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Flag matroids are combinatorial abstractions of flags of linear 
subspaces, just as matroids are of linear subspaces. We 
introduce the flag Dressian as a tropical analogue of the 
partial flag variety, and prove a correspondence between: 
(a) points on the flag Dressian, (b) valuated flag matroids, 
(c) flags of projective tropical linear spaces, and (d) coherent 
flag matroidal subdivisions. We introduce and characterize 
projective tropical linear spaces, which serve as a fundamental 
tool in our proof. We apply the correspondence to prove that 
all valuated flag matroids on ground set up to size 5 are 
realizable, and give an example where this fails for a flag 
matroid on 6 elements.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

The Grassmannian Gr(r; n) over a field k parameterizes r-dimensional linear sub-
spaces in k[n], or equivalently, realizations of matroids of rank r on the ground set 
[n] = {1, . . . , n}. It can be embedded in P

(
k([n]

r )), where it is cut out by the quadratic 
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Grassmann-Plücker relations. For a fixed matroid M , one can modify the Grassmann-
Plücker relations to cut out only the points in the Grassmannian realizing M . The 
tropical prevariety of these equations is the Dressian of M , denoted Dr(M), which was 
introduced in [20]. The Dressian of a loopless matroid M has multiple interpretations as

(a) the tropical prevariety of (modified) Grassmann-Plücker relations,
(b) the set of all valuated matroids with underlying matroid M [10],
(c) the weight vectors inducing a matroidal subdivision of the base polytope of M [33], 

or
(d) the parameter space of all tropical linear spaces given by M [33].

The (partial) flag variety Fl(r1, . . . , rk; n) parameterizes flags of linear spaces L1 ⊆
· · · ⊆ Ls in k[n] where dimk(Li) = ri. A point on Fl(r1, . . . , rk; n) corresponds to a 
realization of a flag matroid, which is a sequence of matroids M = (M1, . . . , Mk) of 
ranks (r1, . . . , rk) on [n] such that every circuit of Mj is a union of circuits of Mi for all 
1 ≤ i < j ≤ k. Flag matroids are the Coxeter matroids of type A [5]. The flag variety 

Fl(r1, . . . , rk; n) can be embedded in P
(
k([n]

r1
))×· · ·×P

(
k([n]

rk
)), where it is cut out by the 

quadratic incidence-Plücker relations (see Equation (IP)) in addition to the Grassmann-
Plücker relations. For a fixed flag matroid M , one can modify these relations to cut out 
only the points in the flag variety which realize M . We define the flag Dressian of M , 
denoted FlDr(M), as the tropical prevariety of these equations, and establish several 
characterizations.

Theorem A. Let µ = (µ1, . . . , µk) be a sequence of valuated matroids such that its se-
quence of underlying matroids M = (M1, . . . , Mk) is a flag matroid. Then the following 
are equivalent:

(a) µ is a point on FlDr(M), i.e. it satisfies tropical incidence-Plücker relations,
(b) µ is a valuated flag matroid with underlying flag matroid M ,
(c) µ induces a subdivision of the base polytope of M into base polytopes of flag matroids, 

and
(d) the projective tropical linear spaces trop(µi) form a flag trop(µ1) ⊆ · · · ⊆ trop(µk)

The concepts appearing here are introduced in Definition 4.2.1 for (a), Definition 4.2.2
for (b), Definition 4.1.4 for (c), and Theorem B.(i) for (d).

Example 1.0.1. Consider the flag matroid U1,3;4 = (U1,4, U3,4) consisting of uniform 
matroids on 4 elements. Its flag Dressian of U1,3;4, denoted FlDr(U1,3;4), is

(a) the tropical prevariety of the flag variety Fl(1, 3; 4) embedded in P
(
k(4

1))×P
(
k(4

3))

by the single equation p1p234 − p2p134 + p3p124 − p4p123,
(b) the valuations on U1,4 and U3,4 making (U1,4, U3,4) a valuated flag matroid,
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Fig. 1. Base polytope subdivisions and their tropical flags for (U1,4, U3,4).

(c) the space parameterizing weights that induce flag matroidal subdivisions of the base 
polytope of (U1,4, U3,4), which is the cuboctohedron Conv

(
σ(1, 1, 2, 0) | σ ∈ S4

)
⊂

R4, and
(d) the space parameterizing the data of a (tropical) point on a tropical plane.

It is a pure simplicial fan in R(4
1)/R1 ×R(4

3)/R1 of dimension 5 with a 3 dimensional lin-
eality space. The 3 dimensional lineality space corresponds to the 3 dimensional freedom 
of selecting the location of the vertex of the tropical plane. Modulo the lineality space, 
it consists of 4 rays and 6 two-dimensional cones, as does a tropical plane in 3-space. 
Up to combinatorial equivalence, there are two types of nontrivial subdivisions of the 
cuboctohedron into smaller flag matroid polytopes, with the corresponding data of a 
point in a tropical plane as indicated in Fig. 1. For more examples, see Figs. 6, 7, and 8.

A fundamental tool in our proof of Theorem A is the notion of projective tropical 
linear spaces. The usual tropical linear spaces are defined only for matroids without 
loops, which is a harmless restriction in studying matroids, but not in studying flag 
matroids (Remark 4.1.6). In order to treat matroids with and without loops consistently, 
we introduce projective tropical linear spaces, which have previously appeared in the 
literature in various guises (Remark 3.2.6). We collect their characterizations, adding two 
new ones ((iii) and (v)) to this list (Theorem B). See §2.1 for terminology in projective 
tropical geometry, and §3.1 for terminology concerning valuated matroids.

Theorem B. Let µ be a valuated matroid on a ground set [n]. Let " ⊆ [n] be the set of 
loops of its underlying matroid. The following sets in the tropical projective space P (T [n])
coincide:

(i) The projective tropical linear space, defined as

trop(µ) :=
⋃

∅⊆S![n]

(
trop(µ/S) × {∞}S

)
⊂ P (T [n]),



4 M. Brandt et al. / Advances in Mathematics 384 (2021) 107695

(ii) The projective tropical prevariety of the valuated circuits of µ, i.e.
⋂

valuated
circuits C

{
u ∈ P (T [n])

∣∣∣ the minimum is achieved at least twice among {Ci + vi}i∈[n]
}
,

(iii) The union of coloopless cells of the closure of the dual complex of µ∗ in P (T [n]), 
i.e.

{
u ∈ P (T [n]) | ∆u

µ∗ is a base polytope of a coloopless matroid
}
,

(iv) The tropical span of the valuated cocircuits of µ, i.e.
{

the image in P (T [n]) of
(a1 ( C∗

1) ⊕ · · ·⊕ (al ( C∗
m) ∈ T [n]

∣∣∣∣
C∗

i ∈ T [n] a valuated cocircuit of µ,
ai ∈ R, ∀1 ≤ i ≤ m

}
,

(v) The closure of trop(µ/!) × {∞}! inside P (T [n]).

We apply Theorem A to establish a relation between Dressians and flag Dressians, 
and deduce a realizability result for valuated flag matroids. First, let us recall that the
Dressian Dr(r; n) is defined as the union of Dr(M) over all matroids M of rank r on 
[n]. We define the flag Dressian FlDr(r1, . . . , rk; n) as the union of FlDr(M) over all 
flag matroids M of rank (r1, . . . , rk) on [n].

Theorem 5.1.2 & Theorem 5.2.1. The natural isomorphism R([n+1]
r+1 ) ∼→ R([n]

r ) × R( [n]
r+1)

induces a surjective map from a subset of Dr(r+1; n +1) to FlDr(r, r+1; n), whose fiber 
over each point is isomorphic to R. As a consequence, every valuated flag matroid on a 
ground set of size ≤ 5 is realizable; the tropicalization of a flag variety Fl(r1, . . . , rk; n)
coincides with the flag Dressian FlDr(r1, . . . , rk; n) whenever n ≤ 5.

The tropicalization of a flag variety may differ from the flag Dressian when n ≥ 6. 
See Example 5.2.4.

1.1. Previous works

In the unpublished manuscript [19], the author established (a) ⇐⇒ (d) in Theorem A
for loopless matroids.1 In [25, §4.3], the flag Dressian FlDr(1, r; n) appeared implicitly as 
the universal family over Dr(r; n). In [6], the authors computed the tropicalizations of the 
full flag varieties Fl(1, 2, 3; 4) and Fl(1, 2, 3, 4; 5) in order to compute toric degenerations. 
In a related work [13], the authors identified some distinguished maximal cones in the 
tropicalizations of full flag varieties to study PBW-degenerations. In [14, §5] and [15, §6], 

1 We also note an error in the proof of Proposition 3 of [19]: there can be many more sets I satisfying 
T ∩ S ⊆ I ⊆ T ∪ S than are considered. This nullifies his Lemma 2 and Theorem 2 on the convex hull of 
the base polytopes of a matroid quotient.
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in order to describe the parameter space of matroids over valuation rings, the authors 
studied the space of valuated flag matroids (µ1, µ2) of ranks (r, r + 1) given a fixed 
valuated matroid µ2. In [21], the authors studied the same space as tropicalized Fano 
schemes under the assumption that µ2 is realizable.

1.2. Organization

In §2, we review projective tropical geometry, dual complexes, and M-convex func-
tions. In §3, we review Dressians of matroids and prove Theorem B. In §4, after a review 
of flag matroids, we introduce flag Dressians and prove Theorem A. In §5, we apply 
Theorem A to relate Dressians and flag Dressians, and obtain a realizability result for 
valuated flag matroids.

1.3. Notation

For a finite set E, we write {ei | i ∈ E} for the standard basis of RE, and denote 
eS :=

∑
i∈S ei for subsets S ⊆ E. All-one-vectors (1, 1, . . . , 1) in appropriate coordinate 

spaces are denoted 1. Let 〈·, ·〉 be the standard inner product. We will follow the “min” 
convention for all polyhedral operations, such as taking faces and coherent subdivisions. 
Likewise, the tropical semifield T = R ∪ {∞} is the min-plus algebra, with operations 
a ( b := a + b and a ⊕ b := min{a, b}. The topology on T is the standard one that makes 
T homeomorphic to (−∞, 0]. The field k is algebraically closed, with a (possibly trivial) 
valuation val : k → T . Denote [n] = {1, . . . , n}. For 0 ≤ r ≤ n, the set of r-subsets of [n]
is denoted 

([n]
r

)
.

2. Preliminaries

In §2.1, we review tropical projective spaces and their products, since these are the 
ambient spaces of Dressians, flag Dressians, and projective tropical linear spaces. In §2.2, 
we review point configurations, dual complexes, and mixed subdivisions, since we will 
need these notions to study mixed subdivisions of base polytopes of flag matroids in §4.4. 
Our novel contribution here is Theorem 2.2.9 concerning coherence of mixed subdivisions. 
In §2.3, we review M-convex functions because the structure of their dual complexes will 
play a central role in the proof of Theorem B and Theorem 4.4.3. Theorem 2.3.8 explicitly 
describes the closures of their dual complexes inside tropical projective spaces. Let E be 
a finite set throughout.

2.1. Projective tropical geometry

We review projective tropical geometry, and explain the underlying algebraic geometry 
in the remarks. See [25, Chapter 6] for a detailed treatment.
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Definition 2.1.1. Let E = [n]. The tropical projective space P (TE) is

P (TE) :=
(
TE \ {(∞, . . . ,∞)}

)
/R1

={u ∈ TE | u 2= (∞, . . . ,∞)}/ ∼, where u ∼ u′ if u′ = u + c1 for some c ∈ R.

For u = (ui)i∈E in RE or TE , write u for its image in RE/R1 or P (TE). The support
of u is supp(u) := {i ∈ E | ui 2= ∞}. For a nonempty subset S ⊆ E, denote by

TS := {u ∈ P (TE) | supp(u) = S},

the image of RS × {∞}E\S in P (TE). The set TE = RE/R1 is the tropical projective 
torus. By abuse of notation, we often identify RS/R1 with TS , and P (TS) with the 
closure of TS in P (TE). The subsets {TS}∅!S⊆E partition P (TE).

