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Divisorial Motivic Zeta Functions for Marked Stable
Curves

MADELINE BRANDT & MARTIN ULIRSCH

ABSTRACT. We define a divisorial motivic zeta function for stable
curves with marked points, which agrees with Kapranov’s motivic

zeta function when the curve is smooth and unmarked. We show that
this zeta function is rational and give a formula in terms of the dual
graph of the curve.

1. Introduction

Let k be an algebraically closed field. The Grothendieck ring Ko(Var/k) of va-
rieties over k is the free Abelian group on the set of isomorphism classes of
varieties modulo the relations [X]=[X\Y]+ [Y], where Y is a closed subva-
riety of X. It naturally carries a product given by taking the product of vari-
eties: [X] - [Y] = [(X x Y)]. For simplicity, we assume that k has characteristic
zero. Otherwise, we must instead work with Eo(Var/ k), which is the quotient
of Ko(Var/k) by the relations generated by [X] — [Y] whenever there is a radi-
cal surjective morphism X — Y of varieties over k; the product in Ko (Var/k) is
given by the reduced product of algebraic varieties. Throughout, we denote the
class of A,ﬁ by L in Ko(Var/k).

Let X be a quasiprojective variety over k. For d > 1, the symmetric group Sy
acts on X9, and the quotient by this action gives Xy, the dth symmetric product
of X. By convention we set Xo = Speck. Kapranov [ ] defines the motivic
zeta function of X with coefficients in the Grothendieck ring:

Zmot(X; 1) = Z[Xd]td €141 Ko(Var/k)[t].
d>0
This generalizes Weil’s zeta function for varieties over finite fields to the motivic
setting. When X is a smooth projective curve, Zmo (X, t) is rational (see e.g.
[ ] and [ ]). Outside the case of curves, rationality of the motivic zeta
function is known to fail. For example, for surfaces of Kodaira dimension > 2 (or
> 0 over C), the motivic zeta function is irrational (see [ ; D.

In this paper, we propose a natural generalization Zgy (X, p) (see Defini-
tion 3.1) of Kapranov’s motivic zeta function for a stable curve X with n marked
points p that takes into account the behavior at the nodes and the marked points.
The basic idea is to replace the symmetric power X, in the definition of Kapra-
nov’s zeta function by the fiber over (X, p) in a quotient of Hassett’s moduli
space of weighted stable curves of type (1", ¢?) (as in [ ). In the case
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n = 0, this space functions as a natural desingularization of the moduli space
of effective divisors on X (see [ Section 2]). When X is smooth and
does not have marked points, our coefficients equal the symmetric power, giving
Zdiv(X, 1) = Zmot(X, t). Our main result is the following theorem.

THEOREM A. Let (X, p) be a stable quasiprojective curve over k with n marked
points p. Then Zgiy(X, p; t) is rational over Ko(Var/ k). Moreover, if G = (E, V)
is the dual graph of X, then

1—1¢

|E|+n _
m) (1 =M T Zinod (X2 ),

Zaw(X, pit) = (
veV
where X, is the normalization of the component of X corresponding to the vertex

veV.

Bejleri, Ranganathan, and Vakil [ ] define a motivic Hilbert zeta function
Znin(X; t), where the coefficients are given by Hilbert schemes of points on a
variety X. Their zeta function is sensitive to the singularities of X, while also
agreeing with the usual motivic zeta function when X is smooth. They show that
the motivic Hilbert zeta function of a reduced curve is rational. In contrast to our
divisorial zeta function, the motivic Hilbert zeta function in [ ] does not
take into account marked points. Using [ Lemma 2.1, Corollary 2.2, and
Proposition 6.1], we can calculate that, for a nodal quasiprojective curve X with
dual graph G = (V, E), we have

Zhin(X: 1) = (1 =1 + LAOYE TT Zoo Koz 0). (L.D)
veV
It is instructive to compare our formula in Theorem A as well as formula (1.1)
for the Hilbert motivic zeta function with the formula for the usual Kapranov
motivic zeta function Zp(X;t). Using [ Chapter 7, Proposition 1.1.7]
(which is also stated as Lemma 3.9), we may calculate that

ZnaX; ) = (1 =D T ] Zinor (X ).
veV

Whereas Zo(X; t) appears to be insensitive to the nodal singularities of X, both
Zaiv(X;t) and Zpjp (X; t) “see” the nodes by adding extra components.

2. Effective Divisors on Pointed Stable Curves

Let k be an algebraically closed field of characteristic 0 and let g, n > 0 be such
that 2¢g —2+n > 0.

DEFINITION 2.1. Let Wg, .4 be the category fibered in groupoids over schemes,
whose objects are tuples (7 : X’ — S, p/, D) consisting of the following data:
(i) m: X’ — S is a flat and proper morphism of connected nodal curves;
(ii) p’ is an ordered collection of sections p], ..., p,: S — X that do not meet
the nodes in each fiber X i of ; and
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(iii) D is a relative effective Cartier divisor of degree d on X’ over S, whose
support does not intersect the nodes and sections in each fiber X of X’ over
S, such that the twisted canonical divisor

Kr:+€eD+pi+---+p,
is -relatively ample, where € = % > 0.

