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all valuated flag matroids on ground set up to size 5 are
realizable, and give an example where this fails for a flag
matroid on 6 elements.
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1. Introduction

The Grassmannian Gr(r;n) over a field k parameterizes r-dimensional linear sub-

spaces in k", or equivalently, realizations of matroids of rank r on the ground set
[n] ={1,...,n}. It can be embedded in IP’(E{([:])), where it is cut out by the quadratic
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Grassmann-Pliicker relations. For a fixed matroid M, one can modify the Grassmann-
Plicker relations to cut out only the points in the Grassmannian realizing M. The
tropical prevariety of these equations is the Dressian of M, denoted Dr(M), which was
introduced in [20]. The Dressian of a loopless matroid M has multiple interpretations as

(a) the tropical prevariety of (modified) Grassmann-Pliicker relations,

(b) the set of all valuated matroids with underlying matroid M [10],

(c) the weight vectors inducing a matroidal subdivision of the base polytope of M [33],
or

(d) the parameter space of all tropical linear spaces given by M [33].

The (partial) flag variety Fl(rq,...,rs;n) parameterizes flags of linear spaces L1 C

. C L, in kI"l where dimy (L;) = r;. A point on Fl(ry,...,rg;n) corresponds to a
realization of a flag matroid, which is a sequence of matroids M = (M,..., My) of
ranks (ri,...,7%) on [n] such that every circuit of M; is a union of circuits of M; for all
1 < i < j < k. Flag matroids are the Coxeter matroids of type A [5]. The flag variety
Fl(r1,...,7r,;n) can be embedded in P (]k([:i])) X x P (]k([%])), where it is cut out by the
quadratic incidence-Pliicker relations (see Equation (IP)) in addition to the Grassmann-
Pliicker relations. For a fixed flag matroid M, one can modify these relations to cut out
only the points in the flag variety which realize M. We define the flag Dressian of M,
denoted FiDr(M), as the tropical prevariety of these equations, and establish several
characterizations.

Theorem A. Let pp = (u1,...,ur) be a sequence of valuated matroids such that its se-
quence of underlying matroids M = (M, ..., My) is a flag matroid. Then the following
are equivalent:

(a) p is a point on FIDr(M), i.e. it satisfies tropical incidence-Pliicker relations,

(b) w is a valuated flag matroid with underlying flag matroid M,

(¢) p induces a subdivision of the base polytope of M into base polytopes of flag matroids,
and

(d) the projective tropical linear spaces trop(u;) form a flag trop(ui) C - - C trop(ug)

The concepts appearing here are introduced in Definition /.2.1 for (a), Definition /.2.2
for (b), Definition 4.1.4 for (¢), and Theorem B.(i) for (d).

Example 1.0.1. Consider the flag matroid Uy 34 = (U14,Us4) consisting of uniform
matroids on 4 elements. Its flag Dressian of U1 3.4, denoted FIDr(U 3.4), is

(a) the tropical prevariety of the flag variety FI(1,3;4) embedded in P (Ik(?)) x P (E{(g))
by the single equation pip234 — papi134 + P3p124 — PaP123,
(b) the valuations on Uy 4 and Us 4 making (U; 4,Us 4) a valuated flag matroid,
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Fig. 1. Base polytope subdivisions and their tropical flags for (Uy,4,Us 4).

(c) the space parameterizing weights that induce flag matroidal subdivisions of the base
polytope of (Ui 4,Us4), which is the cuboctohedron Conv (0(1,1,2,0) | o € Sy) C
R*, and

(d) the space parameterizing the data of a (tropical) point on a tropical plane.

It is a pure simplicial fan in R() /R1 x RG) /R1 of dimension 5 with a 3 dimensional lin-

eality space. The 3 dimensional lineality space corresponds to the 3 dimensional freedom

of selecting the location of the vertex of the tropical plane. Modulo the lineality space,

it consists of 4 rays and 6 two-dimensional cones, as does a tropical plane in 3-space.

Up to combinatorial equivalence, there are two types of nontrivial subdivisions of the

cuboctohedron into smaller flag matroid polytopes, with the corresponding data of a

point in a tropical plane as indicated in Fig. 1. For more examples, see Figs. 6, 7, and 8.

A fundamental tool in our proof of Theorem A is the notion of projective tropical
linear spaces. The usual tropical linear spaces are defined only for matroids without
loops, which is a harmless restriction in studying matroids, but not in studying flag
matroids (Remark 4.1.6). In order to treat matroids with and without loops consistently,
we introduce projective tropical linear spaces, which have previously appeared in the
literature in various guises (Remark 3.2.6). We collect their characterizations, adding two
new ones ((iii) and (v)) to this list (Theorem B). See §2.1 for terminology in projective
tropical geometry, and §3.1 for terminology concerning valuated matroids.

Theorem B. Let 1 be a valuated matroid on a ground set [n]. Let £ C [n] be the set of
loops of its underlying matroid. The following sets in the tropical projective space P(T [”])
coincide:

(i) The projective tropical linear space, defined as

wop(u) = | (trop(/s) x {oc}*) € P(TI),
0CS<C[n]
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(ii) The projective tropical prevariety of the valuated circuits of u, i.e.

ﬂ {ﬁ S P(’]I‘ ["]) the minimum is achieved at least twice among {CZ‘ + Ui}ie[n]} R

valuated
circuits C

(iii) The union of coloopless cells of the closure of the dual complex of u* in P(T M),
i.e.

{ﬁ € IP’(T["]) | Ag* is a base polytope of a coloopless matroid},

(iv) The tropical span of the valuated cocircuits of p, i.e.

the image in P(TM™) of C; € T a valuated cocircuit of p,
(a1 O0CH® (o CL) e T a, €R, V1<i<m ’

(v) The closure of trop(iu/e) x {00}’ inside P(TM).

We apply Theorem A to establish a relation between Dressians and flag Dressians,
and deduce a realizability result for valuated flag matroids. First, let us recall that the
Dressian Dr(r;n) is defined as the union of Dr(M) over all matroids M of rank r on
[n]. We define the flag Dressian FIDr(rq,...,r5;n) as the union of FIDr(M) over all
flag matroids M of rank (r1,...,rg) on [n].

Theorem 5.1.2 & Theorem 5.2.1. The natural isomorphism R([zill]) 5 R x ]R(r[i]l)
induces a surjective map from a subset of Dr(r+1;n+1) to FIDr(r,r+1;n), whose fiber
over each point is isomorphic to R. As a consequence, every valuated flag matroid on a
ground set of size <5 is realizable; the tropicalization of a flag variety Fl(ry,...,rg;n)
coincides with the flag Dressian FlDr(r1,...,rx;n) whenever n < 5.

The tropicalization of a flag variety may differ from the flag Dressian when n > 6.
See Example 5.2.4.

1.1. Previous works

In the unpublished manuscript [19], the author established (a) <= (d) in Theorem A
for loopless matroids.! In [25, §4.3], the flag Dressian FIDr(1,7;n) appeared implicitly as
the universal family over Dr(r;n). In [6], the authors computed the tropicalizations of the
full flag varieties F'I(1,2,3;4) and Fi(1,2,3,4;5) in order to compute toric degenerations.
In a related work [13], the authors identified some distinguished maximal cones in the
tropicalizations of full flag varieties to study PBW-degenerations. In [14, §5] and [15, §6],

L We also note an error in the proof of Proposition 3 of [19]: there can be many more sets I satisfying
TNS CICTUS than are considered. This nullifies his Lemma 2 and Theorem 2 on the convex hull of
the base polytopes of a matroid quotient.
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in order to describe the parameter space of matroids over valuation rings, the authors
studied the space of valuated flag matroids (u1,ue) of ranks (r,r + 1) given a fixed
valuated matroid po. In [21], the authors studied the same space as tropicalized Fano
schemes under the assumption that ps is realizable.

1.2. Organization

In §2, we review projective tropical geometry, dual complexes, and M-convex func-
tions. In §3, we review Dressians of matroids and prove Theorem B. In §4, after a review
of flag matroids, we introduce flag Dressians and prove Theorem A. In §5, we apply
Theorem A to relate Dressians and flag Dressians, and obtain a realizability result for
valuated flag matroids.

1.3. Notation

For a finite set E, we write {e; | i € E} for the standard basis of R¥, and denote
es = ,.ge; for subsets S C E. All-one-vectors (1,1,...,1) in appropriate coordinate
spaces are denoted 1. Let (-, ) be the standard inner product. We will follow the “min”
convention for all polyhedral operations, such as taking faces and coherent subdivisions.
Likewise, the tropical semifield T = R U {oo} is the min-plus algebra, with operations
a®b:=a+band a®b:=min{a,b}. The topology on T is the standard one that makes
T homeomorphic to (—oo, 0]. The field k is algebraically closed, with a (possibly trivial)
valuation val : k — T. Denote [n] = {1,...,n}. For 0 < r < n, the set of r-subsets of [n]
is denoted ([7]).

2. Preliminaries

In §2.1, we review tropical projective spaces and their products, since these are the
ambient spaces of Dressians, flag Dressians, and projective tropical linear spaces. In §2.2,
we review point configurations, dual complexes, and mixed subdivisions, since we will
need these notions to study mixed subdivisions of base polytopes of flag matroids in §4.4.
Our novel contribution here is Theorem 2.2.9 concerning coherence of mixed subdivisions.
In §2.3, we review M-convex functions because the structure of their dual complexes will
play a central role in the proof of Theorem B and Theorem 4.4.3. Theorem 2.3.8 explicitly
describes the closures of their dual complexes inside tropical projective spaces. Let E be
a finite set throughout.

2.1. Projective tropical geometry

We review projective tropical geometry, and explain the underlying algebraic geometry
in the remarks. See [25, Chapter 6] for a detailed treatment.
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Definition 2.1.1. Let E = [n]. The tropical projective space P(TF) is

P(T*) :=(T#\ {(c0,...,00)})/R1

={ueT?|u#(c0,...,00)}/ ~, where u~uif u’ = u+ cl for some ¢ € R.

For u = (u;)iep in RE or T, write U for its image in RE /R1 or P(T¥). The support
of u is supp(u) := {i € E | u; # oo}. For a nonempty subset S C E, denote by

Ts:={ueP(T*)|supp(u) = S5},

the image of R¥ x {c0}P\5 in P(TF). The set Ty = RF/R1 is the tropical projective
torus. By abuse of notation, we often identify R®/R1 with T, and P(T*) with the
closure of Ts in P(T*). The subsets {T’s}gc scp partition P(T*).

Remark 2.1.2. The space P(T¥) is the tropicalization of the projective space P (k?).
The projective space P(k¥) is a toric variety with the projective torus (k*)Z/k*. For
each nonempty subset S C E, the torus orbit Og := ((k*)® x {O}E\S)/]k* in P(k¥)
tropicalizes to be the stratum Ts of P(T¥). We often identify (k*)¥/k* with Og, and
P (k%) with the closure Og = {y € P(k”) | y; = 0if i ¢ S}. The orbits {Os}ocsce
partition the space P (k). See [25, §6.2] or [24, §3.2] for tropicalizations of toric varieties
in general.