Remark 2.1.2. The space P (TE) is the tropicalization of the projective space P (kE). 
The projective space P (kE) is a toric variety with the projective torus (k∗)E/k∗. For 
each nonempty subset S ⊆ E, the torus orbit OS :=

(
(k∗)S × {0}E\S)/k∗ in P (kE)

tropicalizes to be the stratum TS of P (TE). We often identify (k∗)S/k∗ with OS , and 
P (kS) with the closure OS = {y ∈ P (kE) | yi = 0 if i /∈ S}. The orbits {OS}∅!S⊆E

partition the space P (kE). See [25, §6.2] or [24, §3.2] for tropicalizations of toric varieties 
in general.

Let A be a finite subset of ZE
≥0. A tropical polynomial F with support supp(F ) = A

is

F =
⊕

v∈A
cv ( x

⊙v.

It represents the function TE → T , (xi)i∈E 4→ minv∈A{cv +
∑

i∈E vi · xi}. Here, by 
convention 0 ( ∞ = 0 and a ( ∞ = ∞ if a 2= 0. We always assume that a tropical 
polynomial F is homogeneous; that is, there exists d ∈ Z≥0 such that d =

∑
i∈E vi for 

all v ∈ supp(F ).

Definition 2.1.3. Let F be a tropical polynomial with support in ZE
≥0. We define the

projective tropical hypersurface of F to be

trop(F ) :=
{
u ∈ P (TE)

∣∣∣∣ the minimum in
{
cv +

∑

i∈E

vi · ui

}

v∈supp(F )

is achieved at least twice
}
.

When {cv+
∑

i∈E vi ·ui}v∈supp(F ) = {∞}, by convention the minimum in {cv+
∑

i∈E vi ·
ui}v∈supp(F ) is said to be achieved at least twice even if supp(F ) is a single element. The 
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Fig. 2. The projective tropical hypersurface from Example 2.1.4. The red line is where x0 = x3 = ∞ and 
the blue line is where x1 = x2 = ∞. (For interpretation of the colors in the figure(s), the reader is referred 
to the web version of this article.)

set trop(F ) is well-defined in P (TE) because one may pass from TE to P (TE) by the 
homogeneity of F .

Example 2.1.4. Let F = x0 ( x1 ⊕ x0 ( x2 ⊕ x1 ( x3 ⊕ x2 ( x3 = min(x0 + x1, x0 +
x2, x1 + x3, x2 + x3). Then the projective tropical hypersurface trop(F ) ⊂ P (T{0,1,2,3})
is as pictured in Fig. 2.

Suppose F is multi-homogeneous; that is, there is a partition E = 5j∈J Ej and 
integers {dj}j∈J such that dj =

∑
i∈Ej

vi for all j ∈ J and v ∈ supp(F ). Then the multi-
projective tropical hypersurface of F is defined analogously as a subset of 

∏
j∈J P (TEj ).

Definition 2.1.5. If F1, . . . , Fl are tropical polynomials with supports in ZE
≥0, we define 

their projective tropical prevariety to be

trop(F1, . . . , Fl) :=
l⋂

i=1
trop(Fi) ⊂ P (TE).

If there is a common partition S = 5j∈J Ej such that each Fi is multi-homogeneous 
in S, the multi-projective tropical prevariety is defined analogously as a subset of ∏

j∈J P (TEj ). Multi-projective tropical prevarieties are closed.

In §3, Dressians and projective tropical linear spaces are defined as projective tropical 
prevarieties in P

(
T ([n]

r )) and P (T [n]), respectively. In §4, flag Dressians will be defined 

as multi-projective tropical prevarieties in P
(
T ([n]

r1
))× · · ·× P

(
T ([n]

rk
)).

Remark 2.1.6. The intersection trop(F ) ∩TE ⊂ RE/R1 is the usual tropical hypersurface
of a tropical polynomial F , and is denoted trop(F ). More generally, for a nonempty 
subset S ⊆ E, consider the intersection trop(F ) ∩ TS as a subset of RS/R1. Then it is 
equal to trop(FS), where FS is the tropical polynomial obtained from F by keeping only 
the terms with exponent supports in ZS

≥0. The set trop(F ) is the closure of trop(F ) in 
P (TE) when F has no nontrivial monomial factors, i.e. there is no 0 2= v′ ∈ ZE

≥0 such 
that v − v′ ∈ ZE

≥0 for all v ∈ supp(F ).
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We now give the underlying algebraic geometry. See [25, §6.2] for proofs of statements.

Remark 2.1.7. Let val : k → T be a (possibly trivial) valuation on k. Let Y = V (f) ⊂
P (kE) be a projective subvariety defined by a homogeneous polynomial

f =
∑

v∈ZE
≥0

cvxv ∈ k[xi | i ∈ E] (all but finitely many cv are zero).

The projective tropicalization of Y , denoted trop(Y ), is the set trop(f trop) where

f trop =
⊕

v∈supp(f)
val(cv) ( x

⊙v.

If f = 0, then trop(Y ) = P (TE). Recall the notation OS =
(
(k∗)S × {0}S

)
/k∗ for a 

nonempty subset S ⊆ E. For Y̊ := Y ∩OE a subvariety of the projective torus (k∗)E/k∗, 
the usual tropical hypersurface trop(f trop) ⊂ RS/R1 is the usual tropicalization of Y̊ , 
denoted trop(Y̊ ). More generally, consider Y̊S := Y ∩ OS , regarded as a subvariety in 
(k∗)S/k∗. Then trop(Y̊S) is equal to trop(Y ) ∩ TS , regarded as a subset of RS/R1. The 
set trop(Y ) is the closure of trop(Y̊ ) in P (TE) when Y is the closure of Y̊ in P (kE).

Remark 2.1.8. Suppose now that Y ⊂ P (kE) is a projective subvariety defined by a 
homogeneous ideal I ⊂ k[xi | i ∈ S ⊂ E]. The projective tropicalization of Y is defined 
as

trop(Y ) :=
⋂

f∈I

trop(f trop),

which is a finite intersection for a suitable choice of generators of I, and hence trop(Y )
is a projective tropical prevariety. As in the hypersurface case (Remark 2.1.7), the usual 
tropicalization of Y̊ = Y ∩ OE is trop(Y̊ ) :=

⋂
f∈I trop(f trop). For a nonempty subset 

S ⊆ E, we have trop(Y ) ∩ TS = trop(Y̊S) where Y̊S := Y ∩ OS . The set trop(Y ) is the 
closure of trop(Y̊ ) when Y the closure of Y̊ in P (kS). If I is principal, generated by f , then 
trop(Y ) = trop(f trop), but in general, the set trop(Y ) may not equal 

⋂l
i=1 trop(f trop

i )
for an arbitrary generating set {f1, . . . , fl} of I.

2.2. Point configurations, dual complexes, and mixed subdivisions

We review point configurations, dual complexes of their coherent subdivisions, and 
mixed subdivisions. Point configurations, which generalize the notion of subsets of points, 
are necessary for discussing mixed subdivisions. See [9] for a detailed treatment of subdi-
visions of point configurations. Our novel contribution here is Theorem 2.2.9 concerning 
mixed coherent subdivisions.



M. Brandt et al. / Advances in Mathematics 384 (2021) 107695 9

Definition 2.2.1. Let A be a finite index set. A point configuration (A, a) in RE is a map 
a(·) : A → RE . In other words, it is a finite set of points {ai ∈ RE : i ∈ A} labeled by 
the set A, where some points may have multiple labels.

We often abbreviate (A, a) to A when the map a is understood. For A ⊂ RE a finite 
subset, we write A also for the point configuration (A, s 4→ s). For Q a lattice polytope 
in RE , we write Q for the point configuration of its lattice points. We write Conv(A) for 
the polytope Conv(ai | i ∈ A) ⊂ RE .

Assumption. The point configuration A is always integral, i.e. the image {ai}i∈A lies in 
ZE , and it is homogeneous, i.e. there exists d ∈ Z such that d = 〈eE , ai〉 for all i ∈ A, 
where eE =

∑
i∈E ei.

For a point configuration (A, a), a subset A′ ⊂ A defines a subconfiguration (A′, a|A′). 
In particular, a vector u ∈ RE/R1 defines a subconfiguration Au by

Au :=
{
i ∈ A | 〈u,ai〉 = min

j∈A
〈u,aj〉

}
.

This does not depend on the choice of the representative u of u because A is homo-
geneous. A subconfiguration F ⊂ A arising in this way is called a face of A, denoted 
F ≤ A.

Definition 2.2.2. A collection ∆ of subconfigurations of A is a subdivision of A if

(1) for all F ∈ ∆ and F ′ ≤ F , one has F ′ ∈ ∆, and
(2) the set of polytopes {Conv(F)}F∈∆ forms a polyhedral subdivision of Conv(A). So, 

we have 
⋃
{Conv(F)}F∈∆ = Conv(A), and for any F1 2= F2 ∈ ∆, the intersection 

Conv(F1) ∩ Conv(F2) of Conv(F1) and Conv(F2) is a proper face of each.

The elements F ∈ ∆ are called the faces of ∆. A subdivision of A is tight if every i ∈ A
is in some face of the subdivision.

We will study subdivisions of A induced by weights. A weight on a point configuration 
(A, a) is a function w : A → R. Like point configurations, we write wu for the restriction 
w|Au for u ∈ RE/R1. We set the following notations for the subdivision induced by a 
weighted point configuration w.

Notation 2.2.3.

• ∆w is the coherent subdivision of A, consisting of the lower faces of the point config-
uration Γw(A) := (A, (a, ν)) where (a, w) : i 4→ (ai, w(i)) ∈ RE ×R for i ∈ A.
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• ∆u
w is the face of the coherent subdivision ∆w corresponding to u ∈ RE/R1, defined 

by

∆u
w := Γw(A)(u,1) =

{
i ∈ A

∣∣∣∣ 〈u,ai〉 + w(i) = min
j∈A

(
〈u,aj〉 + w(j)

)}
.

• Σw is the dual complex in RE/R1 of the coherent subdivision ∆w. It is a polyhedral 
complex consisting of polyhedra corresponding to faces of ∆w by

{u ∈ RE/R1 | ∆u
w ≥ F} ←→ F ∈ ∆w. (†)

The relative interiors {u ∈ RE/R1 | ∆u
w = F} as F ranges over all faces of ∆w

partition RE/R1. We call the relative interiors the cells of the polyhedral complex 
Σw.

We note a useful observation.

Lemma 2.2.4. Let w be a weight on a point configuration (A, a) in RE, and u ∈ RE. 
Consider a new weight defined by i 4→ w(i) +〈u, ai〉 for i ∈ A. Then ∆u

w = ∆0
w(·)+〈u,a(·)〉.

In Corollary 2.3.10, we will extend the correspondence (†) to a correspondence be-
tween points of P (TE) and projections of faces of ∆w for a particular family of weight 
configurations w. For now, we discuss mixed subdivisions of Minkowski sums, because 
Minkowski sums of base polytopes of matroids and their mixed subdivisions are the focus 
of §4.4.

Definition 2.2.5. Let (A1, a1), . . . , (Ak, ak) be point configurations in RE . Their Min-
kowski sum, denoted 

∑k
i=1 Ai, is a point configuration (A1 × · · · × Ak, 

∑
i ai) defined 

by

∑
i ai : (j1, . . . , jk) 4→

k∑

i=1
aiji for (j1, . . . , jk) ∈ A1 × · · ·×Ak.

If w1, . . . , wk are weights on A1, . . . , Ak (respectively), then their Minkowski sum 
∑

i wi

is a weight on 
∑

i Ai defined by (j1, . . . , jk) 4→
∑k

i=1 wi(ji).

We will repeatedly make use of the following observation.

Lemma 2.2.6. Let w =
∑k

i=1 wi be a Minkowski sum of weight point configurations. Then 
for u ∈ RS/R1, we have ∆u

w =
∑k

i=1 ∆u
wi

.

Definition 2.2.7. A subdivision ∆ of a Minkowski sum 
∑

i Ai is mixed if there exist 
subdivisions ∆1, . . . , ∆k of A1, . . . , Ak (respectively) such that each face F ∈ ∆ is a 
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Fig. 3. The point configuration in Example 2.2.8.

Minkowski sum 
∑k

i=1 Fi of faces Fi of ∆i. If there exist weights wi : Ai → R such that 
their Minkowski sum w :=

∑
i wi satisfies ∆w = ∆, we say that ∆ is a mixed coherent 

subdivision, which is mixed by Lemma 2.2.6.

A priori, the terminology “mixed coherent subdivision” can be ambiguous: if a weight 
w on 

∑
i Ai induces a coherent subdivision that is mixed, is w necessarily a Minkowski 

sum of weights? In general, the answer is no, as displayed in the following example.

