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Abstract—Optical fiber transmission systems form the back-
bone of today’s communication networks and will be of high
importance for future networks as well. Among the prominent
noise effects in optical fiber is phase noise, which is induced by
the Kerr effect. This effect limits the data transmission capacity of
these networks and incurs high processing load on the receiver.
At the same time, quantum information processing techniques
offer more efficient solutions but are believed to be inefficient in
terms of size, power consumption and resistance to noise. Here we
investigate the concept of an all-optical joint detection receiver.
We show how it contributes to enabling higher baud-rates for
optical transmission systems when used as a pre-processor, even
under high levels of noise induced by the Kerr effect.

I. INTRODUCTION

The present and the future of our societies relies more and
more on high speed connectivity between a growing number of
services. Advanced communication systems support the oper-
ation of everything from communication between machines to
communication between humans. Real-time video services as
well as emerging applications like telemedicine and connected
cars will further increase the demand for connectivity, which
can be anticipated from the Cisco annual internet report [1].
At the same time, increasingly smaller wireless cells will put a
tremendous load on the optical fiber backbone, where not only
increasing data rates but also reduced latency and lower power
consumption are demanded at the same time [2].

In recent works [3] it has thus been speculated that quantum
information processing (QIP) technologies should play a larger
role in the development of the next generation of mobile
networks. Quantum primitives such as squeezed light and en-
tanglement at transmitter and receiver can significantly improve
communication rates. However, the drawback of QIP is that
many solutions only exist on paper, with many mathematical
constructs lacking their physical counterpart, and existing ones
being bulky and requiring excessive cooling to combat envi-
ronmental noise, which make them hard to use in practice.

In this work, we investigate a QIP technique, namely the
concept of the joint detection receiver (JDR), which promises
a practical realization. In the same way as Shannon’s work led
engineers to perform error correction over multiple received
bits to reach superior performance, the work [4], [5] of Holevo
and follow-up research motivates to perform error correction
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over multiple received pulses. This latter operation will in
practice be carried out by a JDR. Such JDR can be thought of
as operating fully in the optical domain, ultimately producing a
bit which is handed over to a higher layer for processing. In [6]
the first proposal for the design of a JDR has been made. Due
to its superior performance in the low photon number regime,
this device has previously be seen as an optimal choice for
deep space communications. While this is certainly true, in
the recent work [7] it has been pointed out that power-limited
communication under high baud-rates also inevitably leads to a
low number of received photons per pulse. Observed trends for
baud-rates [8] let us conjecture that future systems ten to twenty
years from now will likely operate at baud-rates in the area
from 300GBd to well above 400GBd. As techniques emerge
which even allow the conversion of entire frequency domains
(e.g. C- to O-band) [9], there does not seem to be a natural limit
for increasing baud-rates, but rather technological hurdles to be
overcome. However, when increasing baud-rates under a power
limit, current systems fall short of realizing any reasonable gain
[7]. In sharp contrast, systems utilizing the QIP technique of
joint detection can be expected to benefit from the observed
trend [8].

Data transmission techniques utilizing optical fiber need to
deal with fiber nonlinearities. In this domain, the recent work
[10] has discovered corresponding capacities. As any realiza-
tion of the QIP potential will have to be based on practical
design, we study here the performance limits of a practically
implementable design based on phase shift keying rather than
information-theoretic bounds. Under any fixed power limit,
high baud-rates will eventually induce the low photon numbers
where the JDR technology outperforms its classical analog, and
in such domain it is inevitably at some point optimal to use,
among all phase shift keying formats, the one with the lowest
modulation order. Thus in this work, we study binary phase
shift keying (BPSK).

Our model for phase noise is derived from the Kerr effect,
which results in so-called phase noise and has been the subject
of investigation for example in the recent work [11]. In our
analysis, we utilize this model in simulations and in the
derivation of an analytical channel model.
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II. SYSTEM MODEL AND NOTATION

Consider a channel with complex valued input and output
Y=1-X-¢® XeC,¢c[02n) (1)

where X is the signal, 7 = e %L ¢ [0,1] the transmittivity,
a the attenuation coefficient, L the fiber length in km, and
¢ *® a random phase noise term [12]. When investigating the
potential of a JDR for such system, it is sufficient to replace
X by a coherent state |X) which is an element of the Fock
space ¥ [13]. The sender encodes their message into coherent
states |a) = exp(—|a|?/2) PN a" /Vn!|n), where {|n)}ney is
the photon number basis of #. For binary phase shift keying
(BPSK), the set of signals states is S; = {|a),| — @)}. The
signal energy per pulse is given by E = fAwgl|a|?, with fiwg
being the energy of a single photon at carrier frequency wy.
To use the joint detection concept discovered in [6] for BPSK
signals one can construct a code book of 2-n signals |vi(sa@)),
k=1,...,n, s ==x1 with code-words taking the form