Let A be a finite subset of Zgo. A tropical polynomial F' with support supp(F) = A
is

F = @c‘, O xOV.
veA

It represents the function T# — T, (2;)icp > minyea{cy + > icp Vi - ;}. Here, by
convention 0 @ co = 0 and a ® oo = oo if a # 0. We always assume that a tropical
polynomial F' is homogeneous; that is, there exists d € Z>o such that d = ), v; for
all v € supp(F).

Definition 2.1.3. Let F' be a tropical polynomial with support in Zgo. We define the
projective tropical hypersurface of F' to be

trop(F) := {ﬁ € P(TF) ‘ the minimum in {cv + Zvi ul}

ey vesupp(F)

is achieved at least twice}.

When {cy+ > i g Vi Ui }vesupp(F) = 100}, by convention the minimum in {cy +3 ;. p vi-
Ui }vesupp(F) 1S said to be achieved at least twice even if supp(F) is a single element. The
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Fig. 2. The projective tropical hypersurface from Example 2.1.4. The red line is where xg = x3 = oo and
the blue line is where x1 = zo = oo. (For interpretation of the colors in the figure(s), the reader is referred
to the web version of this article.)

set trop(F) is well-defined in P(T¥) because one may pass from TZ to P(T¥) by the
homogeneity of F.

Example 2.1.4. Let F' = 20 O 21 D29 O 22 D11 @ 3 D To O T3 = min(a?o + x1,%0 +
Tg, %1 4 3, T2 + 3). Then the projective tropical hypersurface trop(F) c P(T{%:12:3})
is as pictured in Fig. 2.

Suppose F' is multi-homogeneous; that is, there is a partition £ = [ |;c; F; and
integers {d;};es such that d; = Zz’eE,- v; for all j € J and v € supp(F'). Then the multi-
projective tropical hypersurface of F is defined analogously as a subset of [ | jed P (T ).

Definition 2.1.5. If F, ..., F; are tropical polynomials with supports in Zgo, we define
their projective tropical prevariety to be

!
trop(Fy,..., Fy) := m trop(F;) ¢ P(TF).
i=1

If there is a common partition S = | |;c; E; such that each F; is multi-homogeneous
in S, the multi-projective tropical prevariety is defined analogously as a subset of
11 jed P(T ¥3). Multi-projective tropical prevarieties are closed.

In §3, Dressians and projective tropical linear spaces are defined as projective tropical
prevarieties in P (T([Z])) and P(T[™), respectively. In §4, flag Dressians will be defined

. S . e Q) )
as multi-projective tropical prevarieties in P (T ! ) X oo X ]P’(T Tk )

Remark 2.1.6. The intersection trop(F)NTr C R /R1 is the usual tropical hypersurface
of a tropical polynomial F, and is denoted trop(F). More generally, for a nonempty
subset S C E, consider the intersection trop(F) N Ts as a subset of RS/R1. Then it is
equal to trop(Fys), where Fyg is the tropical polynomial obtained from F by keeping only
the terms with exponent supports in Z2 . The set trop(F) is the closure of trop(F) in
P(TE) when F has no nontrivial monomial factors, i.e. there is no 0 # v/ € Z%, such
that v — v/ € ZEZ for all v € supp(F). -
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We now give the underlying algebraic geometry. See [25, §6.2] for proofs of statements.

Remark 2.1.7. Let val : k — T be a (possibly trivial) valuation on k. Let Y = V(f) C
P (k%) be a projective subvariety defined by a homogeneous polynomial

f= Z cvx¥ € K[z, | i € E] (all but finitely many ¢, are zero).

vezZk,

The projective tropicalization of Y, denoted trop(Y), is the set trop(f'°P) where

frror = @ val(cy) © xOV.

vesupp(f)

If f =0, then trop(Y) = P(T¥). Recall the notation Og = ((k*)® x {0}%)/k* for a
nonempty subset S C E. For Y := Y NOg a subvariety of the projective torus (k*)® /k*,
the usual tropical hypersurface trop(f™°P) C RY/R1 is the usual tropicalization of Y,
denoted trop(f/). More generally, consider Ys:=YnN Og, regarded as a subvariety in
(k*)% /k*. Then trop(Ys) is equal to trop(Y) N T, regarded as a subset of RS/R1. The
set trop(Y) is the closure of trop(Y) in P(T#) when Y is the closure of ¥ in P (kZ).

Remark 2.1.8. Suppose now that Y C P(k”) is a projective subvariety defined by a
homogeneous ideal I C k[z; | i € S C E]. The projective tropicalization of Y is defined
as

trop(Y) := () trop(f"°?),
fel

which is a finite intersection for a suitable choice of generators of I, and hence trop(Y))
is a projective tropical prevariety. As in the hypersurface case (Remark 2.1.7), the usual
tropicalization of Y = Y N Op is trop(}o/) = ﬂfel trop(ftr°P). For a nonempty subset
S C E, we have trop(Y) N Ts = trop(Ys) where Yg := ¥ N Og. The set trop(Y) is the
closure of trop(f/) when Y the closure of Y in P(K®). If I is principal, generated by f, then
trop(Y) = trop(f*°P), but in general, the set trop(Y’) may not equal ﬂézl trop(f;"°?)
for an arbitrary generating set {f1,..., fi} of I.

2.2. Point configurations, dual complexes, and mized subdivisions

We review point configurations, dual complexes of their coherent subdivisions, and
mixed subdivisions. Point configurations, which generalize the notion of subsets of points,
are necessary for discussing mixed subdivisions. See [9] for a detailed treatment of subdi-
visions of point configurations. Our novel contribution here is Theorem 2.2.9 concerning
mixed coherent subdivisions.
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Definition 2.2.1. Let A be a finite index set. A point configuration (A, a) in R” is a map
a(y : A— RF. In other words, it is a finite set of points {a; € R¥ : i € A} labeled by
the set A, where some points may have multiple labels.

We often abbreviate (A,a) to A when the map a is understood. For A C RE a finite
subset, we write A also for the point configuration (A, s +— s). For @ a lattice polytope
in R?, we write @ for the point configuration of its lattice points. We write Conv(.A) for
the polytope Conv(a; | i € A) C RE.

Assumption. The point configuration A is always integral, i.e. the image {a;};c4 lies in
Z¥ | and it is homogeneous, i.e. there exists d € Z such that d = (eg,a;) for all i € A,

where ep = ). p €.

For a point configuration (A, a), a subset A" C A defines a subconfiguration (A’, a| 4/).
In particular, a vector @ € R¥ /R1 defines a subconfiguration A% by

A% = {z €Al (u,a;) = %i£<u,aj>} .

This does not depend on the choice of the representative u of W because A is homo-
geneous. A subconfiguration F C A arising in this way is called a face of A, denoted

F<A
Definition 2.2.2. A collection A of subconfigurations of A is a subdivision of A if

(1) for all F € A and 7' < F, one has F' € A, and

(2) the set of polytopes {Conv(F)}rea forms a polyhedral subdivision of Conv(A). So,
we have [J{Conv(F)}rea = Conv(A), and for any F; # Fa € A, the intersection
Conv(F7) N Conv(Fz) of Conv(F;) and Conv(Fs) is a proper face of each.

The elements F € A are called the faces of A. A subdivision of A is tight if every i € A
is in some face of the subdivision.

We will study subdivisions of .4 induced by weights. A weight on a point configuration
(A, a) is a function w : A — R. Like point configurations, we write w" for the restriction
w| 4w for @ € RF/R1. We set the following notations for the subdivision induced by a
weighted point configuration w.

Notation 2.2.3.

e A, is the coherent subdivision of A, consisting of the lower faces of the point config-
uration T, (A) := (A, (a,v)) where (a,w) : i+ (a;, w(i)) € RF x R for i € A.
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o AU is the face of the coherent subdivision A,, corresponding to u € RE/R1, defined
by

AL =T (A = {i € | (wa) + () = miy () +00) |
J
e Y, is the dual complex in R” /R1 of the coherent subdivision A,,. It is a polyhedral
complex consisting of polyhedra corresponding to faces of A,, by

{WeRF/RL| AL > F} +— F e A, (1)

The relative interiors {w € R¥/R1 | AT = F} as F ranges over all faces of A,
partition R¥ /R1. We call the relative interiors the cells of the polyhedral complex
Y-

We note a useful observation.

Lemma 2.2.4. Let w be a weight on a point configuration (A,a) in R¥, and u € RZ.
Consider a new weight defined by i — w(i)+ (u, a;) fori € A. Then AZ = Agj(-)—i-(u,a(,))‘

In Corollary 2.3.10, we will extend the correspondence (f) to a correspondence be-
tween points of P(T¥) and projections of faces of A,, for a particular family of weight
configurations w. For now, we discuss mixed subdivisions of Minkowski sums, because
Minkowski sums of base polytopes of matroids and their mixed subdivisions are the focus
of §4.4.

Definition 2.2.5. Let (Aj,a1),..., (A, ax) be point configurations in R¥. Their Min-
kowski sum, denoted Zle Aj, is a point configuration (A; x --- x A, >, a;) defined

by
k
Ziai : (]1;;.71@) HZaiji for (]177]]@) e A x - x Ay
i=1
If wy, ..., wy are weights on Ay, ..., Ay (respectively), then their Minkowski sum ), w;

is a weight on ). A; defined by (ji,...,Jjx) — Zle w; (J4)-
We will repeatedly make use of the following observation.

Lemma 2.2.6. Let w = Zle w; be a Minkowski sum of weight point configurations. Then
for @ € RY/R1, we have AT = Zle Al

Definition 2.2.7. A subdivision A of a Minkowski sum ) . .A; is mixed if there exist
subdivisions Ay, ..., Ag of Aj,..., Ax (respectively) such that each face F € A is a
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0,1,2) , .(0,2,1)
(1,0,2)¢ CEL) *(1,2,0)
(2,0,1)* *(2,1,0)

Fig. 3. The point configuration in Example 2.2.8.

Minkowski sum Zle F; of faces F; of A;. If there exist weights w; : A; — R such that
their Minkowski sum w := ), w; satisfies A,, = A, we say that A is a mixed coherent
subdivision, which is mixed by Lemma 2.2.6.

A priori, the terminology “mixed coherent subdivision” can be ambiguous: if a weight
w on ), A; induces a coherent subdivision that is mixed, is w necessarily a Minkowski
sum of weights? In general, the answer is no, as displayed in the following example.