Example 2.2.8. Let A = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} and B = {(0, 1, 1), (1, 0, 1), (1, 1, 0)}
be two point configurations in R3. Their Minkowski sum A +B is labeled by the nine ele-
ments of A ×B and is the collection of points {(2, 0, 1), (2, 1, 0), (1, 2, 0), (0, 2, 1), (0, 1, 2),
(1, 0, 2), (1, 1, 1)}. The first six points have unique labels, and the last point has three 
labels, because it arises in three ways: (0, 0, 1) + (1, 1, 0) = (1, 0, 0) + (0, 1, 1) =
(0, 1, 0) + (1, 0, 1). This is shown in Fig. 3.

Consider the following two weight vectors.

201 210 120 021 012 102 001 + 110 100 + 011 010 + 101
w1 0 0 0 1 1 0 0 0 17
w2 0 0 0 1 1 0 0 1 0

Both w1 and w2 induce the subdivision indicated in Fig. 3, which is mixed. The first is 
not a Minkowski sum of weights on A and B, while the second is the Minkowski sum of 
weight vectors wA and wB where

wA :






(1, 0, 0) 4→ 0
(0, 1, 0) 4→ 0
(0, 0, 1) 4→ 0

and wB :






(0, 1, 1) 4→ 1
(1, 0, 1) 4→ 0
(1, 1, 0) 4→ 0.

This example shows that not every weight vector inducing a coherent subdivision that is 
mixed is a Minkowski sum of weights. However, there does exist a weight vector which 
is a Minkowski sum inducing the same subdivision.
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We establish the following weaker statement about coherent mixed subdivisions. To-
gether with Theorem 4.4.3, it will imply a strengthening of the equivalence (a) ⇐⇒ (c)
in Theorem A (Corollary 4.4.5). We will only need Theorem 2.2.9 for the proof of Corol-
lary 4.4.5.

Theorem 2.2.9. Let A =
∑k

i=1 Ai be a Minkowski sum of point configurations. For sim-
plicity, let us assume that if dim Conv(Ai) = 1 then |Ai| = 2. Suppose that a weight 
w : A → R induces a coherent subdivision ∆w that is mixed. Then there exist weights 
w1, . . . , wk on A1, . . . , Ak such that ∆∑k

i=1 wi
= ∆w.

We prepare with the following observation.

Lemma 2.2.10. Let Q be a d-dimensional polytope, and let {Q1, . . . , Qm} be the maximal 
(i.e. d-dimensional) faces of a polyhedral subdivision of Q. The graph on [m] with edges 
(i, j) whenever Qi ∩ Qj has dimension d − 1 is connected. In particular, if d ≥ 2, or if 
d = 1 and the subdivision is trivial, then the maximal cells Q1, . . . , Qm are connected 
through dimension ≥ 1.

Proof. For any two vertices i, j ∈ [m], pick points pi and pj in the interior of Qi and 
Qj (respectively). Perturbing pi and pj if necessary, we have that the line segment pipj
meets faces of the polyhedral subdivision only of dimension ≥ d − 1. !

Proof of Theorem 2.2.9. Let ∆1, . . . , ∆k be subdivisions of A1, . . . , Ak (respectively) 
making up the mixed subdivision ∆w. For each u ∈ RE/R1, the face ∆u

w is a Minkowski 
sum 

∑s
i=1 Fi,u where Fi,u is a face of ∆i. For each i = 1, . . . , k, consider the partition 

of RE by the equivalence relation u ∼i u′ ⇐⇒ Fi,u = Fi,u′ . This partition consists 
of components whose closures define a polyhedral complex Σi that coarsens the dual 
complex Σw. We claim that each Σi is a dual complex Σwi for some weight wi : Ai → R
such that ∆u

wi
= Fi,u for all u ∈ RE/R1. We are then done by Lemma 2.2.6.

For the claim, fix u ∈ RE/R1 lying in a non-maximal cell of Σw. By [25, Lemma 
3.3.6], the polyhedral complex starΣw(u) is the normal fan of the polytope Conv(∆u

w) =∑k
i=1 Conv(Fi,u). Now fix any 1 ≤ i ≤ k. By construction of Σi, the normal fan of 

Conv(Fi,u) is equal to starΣi(u). As Conv(Fi,u) is a lattice polytope by our running 
integrality assumption on point configurations, it follows that the union of non-maximal 
cells of Σi is a rational, pure, balanced, polyhedral complex of codimension 1. In other 
words, the complex Σi satisfies the condition of [25, Proposition 3.3.10], which states 
that there exists a weighted point configuration w̃i : Ãi → R with Σi = Σw̃i .

We now use w̃i to define weights w′
i on Vi, where Vi = Vert(∆i) is the set of elements 

of Ai that appear as vertices of the subdivision ∆i. This will have the property that the 
induced coherent subdivision satisfies Conv(∆u

w′
i
) = Conv(Fi,u) for all u ∈ RE/R1, so 

that w′
i naturally extends to a weight wi on Ai satisfying ∆u

wi
= Fi,u for all u ∈ RE/R1.

By construction, the two polytopes Conv(∆u
w̃i

) and Conv(Fi,u) are dilates of each 
other (up to translation) for every u ∈ RE/R1. Since we assumed that |Ai| = 1 if 



M. Brandt et al. / Advances in Mathematics 384 (2021) 107695 13

dim Conv(Ai) = 1, by Lemma 2.2.10 the polyhedral subdivision from ∆i is connected 
through dimension ≥ 1. Hence, the dilation factor is global; that is, (up to translation) 
the set Vi is a dilation of the set of vertices of ∆w̃i . Assign the weight w′

i on Vi via this 
dilation correspondence. !

Remark 2.2.11. Note that if w was already a Minkowski sum w′
1 + · · · + w′

k, then the 
constructed weights {wi}1≤i≤k in the proof satisfy Σwi = Σw′

i
for all 1 ≤ i ≤ k.

2.3. M-convex functions and their dual complexes

We review M-convex functions, and establish Theorem 2.3.8 concerning the structure 
of their dual complexes.

Definition 2.3.1. A function µ : Z[n] → T is M-convex if for a = (a1, . . . , an), b =
(b1, . . . , bn) ∈ Z[n] and i ∈ [n] such that ai > bi, there exists j ∈ [n] such that aj < bj
and

µ(a) + µ(b) ≥ µ(a − ei + ej) + µ(b − ej + ei). (M)

The set {v ∈ Z[n] | µ(v) 2= ∞} is the effective domain dom(µ) of µ, and is assumed to 
be finite.

We view µ as a weighted point configuration µ : dom(µ) → R. For M-convex functions 
µ1 and µ2, their Minkowski sum as weighted point configurations (not as functions) is 
denoted µ1 + µ2.

M-convex functions are studied in several contexts. For instance, they are foundational 
objects of discrete convex analysis [27]. We focus on their connection to generalized 
permutohedra.

Definition 2.3.2. A lattice polytope Q in R[n] is a generalized permutohedron if every 
edge of Q is parallel to ei − ej for some i, j ∈ [n].

The definition implies that a generalized permutohedron is homogeneous as a point 
configuration.

Generalized permutohedra form a rich combinatorial class of lattice polytopes [11,30,
1]. For example, base polytopes of matroids and flag matroids, which we discuss in §3.1
and §4.4, are examples of generalized permutohedra [17,5]. Generalized permutohedra 
are related to M-convex functions in the following way.

Theorem 2.3.3. Let µ : Z[n] → T be a function with an effective domain dom(µ).

(1) If µ takes only two values {c, ∞} for some c ∈ R, then µ is M-convex if and only if 
dom(µ) is the set of lattice points of a generalized permutohedron.



14 M. Brandt et al. / Advances in Mathematics 384 (2021) 107695

(2) More generally, µ is M-convex if and only if the subdivision ∆µ of dom(µ) is tight 
and its faces are the sets of lattice points of generalized permutohedra.

In particular, if µ is M-convex, the point configuration dom(µ) is a generalized permu-
tohedron, and hence is homogeneous.

Proof. The first statement (1) is [27, Theorem 4.15]. For the second statement (2), we 
note the following observations.

• Let µ : Z[n] → T . For any u ∈ R[n], the function µ(·) + 〈u, ·〉 : Z[n] → T defined by 
v 4→ µ(v) + 〈u, v〉 is M-convex if and only if µ is.

• Let µ : Z[n] → T be an M-convex function. Then the function defined by v 4→ min(µ)
if µ(v) = min(µ) and v 4→ ∞ otherwise is also M-convex. In other words, by the first 
statement, the face ∆0

µ is the set of lattice points of a generalized permutohedron.

The second statement now follows from the first by applying Lemma 2.2.4 to these 
observations. !

Let us now turn to the dual complex Σµ of µ. Its polyhedral cells are subsets 
of R[n]/R1. Consider the closures of these polyhedral cells inside P (T [n]). For each 
nonempty proper subset S ! [n], this defines a polyhedral complex structure on the 
boundary TS ⊂ P (T [n]). While these polyhedral complex structures can be difficult to 
describe for general weighted point configurations, for M-convex functions we give an 
explicit description in Theorem 2.3.8. This explicit description will be instrumental in 
our proof of Theorem B and Theorem 4.4.3. We first note the following general boundary 
behavior.

Lemma 2.3.4. Let w be a weight on a point configuration A in R[n]. For a nonempty 
subset S, fix u′ ∈ TS. For a sufficiently small open neighborhood U of u′, one has 
Γw(A)(u,1) = Γw(Ae[n]\S )(u,1) for any u ∈ U ∩ T[n]. In other words, near TS, the dual 
complex Σw is the same as the dual complex of the restriction of w to Ae[n]\S .

Proof. Let u = (ui)i∈S × (uj)j /∈S . Shrinking U if necessary, we can make min{ui − uj |
i ∈ S, j /∈ S} arbitrarily large. Since A is finite and w is fixed, this means that for i ∈ A
to minimize 〈u, ai〉 + w(i), it must first minimize 〈e[n]\S , ai〉. !

Next, we note that a property known as the Hopf monoid structure of generalized 
permutohedra extends to M-convex functions.

Notation 2.3.5. We need the following notations: For a lattice polytope Q ⊂ R[n] and a 
nonempty subset S ⊆ [n], the projection of the face Qe[n]\S under R[n] → RS is denoted 
Q|S , and the projection of Qe[n]\S under R[n] → R[n]\S is denoted Q/S . Both are lattice 
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polytopes, and we write Q|S ×Q/S ⊂ RS × R[n]\S 8 R[n] for their product, considered 
as a polytope in R[n].

Our notation here differs from [1] by a complementation (e[n]\S instead of eS). Since 
−eS and e[n]\S are equal as elements in R[n]/R1, the difference is due to our “min” 
convention for polyhedral operations instead of the “max” convention used in [1].

Theorem 2.3.6. [1, Theorem 6.1] Let Q be a generalized permutohedron in R[n], and 
S ⊆ [n] be a nonempty subset. Then the polytopes Q|S and Q/S are generalized permu-
tohedra in their respective spaces. Moreover, Qe[n]\S = Q|S ×Q/S and in particular is a 
generalized permutohedron.

This property of generalized permutohedra extends to M-convex functions. If w1, w2
are weights on A1, A2 in RS1 , RS2 (respectively), let us write w1 ×w2 for the weight on 
A1 ×A2 in RS1 ×RS2 defined by w(i1, i2) := w(i1) + w(i2).

Lemma 2.3.7. Let µ : Z[n] → T be M-convex, and write Q = dom(µ). For a nonempty 
subset S ⊆ [n], there exist weights µ|S and µ/S on Q|S and Q/S (respectively), each 
unique up to adding a constant globally, such that

µe[n]\S = µ|S × µ/S .

The weighted point configurations µe[n]\S , µ|S, and µ/S are M-convex.

Proof. As Q is a generalized permutohedron, we have Qe[n]\S = Q|S×Q/S . Thus, for the 
first statement, it suffices to show that for every choice of lattice points p, p′ ∈ Q|S and 
q, q′ ∈ Q/S , one has µ(p, q) − µ(p′, q) = µ(p, q′) − µ(p′, q′). Moreover, as Q|S and Q/S

are both generalized permutohedra, it suffices to check in the case where p −p′ = ei−ei′
and q − q′ = ej − ej′ where i, i′ ∈ S and j, j′ ∈ [n] \ S. Applying the defining property 
(M) of an M-convex function twice, once with (a, b) = ((p, q), (p′, q′)) and again with 
(a, b) = ((p, q′), (p′, q)), gives the desired equality.