vi(@)) = ®151(Ha)j k@), )

where the symmetric matrix H,, is defined as
i . log,n .
(Hu)ju = (=1)7*, jk=22"jiki, 3)

with j - k being the bitwise scalar product of the binary
representations of j, k =0, ...,n—1 [14]. The receiver employs

a Hadamard transformation U g’; a2 resulting in the state

O3 V(@) = [wi(@)) = |[Vnay, (®j¢k|0>j) @

As can be seen, all but one output mode of the Hadamard
receiver are in the vacuum state, and the desired phase can be
decoded from the k-th output mode in state |vna). In this work,
we employ homodyne detection for this task. U gg 4 can be
implemented using an array of beamsplitters. Each beamsplitter
Ups transforms an incoming pair of coherent states as

Ugsla) ® 1) = [(a+B)/V2) @ [(@ - B)/V2). (5

The receiver’s performance can be evaluated by using classical
statistical tools applied to the complex numbers a,S. To
account for the Kerr effect, we consider phase noise. This leads
to states of the form |ae'®) with ¢ a random phase. For a
sequence ®" := (¢y,..., ¢,) of such phases, the output of the
Hadamard receiver of order n = 2X at port k’ given input v (@)
is

n
I (@) =127 e (Z Hk,mHm,kfeﬂ"’m)» 6)
m=1

In order to quantify the distribution of the phases ¢, we
consider the phase noise model derived in [11], which lets ¢ be
distributed according to a normal distribution with a variance
that is with our parameter choices estimated as

o2 ~6-107"7 . p, (7)

where b is the baud-rate (see Section V-A). Each of the
homodyne detectors at the output ports of the receiver operates
based on a threshold € > 0 as follows: If m is the measurement
result of the detector, then the received signal will be set to «
ifm>e¢g,0if m € (—&,€) and —q, else. This yields a statistical
input-output relation (see Subsection V-B for details)

9"l k) = p&(yide) | | pf Gwrle) @®)
k'#k

where y" € {~a,0, a} are detection results at the n = 2K output
ports of the receiver. pc and p; denote the correct and incorrect
detection probabilities respectively. The capacity of the system
without the JDR is calculated as C(b, E) := b - max,, I(Y;A)
where p,4 is the distribution of the phases, and as

C(b,E,n) :=b-1(Y";AN)/n )

with A and N uniformly distributed over {-«,@} and
{1,...,n} if quantum pre-processing, JDR, is used.

III. RESULTS

To analyze the statistical properties of the received signal we
set 1(i, k) := (HimHkm),,_,- It holds #(i, k), € {-1,1} and
Smt(i, k)m = 6(i, k). The received signal then reads as

|2_K/2(Y Zm ei¢m>

k=k'
N, = . ’
| k,k (a)> {|2—K/2a/ th(k’ k/)men¢m>

(10)
,else

Equation (10) naturally allows us to state the following:

Theorem 1. Let for each K € N n := 2% and let the random
variables ®1,...,®, be iid according to a measure y on
[0,27) and t > 0. For all k, k' =1,...,n:

1

We conclude the Hadamard receiver asymptotically trans-
forms any signal @H\y, . ..aH,x into output ~ naE, [e®]
at output port k, whereas at output port k¥’ # k one receives
almost no signal. To optimize the overall system performance
we approach the problem of optimizing the homodyne detectors
at the output ports of the system as follows:

ema 1= argmax p&(ala) [ | pf (010).
k#k’

A} (@) = Vnas(k, k"B, [e*]

> 'T”) <delnoan

12)

This approach is motivated from three observations: 1. The cal-
culation of € in (8) is becoming more challenging as n grows.
2. As n grows, the central limit theorem predicts that A’,:’ k,(a)
will be approximately a normal distribution. 3. the variance o
of said normal distribution can be efficiently computed. Turning
the observation 2. into a quantitative assumption, we can prove
that setting the detection parameters according to the solution
of (12) yields near-optimal results once the solution &p,x yields

p&™ (la@) [Tizrr p7™ (010) » 1:
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Theorem 2. For all b, E,n we have C(b, E,n) < b-log(n)/n.
If py (v|xa) = d(y) forall y € {-a,0,a} and pg.(ala) 2 1-6
and d(0) > 1 -6 and 6§ < n™', then

C(b,E,n) > b((1-6)logn—5-h(s)) /n,  (13)

where h is the binary entropy.