Example 2.2.8. Let A = {(1,0,0), (0,1,0),(0,0,1)} and B = {(0,1,1),(1,0,1), (1,1,0)}
be two point configurations in R3. Their Minkowski sum A+ B is labeled by the nine ele-
ments of A x B and is the collection of points {(2,0, 1), (2,1,0),(1,2,0),(0,2,1),(0,1,2),
(1,0,2),(1,1,1)}. The first six points have unique labels, and the last point has three
labels, because it arises in three ways: (0,0,1) + (1,1,0) = (1,0,0) + (0,1,1) =
(0,1,0) 4+ (1,0,1). This is shown in Fig. 3.

Consider the following two weight vectors.

201 210 120 021 012 102 0014110 100+ 011 010+ 101
w; 0 0 0 1 1 0 0 0 17
wy 0 0 0 1 1 0 0 1 0

Both wy and ws induce the subdivision indicated in Fig. 3, which is mixed. The first is
not a Minkowski sum of weights on A and B, while the second is the Minkowski sum of
weight vectors wa and wg where

(1,0,0) 0 (0,1,1) 1
wa 4 (0,1,0) — 0 and wp:q(1,0,1) =0
(0,0,1) — 0 (1,1,0) — 0.

This example shows that not every weight vector inducing a coherent subdivision that is
mixed is a Minkowski sum of weights. However, there does exist a weight vector which
is a Minkowski sum inducing the same subdivision.
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We establish the following weaker statement about coherent mixed subdivisions. To-
gether with Theorem 4.4.3, it will imply a strengthening of the equivalence (a) <= (c)
in Theorem A (Corollary 4.4.5). We will only need Theorem 2.2.9 for the proof of Corol-
lary 4.4.5.

Theorem 2.2.9. Let A= Zle A; be a Minkowski sum of point configurations. For sim-
plicity, let us assume that if dim Conv(A;) = 1 then |A;| = 2. Suppose that a weight
w: A — R induces a coherent subdivision A, that is mized. Then there exist weights
wy,...,wg on Aq,..., Ax such that AZLlwi =Ay,.

We prepare with the following observation.

Lemma 2.2.10. Let Q be a d-dimensional polytope, and let {Q1,...,Qm} be the mazimal
(i.e. d-dimensional) faces of a polyhedral subdivision of Q. The graph on [m] with edges
(i,j) whenever Q; N Q; has dimension d — 1 is connected. In particular, if d > 2, or if
d = 1 and the subdivision is trivial, then the mazximal cells QQ1,...,Q are connected
through dimension > 1.

Proof. For any two vertices ¢, j € [m], pick points p; and p; in the interior of @; and
Q; (respectively). Perturbing p; and p; if necessary, we have that the line segment p;p;
meets faces of the polyhedral subdivision only of dimension >d —1. O

Proof of Theorem 2.2.9. Let Aq,...,A be subdivisions of Aj,..., A; (respectively)
making up the mixed subdivision A,,. For each u € R /R1, the face AZ is a Minkowski
sum Zle Fiw where F; i is a face of A;. For each ¢ = 1,...,k, consider the partition
of RF by the equivalence relation T ~; W <= Fiw = Fiw. This partition consists
of components whose closures define a polyhedral complex ¥; that coarsens the dual
complex ¥,,. We claim that each 3; is a dual complex ¥,,, for some weight w; : A; — R
such that A} = F; g for all w € R¥/R1. We are then done by Lemma 2.2.6.

For the claim, fix @ € RF/R1 lying in a non-maximal cell of ¥,,. By [25, Lemma
3.3.6], the polyhedral complex stary,, (T) is the normal fan of the polytope Conv(Al) =
Zle Conv(F;w). Now fix any 1 < i < k. By construction of ¥;, the normal fan of
Conv(F; w) is equal to stars, (). As Conv(F;w) is a lattice polytope by our running
integrality assumption on point configurations, it follows that the union of non-maximal
cells of ¥; is a rational, pure, balanced, polyhedral complex of codimension 1. In other
words, the complex ¥; satisfies the condition of [25, Proposition 3.3.10], which states
that there exists a weighted point configuration w; : ./Zz — R with ¥; = Xg,.

We now use w; to define weights w} on ¥;, where ¥; = Vert(4,;) is the set of elements
of A; that appear as vertices of the subdivision A;. This will have the property that the
induced coherent subdivision satisfies Conv(AY,) = Conv(F; y) for all u € R¥/R1, so
that w} naturally extends to a weight w; on A4; s:;tisfying Agi = Fiq for allu € RE/R1.

By construction, the two polytopes CODV(Agi) and Conv(F; w) are dilates of each
other (up to translation) for every € RF/R1. Since we assumed that |A;| = 1 if
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dim Conv(A4;) = 1, by Lemma 2.2.10 the polyhedral subdivision from A; is connected
through dimension > 1. Hence, the dilation factor is global; that is, (up to translation)
the set ¥; is a dilation of the set of vertices of Ag.. Assign the weight w] on ¥; via this
dilation correspondence. O

Remark 2.2.11. Note that if w was already a Minkowski sum w] + - -- + wj,, then the
constructed weights {w;}1<;<x in the proof satisfy ¥, = Yy forall 1 <i <k

2.8. M-convex functions and their dual complexes

We review M-convex functions, and establish Theorem 2.3.8 concerning the structure
of their dual complexes.

Definition 2.3.1. A function p : Z" — T is M-convex if for a = (a1,...,a,), b =
(bi,...,bn) € ZI" and i € [n] such that a; > b;, there exists j € [n] such that a; < b;
and

u(a) -I—,U,(b) > u(a—ei +ej)+/t(b—ej +€1‘). (M)

The set {v € Z[M | u(v) # oo} is the effective domain dom(u) of y, and is assumed to
be finite.

We view p as a weighted point configuration y : dom(u) — R. For M-convex functions
w1 and pg, their Minkowski sum as weighted point configurations (not as functions) is
denoted w1 + po.

M-convex functions are studied in several contexts. For instance, they are foundational
objects of discrete convex analysis [27]. We focus on their connection to generalized
permutohedra.

Definition 2.3.2. A lattice polytope Q in R[™ is a generalized permutohedron if every
edge of () is parallel to e; — e; for some ¢,j € [n].

The definition implies that a generalized permutohedron is homogeneous as a point
configuration.

Generalized permutohedra form a rich combinatorial class of lattice polytopes [11,30,
1]. For example, base polytopes of matroids and flag matroids, which we discuss in §3.1
and §4.4, are examples of generalized permutohedra [17,5]. Generalized permutohedra
are related to M-convex functions in the following way.

Theorem 2.3.3. Let i : ZI™M — T be a function with an effective domain dom ().

(1) If p takes only two values {c,00} for some ¢ € R, then p is M-convez if and only if
dom(p) is the set of lattice points of a generalized permutohedron.
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(2) More generally, p is M-convex if and only if the subdivision A, of dom(u) is tight
and its faces are the sets of lattice points of generalized permutohedra.

In particular, if p is M-convez, the point configuration dom(u) is a generalized permu-
tohedron, and hence is homogeneous.

Proof. The first statement (1) is [27, Theorem 4.15]. For the second statement (2), we
note the following observations.

o Let p: Z"M — T. For any u € RI™ the function u(-) + (u,-) : ZI") — T defined by
v = pu(v) + (u,v) is M-convex if and only if p is.

o Let p: ZM — T be an M-convex function. Then the function defined by v ~ min(u)
if 4(v) = min(p) and v — oo otherwise is also M-convex. In other words, by the first
statement, the face Ag is the set of lattice points of a generalized permutohedron.

The second statement now follows from the first by applying Lemma 2.2.4 to these
observations. O

Let us now turn to the dual complex X, of pu. Its polyhedral cells are subsets
of RIM/R1. Consider the closures of these polyhedral cells inside P(T!™). For each
nonempty proper subset S C [n], this defines a polyhedral complex structure on the
boundary Ts C P(T [”]). While these polyhedral complex structures can be difficult to
describe for general weighted point configurations, for M-convex functions we give an
explicit description in Theorem 2.3.8. This explicit description will be instrumental in
our proof of Theorem B and Theorem 4.4.3. We first note the following general boundary
behavior.

Lemma 2.3.4. Let w be a weight on a point configuration A in R . For a nonempty
subset S, fix v € Tg. For a sufficiently small open neighborhood U of W', one has
Ly (A) @D =T, (A0s) @D for any @ € U N Ty,). In other words, near Ts, the dual
complex 33, is the same as the dual complex of the restriction of w to ASI\S,

Proof. Let u = (u;)ies % (u;);¢s. Shrinking U if necessary, we can make min{u; — u; |
i €5, j ¢ S} arbitrarily large. Since A is finite and w is fixed, this means that for i € A
to minimize (u,a;) +w(i), it must first minimize (ep)\s,a;). O

Next, we note that a property known as the Hopf monoid structure of generalized
permutohedra extends to M-convex functions.

Notation 2.3.5. We need the following notations: For a lattice polytope Q@ € RI" and a
nonempty subset S C [n], the projection of the face @Q®\s under RI") — RS is denoted
Q|s, and the projection of Q°\s under RM — RN\ is denoted Q@/s. Both are lattice
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polytopes, and we write Q|g x Q/s C R¥ x R\ ~ RI["l for their product, considered
as a polytope in R,

Our notation here differs from [1] by a complementation (ef,)\ s instead of es). Since
—eg and ep,)\ s are equal as elements in R[] /R1, the difference is due to our “min”
convention for polyhedral operations instead of the “max” convention used in [1].

Theorem 2.3.6. [I, Theorem 6.1] Let Q be a generalized permutohedron in R, and
S C [n] be a nonempty subset. Then the polytopes Q|s and Q/s are generalized permu-
tohedra in their respective spaces. Moreover, Q®"\s = Qls X Q/s and in particular is a
generalized permutohedron.

This property of generalized permutohedra extends to M-convex functions. If wy, ws
are weights on Ay, Ay in RS, RS2 (respectively), let us write w; x ws for the weight on
A x Ay in RSt x RS2 defined by w(iy,i2) := w(iy) + w(iz).

Lemma 2.3.7. Let pu : Z™ — T be M-convex, and write Q = dom(yu). For a nonempty
subset S C [n], there exist weights pls and p/s on Qls and Q/s (respectively), each
unique up to adding a constant globally, such that

PN = pls X /s
The weighted point configurations p"\s | ulg, and p/s are M-convez.

Proof. As @ is a generalized permutohedron, we have Q®"\s = Q|s X Q/s. Thus, for the
first statement, it suffices to show that for every choice of lattice points p,p’ € Q|s and
4,4" € Q/s, one has u(p,q) — u(p',q) = p(p,q') — u(p’,q'). Moreover, as Q|s and Q/S
are both generalized permutohedra, it suffices to check in the case where p—p’ = e; —e;
and ¢ — ¢’ = e; —ej where ¢, € S and j,j’ € [n] \ S. Applying the defining property
(M) of an M-convex function twice, once with (a,b) = ((p,q), (p’,¢')) and again with
(a,b) =((p,q), (P, q)), gives the desired equality.