For the second statement, applying the forward direction of Theorem 2.3.3.(2) to µ
implies that the face Qe[n]\S is subdivided into generalized permutohedra, which implies 
that both Q|S and Q/S are too. (If one of them has an edge not parallel to ei − ej , so 
does the product). The converse direction of Theorem 2.3.3.(2) then implies that µe[n]\S , 
µ|S , and µ/S are M-convex. !

We are now ready to describe explicitly the closure of Σµ inside P (T [n]).

Theorem 2.3.8. Let µ be an M-convex function, considered as a weighted point configu-
ration in R[n]. For a cell σ ⊂ R[n]/R1 of the dual complex Σµ, denote by σ its closure 
in P (T [n]). For a nonempty subset S ⊆ [n], we have {σ ∩ TS | σ ∈ Σµ} = Σµ|S , where 
TS is identified with RS/R1.
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Proof. Lemma 2.3.4 implies that {σ ∩ TS | σ ∈ Σµ} = {σ ∩ TS | σ ∈ Σµ
e[n]\S }. Applying 

Lemma 2.3.7 then gives the desired equality. !

Notation 2.3.9. Let µ be M-convex and u ∈ P (T [n]). We denote

∆u
µ := ∆u′

µ|S ,

where S ⊆ [n] is the subset satisfying u ∈ TS , so that u = u′×∞[n]\S for some u′ ∈ RS .

Corollary 2.3.10. Let µ be M-convex and ∅ ! S ⊆ [n]. The correspondence (†) for TS =
RS/R1 gives

{u ∈ TS | ∆u
µ ≥ F} ←→ F ∈ ∆µ|S .

This correspondence now extends to all of P (T [n]): the set P (T [n]) is partitioned by the 
relative interiors {u ∈ P (T [n]) | ∆u

µ = F} as F ranges over all faces F of ∆µ|S over all 
∅ ! S ⊆ [n].

3. Dressians and projective tropical linear spaces

We review Dressians and valuated matroids in §3.1. Then, we introduce projective 
tropical linear spaces in §3.2, and prove Theorem B, which characterizes projective trop-
ical linear spaces in many different ways. We assume familiarity with matroids. We point 
to [34,28] as references.

Notation 3.0.1. We adopt the following notations for a matroid M on a ground set [n]:

• B(M) is the set of bases, which we will often view as a point configuration (B(M), e), 
where B ∈ B(M) ⊂

([n]
r

)
maps to eB ∈ R[n],

• C(M) is the set of circuits.
• rkM : 2[n] → Z is the rank function.
• Q(M) := Conv(eB | B ∈ B(M)) ⊂ R[n] the base polytope of M , which as a point 

configuration is identical to (B(M), e) because Q(M) has no non-vertex lattice points.
• M∗ is the dual matroid of M .
• M |S (resp. M/S) is the restriction (resp. contraction) of M to (resp. by) a subset 

S ⊆ [n].

As it is customary in matroid theory, we write S∪ i to mean S∪{i} and S \ i to mean 
S \ {i} for a set S and an element i. We will often use the following.

Theorem 3.0.2. [17] A lattice polytope contained in the cube Conv(eS | ∅ ! S ⊆ [n]) ⊂
R[n] is a generalized permutohedron if and only if it is a base polytope of a matroid.
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3.1. Dressians and valuated matroids

We review Dressians and valuated matroids. As before, the underlying algebraic ge-
ometry is explained in the remarks.

Definition 3.1.1. For 0 ≤ r ≤ n, the tropical Grassmann-Plücker relations are tropical 
polynomials in variables {PI | I ∈

([n]
r

)
} defined as

Ptrop
r;n :=




(PI ( PJ) ⊕
⊕

j∈J\I

(PI\i∪j ( PJ\j∪i)

∣∣∣∣∣∣
I, J ∈

([n]
r

)
, |I ∩ J | < r − 1, i ∈ I \ J




 .

(GP)

The Dressian (of rank r in [n]) is the projective tropical prevariety of these tropical 
Grassmann-Plücker relations. That is, we define

Dr(r;n) := trop(Ptrop
r;n ) ⊂ P (T ([n]

r )).

Points on Dressians were previously described in several ways [33,25,20]; we collect 
them together in Theorem 3.1.3. Let us first recall the definition of valuated matroids 
from [10].

Definition 3.1.2. Let M be a matroid of rank r on [n]. A valuated matroid with underlying 
matroid M is a function µ : B(M) → R such that for every B, B′ ∈ B(M) and i ∈ B \B′

there exists j ∈ B′ \B satisfying

µ(B) + µ(B′) ≥ µ(B \ i ∪ j) + µ(B′ \ j ∪ i).

Theorem 3.1.3. Let µ ∈ T ([n]
r ). Then the following are equivalent:

(a) The image µ ∈ P (T ([n]
r )) is a point of Dr(r; n).

(b) µ is a valuated matroid with an underlying matroid of rank r on [n].
(c) When µ is regarded as a weight on {eI ∈ R[n] | µ(I) 2= ∞}, the faces of ∆µ are base 

polytopes of matroids.

Proof. Let us consider µ ∈ T ([n]
r ) as a function µ : Z[n] → T where

v 4→
{
µ(I) if v = eI for some I ∈

([n]
r

)

∞ otherwise.

One can check from the definitions that µ is M-convex if and only if the image µ ∈
P (T ([n]

r )) lies in Dr(r; n). The equivalence of (a) and (b) now follows by comparing the 
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definitions of M-convexity and valuated matroids. The equivalence of (b) and (c) follows 
from Theorem 2.3.3.(2) and Theorem 3.0.2. !

For a valuated matroid µ with underlying matroid M , we will freely switch between 
considering µ as a point on T ([n]

r ), as an M-convex function with effective domain Q(M), 
and as a weight on the point configuration (B(M), e).

Definition 3.1.4. Recall the notation TS := RS/R1 × {∞}E\S ⊂ P (TE) for sets S ⊆ E. 
For M a matroid of rank r on [n], the Dressian of M , denoted Dr(M), is the intersection

Dr(M) = Dr(r;n) ∩ TB(M) ⊂ P
(
T ([n]

r )).

By Theorem 3.1.3, the set Dr(M), which was introduced in [20], parametrizes valuated 
matroids with underlying matroid M , or equivalently, weights B(M) → R that induce 
coherent subdivisions of Q(M) into base polytopes of matroids. By Remark 2.1.6, the set 
Dr(M) is the usual tropical prevariety in RB(M)/R1 of appropriately modified tropical 
Grassmann-Plücker relations.

Many aspects of matroids extend to valuated matroids. We will use the following 
notions.

Definition 3.1.5. Let µ be a valuated matroid of rank r on [n] with underlying matroid M .

• For each S ∈
( [n]
r+1

)
, define an element Cµ(S) ∈ T [n] by

Cµ(S)i :=
{
µ(S \ i) i ∈ S

∞ i /∈ S.

Then the set of valuated circuits of µ is defined as

C(µ) :=
{
Cµ(S)

∣∣∣ S ∈
( [n]
r+1

)}
\ {(∞, . . . ,∞)}.

• The dual of µ is the valuated matroid µ∗ defined by setting µ∗([n] \ I) := µ(I) for 
I ∈

([n]
r

)
.

• The valuated cocircuits of µ are defined as the circuits of µ∗. Explicitly, the set of 
valuated cocircuits is

C∗(µ) =
{
C∗

µ(S)
∣∣∣ S ∈

( [n]
r−1

)}
\ {(∞, . . . ,∞)},

where

C∗
µ(S)i :=

{
µ(S ∪ i) i /∈ S

∞ i ∈ S.
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• For a nonempty subset S ⊆ [n], the restriction to S (resp. contraction by S) of µ is 
µ|S (resp. µ/S), where µ|S and µ/S are as in Lemma 2.3.7. Lemma 2.3.7, combined 
with Theorem 3.0.2, implies that these are valuated matroids.

The following facts are easy to verify:

• The set {supp(C) | C ∈ C(µ)} is the set of circuits of M . (Recall the notation 
supp(C) := {i ∈ [n] | Ci 2= ∞} for C ∈ T [n]).

• The underlying matroid of µ∗ is M∗, and (µ∗)∗ = µ.
• The underlying matroid of µ|S (resp. µ/S) is M |S (resp. M/S).

Lastly, we will need the following description of the valuated circuits in terms of re-
strictions and contractions. It is a consequence of [4, Theorem 3.29 & Corollary 4.10.(1)].

Theorem 3.1.6. Let µ be a valuated matroid of rank r on [n], and S ⊆ [n] a nonempty 
subset. Then we have

C(µ|S) = {C ∈ C(µ) | supp(C) ⊆ S}, and
C(µ/S) = {points of T [n]\S of minimal support among {(Ci)i∈[n]\S | C ∈ C(M)}}.

Moreover, the two operations are dual to each other, in the sense that (µ/S)∗ = µ∗|([n]\S).

The underlying geometry behind the definition of Dressians follows.

Remark 3.1.7. See [16, §9] for Plücker embeddings, and see Remarks 2.1.7 and 2.1.8 for 
tropicalizations of projective subvarieties. The Grassmannian Gr(r; n), whose points are 
r-dimensional subspaces of k[n], is embedded in P (k([n]

r )) by the Plücker embedding. 
When chark = 0, the defining ideal is generated by the Grassmann-Plücker relations:

Pr;n :=




−PIPJ +
∑

j∈J\I

sign(i, j, I, J)PI\i∪jPJ\j∪i = 0

∣∣∣∣∣∣
I, J ∈

([n]
r

)
, i ∈ I \ J






(1)
where sign(i, j, I, J) := (−1)#{a∈I | min(i,j)<a<max(i,j)}+#{b∈J | min(i,j)<b<max(i,j)}. When 
chark > 0 they generate the ideal up to radical. The tropical Grassmann-Plücker rela-
tions are tropicalizations of these polynomials. That is, we have Ptrop

r;n = {f trop | f ∈
Pr;n}. The projective tropicalization trop(Gr(r; n)) is thus a subset of Dr(r; n).

The inclusion trop(Gr(r; n)) ⊆ Dr(r; n) is often strict, precisely because not all valu-
ated matroids are realizable in the following sense: For a linear subspace L ∈ Gr(r; n), let 
(PI(L))

I∈([n]
r ) ∈ P (k([n]

r )) be its coordinates in the Plücker embedding. Then the func-
tion I 4→ val(PI(L)) ∀I ∈

([n]
r

)
is a valuated matroid, denoted µ(L), whose underlying 

matroid is denoted M(L). Valuated matroids arising in this way are said to be realiz-
able (over k). The points of trop(Gr(r; n)) are exactly the valuated matroids realizable 
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over k. When r ≥ 3 and n ≥ 7, there are non-realizable valuated matroids, and hence, 
in these cases the inclusion trop(Gr(r; n)) ⊆ Dr(r; n) is strict. Realizability can fail in 
many ways. For example, there are valuated matroids where every cell of the induced 
subdivision is a realizable matroid, but the valuated matroid is not realizable [32].

3.2. The many faces of projective tropical linear spaces

We introduce projective tropical linear spaces, and prove Theorem B, which charac-
terizes them in many different ways. We start by reviewing usual tropical linear spaces.

Proposition 3.2.1. [25, Lemma 4.4.7] Let µ be a valuated matroid on [n]. The following 
two subsets of R[n]/R1 coincide:

(1) The set
⋂

C∈C(µ)

{
u ∈ R[n]/R1

∣∣∣ the minimum in {Ci + ui}i∈supp(C) is achieved at least twice
}
,

which is the usual tropical prevariety of the valuated circuits of µ (Remark 2.1.6).
(2) With µ regarded as a weighted point configuration, the set

{u ∈ R[n]/R1 | ∆−u
µ is a base polytope of a loopless matroid},

which is the union of “loopless cells” of the dual complex Σµ in R[n]/R1.

Definition 3.2.2. Let µ be a valuated matroid of rank r on [n], and let M be its underlying 
matroid. The subset of R[n]/R1 in the previous proposition is defined as the tropical 
linear space of µ, denoted trop(µ). Note that if M has loops, then trop(µ) = ∅.

