now we can apply Hoeffding’s inequality [18, p.18, p.30] to

the Hadamard receiver with coherent states with phase noise.

Proof of Theorem 1. Let č1, . . . , čĤ ∈ [0, 2ÿ) be a realization

of the phase noise. Under this realization, the ġ-th sequence of

signals ýġ := Ă · (Ąġ,1, . . . , Ąġ,Ĥ) is transformed to

ý̂ġ := Ă · (Ąġ,1 exp ič1, . . . , Ąġ,Ĥ exp ičĤ) (35)

and the ġ-th output of the Hadamard transform Ą applied to

ý̂ġ satisfies

Ă√
Ĥ

∑

ģ

Ąġ,ģĄģ,ġě
i¨ģ =

Ă√
Ĥ

∑

ģ

ěi¨ģ . (36)

Since the right hand side is a sum of iid random variables we

get from Hoeffding’s inequality applied separately to the real

and imaginary parts:

P

(�

�

�

�

∑

ģ

Ąġ,ģĄģ,ġě
i¨ģ − ĤEč [ěi¨]

�

�

�

�

g Ī
)

f 4ě−Ī
2/2Ĥ, (37)

with Eč [ěi¨] being the expectation value of ěi¨. Further for

all ğ ≠ ġ:

P

(�

�

�

�

Ă√
Ĥ

∑

ģ

Ąġ′,ģĄģ,ġě
i¨ģ

�

�

�

�

g Ī
)

f 4ě−Ī
2/Ĥ (38)

□

Proof of Theorem 2. Assume ĭ(įĤ |Į, ġ) = ĝ(įġ |Į) ·
∏

ġ′≠ġ Ě (įġ′) for some conditional probability distribution ĝ

and probability distribution Ě on {−1, 0, 1}. To derive a lower

bound on the capacity of such a system we let without loss

of generality the input signals, consisting of BPSK symbols

Į ∈ {−1, 1} (where we set Ă = 1 without loss of generality)

and input ports, are chosen uniformly at random. Then, the

output distribution ħ of the symbols įĤ ∈ {−1, 0, 1}Ĥ can be

written as

ħ(įĤ) =
∑

Į,ġ

1
2Ĥ
ĝ(įġ |Į)

∏

ġ≠ġ′
Ě (įġ′). (39)

We can thus decompose this density as one truncated version

on the set ý := {įĤ : Ċ (0|įĤ) = Ĥ − 1} and þ := ý∁ being

the complement. Denote the respective re-scaled probabilities

of ħ restricted to ý or þ ħý and ħþ. Due to concavity of the

entropy we have

Ą (ħ) g ħ(ý)Ą (ħý). (40)

Then, for įĤ ∈ ý, without loss of generality į1 = 1,

ħý(įĤ) = 1
2Ĥ

(

ĝ(į1 |į1) · Ě (0)Ĥ−1 + ĝ(į1 | − į1) · Ě (0)Ĥ−1+
Ĥ

∑

ġ=2

∑

Į

ĝ(0|Į) · Ě (0)Ĥ−1

)

(41)

=
Ě (0)Ĥ−1ĝ (1 |1)

2Ĥ

(

1 + ĝ (1 |−1)+(Ĥ−1) ∑Į ĝ (0 |Į)
ĝ (1 |1)

)

. (42)

With ÿ denoting the uniform distribution on ý we get

ħý(įĤ) = Čÿ(įĤ) + (1 − Č)ħ̂ý(įĤ) (43)

with ħ̂ý defined in the obvious way from (42) and

Č := Ě (0)Ĥ−1ĝ(Ă |Ă). (44)

Using concavity of the entropy and Ą (ÿ) = log(2Ĥ) we get

Ą (ħý) g Č(ć + 1) (45)

Now if the detector is well designed, then Ě (0) ≈ 1 and

ĝ(į1 |į1) ≈ 1, so that we get Č ≈ 1 and therefore Ą (ħý) ≈ ć+1.

Following our calculations, the capacity is lower bounded by

ÿ (Ę, ā, Ĥ) g ą (ĕĤ; ýĊ) (46)

g Č(ć + 1) − Ą (ĕĤ |ýĊ), (47)

where ý is a random variable describing the random choice of

phases and Ċ a random variable describing the random choice

of input port. The distribution of ĕĤ given ġ and Į does not

depend on the particular choice of ġ, Į. Thus for the calculation

of Ą (ĕĤ |ýĊ) it is sufficient to calculate the following:

−Ą (ĕĤ |Ĕ = 1, Ċ = 1) =
∑

įĤ

ĭ(įĤ |1, 1) logĭ(įĤ |1, 1) (48)

= ĝ(1|1)Ě (0)Ĥ−1 log(ĝ(1|1)Ě (0)Ĥ−1)
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+ ĝ(−1|1)Ě (0)Ĥ−1 log(ĝ(−1|1)Ě (0)Ĥ−1)
− Ą (ĝ(·|1)) − ĝ(·|1) (Ĥ − 1)Ą (Ě (·)) (49)

= Č log(Č) + ĝ(−1|1)Ě (0)Ĥ−1 log(ĝ(−1|1)Ě (0)Ĥ−1)
− Ą (ĝ(·|1)) − ĝ(·|1) (Ĥ − 1)Ą (Ě (·)). (50)

Thus if ĝ(1|1) g 1 − ą and Ě (0) g 1 − ą we get

−Ą (ĕĤ |ýĊ) g (1 − ą) log(1 − ą) + ą log(ą)
− ℎ(ą) − ą − ą(Ĥ − 1) (ℎ(ą) + ą) (51)

g −2 · ℎ(ą) − 2ą − ą(Ĥ − 1)ℎ(ą). (52)

It thus follows with ą′ := 1 − ą

ÿ (Ę, ā, Ĥ) g ą′(ć + 1) − 2 · ℎ(ą) − 2ą − ą(Ĥ − 1)ℎ(ą) (53)

and for ą < 1
Ĥ−1

< 1
Ĥ

ÿ (Ę, ā, Ĥ) g (1 − ą) (ć + 1) − 5ℎ(ą). (54)

□

VI. CONCLUSIONS

We have detailed the concept of a (quantum) joint detection

receiver as a pre-processing step in classical receiver design.

Improving upon earlier modelling steps, we have incorporated

a scaling of phase noise with the baud-rate. Structural insights

have been obtained by theoretical analysis. Our simulation

results indicate that the theoretical performance predictions

made in earlier works will persist in more realistic situations.
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