For the second statement, applying the forward direction of Theorem 2.3.3.(2) to u
implies that the face Q°\s is subdivided into generalized permutohedra, which implies
that both Q|s and Q/s are too. (If one of them has an edge not parallel to e; — e;, so
does the product). The converse direction of Theorem 2.3.3.(2) then implies that pen\s,
tls, and 11/ s are M-convex. O

We are now ready to describe explicitly the closure of ¥, inside ]P’('JT["]).

Theorem 2.3.8. Let i be an M-convex function, considered as a weighted point configu-
ration in R™M. For a cell ¢ C ]R[”]/Rl of the dual complex ¥,,, denote by T its closure
in P(TM). For a nonempty subset S C [n], we have {NTs | o€ X,} =%
Ts is identified with RS /R1.

ulss where
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Proof. Lemma 2.3.4 implies that {7 NTs |0 € X,} = {6 NTs |0 € X ctans }. Applying
Lemma 2.3.7 then gives the desired equality. O

Notation 2.3.9. Let x be M-convex and @ € P(T ™). We denote

AE =AY

wls?

where S C [n] is the subset satisfying @ € T, so that u = u’ x col™\¥ for some u’ € R,

Corollary 2.3.10. Let p be M-convex and ) C S C [n]. The correspondence (1) for Ts =
R /R1 gives

{ueTs| AEZ}-}HJ:GAMS'
This correspondence now extends to all of P(T™): the set P(T™) is partitioned by the

relative interiors {u € P(TM) | Al = F} as F ranges over all faces F of Ay
pCSCin.

5 over all

3. Dressians and projective tropical linear spaces

We review Dressians and valuated matroids in §3.1. Then, we introduce projective
tropical linear spaces in §3.2, and prove Theorem B, which characterizes projective trop-
ical linear spaces in many different ways. We assume familiarity with matroids. We point
to [34,28] as references.

Notation 3.0.1. We adopt the following notations for a matroid M on a ground set [n]:

o B(M) is the set of bases, which we will often view as a point configuration (B(M), e),
where B € B(M) C (") maps to ep € RI",

o C(M) is the set of circuits.

o tkps : 20 — Z is the rank function.

e Q(M) := Conv(ep | B € B(M)) C RI" the base polytope of M, which as a point
configuration is identical to (B(M), e) because Q(M ) has no non-vertex lattice points.

o M™* is the dual matroid of M.

e M]ls (resp. M/g) is the restriction (resp. contraction) of M to (resp. by) a subset
S C [n)].

As it is customary in matroid theory, we write SU4 to mean SU{i} and S\ to mean
S\ {i} for a set S and an element i. We will often use the following.

Theorem 3.0.2. [17] A lattice polytope contained in the cube Conv(eg | ) € S C [n]) C
R is a generalized permutohedron if and only if it is a base polytope of a matroid.
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3.1. Dressians and valuated matroids

We review Dressians and valuated matroids. As before, the underlying algebraic ge-
ometry is explained in the remarks.

Definition 3.1.1. For 0 < r < n, the tropical Grassmann-Pliicker relations are tropical
polynomials in variables {P; | I € (™))} defined as

[n]

(@;E;rgp:: (P]@PJ)EB @ (PI\inQPJ\jUi) I,J e (T

jeJ\I

J NI <r—1iel\J

(GP)

The Dressian (of rank r in [n]) is the projective tropical prevariety of these tropical
Grassmann-Pliicker relations. That is, we define

Dr(r;n) = ﬁ(‘@mip) c ]P’(T([f])).

Points on Dressians were previously described in several ways [33,25,20]; we collect
them together in Theorem 3.1.3. Let us first recall the definition of valuated matroids
from [10].

Definition 3.1.2. Let M be a matroid of rank r on [n]. A valuated matroid with underlying
matroid M is a function p : B(M) — R such that for every B, B’ € B(M) and i € B\ B’
there exists j € B’ \ B satisfying

1(B) + u(B') = u(B\iUj) + u(B'\jUi).
Theorem 3.1.3. Let p € T, Then the following are equivalent:

(a) The image i € ]P’(T([Z])) is a point of Dr(r;n).

(b) p is a valuated matroid with an underlying matroid of rank r on [n).

(¢c) When p is regarded as a weight on {er € RI"M | u(I) # oo}, the faces of A, are base
polytopes of matroids.

[n]

Proof. Let us consider p € T(") as a function p: ZM — T where

I) ifv=erf Ie (™
v w(l) if v = ey for some ("™
00 otherwise.

One can check from the definitions that p is M-convex if and only if the image @ €
P(T ([:])) lies in Dr(r;n). The equivalence of (a) and (b) now follows by comparing the
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definitions of M-convexity and valuated matroids. The equivalence of (b) and (c) follows
from Theorem 2.3.3.(2) and Theorem 3.0.2. O

For a valuated matroid p with underlying matroid M, we will freely switch between
considering p as a point on T ([7]), as an M-convex function with effective domain Q(M),
and as a weight on the point configuration (B(M),e).

Definition 3.1.4. Recall the notation T := RS /R1 x {cc}\ c P(TF) for sets S C E.
For M a matroid of rank r on [n], the Dressian of M, denoted Dr (M), is the intersection

Dr(M) = Dr(r;n) N Tpry C ]P’('IF([Z])).

By Theorem 3.1.3, the set Dr(M), which was introduced in [20], parametrizes valuated
matroids with underlying matroid M, or equivalently, weights B(M) — R that induce
coherent subdivisions of Q(M) into base polytopes of matroids. By Remark 2.1.6, the set
Dr(M) is the usual tropical prevariety in RB(AM) /R1 of appropriately modified tropical
Grassmann-Pliicker relations.

Many aspects of matroids extend to valuated matroids. We will use the following
notions.

Definition 3.1.5. Let u be a valuated matroid of rank r on [n] with underlying matroid M.

e For each S € (T[le), define an element C,,(S) € T by

W(S\i) iesS

OulS)i = {oo i¢S.

Then the set of valuated circuits of y is defined as

c(u) = {cu(®) | s e (H) P\ (oo, 000}
e The dual of u is the valuated matroid p* defined by setting p*([n] \ I) := u(I) for
Le (%),
e The valuated cocircuits of y are defined as the circuits of p*. Explicitly, the set of
valuated cocircuits is

¢ () = {Cu(8) | S € ()} \{(o,. 00},

where
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 For a nonempty subset S C [n], the restriction to S (resp. contraction by S) of u is
uls (resp. p/s), where p|s and p/g are as in Lemma 2.3.7. Lemma 2.3.7, combined
with Theorem 3.0.2, implies that these are valuated matroids.

The following facts are easy to verify:

o The set {supp(C) | C € C(u)} is the set of circuits of M. (Recall the notation
supp(C) := {i € [n] | C; # oo} for C € TM]),

e The underlying matroid of p* is M*, and (u*)* = p.

o The underlying matroid of u|s (resp. u/g) is M|g (resp. M/s).

Lastly, we will need the following description of the valuated circuits in terms of re-
strictions and contractions. It is a consequence of [4, Theorem 3.29 & Corollary 4.10.(1)].

Theorem 3.1.6. Let p be a valuated matroid of rank r on [n], and S C [n] a nonempty
subset. Then we have

C(uls) ={C € C(u) | supp(C) € S}, and
C(u/s) = {points of T\ of minimal support among {(Chiepps | C € C(M)}}.

Moreover, the two operations are dual to each other, in the sense that (j1/s)* = p*|([n)\s)-
The underlying geometry behind the definition of Dressians follows.

Remark 3.1.7. See [16, §9] for Plicker embeddings, and see Remarks 2.1.7 and 2.1.8 for
tropicalizations of projective subvarieties. The Grassmannian Gr(r;n), whose points are
r-dimensional subspaces of k™| is embedded in IP’(Ik([:b])) by the Pliicker embedding.
When char k = 0, the defining ideal is generated by the Grassmann-Pliicker relations:

Prm = —PrPy+ Z sign(i, 7,1, J)PpujPrjui =0 | I,J € ([Z]>, teI\J
VIEAV
&
where sign(i,j, I, J) = (_1)#{1161\ min(é,5) <a<max(i,j) }+#{b€J | min(i,j) <b<max(i,5)} When
chark > 0 they generate the ideal up to radical. The tropical Grassmann-Pliicker rela-
tions are tropicalizations of these polynomials. That is, we have %Ef;;? = {fP | f €
P, }. The projective tropicalization trop(Gr(r;n)) is thus a subset of Dr(r;n).
The inclusion trop(Gr(r;n)) C Dr(r;n) is often strict, precisely because not all valu-
ated matroids are realizable in the following sense: For a linear subspace L € Gr(r;n), let

(PI(L))IG(["]) € ]P’(]k([:])) be its coordinates in the Pliicker embedding. Then the func-

tion I — val(Pr(L)) VI € ([:f]) is a valuated matroid, denoted p(L), whose underlying
matroid is denoted M (L). Valuated matroids arising in this way are said to be realiz-
able (over k). The points of trop(Gr(r;n)) are exactly the valuated matroids realizable



20 M. Brandt et al. / Advances in Mathematics 384 (2021) 107695

over k. When r > 3 and n > 7, there are non-realizable valuated matroids, and hence,
in these cases the inclusion trop(Gr(r;n)) C Dr(r;n) is strict. Realizability can fail in
many ways. For example, there are valuated matroids where every cell of the induced
subdivision is a realizable matroid, but the valuated matroid is not realizable [32].

3.2. The many faces of projective tropical linear spaces

We introduce projective tropical linear spaces, and prove Theorem B, which charac-
terizes them in many different ways. We start by reviewing usual tropical linear spaces.

Proposition 3.2.1. /25, Lemma 4.4.7] Let p be a valuated matroid on [n]. The following
two subsets of RIM /R1 coincide:

(1) The set
m {ﬁ S R /]Rl the minimum in {Ci + ui}iesupp(C) is achieved at least twice} s
CeC(p)

which is the usual tropical prevariety of the valuated circuits of u (Remark 2.1.6).
(2) With u regarded as a weighted point configuration, the set

{ueRM/R1 | A;ﬁ is a base polytope of a loopless matroid},
which is the union of “loopless cells” of the dual complex ¥,, in ]R[”]/Rl,
Definition 3.2.2. Let u be a valuated matroid of rank r on [n], and let M be its underlying
matroid. The subset of RI" /R1 in the previous proposition is defined as the tropical
linear space of y, denoted trop(u). Note that if M has loops, then trop(u) = 0.