We will extend Proposition 3.2.1 to projective tropical linear spaces. Since projective 
tropical linear spaces are subsets of P (T [n]), the negative sign −u in Proposition 3.2.1.(2) 
can be problematic because −∞ is not an element of T . We will thus use the following 
reformulation:

Lemma 3.2.3. Let µ be a valuated matroid, and µ∗ its dual. Then we have

trop(µ) = {u ∈ R[n]/R1 | ∆u
µ∗ is a base polytope of a coloopless matroid},

which is the union of “coloopless cells” of the dual complex Σµ∗.

Proof. For a weight w on a point configuration (A, a), let us write wop for the weight 
on the point configuration (A, −a), defined by wop(i) := w(i) ∀i ∈ A. It is easy to verify 
that ∆−u

w = ∆u
wop as subsets of A. Now, if M is the underlying matroid of µ, then 

Q(M∗) = −Q(M) +1, so that µ∗ = µop. The lemma now follows from the description of 
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trop(µ) in Proposition 3.2.1.(2), since a matroid is loopless if and only if its dual matroid 
is coloopless. !

The following remark explains the geometry behind tropical linear spaces via tropical-
izations of subvarieties (see Remark 2.1.8). It also motivates our definition of projective 
tropical linear spaces.

Remark 3.2.4. Recall from Remark 3.1.7 that a linear subspace L ⊂ k[n] defines a val-
uated matroid µ(L). Let us consider L as a linear projective subvariety of P (k[n]), and 
write L̊ := L ∩ (k∗)[n]/k∗. Then the usual tropicalization trop(L̊) of L̊ is the tropical 
linear space trop(µ(L)). When L is contained in a coordinate hyperplane, or equivalently, 
when the matroid M(L) has a loop, the intersection L̊ is empty, and hence trop(L̊) is 
empty, as is trop(µ(L)). See [25, §4.3] for a more details on tropicalizations of linear 
subvarieties in a torus (k∗)[n]/k∗.

Now consider the projective tropicalization trop(L). For each nonempty subset S ⊆
[n], the torus orbit OS intersects L to give another (possibly empty) linear subvariety 
of (k∗)S/k∗, denoted L̊S . Similarly, let LS := L ∩ OS , considered as a subvariety of 
P (kS). Then the valuated matroid µ(LS) is the contraction µ(L)/([n]\S). We thus have 
trop(L) ∩TS = trop(L̊S) = trop(µ(L)/([n]\S)). This motivates our definition of projective 
tropical linear spaces.

Definition 3.2.5. Let µ be a valuated matroid on [n]. The projective tropical linear space
trop(µ) of µ is a subset of P (T [n]) defined by setting

trop(µ) ∩ T[n]\S := trop(µ/S) × {∞}S

for each ∅ ⊆ S ! [n].

Projective tropical linear spaces have previously appeared in various forms (see Re-
mark 3.2.6). Theorem B, reproduced below, unifies them and adds two new characteri-
zations ((iii) and (v)).

Theorem B. Let µ be a valuated matroid on a ground set [n]. Let " ⊆ [n] be the set of 
loops of its underlying matroid M . The following sets in the tropical projective space 
P (TE) coincide:

(i) The projective tropical linear space of µ, i.e.

trop(µ) :=
⋃

∅⊆S![n]

(
trop(µ/S) × {∞}S

)
⊂ P (TE),
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(ii) The projective tropical prevariety of the valuated circuits of µ, i.e.
⋂

valuated
circuits C

{
u ∈ P (T [n])

∣∣∣ the minimum is achieved at least twice among {Ci + vi}i∈[n]
}
,

(iii) The union of coloopless cells of the closure of the dual complex of µ∗ in P (T [n]), 
i.e.

{
u ∈ P (T [n]) | ∆u

µ∗ is a base polytope of a coloopless matroid
}
,

(iv) The tropical span of the valuated cocircuits of µ, i.e.
{

the image in P (TE) of
(a1 ( C∗

1) ⊕ · · ·⊕ (al ( C∗
m) ∈ TE

∣∣∣∣
C∗

i ∈ TE a valuated cocircuit of µ,
ai ∈ R, ∀1 ≤ i ≤ m

}
,

(v) The closure of trop(µ/!) × {∞}! inside P (T [n]).

Remark 3.2.6. For ordinary matroids (not valuated), the description (i) appeared in [31, 
Definition 2.20]. The authors of [24] also considered the description (i), and characterized 
trop(µ) as a tropical cycle of projective degree 1 [24, Remark 7.4.15]. In the language 
of hyperfields (see [4]), the description (ii) says that a projective tropical linear space 
is the set of covectors of a matroid over the tropical hyperfield. This characterization 
appeared in [26], along with the proof of (ii)=(iv) [26, Theorem 3.8], and was generalized 
to perfect tracts in [2].

Proof of Theorem B. The equality (ii) = (iv) is [26, Theorem 3.8]. Recalling from Theo-
rem 3.1.6 that the dual of µ/S is µ∗|([n]\S), combining Theorem 2.3.8 with Lemma 3.2.3
then implies (i) = (iii). We now show (iii) ⊆ (v) ⊆ (ii) ⊆ (i).

For all subsets S ⊆ [n] such that S 2⊃ ", the matroid M/S has loops, and so the 
intersection of the set (iii) with T[n]\S is empty (since (iii) = (i)). The same is true for 
the set (v). Hence, for showing (iii) ⊆ (v) we may assume that M is loopless. In this 
case, both sets are trop(µ) on T[n] by Lemma 3.2.3. Now, suppose u× {∞}[n]\S ∈ TS is 
in the set (iii). We need to show that it is in the closure of trop(µ). Since M is loopless, 
so is M |[n]\S , and hence trop(µ|[n]\S) is nonempty. Let u′ ∈ trop(µ|[n]\S) and pick its 
representative u′ ∈ R[n]\S to have all positive coordinates. For a point u× cu′ ∈ R[n], if 
c > 0 is sufficiently high (equivalently, if u× cu′ is in a small enough open neighborhood 
of u × {∞}[n]\S), Lemma 2.3.4 implies that ∆u×cu′

µ∗ = ∆u×cu′

w , where w = (µ∗)e[n]\S . 
Then by Lemma 2.3.7, we have w = µ∗|S × µ∗/S , so that ∆u×cu′

w = ∆u
µ∗|S × ∆cu′

µ∗/S
. By 

assumption the matroids of ∆u
µ∗|S and ∆cu′

µ∗/S
are both coloopless. We thus conclude that 

u× cu′ is in trop(µ) for all sufficiently large c > 0, and hence the point u× {∞}[n]\S is 
in the closure of trop(µ).

For (v) ⊆ (ii), we may again assume M loopless, since the fact that a loop is a circuit 
implies that (ii) is contained in the closure of T[n]\!. In this case, both sets are trop(µ)
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on T[n] by Proposition 3.2.1.(1). Since projective tropical prevarieties are closed, we thus 
have (v) ⊆ (ii).

Lastly, for any proper subset ∅ ⊆ S ! [n], consider the intersection of the set (ii)
with T[n]\S . In other words, for each valuated circuit C defining a tropical polynomial ⊕

i∈[n] Ci ( xi, we give ignore all Ci with i ∈ S since xi = ∞. Thus, the description of 
the valuated circuits of the contraction µ/S in Theorem 3.1.6, combined with Proposi-
tion 3.2.1, imply (ii) ⊆ (i). !

4. Valuated flag matroids and flag Dressians

We now introduce flag Dressians and valuated flag matroids, and prove Theorem A. 
We review flag matroids in §4.1. In §4.2 we define flag Dressians and valuated flag 
matroids, and show (a) ⇐⇒ (b), which is mostly definitional (Proposition 4.2.3). In §4.3, 
we prove (b) ⇐⇒ (d) (Theorem 4.3.1). In §4.4, we define flag matroidal subdivisions and 
prove (b) =⇒ (c) (Theorem 4.4.2) and (c) =⇒ (d) (Theorem 4.4.3). We give an extended 
illustration of Theorem A in Example 4.4.6.

4.1. Flag matroids

Flag matroids are defined through matroid quotients.

Definition 4.1.1. Let M and N be matroids on a common ground set [n]. We say that 
M is a (matroid) quotient of N , denoted M ! N , if any of the following equivalent 
conditions are satisfied [7, Proposition 7.4.7]:

(1) For all A ⊆ B ⊆ [n], we have rkM (B) − rkM (A) ≤ rkN (B) − rkN (A),
(2) each circuit of N is a union of circuits of M ,
(3) there exist a matroid M̃ on [n] 5 [n′] such that M = M̃/[n′] and N = M̃\[n′],
(4) N∗ is a quotient of M∗.

A sequence M = (M1, . . . , Mk) of matroids on [n] is a flag matroid if Mi ! Mj for 
every 1 ≤ i < j ≤ k. The rank of M is the sequence of its constituent matroids 
(rk(M1), . . . , rk(Mk)).

The following example gives the geometric origin of the terminology.

Example 4.1.2 (Realizable quotients and flag matroids). Let L′∗ ! L∗ ! k[n] be 
quotients of linear spaces. Equivalently, we have an inclusion of linear subspaces 
L′ ⊆ L ⊆ k[n]. Then, the matroids of L′ and L, which we denote M(L′) and M(L)
(Remark 3.1.7), form a matroid quotient M(L′) ! M(L). Matroid quotients arising 
in this way are said to be realizable (over k). Similarly, a flag of linear subspaces 
L = L1 ⊆ L2 ⊆ · · · ⊆ Lk ⊆ k[n] defines a flag matroid M(L) = (M(L1), . . . , M(Lk)). 
Such flag matroids are realizable (over k).
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Remark 4.1.3. A quotient M ! N can fail to be realizable even if M and N are realizable 
over the field. For a concrete example, see [5, §1.7.5. Example 7].

Definition 4.1.4. Given a flag matroid M = (M1, . . . , Mk) on [n], its base configuration
B(M) is a point configuration obtained as the Minkowski sum of the bases of its con-
stituent matroids. That is, B(M) := B(M1) + · · ·+ B(Mk) = (B(M1) × · · ·× B(Mk), e), 
where

(B1, . . . , Bk) ∈ B(M1) × · · ·× B(Mk) 4→ eB1 + · · · + eBk ∈ R[n].

The base polytope Q(M) of M is the convex hull of the image of the base configuration, 
i.e.

Q(M) := Conv(eB1 + · · · + eBk | (B1, . . . , Bs) ∈ B(M1) × · · ·× B(Mk)) ⊂ R[n].

Properties of matroid polytopes found in Theorem 3.0.2 extend to flag matroid base 
polytopes.

Theorem 4.1.5.

(1) [5, Theorem 1.11.1] A lattice polytope Q ⊂ R[n] is a base polytope of a flag matroid 
of rank (r1, . . . , rk) if and only if it is a generalized permutohedron and its vertices 
are a subset of the orbit of e{1,2,...,r1} + · · ·+e{1,2,...,rk} under the permutation group 
Sn.

(2) For a flag matroid M = (M1, . . . , Mk) on [n], and a subset S ⊆ [n], the sequences 
M |S := (M1|S , . . . , Mk|S) and M/S := (M1/S , . . . , Mk/S) are flag matroids, and 
the face Q(M)e[n]\S is the product Q(M |S) ×Q(M/S).

Proof. The first part of statement (2) is checked directly from the description of ma-
troid quotients by rank functions. The second part of (2) follows by Lemma 2.2.6 and 
Theorem 2.3.6. !

Remark 4.1.6. Restricting to only loopless matroids is harmless in studying matroids 
because the only data lost by deleting the loops of a matroid is the number of loops: if "
is the set of loops of a matroid M , then M = M \! ⊕U0,!, so one easily recovers M from 
M \ " and |"|. However, for a flag matroid M = (M1, . . . , Mk) on [n], an element e ∈ [n]
can be a loop in some but not all of the matroids M1, . . . , Mk, and in such cases one 
cannot always recover M from M\e = (M1\e, . . . , Mk\e) and M |e = (M1|e, . . . , Mk|e). 
So, it is necessary for us to develop the theory for matroids with loops in the flag setting.

Remark 4.1.7. According to [18,5], flag matroids are exactly the Coxeter matroids of 
type A. Coxeter matroids in general are defined by modifying Theorem 4.1.5.(1) with 
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the notion of Coxeter generalized permutohedra. See [3] for a modern treatment of Coxeter 
generalized permutohedra and their connection to combinatorics.