We utilize problem statement (12) to obtain numerically val-
ues for setting the detection threshold €. Thereby we obtained
lower bounds for C(b, E,n) for different values of b. In this
process, we replaced the Gaussian distribution of @ with a
von Mises distribution (see Subsection V-A for details and
figures 2 and 3 for numerical results concerning our particular
application). Using the von Mises distribution reduced the
dependence of Eq. (12) on the Hadamard receiver size, as
explained in Subsubsection IV-4.

Our simulation results show the different capacities with
increasing baud-rates and phase noise: As the performance of

1e10 Capacity with lowest expected photon number at receiver a = 0.095
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Fig. 1. Average capacity plotted over the baud-rate. The green line represents
the classical Shannon capacity, the red line the capacity of the Hadamard
receiver with order n = 4 and the brown line with order n = 32. At 130Gbd,
the received photon number is approximately 0.29 photons per pulse. The
shaded regions are error bars derived from the empirical variance of simulation
results. We used the attenuation coefficient a = 0.046 and fiber length L =
250km resulting in a transmittivity of 7 ~ 107>,

the JDR and of the standard homodyne receiver are both hard to
evaluate analytically for specific parameters, the performance
was simulated [15]. For the attenuation we used the formula
7 = exp —0.046 - L modelling approximately optical fibers [11]
of length L kilometers. The attenuation coefficient a = 0.046
was taken from [11, Table 1]. It models attenuation in SMF-28
fiber for communication in the C-band at 1550nm, which is the
most widely used system choice in communication networks.

Figure 1 displays simulation results for L = 250km it can be
seen that with quantum pre-processing, we can achieve a higher
capacity at high baud-rates than with an only classical system.
From Figure 1 we can also see that higher Hadamard orders
(n = 32) tend to be more beneficial when the ratio of E/b
is extremely small, while lower orders (n = 4) can already
bring performance improvements. The maximum of the red
curve at around 130Gbd restates the fact that JDRs outperform
conventional receivers in the low photon regime where 7- E /b
is small (<« 1) for our specific design and noise model.

Mutual Information of the Joint Detection Receiver with sigma= 1 and kappa =1
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Fig. 2. In this Figure the mutual information of the Hadamard receiver is
plotted over the Hadamard order n. The dashed lines represent the capacities
with the wrapped normal distribution (WN) and the solid lines are representing
the von Mises(vM) distribution chosen as the phase noise distribution.
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Fig. 3. In this Figure the capacity of the Hadamard receiver is plotted over the
Hadamard order n. The dashed lines represent the capacities with the wrapped
normal distribution (WN) and the solid lines are representing the von Mises
(vM) distribution chosen as the phase noise distribution.

IV. DISCUSSION

1) Advantage of the Hadamard receiver: While it was
known [14], [6] that the Hadamard receiver outperforms a
conventional receiver, our work clarifies that such advantage
persists given a scaling of phase noise with baud-rate in a
situation where the Hadamard receiver is used only as a pre-
processing stage in the design. Note here that we ignore further
non-idealities, such as the common mode rejection ratio in the
homodyne receiver, or the estimation of global phases.

2) Accuracy of Approximation with Van Mises Distribution:
From figures 2 and 3 one can see that the results obtained by
using the von Mises distribution get closer to those obtained
based on the wrapped normal distribution, if n grows.

3) Asymptotics for Problem (12): By setting t = ¢ - n
(with suitable choice of ¢) in Theorem 1 one can deduce that,
for every § € (0, 1), problem statement (12) yields a solution
Emax < 0: Namely,

3/4

P(IAY (@) - Vnad(k, k')E,['®]] > claln'*) < 4e~Vne?

so that for ¢ = E,[e!®] and every choice (a,k) of the
transmitter the received signal at port k is concentrated in the
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interval between avnE, [¢!®](1=+n~!/*) while the received sig-
nal at every other port is in another interval between numbers
anE, €*®](0 + n~'/*). Based on the detection probabilities
listed in Subsectlon V-B, we see that for every 6 > 0 and large
enough n a threshold &, := aynE,[¢!®]/2 is asymptotically
good enough to simultaneously achieve d(0) > 1 — § and
pélala) > 1-06.