We will extend Proposition 3.2.1 to projective tropical linear spaces. Since projective
tropical linear spaces are subsets of P (T ["]), the negative sign —u in Proposition 3.2.1.(2)
can be problematic because —oo is not an element of T. We will thus use the following
reformulation:

Lemma 3.2.3. Let p be a valuated matroid, and p* its dual. Then we have
trop(p) = {u € R /R1 | Ag* is a base polytope of a coloopless matroid},
which is the union of “coloopless cells” of the dual complex X~
Proof. For a weight w on a point configuration (A4,a), let us write w°P for the weight
on the point configuration (A, —a), defined by w°P (i) := w(i) Vi € A. It is easy to verify

that A" = AYZ,, as subsets of A. Now, if M is the underlying matroid of u, then
Q(M*) = —Q(M)+1, so that u* = u°P. The lemma now follows from the description of
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trop(u) in Proposition 3.2.1.(2), since a matroid is loopless if and only if its dual matroid
is coloopless. O

The following remark explains the geometry behind tropical linear spaces via tropical-
izations of subvarieties (see Remark 2.1.8). It also motivates our definition of projective
tropical linear spaces.

Remark 3.2.4. Recall from Remark 3.1.7 that a linear subspace L C k" defines a val-
uated matroid p(L). Let us consider L as a linear projective subvariety of P (k[™), and
write I := L N (k*)[")/k*. Then the usual tropicalization trop(L) of L is the tropical
linear space trop(u(L)). When L is contained in a coordinate hyperplane, or equivalently,
when the matroid M(L) has a loop, the intersection L is empty, and hence trop(L) is
empty, as is trop(u(L)). See [25, §4.3] for a more details on tropicalizations of linear
subvarieties in a torus (k*)™ /k*.

Now consider the projective tropicalization trop(L). For each nonempty subset S C
[n], the torus orbit Og intersects L to give another (possibly empty) linear subvariety
of (k*)S/k*, denoted Lg. Similarly, let Lg := L N Og, considered as a subvariety of
P(k%). Then the valuated matroid 1(Ls) is the contraction p(L)/(mps)- We thus have
trop(L)NTs = trop(Lg) = trop(u(L)/(m)\s)). This motivates our definition of projective
tropical linear spaces.

Definition 3.2.5. Let u be a valuated matroid on [n]. The projective tropical linear space
trop(u) of p is a subset of P(T ™) defined by setting

trop(p) N Ty s := trop(p/s) x {o0}?
for each ) C S C [n].

Projective tropical linear spaces have previously appeared in various forms (see Re-
mark 3.2.6). Theorem B, reproduced below, unifies them and adds two new characteri-
zations ((iii) and (v)).

Theorem B. Let 1 be a valuated matroid on a ground set [n]. Let £ C [n] be the set of
loops of its underlying matroid M. The following sets in the tropical projective space

P(T¥) coincide:

(i) The projective tropical linear space of u, i.e.

wop(u) == |J  (trop(u/s) x {oc}*) € B(TP),
0CSCln]
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(ii) The projective tropical prevariety of the valuated circuits of u, i.e.

ﬂ {ﬁ e P(T ["]) the minimum is achieved at least twice among {Cl + vi}ie[n]} ,

valuated
circuits C

(iii) The union of coloopless cells of the closure of the dual complex of p* in P(TM),
i.e.

{ﬁ € }P’(T["}) | Ag* is a base polytope of a coloopless matroid},

(iv) The tropical span of the valuated cocircuits of p, i.e.

the image in P(T¥) of C; € T¥ a valuated cocircuit of p,
(a1 ©C) @ ®(qy®CL)eTE a; €R, V1<i<m ’

(v) The closure of trop(p/¢) x {00}t inside P(T ™).

Remark 3.2.6. For ordinary matroids (not valuated), the description (i) appeared in [31,
Definition 2.20]. The authors of [24] also considered the description (i), and characterized
trop(p) as a tropical cycle of projective degree 1 [24, Remark 7.4.15]. In the language
of hyperfields (see [4]), the description (ii) says that a projective tropical linear space
is the set of covectors of a matroid over the tropical hyperfield. This characterization
appeared in [26], along with the proof of (ii)=(iv) [26, Theorem 3.8], and was generalized
to perfect tracts in [2].

Proof of Theorem B. The equality (ii) = (iv) is [26, Theorem 3.8]. Recalling from Theo-
rem 3.1.6 that the dual of /g is u*|(jn)\ sy, combining Theorem 2.3.8 with Lemma 3.2.3
then implies (i) = (iii). We now show (iii) C (v) C (ii) C (i).

For all subsets S C [n] such that S 7 ¢, the matroid M/S has loops, and so the
intersection of the set (iii) with Tj,)\ s is empty (since (iii) = (i)). The same is true for
the set (v). Hence, for showing (iii) C (v) we may assume that M is loopless. In this
case, both sets are trop(u) on Tj,) by Lemma 3.2.3. Now, suppose u x {oo}[”]\s €Tg is
in the set (iii). We need to show that it is in the closure of trop(u). Since M is loopless,
so is M|\ 5, and hence trop(u|j,)\s) is nonempty. Let u € trop(f4|jn)\s) and pick its
representative u’ € R[™\S to have all positive coordinates. For a point u x cu’ € RI™ if
¢ > 0 is sufficiently high (equivalently, if u x cu’ is in a small enough open neighborhood
of u x {00}"\9), Lemma 2.3.4 implies that AE*XC“/ = AW where w = (p*)°m\s.
Then by Lemma 2.3.7, we have w = p*|g X p* /g, so that AuXew" — AE*IS X A;‘i,/s. By
assumption the matroids of A/‘;* B and Az‘il/s are both coloopless. We thus conclude that
u x cu’ is in trop(yu) for all sufficiently large ¢ > 0, and hence the point u x {oo}™\S is
in the closure of trop(u).

For (v) C (ii), we may again assume M loopless, since the fact that a loop is a circuit
implies that (ii) is contained in the closure of T}, ,. In this case, both sets are trop(u)
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on T, by Proposition 3.2.1.(1). Since projective tropical prevarieties are closed, we thus
have (v) C (ii).

Lastly, for any proper subset ) C S C [n], consider the intersection of the set (ii)
with Tj,)\s. In other words, for each valuated circuit C defining a tropical polynomial
@ie[n] C; ® x;, we give ignore all C; with ¢ € S since x; = co. Thus, the description of
the valuated circuits of the contraction p/g in Theorem 3.1.6, combined with Proposi-
tion 3.2.1, imply (i) C (i). O

4. Valuated flag matroids and flag Dressians

We now introduce flag Dressians and valuated flag matroids, and prove Theorem A.
We review flag matroids in §4.1. In §4.2 we define flag Dressians and valuated flag
matroids, and show (a) <= (b), which is mostly definitional (Proposition 4.2.3). In §4.3,
we prove (b) <= (d) (Theorem 4.3.1). In §4.4, we define flag matroidal subdivisions and
prove (b) = (c) (Theorem 4.4.2) and (¢) = (d) (Theorem 4.4.3). We give an extended
illustration of Theorem A in Example 4.4.6.

4.1. Flag matroids

Flag matroids are defined through matroid quotients.

Definition 4.1.1. Let M and N be matroids on a common ground set [n]. We say that
M is a (matroid) quotient of N, denoted M « N, if any of the following equivalent
conditions are satisfied [7, Proposition 7.4.7]:

(1) For all A C B C [n], we have rky(B) — rkp(A) < tky(B) — rky(4),

(2) each circuit of N is a union of circuits of M,

(3) there exist a matroid M on [n] U [n'] such that M = M/[n/] and N = M\[n’}’
(4) N* is a quotient of M*.

A sequence M = (M;,..., M) of matroids on [n] is a flag matroid if M, « M, for
every 1 < i < j < k. The rank of M is the sequence of its constituent matroids
(rk(My),. .., tk(My)).

The following example gives the geometric origin of the terminology.

Example 4.1.2 (Realizable quotients and flag matroids). Let L'* « L* « k" be
quotients of linear spaces. Equivalently, we have an inclusion of linear subspaces
L' € L C k™. Then, the matroids of L' and L, which we denote M (L’) and M (L)
(Remark 3.1.7), form a matroid quotient M (L") « M(L). Matroid quotients arising
in this way are said to be realizable (over k). Similarly, a flag of linear subspaces
L=1L CLyC---C L Ckl" defines a flag matroid M(L) = (M(L1),...,M(Ly)).
Such flag matroids are realizable (over k).
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Remark 4.1.3. A quotient M « N can fail to be realizable even if M and N are realizable
over the field. For a concrete example, see [5, §1.7.5. Example 7].

Definition 4.1.4. Given a flag matroid M = (M, ..., M) on [n], its base configuration
B(M) is a point configuration obtained as the Minkowski sum of the bases of its con-
stituent matroids. That is, B(M) := B(M;) + - - + B(My) = (B(My) x -+ x B(My), e),
where

(Bi,...,By) € B(My) x --- x B(My,) — ep, +---+ep, € RI",

The base polytope Q(M) of M is the convex hull of the image of the base configuration,
i.e.

Q(M) := Conv(ep, +---+ep, | (B1,...,Bs) € B(M;) x --- x B(My)) c R/,

Properties of matroid polytopes found in Theorem 3.0.2 extend to flag matroid base
polytopes.

Theorem 4.1.5.

(1) [5, Theorem 1.11.1] A lattice polytope Q C RI" is a base polytope of a flag matroid
of rank (r1,...,7rr) if and only if it is a generalized permutohedron and its vertices
are a subset of the orbit of €12, .y + - +e€q12.. ) under the permutation group
Shn-

(2) For a flag matroid M = (M, ..., M) on [n], and a subset S C [n], the sequences
M|s := (Mi|s,...,Mg|s) and M /g := (M;y/s,...,My/s) are flag matroids, and
the face Q(M)®=I\s s the product Q(M|g) x Q(M/s).

Proof. The first part of statement (2) is checked directly from the description of ma-
troid quotients by rank functions. The second part of (2) follows by Lemma 2.2.6 and
Theorem 2.3.6. O

Remark 4.1.6. Restricting to only loopless matroids is harmless in studying matroids
because the only data lost by deleting the loops of a matroid is the number of loops: if ¢
is the set of loops of a matroid M, then M = M\, ®Up ¢, so one easily recovers M from
M\ ¢ and |¢|. However, for a flag matroid M = (M, ..., M) on [n], an element e € [n]
can be a loop in some but not all of the matroids M, ..., M}, and in such cases one
cannot always recover M from M\, = (Mi\e, ..., Mi\c) and M|, = (M|e, ..., Mg|e).
So, it is necessary for us to develop the theory for matroids with loops in the flag setting.

Remark 4.1.7. According to [18,5], flag matroids are exactly the Coxeter matroids of
type A. Coxeter matroids in general are defined by modifying Theorem 4.1.5.(1) with
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the notion of Cozeter generalized permutohedra. See [3] for a modern treatment of Coxeter
generalized permutohedra and their connection to combinatorics.

4.2. Definition of flag Dressians and valuated flag matroids

We now extend Dressians and valuated matroids, described in Section 3.1, to the
setting of flag matroids.