4.2. Definition of flag Dressians and valuated flag matroids

We now extend Dressians and valuated matroids, described in Section 3.1, to the 
setting of flag matroids.

Definition 4.2.1. Let 0 ≤ r ≤ s ≤ n. The tropical incidence-Plücker relations are tropical 
polynomials in variables {PI | I ∈

([n]
r

)
} ∪ {PJ | J ∈

([n]
s

)
} defined as

Ptrop
r,s;n =





⊕

j′∈J ′\I′

PI′∪j′ ( PJ ′\j′

∣∣∣∣∣∣
I ′ ∈

( [n]
r − 1

)
, J ′ ∈

( [n]
s + 1

)

 . (IP)

When r = s, the sets {PI | I ∈
([n]

r

)
} and {PJ | J ∈

([n]
s

)
} coincide, and the relations 

Ptrop
r,s;n in (IP) above degenerate to Ptrop

r;n in (GP). These tropical polynomials are multi-
homogeneous with respect to the partition 

([n]
r

)
5
([n]

s

)
. For 0 ≤ r1 ≤ · · · ≤ rk ≤ n, 

the flag Dressian (of rank (r1, . . . , rk) on [n]) is the multi-projective tropical prevariety 

inside P
(
T ([n]

r1
)) × · · · × P

(
T ([n]

rk
)) defined by the tropical Grassmann-Plücker relations 

(GP) and the tropical incidence-Plücker relations (IP):

FlDr(r1, . . . , rk) := trop
(
F ∈

{
Ptrop

ri;n
}

1≤i≤k
∪
{

Ptrop
ri,rj ;n

}

1≤i<j≤n

)
.

We interpret the tropical incidence-Plücker relations as a condition for valuated ma-
troid quotients, and points on the flag Dressian as valuated flag matroids, defined as 
follows.

Definition 4.2.2. Let µ and ν be valuated matroids on a common ground set [n], whose 
underlying matroids are M and N of ranks r and s (respectively) with r ≤ s. We say that 
µ is a valuated (matroid) quotient of ν, denoted µ ! ν, if for any I ∈ B(M), J ∈ B(N), 
and i ∈ I \ J , there exists j ∈ J \ I such that

µ(I) + ν(J) ≥ µ(I \ i ∪ j) + ν(J \ j ∪ i).

A sequence µ = (µ1, . . . , µk) of valuated matroids on [n] is a valuated flag matroid if 
µi ! µj for every 1 ≤ i < j ≤ k. It follows from the definition that µ ! ν if and only if 
ν∗ ! µ∗.

We will show that the underlying matroids of a valuated matroid quotients form a 
matroid quotient (Corollary 4.3.2). Thus, for a valuated flag matroid µ = (µ1, . . . , µk), 
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its sequence of underlying matroids (M1, . . . , Mk) is called the underlying flag matroid 
of µ.

We first note that points of the flag Dressian correspond to valuated flag matroids. 
The following is the equivalence (a) ⇐⇒ (b) in Theorem A.

Proposition 4.2.3. Let µ × ν be a point on T ([n]
r ) ×T ([n]

s ). Its image µ× ν ∈ P (T ([n]
r )) ×

P (T ([n]
s )) is a point on the flag Dressian FlDr(r, s; n) if and only if µ and ν are valuated 

matroids that form a valuated matroid quotient µ ! ν. In other words, the points on the 
flag Dressian FlDr(r1, . . . , rk; n) correspond to valuated flag matroids of rank (r1, . . . , rk)
on [n].

Proof. Each of µ and ν satisfies its respective tropical Grassmann-Plücker relations if 
and only if it is a valuated matroid by Theorem 3.1.3. Now, note that the tropical 
incidence-relation

⊕

j′∈J ′\I′

PI′∪j′ ( PJ ′\j′

for I ′ ∈
( [n]
r−1

)
, J ′ ∈

( [n]
s+1

)
can be rewritten as follows: Fix any i ∈ J ′\I ′, and set I = I ′∪i

and J = J ′ \ i. Then, the above tropical polynomial is the same as

PI ( PJ ⊕
⊕

j∈J\I

PI\i∪j ( PJ\j∪i.

The condition that the minimum (if achieved) is achieved by at least two terms of these 
tropical polynomials is equivalent to the condition imposed by the inequalities in the 
definition of valuated matroid quotients. !

Definition 4.2.4. Recall the notation TS := RS/R1 × {∞}E\S ⊂ P (TE) for sets S ⊆ E. 
Let M = (M1, . . . , Mk) be a flag matroid of rank (r1, . . . , rk) on [n]. The flag Dressian 
of M , denoted FlDr(M), is the intersection

FlDr(M) := FlDr(r1, . . . , rk;n)∩
(
TB(M1)× · · ·×TB(Mk)

)
⊂ P

(
T ([n]

r1
))× · · ·×P

(
T ([n]

rk
)).

In other words, by Proposition 4.2.3 the flag Dressian FlDr(M) parametrizes all 
valuated flag matroids whose underlying flag matroid is M .

Remark 4.2.5. For linear subspaces K and L of k[n] of rank r and s, let (pI)I∈([n]
r ) and 

(pJ)
I∈([n]

s ) be their Plücker coordinates (respectively). Then K ⊆ L if and only if the 
two Plücker coordinates satisfy the incidence-Plücker relations [16, §9, Lemma 2]:

Pr,s;[n] =





∑

j′∈J ′\I′

sign(j′; I ′, J ′)PI′∪j′PJ ′\j′

∣∣∣∣∣∣
I ′ ∈

( [n]
r − 1

)
, J ′ ∈

( [n]
s + 1

)

 (2)
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where sign(j′; I ′, J ′) = (−1)#{a∈I′|a<j′}+#{b∈J ′|b<j′}. The tropical incidence-Plücker re-
lations are tropicalizations of these polynomials. That is, we have Ptrop

r,s;n = {f trop | f ∈
Pr,s;n}. Thus, if K ⊆ L, then the corresponding valuated matroids µ(K) and µ(L) form 
a valuated matroid quotient µ(K) ! µ(L). Valuated matroid quotients arising in this 
way are said to be realizable (over k).

Remark 4.2.6. The (partial) flag variety Fl(r1, . . . , rk; n) consists of flags of linear 
subspaces L1 ⊆ · · · ⊆ Lk ⊆ k[n] with dimk Li = ri. It has an embedding by 

Fl(r1, . . . , rk; n) ↪→ Gr(r1; n) × · · · × Gr(rk; n) ↪→ P (k([n]
r1

)) × · · · × P (k([n]
r1

)). When 
chark = 0, the Grassmann-Plücker relations (1) combined with the incidence-Plücker 
relations (2) generate the multi-homogeneous ideal of this embedding. When chark > 0, 
they generate the ideal up to radical. The multi-projective tropicalization of the flag 
variety trop(Fl(r1, . . . , rk; n)) is thus a subset of FlDr(r1, . . . , rk; n). The points of 
trop(Fl(r1, . . . , rk; n)) correspond to valuated flag matroids that are realizable (over 
k). The inclusion of trop(Fl(r1, . . . , rk; n)) in FlDr(r1, . . . , rk; n) is strict precisely when 
there are valuated flag matroids of rank (r1, . . . , rk) on [n] that are not realizable (over 
k).

Remark 4.2.7. A valuated matroid quotient µ ! ν, where µ and ν are realizable over k
and the underlying matroid quotient is realizable over k, can fail to be realizable over k. 
See Example 5.2.4.

We address realizability of valuated flag matroids in more depth in §5.

4.3. Flags of projective tropical linear spaces

We show that a valuated matroid quotient is equivalent to the inclusion of the cor-
responding projective tropical linear spaces. This proves the equivalence (b) ⇐⇒ (d) in 
Theorem A.

Theorem 4.3.1. Let µ and ν be valuated matroids of ranks r and s respectively on a 
common ground set [n]. Then µ ! ν if and only if trop(µ) ⊆ trop(ν). In other words, a 
sequence µ = (µ1, . . . , µk) of valuated matroids is a valuated flag matroid if and only if 
trop(µ1) ⊆ · · · ⊆ trop(µk).

Proof. By Theorem B.(iv), the projective tropical linear space trop(µ) is the tropical 
span of its valuated cocircuits C∗(µ). Hence, we have trop(µ) ⊂ trop(ν) if and only if 
C∗(µ) ⊂ trop(ν).

By Theorem B.(ii), the projective tropical linear space trop(ν) is cut out by its valu-
ated circuits:

trop(ν) :=
⋂

C∈C(ν)
trop




⊕

j′∈[n]
Cj′ ( xj′



 .
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The description of valuated circuits and cocircuits (Definition 3.1.5) implies that C∗(µ) ⊆
trop(ν) if and only if the minimum in

{
Cν(J ′)j′ + C∗

µ(I ′)j′
}
j′∈[n] = {ν(J ′ \ j′) ( µ(I ′ ∪ j′)}j′∈[n]

is attained at least twice for each I ′ ∈
( [n]
r−1

)
and J ′ ∈

( [n]
s+1

)
. Removing the terms that 

are ∞ on the right hand side, this is the same as saying that the minimum in

{µ(I ′ ∪ j′) ( ν(J ′ \ j′)}j′∈J ′\I′

is attained at least twice for every I ′ and J ′, which is exactly the condition defined by 
the tropical incidence-Plücker relations (IP). !

This proof closely mirrors that of [19, Theorem 1], where Theorem 4.3.1 was proved 
for loopless matroids. We list some properties of valuated matroid quotients that follow 
from Theorem 4.3.1.

Corollary 4.3.2. Let µ, ν, ξ be valuated matroids on [n].

(1) A composition of valuated matroid quotients is a valuated matroid quotient. That is, 
if µ " ν and ν " ξ then µ " ξ.

(2) If µ ! ν, then µ/S ! ν/S and µ\S ! ν\S for any subset S ⊆ [n].
(3) For any S ⊂ [n], we have µ/S ! µ\S.
(4) The underlying matroids M and N of µ and ν (respectively) satisfy M ! N if 

µ ! ν.

Proof. (1) is immediate from Theorem 4.3.1. For (2), the two statements are duals of 
each other since µ ! ν if and only if ν∗ ! µ∗, so we only need show µ/S " ν/S, 
which follows from Theorem 4.3.1 and Theorem B.(i). For (3), note that C∗(µ/S) =
C(µ∗\S) ⊆ C(µ∗/S) = C∗(µ\S) by Theorem 3.1.6, and then combine Theorem 4.3.1 with 
Theorem B.(iv). For (4), again from Theorem 4.3.1 and Theorem B.(iv), we have that 
the valuated cocircuits C∗(µ) are in the tropical span of C∗(ν). Considering the supports 
of these as elements in T [n], we have that every cocircuit of M is a union of cocircuits 
of N . Hence, we have N∗ ! M∗, or equivalently, M ! N . !

Remark 4.3.3. The results here about valuated matroid quotients generalize to matroid 
morphisms (see [12]) in the following way. For a map of finite sets ϕ : [n] → [m] and 
M a matroid of rank r on [m], define a matroid ϕ−1M on [n] by B(ϕ−1M) := {B ∈([n]

r

)
| ϕ(B) ∈ B(M)}. If µ is a valuated matroid on M , then ϕ−1µ : B 4→ µ(ϕ(B)) is a 

valuated matroid on ϕ−1M . A valuated matroid morphism ν → µ consists of valuated 
matroids ν, µ on [n], [m] (respectively) and a map ϕ : [n] → [m] such that ν " ϕ−1(µ). 
By Theorem 4.3.1, this is equivalent to saying that the following diagram commutes
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trop(µ) trop(ν)

P (T [m]) P (T [n]),
tropϕ

(‡)

where tropϕ : P (T [m]) → P (T [n]) is given by (uj)j∈[m] 4→ (uϕ(i))i∈[n]. The diagram (‡)
mirrors the diagram defining realizable matroid morphisms [12, Remark 2.1]. The map 
trop(µ) → trop(ν) in (‡) is a tropical morphism in the sense of [23].

4.4. Flag matroidal subdivisions of base polytopes

We now come to subdivisions of base configurations of flag matroids. Let M be a flag 
matroid.

Definition 4.4.1. A subdivision of the base configuration B(M) is flag matroidal if each 
face of the subdivision is a base configuration of a flag matroid. A subdivision of the 
base polytope Q(M) is flag matroidal if each face of the subdivision is a base polytope 
of a flag matroid.