4) Detector Optimization Procedure: Finding the optimal
solution to (12) for arbitrary distributions is a challenging
task. For the simulations, we thus used a semi-heuristic ap-
proach which makes use of the Gaussian shape A"(a) when
n grows. The basic idea is as follows: For an empirical mean
X, = 1/nY, X;, with X; being the phases ¢!®/, with mean
E,[e'®] and variance o? of X;, we know from the central
limit theorem that, asymptotically, X,, will be distributed as
N(Eu[e*®],0?/n). Since we have A}, () = avnX, we
thus know that (asymptotically) A” k(a) w111 be distributed as
N(a'\/_E [€*®], |@|*>c?), and simllarly we get for k # k’ that

AL % 1 (@) will be distributed according to N (0, 2|al?0?).

Since the expectation value and variance of the von Mises
distribution with zero mean is given by the first and second
raw moment respectively (see Lemma 3 and Equation (24))

id Li(x)

Eule™] = 700 (14)
2 _ (Iz(K) AGE )_ (k) 15)
Mk 2002 ) 200(x)?

we can find, for every n = 2K, the optimal £ in (12) by
taking into account the detection probability (28) as well as
the assumed Gaussian shape

B-—VRE, [e““"]a)2

2tovm

1
Py exp—( (16)

of the received signal, to arrive at

fi(Bla) =

ptala) = [ fitplo3( -ert((p-onds (17)

£(BI0) | N
d(0) = /R BEP Yat(ate s (-0gnas. )
with erf(a) being the error function
erf(a) = %/Oadge—fz. (19)

As the computation of p¢. (|a)d(0)""! does not depend crit-
ically on n anymore, the calculation of &p,x is efficient even
for large values of n. This is important for the regime where
the ratio avn/o becomes low. When baud-rate and noise level
are low, &€ = aVnE, ®]/2 will be a sufficient choice.

V. METHODS AND PROOFS
A. Noise Model
Setting & := yhwy/(a - b) where y = 1 is a nonlinear
interaction coefficient (discussed below [11, Equation (7)]) and

a the attenuation parameter we let N be the transmitted number
of photons per second so that we get [11, Eq. (11)]

02:4,§Z.N.b_1.(Z—T—T(l—logT)z), (20)

with 7 € (0, 1) being the transmittivity. Assuming transmission
at 1550nm over a standard SMF-28 fiber with attenuation
parameter a = 0.046 [11, Table 1] we arrive at

£=28-10"1%.p, 1)
and thus since 7 = ¢™* >0 <« 1 we get
o2 ~6-10¥ b N. (22)

For ~ ImW transmit power we use N = 10'¢ and therefore

o ~6-107Y . p. (23)

In order to recover the dependence of the phase noise on the
signal energy we note that 1/0% plays a role similar to that of
k in the von Mises distribution, so that we set

k=10".b71/6. (24)

As has been noted in [16] the difference between the two
models is negligible for sample sizes below 200. For large
sample sizes it is visible for values of « in the interval (0.1, 10).

B. Detection

We use the homodyne detector at each output port of the
receiver, with the following POVMs

I = |x)(x], (25)

with

) = (2/7)7 e X Hy (V2x) /N2l ), (26)

with H,(x) being Hermite polynomials. Then we have the
outcome x of the homodyne detector as

p(xIB) = wr{IBY(BITL} = V2/mexp(-2(x - B))?,

with 3 being a coherent state. In the case of zero noise S is
identical to either @, —a, or O, if one listens at an output port
where the vacuum state is present. To distinguish between these
three events, a threshold € > 0 is set and the detected value x
is declared as @ if x > Vna — €, as —a if x < —/na + € and
as 0 if none of the above holds. The corresponding detection
probabilities are equal to

P(a|B) = % {1 —erf («/E(ﬁ - e))}
P(0|B) = % {erf (\/E(e - /3)) +erf («/E(e +ﬁ))}

27

(28)

(29)
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P(~al|f) = % {1 —erf(\/§(6+,8))}. (30)

The conditional distribution (8) of the output port events

given input (B, k) and phase noise realization ¢q,..., ¢, can
- due to the i.i.d. property of ®@y,...,®, - be calculated as

pc(yIB) =P(y[2" BT, e ) (31)

pi(yIB) = PGI2 BT, n(=D)me™0m). (32)

For the simulations, we sampled 1000 realizations of the phase
noise values (¢1, ..., ¢,) to obtain an empirical approximation
to (8).

C. Proofs

To prove the convergence of the joint detection receiver
towards the expected value and the normal distribution we will
have to first define the expected value and variance of the von
Mises distribution.

Lemma 3 (Raw Moments of the von Mises Distribution ). Let
f(6;8,x) = SEIA| K)e”"s(‘)’m be the von Mises distribution,
with 0 < B < 2 and k > 0 being parameters and I,, the Bessel
Sfunction of order n. Then the raw moments of this distribution
are

In(x)
m, = E[X"] = P (33)
LX) = To(0)
According to [17] the central trigonometric moments are
1, (k)
Y= . , 34
a’n I()(K) COS(nﬁ) ( )

whereas 3, = 0 due to the symmetry of the von Mises density.