Definition 4.2.1. Let 0 < r < s < n. The tropical incidence-Pliicker relations are tropical
polynomials in variables {P; | I € ([TTL])} U{P;|Je ([Z])} defined as

Pih =1 @D Proy 0Py |I'e (r[ﬁ]1>7 e < ! ) . (1P

j/EJ/\I/ S+1

When r = s, the sets {P; | I € ([:‘])} and {P; | J € ([?])} coincide, and the relations
Zpb in (IP) above degenerate to Z;7%P in (GP). These tropical polynomials are multi-

homogeneous with respect to the partition ([Z]) L ([Z]). For0 <r; <. <rp <n,

the flag Dressian (of rank (71,...,7%) on [n]) is the multi-projective tropical prevariety
[n] [n]
inside IP’(']T(H)) XX P (T(fk)) defined by the tropical Grassmann-Pliicker relations

(GP) and the tropical incidence-Pliicker relations (IP):

FIDr(ry,...,ry) := trop (F € {PIDY iU {ﬁﬁfﬁgm}quq) .

We interpret the tropical incidence-Pliicker relations as a condition for valuated ma-
troid quotients, and points on the flag Dressian as wvaluated flag matroids, defined as
follows.

Definition 4.2.2. Let p and v be valuated matroids on a common ground set [n], whose
underlying matroids are M and N of ranks r and s (respectively) with r < s. We say that
w is a valuated (matroid) quotient of v, denoted p « v, if for any I € B(M), J € B(N),
and ¢ € '\ J, there exists j € J \ I such that

W)+ v(J) = p(I\3UJ) +0(J\ j ).
A sequence p = (pi1, ..., k) of valuated matroids on [n] is a valuated flag matroid if
i «= py for every 1 <14 < j < k. It follows from the definition that u « v if and only if

v* o« .

We will show that the underlying matroids of a valuated matroid quotients form a
matroid quotient (Corollary 4.3.2). Thus, for a valuated flag matroid p = (1, ..., 4x),
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its sequence of underlying matroids (My, ..., My) is called the underlying flag matroid
of p.

We first note that points of the flag Dressian correspond to valuated flag matroids.
The following is the equivalence (a) <= (b) in Theorem A.
Proposition 4.2.3. Let pu X v be a point on T 5T, s image i X U € P(T([ﬁ])) X
P(T([z])) is a point on the flag Dressian FlDr(r,s;n) if and only if u and v are valuated
matroids that form a valuated matroid quotient p «— v. In other words, the points on the
flag Dressian FIDr(ry,...,rg;n) correspond to valuated flag matroids of rank (r1,...,7k)
on [n].

Proof. Each of p and v satisfies its respective tropical Grassmann-Pliicker relations if
and only if it is a valuated matroid by Theorem 3.1.3. Now, note that the tropical
incidence-relation

@ PI/UJ'/ @ R]/\j/
j/GJ/\I/

for I’ € (r[f]l), J € (s[:f]l) can be rewritten as follows: Fix any ¢ € J'\I’, and set [ = I' Ui

and J = J'\ i. Then, the above tropical polynomial is the same as

ProPre @ Priv © Prjuis
jeINI

The condition that the minimum (if achieved) is achieved by at least two terms of these
tropical polynomials is equivalent to the condition imposed by the inequalities in the
definition of valuated matroid quotients. O

Definition 4.2.4. Recall the notation Ts := R¥/R1 x {c0}*\5 ¢ P(TF) for sets S C E.
Let M = (My,..., M) be a flag matroid of rank (rq1,...,7%) on [n]. The flag Dressian
of M, denoted FiDr(M), is the intersection

FIDr(M) := FIDr(ry, . ... rim) N (Taary % - % Tearyy) © P(TED) 5 (T 0R).

In other words, by Proposition 4.2.3 the flag Dressian FiDr(M) parametrizes all
valuated flag matroids whose underlying flag matroid is M.

Remark 4.2.5. For linear subspaces K and L of k™ of rank r and s, let (pf)je([“']) and

(Ps);c (i) be their Pliicker coordinates (respectively). Then K C L if and only if the

two Pliicker coordinates satisfy the incidence-Pliicker relations [16, §9, Lemma 2]:

o [n] [n]
Py siin] = Z sign(j'; I', J' )Py Pynjo | I' € (r— ) J € (2)

j/EJ/\I/ S + 1
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where sign(j; I', J') = (—1)#{a€l'la<i"}+#{b€J'b<i"} The tropical incidence-Pliicker re-
lations are tropicalizations of these polynomials. That is, we have 9&;1; = {fror| fe
Py sn}. Thus, if K C L, then the corresponding valuated matroids p(K) and p(L) form
a valuated matroid quotient u(K) « p(L). Valuated matroid quotients arising in this

way are said to be realizable (over k).

Remark 4.2.6. The (partial) flag variety Fl(r1,...,rg;n) consists of flags of linear
subspaces L; C --- C Ly C k™ with dimy L; = r;. It has an embedding by
Fi(ri,...,ri5n) <= Gr(ry;;n) X -+ X Gr(rg;n) < ]P’(Ik([:;])) x - x Pk k(% )) When
chark = 0, the Grassmann-Plicker relations (1) combined with the incidence-Pliicker
relations (2) generate the multi-homogeneous ideal of this embedding. When chark > 0,
they generate the ideal up to radical. The multi-projective tropicalization of the flag
variety trop(Fl(ry,...,rx;n)) is thus a subset of FIDr(rq,...,rx;n). The points of
trop(Fl(ry,...,rx;n)) correspond to valuated flag matroids that are realizable (over
k). The inclusion of trop(FI(ry,...,rg;n)) in FIDr(ry,...,rg;n) is strict precisely when
there are valuated flag matroids of rank (r1,...,7%) on [n] that are not realizable (over
k).

Remark 4.2.7. A valuated matroid quotient p «— v, where p and v are realizable over k
and the underlying matroid quotient is realizable over k, can fail to be realizable over k.
See Example 5.2.4.

We address realizability of valuated flag matroids in more depth in §5.
4.3. Flags of projective tropical linear spaces

We show that a valuated matroid quotient is equivalent to the inclusion of the cor-
responding projective tropical linear spaces. This proves the equivalence (b) <= (d) in
Theorem A.

Theorem 4.3.1. Let p and v be valuated matroids of ranks r and s respectively on a
common ground set [n]. Then pu « v if and only if trop(u) C trop(v). In other words, a
sequence = (pi1, ..., 1) of valuated matroids is a valuated flag matroid if and only if

trop(p1) € - -+ C trop(us).

Proof. By Theorem B.(iv), the projective tropical linear space trop(u) is the tropical
span of its valuated cocircuits C*(u). Hence, we have trop(u) C trop(v) if and only if
C* (1) C Trop(v).

By Theorem B.(ii), the projective tropical linear space trop(v) is cut out by its valu-
ated circuits:

trop(v m trop @ Cjr ©xy

CeC(v) i’€ln]
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The description of valuated circuits and cocircuits (Definition 3.1.5) implies that C*(u) C
trop(v) if and only if the minimum in

{Oy(v]/)j’ + CZ(I,)j/}j'E[n] = {V(J/ \.7/) © :u(I, Uj/)}j’e[n]

is attained at least twice for each I’ € (T[fll) and J' € (5[1]1). Removing the terms that

are oo on the right hand side, this is the same as saying that the minimum in

{n(I"0 ") Ov(I'\ i)} e

is attained at least twice for every I’ and .J/, which is exactly the condition defined by
the tropical incidence-Pliicker relations (IP). O

This proof closely mirrors that of [19, Theorem 1], where Theorem 4.3.1 was proved
for loopless matroids. We list some properties of valuated matroid quotients that follow
from Theorem 4.3.1.

Corollary 4.3.2. Let p, v, & be valuated matroids on [n].

(1) A composition of valuated matroid quotients is a valuated matroid quotient. That is,
if w—> v and v — £ then u — &.

(2) If w« v, then u/s « v/s and p\g « v\g for any subset S C [n].

(8) For any S C [n], we have /g « p\s.

(4) The underlying matroids M and N of p and v (respectively) satisfy M « N if

W= v,

Proof. (1) is immediate from Theorem 4.3.1. For (2), the two statements are duals of
each other since p « v if and only if v* « u*, so we only need show /S — v/S,
which follows from Theorem 4.3.1 and Theorem B.(i). For (3), note that C*(u/s) =
C(u*\s) CC(n*/s) = C*(1t\s) by Theorem 3.1.6, and then combine Theorem 4.3.1 with
Theorem B.(iv). For (4), again from Theorem 4.3.1 and Theorem B.(iv), we have that
the valuated cocircuits C*(u) are in the tropical span of C*(v). Considering the supports
of these as elements in T, we have that every cocircuit of M is a union of cocircuits
of N. Hence, we have N* «— M*, or equivalently, M « N. 0O

Remark 4.3.3. The results here about valuated matroid quotients generalize to matroid
morphisms (see [12]) in the following way. For a map of finite sets ¢ : [n] — [m] and
M a matroid of rank r on [m], define a matroid ¢~'*M on [n] by B(¢p~'M) := {B €
([:”]) | o(B) € B(M)}. If p is a valuated matroid on M, then o~ tu : B — u(p(B)) is a
valuated matroid on ¢~ 'M. A valuated matroid morphism v — j consists of valuated
matroids v, on [n], [m] (respectively) and a map ¢ : [n] — [m] such that v — =1 ().
By Theorem 4.3.1, this is equivalent to saying that the following diagram commutes
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trop(u) —— trop(v)

[ [ ®)

P(T ™) Py P(TI),

where trop,, : P(T™) — P(TM) is given by (u;)jem) = (Uu(i))icpn)- The diagram (i)
mirrors the diagram defining realizable matroid morphisms [12, Remark 2.1]. The map

trop(p) — trop(v) in () is a tropical morphism in the sense of [23].
4.4. Flag matroidal subdivisions of base polytopes

We now come to subdivisions of base configurations of flag matroids. Let M be a flag
matroid.

Definition 4.4.1. A subdivision of the base configuration B(M) is flag matroidal if each
face of the subdivision is a base configuration of a flag matroid. A subdivision of the
base polytope Q(M) is flag matroidal if each face of the subdivision is a base polytope
of a flag matroid.

A flag matroidal subdivision of B(M) is necessarily mixed, and gives a flag matroidal
subdivision of Q(M). In general one cannot recover the subdivision of a point configura-
tion A from the resulting polyhedral subdivision of Conv(.A). But in this case, since one
can recover the constituent matroids My, ..., M of a flag matroid M from the data of
its base polytope Q(M) alone, a flag matroidal subdivision of the base polytope Q(M)
determines a subdivision of the base configuration B(M). We now prove (b) = (¢) in
Theorem A.

Theorem 4.4.2. Let p = (u1,...,4k) be a valuated flag matroid with underlying flag
matroid M = (M, ..., My). Regard each u; as a weighted point configuration on B(M;).
Then, their Minkowski sum Zle Wi, which is a weight on the base configuration B(M),
induces a flag matroidal subdivision of B(M).