A flag matroidal subdivision of B(M) is necessarily mixed, and gives a flag matroidal 
subdivision of Q(M). In general one cannot recover the subdivision of a point configura-
tion A from the resulting polyhedral subdivision of Conv(A). But in this case, since one 
can recover the constituent matroids M1, . . . , Mk of a flag matroid M from the data of 
its base polytope Q(M) alone, a flag matroidal subdivision of the base polytope Q(M)
determines a subdivision of the base configuration B(M). We now prove (b) =⇒ (c) in 
Theorem A.

Theorem 4.4.2. Let µ = (µ1, . . . , µk) be a valuated flag matroid with underlying flag 
matroid M = (M1, . . . , Mk). Regard each µi as a weighted point configuration on B(Mi). 
Then, their Minkowski sum 

∑k
i=1 µi, which is a weight on the base configuration B(M), 

induces a flag matroidal subdivision of B(M).

Proof. We begin by making the following observations for valuated matroids µ and ν
with underlying matroids M and N (respectively). Both observations are straightforward 
to verify.

• Fix u ∈ R[n], and consider a new weight µ′ defined by

µ′(I) := µ(I) + 〈u, eI〉 for I ∈ B(M),

and similarly define ν′. Then µ ! ν if and only if µ′ ! ν′.
• Let r be the rank of M . Define a new weight µmin :

([n]
r

)
→ R by µmin(I) = min(µ)

if µ(I) = min(µ) and ∞ otherwise, which is a (valuated) matroid also known as the 
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initial matroid of µ (see [25, Definition 4.2.7] and [8, Definition 2.1]). Similarly define 
νmin. Then µ ! ν implies µmin ! νmin. In particular, by Corollary 4.3.2.(4), the 
underlying matroids of µmin and νmin form a matroid quotient if µ ! ν.

Now, fix an arbitrary u ∈ R[n] and consider the face ∆u∑k
i=1 µi

of the subdivision of B(M). 
By Lemma 2.2.6, this face is the Minkowski sum 

∑k
i=1 ∆u

µi
. By Lemma 2.2.4 and the 

first observation above, we may assume that u = 0. In this case, each face ∆0
µi

is the 
underlying matroid of (µi)min, and the second observation thus implies that the faces 
form a flag matroid. !

The following theorem proves (c) =⇒ (d) in Theorem A. The characterization in 
Theorem B.(iii) plays a fundamental role here.

Theorem 4.4.3. Let M = (M1, . . . , Mk) be a flag matroid on [n], and let w be a weight 
on the base configuration B(M). Suppose the coherent subdivision ∆w is flag matroidal, 
and let µ1, . . . , µk be any weights on B(M1), . . . , B(Mk) satisfying ∆w = ∆∑k

i=1 µi
. Then 

µ1, . . . , µk are valuated matroids, and they satisfy trop(µ1) ⊆ · · · ⊆ trop(µk).

Lemma 4.4.4. Let M = (M1, . . . , Mk) be a flag matroid on [n]. If Mi is loopless, then so 
are Mj for any 1 ≤ i < j ≤ k. Equivalently, if M∗

i is coloopless, then so are M∗
j for any 

1 ≤ i < j ≤ k.

Proof. The definition of matroid quotients by rank functions implies that if an element 
l ∈ [n] satisfies rkMj (l) = 0, then rkMi(l) = 0 also for all 1 ≤ i < j ≤ k. !

Proof of Theorem 4.4.3. By Lemma 2.2.6, for every u ∈ R[n]/R1 the face ∆u
w = ∆u∑k

i=1 µi

is the Minkowski sum 
∑s

i=1 ∆u
µi

. Since ∆w is flag matroidal, in particular each face of ∆w

is a Minkowski sum of base polytopes of matroids. In other words, for each 1 ≤ i ≤ k the 
face ∆u

µi
is a base polytope of a matroid. Thus, each ∆µi is a subdivision of B(Mi) whose 

faces are all also matroids. Thus, by the equivalence of (a) and (c) in Theorem 3.1.3, 
each µi is a valuated matroid.

We will apply Theorem B.(iii) to prove the rest of the theorem. In preparation, we 
first note that for a matroid M , one has Q(M∗) = −Q(M) +1. Hence, if µ is a valuated 
matroid, then the map ∆µ → ∆µ∗ defined by F 4→ −F + 1 is a bijection. Therefore, 
the duals µ∗

1, . . . , µ
∗
k induce a flag matroidal subdivision ∆∑k

i=1 µ∗
i

of the flag matroid 
base polytope of (M∗

k , . . . , M
∗
1 ), because its faces are in bijection with the faces of ∆w

by F 4→ −F + k1.
Now, let u ∈ P (T [n]), and let S ⊆ [n] be the subset such that u ∈ TS . Write u =

u′×∞[n]\S . Combining Lemma 2.3.4 and Lemma 2.3.7 implies that for some u′′ ∈ R[n]\S , 
we have ∆u′×u′′

µ∗
i

= ∆u′

µ∗
i |S

× ∆u′′

µ∗
i /S

, and thus Theorem 4.1.5.(2) implies that ∆∑k
i=1 µ∗

i |S
is a flag matroidal subdivision. Theorem 2.3.8 therefore implies that the sequence of 
faces (∆u

µ∗
1
, . . . , ∆u

µ∗
k
) form the dual of a flag matroid, that is, (∆u

µ∗
k
, . . . , ∆u

µ∗
1
) is a flag 
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Fig. 4. The flag Dressian FlDr(U1,2;4).

Fig. 5. The base polytope of the flag matroid (U1,2;4).

matroid. By Lemma 4.4.4, if the matroid of ∆u
µ∗
i

is coloopless for some 1 ≤ i ≤ k, then 
so are ∆u

µ∗
j

for any 1 ≤ i < j ≤ k. The desired inclusion trop(µi) ⊆ trop(µj) for all 
1 ≤ i < j ≤ k now follows from Theorem B.(iii), which states that trop(µi) = {u ∈
P (T [n]) | matroid of ∆u

µ∗
i

is coloopless}. !

We have now proven Theorem A. The equivalence (a) ⇐⇒ (c) states that a mixed 
coherent subdivision of a base configuration of a flag matroid is flag matroidal if and only 
if the weights form a valuated flag matroid. One can further ask whether all coherent flag 
matroidal subdivisions arise in this way. Combining Theorems 2.2.9 and 4.4.3 implies 
the following.

Corollary 4.4.5. Every coherent flag matroidal subdivision of a base polytope of a flag 
matroid arises from a valuated flag matroid.

We now feature an extended illustration of Theorem A.

Example 4.4.6. Consider the tropical prevariety of Fl(1, 2; 4), the (closure of) the flag 
Dressian of the flag matroid U1,2;4 := (U1,4, U2,4). Compare this example to [25, Example 
4.3.19].

We embed the variety Fl(1, 2; 4) inside P 5 × P 3, where the first factor has Plücker 
coordinates Pij while the second factor has Plücker coordinates Pi for i, j = 1, . . . , 4 and 
i < j. The equations defining FlDr(1, 2; 4) in this embedding are given by
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Fig. 6. The subdivisions of Q(U1,2;4) induced by points in the flag Dressian FlDr(U1,2;4). The colors 
correspond to which points in FlDr(U1,2;4) induce that subdivision, see Fig. 4. Each is displayed with the 
corresponding flag of a tropical point in a tropical line, and dually the tropical line in a tropical plane.

〈P14P23 − P13P24 + P12P34, P4P23 − P3P24 + P2P34, P4P13 − P3P14 + P1P34,

P4P12 − P2P14 + P1P24, P3P12 − P2P13 + P1P23〉.

We compute the tropical prevariety defined by these equations to obtain (the affine cone 
of) the flag Dressian FlDr(U1,2;4) using the command tropicalintersection in the 
software gfan [22]. In its 10 dimensional ambient space, the affine cone of FlDr(U1,2;4)
is a pure simplicial fan of dimension 7 with a 5 dimensional lineality space. Modulo its 
lineality space, it consists of 10 rays and 15 two-dimensional cones. Intersected with the 
sphere, we obtain Fig. 4. This is also Dr(2; 5), in agreement with F̂ lDr(1, 2; 4) = D̂r(2; 5)
as we will see in Corollary 5.1.5.

The base polytope Q(U1,2;4) is the truncated tetrahedron, pictured in Fig. 5. This 
is the orbit polytope Conv

{
g · (1, 2, 0, 0) ⊂ R4 : g ∈ S4

}
. The subdivisions induced on 

Q(U1,2;4) by points in FlDr(U1,2;4) come in five types, as indicated in Fig. 6. These 
correspond to the colored edges and vertices in Fig. 4. By Theorem A these are the 
subdivisions of Q(U1,2;4) into flag matroid polytopes. We display each subdivision with 
the corresponding flag of tropical linear spaces.

5. Realizability

We now give an application of Theorem A to realizability. In Example 4.4.6 we saw 
that the flag Dressian FlDr(1, 2; 4) is the Petersen graph, which is the same as the 
Dressian Dr(2; 5). In Theorem 5.1.2, we explain this equality. In Theorem 5.2.1 we 
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see that every valuated flag matroid on ground set of size at most 5 is realizable. We 
conclude with two examples. The first gives an interpretation of the tropicalization of 
the complete flag Fl(1, 2, 3; 4) as parameterizing two points in a tropical line. The second 
gives an example of non-realizability for a flag matroid on 6 elements.

5.1. Relating Dressians and flag Dressians

We begin by recalling a classical fact about matroid quotients with rank difference 1. 
See [28, §7.3] for a proof.

Proposition 5.1.1. Let M ′ ! M be a matroid quotient on [n] where the ranks of M ′ and 
M differ by 1. Let [ñ] := {0, 1, . . . , n}. Then the collection of subsets of [ñ]

B(M̃) := {I ′ ∪ 0 | I ′ ∈ B(M ′)} ∪ B(M)

is a set of bases of a matroid M̃ on [ñ]. The matroid M̃ is the unique matroid on [ñ]
satisfying M ′ = M̃/0 and M = M̃\0.

We extend this fact to valuated matroid quotients with rank difference 1. Let us first 
consider the following partially defined map

P (T ( [ñ]
r+1)) ##$ P (T ([n]

r )) × P (T ( [n]
r+1)) defined by (uI)I∈( [ñ]

r+1) 4→ (uI\0)I00 × (uI)I /00.

This map is well-defined on the set

Ω(r + 1; ñ) :=
{

u ∈ P
(
k( [ñ]

r+1))
∣∣∣∣∣

uI 2= ∞ for some I ∈
( [ñ]
r+1

)
with I ; 0,

and uJ 2= ∞ for some J ∈
( [ñ]
r+1

)
with J /; 0

}
.

If µ̃ is a valuated matroid on [ñ] for which the map is well-defined, then its image under 
the map is the product of the two valuated matroids µ/0 and µ\0 on [n], which form 
a valuated matroid quotient by Corollary 4.3.2.(3). The following theorem generalizes 
Proposition 5.1.1 by showing that every valuated matroid quotient of rank difference 1 
arises in this way.

Theorem 5.1.2. Consider the Dressian Dr(r + 1; n + 1) as a subset of P (T ( [ñ]
r+1)). The 

map

Ω(r + 1; ñ) ∩Dr(r + 1;n + 1) → FlDr(r, r + 1;n)

induced by the partially defined map P (T ( [ñ]
r+1)) ##$ P (T ([n]

r )) × P (T ( [n]
r+1)) is surjective, 

and the fiber over a point (µ′, µ) ∈ FlDr(r, r + 1; n) is

{(a( µ′ ⊕ b( µ) ∈ Dr(r + 1;n + 1) | a, b ∈ R} 8 R2/R(1, 1),
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where µ′ and µ are considered as elements of P (T ( [ñ]
r+1)) by

µ′(I) =
{
µ′(I \ 0) if I ; 0
∞ otherwise

and µ(J) =
{
µ(J) if J /; 0
∞ otherwise.