For the proof see [17, Chapter 2.2.4].
Now we can apply Hoeffding’s inequality [18, p.18, p.30] to
the Hadamard receiver with coherent states with phase noise.

Proof of Theorem 1. Let ¢y,...,¢, € [0,271) be a realization
of the phase noise. Under this realization, the k-th sequence of
signals Ay :=a - (Hg1,...,Hyn) is transformed to

A =a- (Hy,1expigi, ..., Hi nexpidn) (35)

and the k-th output of the Hadamard transform H applied to
Ay satisfies

2 5 ol = 3 56

Since the right hand side is a sum of iid random variables we
get from Hoeffding’s inequality applied separately to the real
and imaginary parts:

(ZHkm mke

with E, [e*®] being the expectation value of ¢'®. Further for

all i # k:
s 2

(36)

™ —nEy ']

> t) <d4en(37)

(38)

mke

> t) < 4e7tIn

Proof of Theorem 2. Assume w(y"|x,k) = g(yrlx)
[Tw+x d(yir) for some conditional probability distribution g
and probability distribution d on {-1,0, 1}. To derive a lower
bound on the capacity of such a system we let without loss
of generality the input signals, consisting of BPSK symbols
x € {—1,1} (where we set @ = 1 without loss of generality)
and input ports, are chosen uniformly at random. Then, the
output distribution ¢ of the symbols y" € {—1,0,1}" can be
written as

g(y") = Z 280y [ | dOvee). (39)

k#k’

We can thus decompose this density as one truncated version
on the set A := {y" : N(O|y") =n—-1} and B := AC being
the complement. Denote the respective re-scaled probabilities
of g restricted to A or B g4 and gp. Due to concavity of the
entropy we have

H(q) 2 q(A)H(qa).

Then, for y" € A, without loss of generality y; = 1,

(40)

qa(y") = ﬁ(g()ﬂyl) d(0)" " + gyl - y1) - d(0)" '+

D> 20k -d<0>"—1) @1
k=2"x
_ 4O e (1 USRS H)zxumx)) @2)
With 7 denoting the uniform distribution on A we get
ga(y") = ax(y") + (1 = D)Ga(y") (43)
with g4 defined in the obvious way from (42) and
A:=d(0)" ' g(ala). (44)

Using concavity of the entropy and H(xr) = log(2n) we get

(45)

Now if the detector is well designed, then d(0) ~ 1 and
g(y1ly1) = 1, so that we get A ~ 1 and therefore H(ga) ~ K+1.
Following our calculations, the capacity is lower bounded by
(46)
(47)

H(ga) > A(K+1)

C(b,E,n) > I(Y"; AN)
> A(K + 1) — H(Y"|AN),

where A is a random variable describing the random choice of
phases and N a random variable describing the random choice
of input port. The distribution of Y" given k and x does not
depend on the particular choice of k, x. Thus for the calculation
of H(Y"|AN) it is sufficient to calculate the following:

~HY"|X=1,N=1)= Zw(y"|l, Dilogw(y"|1,1) (48)
T
= g(111)d(0)" " log(g(1]1)d(0)"™")
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+g(=1]1)d(0)"" log(g(~1]1)d(0)""")

—H(g(:[1) - g(|D)(n-1DH(d()) (49)
= Alog(d) +g(=111)d(0)" " log(g(-1|1)d(0)" ™)
—H(g(:[1) - g(-[1)(n - DH((")). (50)
Thus if g(1]1) > 1 -6 and d(0) > 1 — & we get
—H(Y"|AN) = (1 —6)log(1 — 6) + 6 log(5)
—h(S) =6 —8(n—1)(h(5)+6)  (51)
>-2-h(6) =26 -6(n—-1)h(6). (52)

It thus follows with 6’ :==1-6
C(bE,n) > & (K+1)=2-h(8) —26 - 6(n— Dh(5) (53)
and for 6 < 15 <1

C(b,E,n) > (1-6)(K +1) = 5h(5). (54)

]

VI. CONCLUSIONS

We have detailed the concept of a (quantum) joint detection
receiver as a pre-processing step in classical receiver design.
Improving upon earlier modelling steps, we have incorporated
a scaling of phase noise with the baud-rate. Structural insights
have been obtained by theoretical analysis. Our simulation
results indicate that the theoretical performance predictions
made in earlier works will persist in more realistic situations.
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