Proof. We begin by making the following observations for valuated matroids p and v
with underlying matroids M and N (respectively). Both observations are straightforward
to verify.

e Fix u e R, and consider a new weight 1/ defined by
W (1) = p(I) + (u,e;) for I € B(M),

and similarly define /. Then p « v if and only if p/ « v/
e Let r be the rank of M. Define a new weight fiyn : ([’TL]) — R by ptimin(I) = min(u)
if u(I) = min(u) and oo otherwise, which is a (valuated) matroid also known as the



30 M. Brandt et al. / Advances in Mathematics 384 (2021) 107695

ingtial matroid of p (see [25, Definition 4.2.7] and [8, Definition 2.1]). Similarly define
Vmin- Then p « v implies fimin 4 Vmin. In particular, by Corollary 4.3.2.(4), the
underlying matroids of fiy, and v, form a matroid quotient if p « v.

Now, fix an arbitrary u € R[") and consider the face AL, » of the subdivision of B(M).

=1 "
By Lemma 2.2.6, this face is the Minkowski sum Zle AEI_. By Lemma 2.2.4 and the
first observation above, we may assume that u = 0. In this case, each face Agi is the
underlying matroid of (;)min, and the second observation thus implies that the faces
form a flag matroid. O

The following theorem proves (¢c) = (d) in Theorem A. The characterization in
Theorem B.(iii) plays a fundamental role here.

Theorem 4.4.3. Let M = (My,..., My) be a flag matroid on [n], and let w be a weight
on the base configuration B(M). Suppose the coherent subdivision A, is flag matroidal,
and let py, ..., ux be any weights on B(My),. .., B(Mjy) satzsfymg A, = Azk . Then
Ui, ..., tg are valuated matroids, and they satzsfy trop(pu1) C -+ C trop(pk)-

Lemma 4.4.4. Let M = (M, ..., My) be a flag matroid on [n]. If M; is loopless, then so
are Mj for any 1 < i < j < k. Equivalently, if M} is coloopless, then so are M7 for any
1<i<j<k.

Proof. The definition of matroid quotients by rank functions implies that if an element
I € [n] satisfies tkyy, (I) = 0, then rkyy, (I) =0 also forall 1 <i < j <k. O

Proof of Theorem 4.4.3. By Lemma 2.2.6, for every u € RI"/ /R1 the face AT = A%k i
is the Minkowski sum »_;_, AEZ_. Since A, is flag matroidal, in particular each face olf Ay
is a Minkowski sum of base polytopes of matroids. In other words, for each 1 <14 < k the
face Al is a base polytope of a matroid. Thus, each A, is a subdivision of B(M;) whose
faces are all also matroids. Thus, by the equivalence of (a) and (c¢) in Theorem 3.1.3,
each p; is a valuated matroid.

We will apply Theorem B.(iii) to prove the rest of the theorem. In preparation, we
first note that for a matroid M, one has Q(M*) = —Q(M) + 1. Hence, if p is a valuated
matroid, then the map A, — A,- defined by 7 — —F + 1 is a bijection. Therefore,
the duals pf, ..., u; induce a ﬂag matroidal subdivision Azk . of the flag matroid
base polytope of (M},..., M), because its faces are in leeCthH ‘with the faces of Ay
by F — —F + k1.

Now, let @ € P(T!™), and let S C [n] be the subset such that @ € Ts. Write u =
u’ x oo\, Combining Lemma 2 3.4 and Lemma 2.3.7 implies that for some u” € RM\S,
we have A“ xu’ AE/ s X Au + /4> and thus Theorem 4.1.5 .(2) implies that A ey
is a flag matrmdal subdivision. Theorem 2.3.8 therefore implies that the sequence of

faces (ANT""’ANZ) form the dual of a flag matroid, that is, (AEZ’ R AET) is a flag
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Fig. 4. The flag Dressian FIDr(U1,2;4).
0102 0012
1002 0021

0120

1020
2001

2100 2010

Fig. 5. The base polytope of the flag matroid (U1,2;4).

matroid. By Lemma 4.4.4, if the matroid of A“* is coloopless for some 1 < ¢ < k, then
So are A“ for any 1 < i < j < k. The deswed inclusion trop(u;) C trop(u;) for all
1<i< ] < k now follows from Theorem B.(iii), which states that trop(u;) = {u €
P(T™) | matroid of AE: is coloopless}. O

We have now proven Theorem A. The equivalence (a) <= (c¢) states that a mixed
coherent subdivision of a base configuration of a flag matroid is flag matroidal if and only
if the weights form a valuated flag matroid. One can further ask whether all coherent flag
matroidal subdivisions arise in this way. Combining Theorems 2.2.9 and 4.4.3 implies
the following.

Corollary 4.4.5. Every coherent flag matroidal subdivision of a base polytope of a flag
matroid arises from a valuated flag matroid.

We now feature an extended illustration of Theorem A.

Example 4.4.6. Consider the tropical prevariety of FI(1,2;4), the (closure of) the flag
Dressian of the flag matroid U1 2.4 := (Uy,4, Uz 4). Compare this example to [25, Example
4.3.19].

We embed the variety FI(1,2;4) inside P® x P3, where the first factor has Pliicker
coordinates P;; while the second factor has Pliicker coordinates P; for ¢,7 =1,...,4 and
i < j. The equations defining FIDr(1,2;4) in this embedding are given by
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Fig. 6. The subdivisions of Q(U1,2;4) induced by points in the flag Dressian FIDr(U1,2;4). The colors
correspond to which points in FIDr(Uq 2;4) induce that subdivision, see Fig. 4. Each is displayed with the
corresponding flag of a tropical point in a tropical line, and dually the tropical line in a tropical plane.

(PraPas — Pi3Poy + PiaPsy, PyPoz — P3Poy + PyP3y, PyPi3 — P3Piy+ P Pay,
PyPiy — PyPiy+ Py Pay, P3Pio— PyPi3+ P Pa3).

We compute the tropical prevariety defined by these equations to obtain (the affine cone
of) the flag Dressian FIDr(U1 2.4) using the command tropicalintersection in the
software gfan [22]. In its 10 dimensional ambient space, the affine cone of FIDr(U1 2.4)
is a pure simplicial fan of dimension 7 with a 5 dimensional lineality space. Modulo its
lineality space, it consists of 10 rays and 15 two-dimensional cones. Intersected with the
sphere, we obtain Fig. 4. This is also Dr(2;5), in agreement with @(1, 2;4) = 1/)\1*(2; 5)
as we will see in Corollary 5.1.5.

The base polytope Q(U1,2.4) is the truncated tetrahedron, pictured in Fig. 5. This
is the orbit polytope Conv {g (1,2,0,0) CR* : g€ 54}. The subdivisions induced on
Q(U1,2;4) by points in FIDr(U12.4) come in five types, as indicated in Fig. 6. These
correspond to the colored edges and vertices in Fig. 4. By Theorem A these are the
subdivisions of Q(U1 2.4) into flag matroid polytopes. We display each subdivision with
the corresponding flag of tropical linear spaces.

5. Realizability
We now give an application of Theorem A to realizability. In Example 4.4.6 we saw

that the flag Dressian FIDr(1,2;4) is the Petersen graph, which is the same as the
Dressian Dr(2;5). In Theorem 5.1.2, we explain this equality. In Theorem 5.2.1 we



M. Brandt et al. / Advances in Mathematics 384 (2021) 107695 33

see that every valuated flag matroid on ground set of size at most 5 is realizable. We
conclude with two examples. The first gives an interpretation of the tropicalization of
the complete flag Fi(1,2, 3;4) as parameterizing two points in a tropical line. The second
gives an example of non-realizability for a flag matroid on 6 elements.

5.1. Relating Dressians and flag Dressians

We begin by recalling a classical fact about matroid quotients with rank difference 1.
See [28, §7.3] for a proof.

Proposition 5.1.1. Let M’ «— M be a matroid quotient on [n] where the ranks of M’ and
M differ by 1. Let [n] :={0,1,...,n}. Then the collection of subsets of [n]

B(M) :={I' U0 | I' € B(M")} UB(M)

is a set of bases of a matroid M on [f]. The matroid M is the unique matroid on [
satisfying M' = M /o and M = M\p.

We extend this fact to valuated matroid quotients with rank difference 1. Let us first
consider the following partially defined map

IP’(T(T[TI)) -— P(T([f])) X }P’(T(r[i]l)) defined by (uz)le(r[i]l) = (up\o0)rs0 X (Ur)130-

This map is well-defined on the set

(7]

O(r + 1;71) := {ﬁ e P (k1)) r+1

and uy # oo for some J € (T[j’_]l) with J %0

ul#ooforsomefe([ﬁ])withIBO, }

If 1 is a valuated matroid on [ for which the map is well-defined, then its image under
the map is the product of the two valuated matroids u/¢ and p\g on [n]|, which form
a valuated matroid quotient by Corollary 4.3.2.(3). The following theorem generalizes
Proposition 5.1.1 by showing that every valuated matroid quotient of rank difference 1
arises in this way.

Theorem 5.1.2. Consider the Dressian Dr(r + 1;n 4+ 1) as a subset of ]P’(T(r[i]l)). The
map

Qr+Ln)NDr(r+1;n+1) = FIDr(r,r + 1;n)

induced by the partially defined map P (T (7@1)) -3 ]P’(T([:])) x P(T (T!ill)) is surjective,
and the fiber over a point (i, u) € FIDr(r,r + 1;n) is

{aop' @bop) € Dr(r+1;n+1) | a,b € R} ~R?*/R(1,1),
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where ' and p are considered as elements of P(T (*[;]1)) by

w(J) if JF0

00 otherwise 00 otherwise.

M,(I):{u’(I\O) itrso M(J):{

Proof. We have established that the map is well-defined: it sends a point of Dr(r+1; n+1)
to a point of Fl(r,r+1;n) by Corollary 4.3.2.(3). Consider the fiber over a point (y/, u) €
FIDr(r,r + 1;n), and write (M’, M) for the underlying flag matroid. Let M be the
matroid on [n] given by Proposition 5.1.1. For any a,b € R, we need to show that

fi: (7)) = T defined by

R LEVAU R Y
PO Vs w130

is a valuated matroid. By the equivalence of (b) and (c¢) in Theorem 3.1.3, it suffices to
show that the induced subdivision Ay of the base polytope Q(ﬁ ) consists only of base
polytopes of matroids.