Proof. We have established that the map is well-defined: it sends a point of Dr(r+1; n +1)
to a point of Fl(r, r+1; n) by Corollary 4.3.2.(3). Consider the fiber over a point (µ′, µ) ∈
FlDr(r, r + 1; n), and write (M ′, M) for the underlying flag matroid. Let M̃ be the 
matroid on [ñ] given by Proposition 5.1.1. For any a, b ∈ R, we need to show that 
µ̃ :

( [ñ]
r+1

)
→ T defined by

µ̃(I) :=
{
a + µ′(I \ 0) if I ; 0
b + µ(I) if I /; 0

is a valuated matroid. By the equivalence of (b) and (c) in Theorem 3.1.3, it suffices to 
show that the induced subdivision ∆µ̃ of the base polytope Q(M̃) consists only of base 
polytopes of matroids.

The base polytope Q(M̃) ⊂ R[ñ] = R × R[n] is the convex hull of {e0} ×Q(M ′) and 
{0} × Q(M), so it is equivalent to the Cayley polytope of Q(M ′) and Q(M). Thus, by 
the Cayley trick [9, Theorem 9.2.16], the faces of the subdivision ∆µ̃ of Q(M̃) are in 
bijection with the faces of the subdivision ∆(a+µ′)+(b+µ) of B(M ′) +B(M). The subdivi-
sions ∆(a+µ′)+(b+µ) and ∆µ′+µ are the same, and by Theorem 4.4.2 each face of ∆µ′+µ

is a Minkowski sum of base polytopes of two matroids that form a matroid quotient. 
Hence, we conclude from Proposition 5.1.1 that each face of ∆µ̃ is a base polytope of a 
matroid. !

Theorem 5.1.2 is a tropical analogue of the following geometry.

Remark 5.1.3. Let [ñ] := {0, 1, . . . , n}, and let {PI | I ∈
( [ñ]
r+1

)
} be the Plücker coordi-

nates of the embedding Gr(r + 1; n + 1) ↪→ P (k( [ñ]
r+1)). Consider the rational map

P (k( [ñ]
r+1)) ##$ P (k([n]

r )) × P (k( [n]
r+1)) where (PI)I∈( [ñ]

r+1) 4→ (PI\0)I00 × (PI)I /00.

With Fl(r, r+1; n) embedded in P (k([n]
r )) ×P (k( [n]

r+1)), this gives a rational map Gr(r+
1, n + 1) ##$ Fl(r, r + 1; n). The fiber over a point (PI′) × (PJ) ∈ Fl(r, r + 1; n) is

{(aPI′∪0, bPJ) ∈ Gr(r + 1;n + 1) | a, b ∈ k∗} 8 (k∗)2/k∗,

so that the map is a k∗-fibration. Theorem 5.1.2 shows that a similar map in the tropical 
setting is an R-fibration.

Theorem 5.1.2 relates Dressians and flag Dressians by their affine cones.
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Definition 5.1.4. The affine cone of a projective tropical prevariety X ⊂ P (TE) is

X̂ :=
{
u ∈ TE \ {∞E} | u ∈ X

}
∪ {∞E}.

Affine cones of multi-projective tropical prevarieties are similarly defined.

Corollary 5.1.5. Under the identification T (n+1
r+1) 8 T (nr)×T ( n

r+1), the affine cones D̂r(r+
1; n + 1) and F̂ lDr(r, r + 1; n) of Dr(r + 1; n + 1) and FlDr(r, r + 1; n) are identical.

Proof. Let (µ′, µ) ∈ T (nr) × T ( n
r+1). First consider the case where µ′ = ∞(nr) or µ =

∞( n
r+1). Then (µ′, µ) ∈ F̂ lDr(r, r + 1; n) if and only if µ is a valuated matroid of rank 

r + 1 on n + 1 elements where the element 0 is a loop (or respectively, µ′ as a valuated 
matroid where 0 is a coloop). In other words (µ′, µ) ∈ F̂ lDr(r, r + 1; n) is equivalent to 
(µ′, µ) ∈ D̂r(r + 1; n + 1) in this case.

If neither of µ′ and µ is an all-∞ vector, then Theorem 5.1.2 implies that

(µ′, µ) ∈ F̂ lDr(r, r + 1;n) =⇒ (µ′, µ) ∈ D̂r(r + 1;n + 1),

and Corollary 4.3.2.(3) implies that (µ′, µ) ∈ Dr(r+1; n +1) =⇒ (µ′, µ) ∈ F̂ lDr(r, r+
1; n). !

When r = 1, Corollary 5.1.5 follows from observing that the collections of tropi-
cal Plücker relations that define Dr(2; n + 1) and Fl(1, 2; n) are identical after simply 
renaming the variables Pi ∈ P (T ([n]

1 )) to Pi∪0. This observation however fails for r > 1.

5.2. Realizability for small ground sets

We compare the tropicalization of a partial flag variety and a flag Dressian in this 
subsection. Due to the nature of this subsection, we use the contents of the geometric 
Remarks 2.1.7, 2.1.8, 3.1.7, 4.2.5, and 4.2.6.

A non-realizable valuated flag matroid corresponds to a point on the flag Dressian 
that does not lie in the tropicalization of the partial flag variety over any valued field k
(Remark 4.2.6). Realizability of a valuated flag matroid can be subtle. In Example 5.2.4, 
we give a valuated flag matroid (µ′, µ) that is not realizable, but its underlying flag 
matroid is realizable, and both valuated matroids µ′ and µ are realizable over a common 
field. For small ground sets realizability is guaranteed.

Theorem 5.2.1. For n ≤ 5, the tropicalization trop(Fl(r1, . . . , rs; n)) of a flag variety 

Fl(r1, . . . , rs; n) embedded in P (k(E
r1

)) × · · · × P (k(E
rs

)) is equal to the flag Dressian 
FlDr(r1, . . . , rs; n). Equivalently, for a valued field k satisfying val(k) = T , every valu-
ated flag matroid on a ground set of size at most 5 is realizable over k.



36 M. Brandt et al. / Advances in Mathematics 384 (2021) 107695

A valued field k satisfying val(k) = T exists in every characteristic; see [29, §3]
for an example known as Mal’cev-Neumann rings. Theorem 5.2.1 fails for n ≥ 6; see 
Example 5.2.4. We prepare the proof of the theorem with a lemma.

Lemma 5.2.2. Let k be a valued field, and write Γ := val(k) ⊆ T . Suppose µ =
(µ1, µ2, . . . , µk) is a valuated flag matroid on [n] with rk(µ1) = 1 such that (µ2, . . . , µk)
is realizable over k, and µ1 as an element of T ([n]

1 ) has coordinates in Γ. Then µ is 
realizable over k. By duality, if µ = (µ1, µ2, . . . , µk) is a valuated flag matroid such that 
(µ1, . . . , µk−1) is realizable over k and rk(µk) = n − 1, then µ is also realizable over k
when µk ∈ Γ( [n]

n−1).

Proof. Let a flag L2 ⊂ · · · ⊂ Lk ⊂ kE be a realization of (µ2, . . . , µk). We need to 
show that there exists a one-dimensional space L1, that is, a point in P (kE), such that 
L1 ⊂ L2 and trop(µ1) = trop(L1). But since rk(µ1) = 1, the space trop(µ1) is a single 
point, which by Theorem 4.3.1 is on trop(µ2) = trop(L2). By the lifting property in the 
Fundamental Theorem of Tropical Geometry [25, Theorem 3.2.3, Theorem 6.2.15], there 
exists a point p1 ∈ P (L2) ⊂ P (kE) with trop(p1) = trop(µ1). !

Proof of Theorem 5.2.1. We first note some previous results:

• One has trop(Gr(1; n)) = Dr(1; n) = P (TE), and dually, trop(Gr(n −1; n)) = Dr(n −
1; n).

• For any n, one has trop(Gr(2; n)) = Dr(2; n), and dually, trop(Gr(n −2; n)) = Dr(n −
2; n) [25, Corollary 4.3.12].

• One has trop(Gr(3; 6)) = Dr(3; 6) [25, Example 4.4.10].

By Theorem 5.1.2, the desired statement thus holds for Fl(1, 2; n), its dual Fl(n −2, n −
1; n), and Fl(2, 3; 5). The rest of the cases for n ≤ 5 then follow from Lemma 5.2.2. !

Example 5.2.3. Let Fl4 := Fl(1, 2, 3; 4), and denote by F̊ l4 the very affine vari-
ety obtained as the intersection of Fl4 embedded in P 3 × P 5 × P 3 with the torus 
(k∗)4/k∗ × (k∗)6/k∗ × (k∗)4/k∗. The f -vector of its tropicalization trop(F̊ l4), with 
the Gröbner complex for its polyhedral complex structure, was computed in [6] to be 
(1, 20, 79, 78) with the aid of a computer. We now give an explicit description of the 
combinatorial structure of trop(F̊ l4).

By Theorem 5.2.1, we have that trop(F̊ l4) = FlDr(U1,2,3;4) where U1,2,3;4 =
(U1,4, U2,4, U3,4). If µ is a valuated matroid whose underlying matroid is U2,4, then 
trop(µ) is a translate of trop(µ∗). Thus, by Theorem 4.3.1, one can identify the space 
FlDr(U1,2,3;4) as the parameter space of two labeled points on a tropical line. Using this, 
we completely describe the polyhedral complex structure of trop(F̊ l4) = FlDr(U1,2,3;4)
in Figs. 7 and 8. The pictorial representations of the maximal cells in [6, Fig. 2] are 
related to but different from ours.
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Fig. 7. The origin, 20 rays, and 79 edges of FlDr(U1,2,3;4).

Fig. 8. The 78 2-cells of FlDr(U1,2,3;4). 78 is also 3 · 52 + 3 (three kinds of tropical lines, each with five 
1-cells, plus 3 from the subdivided squares).

The next example highlights the subtleties of realizability. In light of Theorem 5.1.2, 
the example below is closely related to [25, Example 4.3.14].

Example 5.2.4. Consider the flag matroid M = (U2,6, M4) pictured in Fig. 9. The matroid 
M4 is the rank 3 matroid on E = {1, . . . , 6} with circuit hyperplanes {124, 135, 236, 456}. 
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Fig. 9. The flag matroid considered in Example 5.2.4.

Fig. 10. The Dressian of the flag matroid in Example 5.2.4.

The affine cone of the flag Dressian FlDr(M) is a 10 dimensional fan, with a 7 dimen-
sional lineality space. Modulo lineality and intersecting with a sphere, it has 13 rays, 21 
edges, and one triangle, depicted in Fig. 10. In Fig. 10, rays are labeled with the tree 
given by the U2,6 coordinates. The green edges in the graph correspond to points where 
the corresponding tree is a caterpillar, and the purple points give snowflake trees. The 
triangle is glued to the pink, blue, and yellow vertices as indicated.
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Fig. 11. The dual matroid to M4 is pictured in black. The red line must be realizable to produce the trees 
appearing in the interior of the triangle in Fig. 10.

Let V ⊂ Fl(2, 3; 6) be the space of realizations of (M4, U2,6). The affine cone of this 
subvariety V of Fl(2, 3; 6) has dimension 9, but the affine cone of the flag Dressian 
FlDr(M) has dimension 10. Since dim trop(V ) = dimV [25, Theorem 3.3.8], the flag 
Dressian FlDr(M) must strictly contain trop(V ). Indeed, the tropicalization trop(V )
when k has characteristic 0 consists of all zero and one dimensional cells in Fig. 10; 
the interior of the single triangle is removed. Over characteristic 2, some points in the 
interior of the triangle may be on trop(V ), but not the entire triangle.

Let us understand the non-realizable points in the interior of this triangle in more 
detail when k has characteristic 0. The Dressians for U2,6 and M4 are each tropical 
varieties, meaning that every point w in each of their Dressians can be realized as vectors 
over k whose Plücker coordinates valuate to w. So, the points in the interior of the 
triangle in FlDr(M) correspond to two realizable valuated matroids that fail to form a 
realizable valuated matroid quotient.

We see why it is not possible to realize these points as follows. Points on the interior of 
the triangle correspond to snowflake trees with pairs {2, 5}, {1, 6}, and {3, 4}. In order 
to realize this over k, we would need to make a configuration as in Fig. 9 such that 
over the residue field, the projections of the points {2, 5} coincide, the projections of the 
points {1, 6} coincide, and the projections of the points {3, 4} coincide. The dual picture 
is shown in Fig. 11. In order to realize the desired snowflake, we need to find a line that 
intersects the six lines pictured at each of the points of intersection of the lines 2 and 5, 
1 and 6, and 3 and 4. This is only possible over fields of characteristic 2, where the Fano 
plane is realizable.
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