The base polytope Q(M) C RIFl = R x R is the convex hull of {eo} x Q(M’) and
{0} x Q(M), so it is equivalent to the Cayley polytope of Q(M’) and Q(M). Thus, by
the Cayley trick [9, Theorem 9.2.16], the faces of the subdivision Aj; of Q(]Tf) are in
bijection with the faces of the subdivision A 447y 4 (b4p) of B(M') 4+ B(M). The subdivi-
sions A(q4pr)+(b4p) and Ay, are the same, and by Theorem 4.4.2 each face of A/,
is a Minkowski sum of base polytopes of two matroids that form a matroid quotient.
Hence, we conclude from Proposition 5.1.1 that each face of Ay is a base polytope of a
matroid. O

Theorem 5.1.2 is a tropical analogue of the following geometry.

Remark 5.1.3. Let [n] := {0,1,...,n}, and let {P; | I € (T[i]l)} be the Pliicker coordi-
nates of the embedding Gr(r + 1;n + 1) — IP’(Ik(T[i]l)). Consider the rational map

IP’(Jk(v-[i]l)) — IP’(J}{([:])) X ]P’(Ik(ml)) where (PI)Ie( )~ (Pro)1z0 X (Pr)rzo-

(7]
r41

With Fi(r,r+1;n) embedded in P(k('")) x P(k(51)), this gives a rational map Gr(r +
1,n+1) --» Fl(r,r + 1;n). The fiber over a point (Pr/) x (Py) € Fl(r,r + 1;n) is

{(apjluo,bPJ) (S G?“(T + l;n—i— 1) | a,b S ]k*} ~ (]k*)Z/ﬂ{*,

so that the map is a k*-fibration. Theorem 5.1.2 shows that a similar map in the tropical
setting is an R-fibration.

Theorem 5.1.2 relates Dressians and flag Dressians by their affine cones.
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Definition 5.1.4. The affine cone of a projective tropical prevariety X C P(T¥) is
X:={ueT?\{o"} |ue X} U "}

Affine cones of multi-projective tropical prevarieties are similarly defined.
Corollary 5.1.5. Under the identification T () ~T) T (Til), the affine cones l/)\r(r—k
1;m+1) and FIDr(r,r + 1;n) of Dr(r+1;n+ 1) and FiDr(r,r 4+ 1;n) are identical.

n n
r r

Proof. Let (u/,pn) € () x T('r'il). First consider the case where ' = oo(?) or 0=

o0(+#1) Then (W', u) € ﬁﬁ(r,r + 1;n) if and only if p is a valuated matroid of rank
r 4+ 1 on n + 1 elements where the element 0 is a loop (or respectively, u’ as a valuated
matroid where 0 is a coloop). In other words (¢/, u) € F/'ID\T(T, r 4 1;n) is equivalent to
(W, p) € l/)\r(r +1;n+ 1) in this case.

If neither of p' and p is an all-oo vector, then Theorem 5.1.2 implies that

(i, p) € FIDr(r,r +1;n) = (4, p) € Dr(r + Lin+ 1),

and Corollary 4.3.2.(3) implies that (', ) € Dr(r+1;n+1) = (4, u) € ﬁ(r,?“—l—
Iin). O

When r = 1, Corollary 5.1.5 follows from observing that the collections of tropi-
cal Pliicker relations that define Dr(2;n + 1) and FI(1,2;n) are identical after simply

renaming the variables P; € P(T ([TIL])) to Pjo. This observation however fails for » > 1.

5.2. Realizability for small ground sets

We compare the tropicalization of a partial flag variety and a flag Dressian in this
subsection. Due to the nature of this subsection, we use the contents of the geometric
Remarks 2.1.7, 2.1.8, 3.1.7, 4.2.5, and 4.2.6.

A non-realizable valuated flag matroid corresponds to a point on the flag Dressian
that does not lie in the tropicalization of the partial flag variety over any valued field k
(Remark 4.2.6). Realizability of a valuated flag matroid can be subtle. In Example 5.2.4,
we give a valuated flag matroid (u/, ) that is not realizable, but its underlying flag
matroid is realizable, and both valuated matroids p’ and p are realizable over a common
field. For small ground sets realizability is guaranteed.

Theorem 5.2.1. For n < 5, the tropicalization trop(Fl(r1,...,rs;n)) of a flag variety
E

Fl(ry,...,rs;n) embedded in ]P’(Ik(’i)) X e X P(]k(rs)) is equal to the flag Dressian
FIDr(rq,...,rs;n). Equivalently, for a valued field k satisfying val(k) = T, every valu-
ated flag matroid on a ground set of size at most 5 is realizable over k.
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A valued field k satisfying val(k) = T exists in every characteristic; see [29, §3]
for an example known as Mal’cev-Neumann rings. Theorem 5.2.1 fails for n > 6; see
Example 5.2.4. We prepare the proof of the theorem with a lemma.

Lemma 5.2.2. Let k be a wvalued field, and write T' := val(k) C T. Suppose p =
(11, 2, - - k) @8 a valuated flag matroid on [n] with rk(pu1) = 1 such that (po, .. ., k)
is realizable over k, and pi as an element of T() has coordinates in T'. Then nois
realizable over k. By duality, if p = (u1, o, - - -, pr) 98 a valuated flag matroid such that
(11, -, pr—1) is realizable over k and rk(ug) = n — 1, then p is also realizable over k

when g € F(lel).

Proof. Let a flag Ly C --- C L, C k¥ be a realization of (ug,...,ur). We need to
show that there exists a one-dimensional space L, that is, a point in P(k¥), such that
Ly C Ly and trop(u1) = trop(Lq). But since rk(u1) = 1, the space trop(u1) is a single
point, which by Theorem 4.3.1 is on trop(pus) = trop(Ls). By the lifting property in the
Fundamental Theorem of Tropical Geometry [25, Theorem 3.2.3, Theorem 6.2.15], there
exists a point p; € P(Ly) C P(k¥) with trop(p1) = trop(u1). O

Proof of Theorem 5.2.1. We first note some previous results:

 One has trop(Gr(1;n)) = Dr(1;n) = P(TF¥), and dually, trop(Gr(n—1;n)) = Dr(n—
1;m).

o For any n, one has trop(Gr(2;n)) = Dr(2;n), and dually, trop(Gr(n—2;n)) = Dr(n—
2;n) [25, Corollary 4.3.12].

o One has trop(Gr(3;6)) = Dr(3;6) [25, Example 4.4.10].

By Theorem 5.1.2, the desired statement thus holds for FI(1,2;n), its dual Fl(n—2,n—
1;n), and Fl(2,3;5). The rest of the cases for n < 5 then follow from Lemma 5.2.2. O

Example 5.2.3. Let Fly := FI(1,2,3;4), and denote by Fl, the very affine vari-
ety obtained as the intersection of Fl; embedded in P3 x P® x P3 with the torus
(k)4 /k* x (k*)6/k* x (k*)*/k*. The f-vector of its tropicalization trop(Fls), with
the Grobner complex for its polyhedral complex structure, was computed in [6] to be
(1,20,79,78) with the aid of a computer. We now give an explicit description of the
combinatorial structure of trop(Fly).

By Theorem 5.2.1, we have that trop(ﬁ’l4) = FIDr(U;234) where Ujo34 =
(U1.4,U2,.4,Us4). If p is a valuated matroid whose underlying matroid is Us 4, then
trop(p) is a translate of trop(u*). Thus, by Theorem 4.3.1, one can identify the space
FIDr(U1,2,3.4) as the parameter space of two labeled points on a tropical line. Using this,
we completely describe the polyhedral complex structure of trop(ﬁ ly) = FIDr(U12,3.4)
in Figs. 7 and 8. The pictorial representations of the maximal cells in [6, Fig. 2] are
related to but different from ours.
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-

The origin 2 - 4 rays 3 - 2rays 3 - 2rays
(3) - 2 edges 4 edges 3 edges
{%L. A .L.+ - e 4
3-2-3edges 3-2-2-2edges 3-2-2-2edges

Fig. 7. The origin, 20 rays, and 79 edges of FIDr (U1 2 3;4).

R
+A+ﬁ v

- + »

R T N R

3 -2 2 triangles 3 -4 -2 triangles 3-2-2-2triangles
Fig. 8. The 78 2-cells of FIDr(Ui,2,3;4). 78 is also 3 - 52 +3 (three kinds of tropical lines, each with five

1-cells, plus 3 from the subdivided squares).

The next example highlights the subtleties of realizability. In light of Theorem 5.1.2,
the example below is closely related to [25, Example 4.3.14].

Example 5.2.4. Consider the flag matroid M = (Us g, M4) pictured in Fig. 9. The matroid
M, is the rank 3 matroid on E = {1,...,6} with circuit hyperplanes {124, 135, 236, 456}.
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1 2 3456

Fig. 9. The flag matroid considered in Example 5.2.4.

Fig. 10. The Dressian of the flag matroid in Example 5.2.4.

The affine cone of the flag Dressian FiDr(M) is a 10 dimensional fan, with a 7 dimen-
sional lineality space. Modulo lineality and intersecting with a sphere, it has 13 rays, 21
edges, and one triangle, depicted in Fig. 10. In Fig. 10, rays are labeled with the tree
given by the U, ¢ coordinates. The green edges in the graph correspond to points where
the corresponding tree is a caterpillar, and the purple points give snowflake trees. The
triangle is glued to the pink, blue, and yellow vertices as indicated.
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Fig. 11. The dual matroid to My is pictured in black. The red line must be realizable to produce the trees
appearing in the interior of the triangle in Fig. 10.

Let V C Fl(2,3;6) be the space of realizations of (M4, Usg). The affine cone of this
subvariety V' of Fl(2,3;6) has dimension 9, but the affine cone of the flag Dressian
FIDr(M) has dimension 10. Since dim trop(V) = dim V' [25, Theorem 3.3.8], the flag
Dressian FIDr(M) must strictly contain trop(V). Indeed, the tropicalization trop(V)
when k has characteristic 0 consists of all zero and one dimensional cells in Fig. 10;
the interior of the single triangle is removed. Over characteristic 2, some points in the
interior of the triangle may be on trop(V'), but not the entire triangle.

Let us understand the non-realizable points in the interior of this triangle in more
detail when k has characteristic 0. The Dressians for Us ¢ and My are each tropical
varieties, meaning that every point w in each of their Dressians can be realized as vectors
over k whose Pliicker coordinates valuate to w. So, the points in the interior of the
triangle in FIDr (M) correspond to two realizable valuated matroids that fail to form a
realizable valuated matroid quotient.

We see why it is not possible to realize these points as follows. Points on the interior of
the triangle correspond to snowflake trees with pairs {2,5}, {1,6}, and {3,4}. In order
to realize this over k, we would need to make a configuration as in Fig. 9 such that
over the residue field, the projections of the points {2,5} coincide, the projections of the
points {1,6} coincide, and the projections of the points {3,4} coincide. The dual picture
is shown in Fig. 11. In order to realize the desired snowflake, we need to find a line that
intersects the six lines pictured at each of the points of intersection of the lines 2 and 5,
1 and 6, and 3 and 4. This is only possible over fields of characteristic 2, where the Fano
plane is realizable.
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