Denote by ﬂg,ln
n marked points of weight one and d marked points of weight € = % > 0 in the

d the moduli space of weighted stable curves of genus g with

sense of [ ]. There is a natural operation of S; on M _d that permutes the

g 1"
d marked points of weight €. Then Div, , 4 is naturally equivalent to the relative

coarse moduli space of
[Mg’ 1n76d /Sd]

over ﬂg,n in the sense of [ Theorem 3.1]. So, in particular, it is a smooth
and proper Deligne-Mumford stack with a projective coarse moduli space. There
is a natural forgetful morphism Div, , 4 — M, ,, and we write Divg , 4 for
its restriction to M, ,. The complement of Divg , 4 in Divg , 4 has (stack-
theoretically) normal crossings.

REMARK 2.2. For n = 0, the moduli space ﬁg,d was constructed in [
Section 2]. It is also equal to a special case of the moduli space of stable quotients,
as defined in [ Section 4].

Let (X,p) =(X,p1,...,pn) be a stable marked curve of genus g given by a
morphism Spec(k) — M, ,. The fiber Divg , 4 X/\_/lg . Spec(k) over this point

is represented by a fine moduli scheme Div;;(X , p) that parameterizes tuples
(X', p’, D) consisting of the following data:

(i) anodal curve X';

(ii) a collection of marked points p’ = (pj, ..., p,) of X’ such that p},..., p;,
do not meet the nodes of X’ and the stabilization of (X', p’) is isomorphic to
(X, p);

(iii) a relative effective Cartier divisor D of degree d on X’ whose support does
not intersect the nodes or marked points of X’ such that the twisted canonical
divisor

K+eD+pi+---+p,
is ample, where € = % > 0.

If X is smooth and does not have marked points, then the space Divji' (X) gives
effective divisors on X and is the dth symmetric power X4 (see [ Theo-
rem 3.13]).

Suppose now that X is quasiprojective. We choose a compactification X of
X by smooth points and define Div}} (X, p) to be the open locus in Div} (X, p)
where the support of D does not intersect the preimage of the boundary X — X in
X'. This does not depend on the choice of X.
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Figure 1 Let (X, p) be a smooth curve with genus g > 1 and one
marked point p. Then Div;' (X, p) has four strata corresponding to the
pictured combinatorial types of marked stable curves and divisors.

ARAR

Figure2 Let X be a curve with two smooth components each having
genus larger than one meeting in a node. In this case, DiV;_ (X) has
seven strata corresponding to the pictured combinatorial types of stable
curves and divisors.

Now we describe the strata of Divj,'(X ,p) asin [ ]. We associate with
(X', p’, D) a dual stable pair (G’, mdeg(D)) as follows: The graph G’ is the dual
graph of (X', p’), where the vertices v of G’ each correspond to a component
X, of X'. For a node between components X, and X', of X, there is an edge
between vertices v and v’ of G’. For a marked point in a component X, we add a
leg at v. The restriction of D to each component X/, defines a divisor mdeg(D) =
>, deg(D|x;) - v on G’. The graph G’ is a subdivision of G, the dual graph of
(X, p). The pair (G', D) is a stable pair over G, meaning that the degree of D is
at least 1 on all exceptional vertices of G’. Denote by A(G, d) the collection of
all stable pairs of degree d over G.

We can generalize the results in [ Section 3.2] to show that the strata of
Divj (X, p) are precisely the locally closed subsets on which the dual pairs are
constant. For examples, see Figures | and 2. Denote by Diver,’ D)(X , p) the locus

of points in Div} (X, p) whose dual pair is (G, D).

3. Divisorial Motivic Zeta Function

DEFINITION 3.1. Let (X, p) be a stable marked quasiprojective curve over k of
genus g with n marked points. The divisorial motivic zeta function of (X, p) is
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defined to be

Za(X, pi 1) = Z[Div:{(X, Mt €1 +1- Ko(Var/k)[t].
d>0

We begin by breaking up the classes [DiV;}_(X , p)] along their strata using the
following lemma.

LEmMA 3.2 ([ Chapter 2, Lemma 1.3.3]). Suppose that Y is a variety over
k and we have a decomposition Y =Y U ---U Y, where all Y; are locally closed
subvarieties of Y. Then

[Y]=[Y1]+---+ Y]
LEMMA 3.3. Let (X, p) be a stable marked quasiprojective curve over k. Then
Zaw(X, pity =Y _t* > [Diviep)(X, P)l.
d>0  A(G,d)
where the second sum is over all stable pairs (G', D) of degree d over the dual

graph G of (X, p).

Proof. This follows from the description of the strata of DiV;;(X, p) and
Lemma 3.2. O

NoraTioN 3.4. Given a stable marked quasiprojective curve (X, p) and points
q1,.--,qm € X, write

X,p,—q):=X\{q1,....qm} APt . PaI\G1. - gm}).

Given a connected component X, of X, we denote the nonspecial locus of X, by
X = (Xy, =P, = Sing(X,)).
We now describe the class of DiV?_G,’ D) (X, p) in the Grothendieck ring.

LEMMA 3.5. Let (X, p) be a stable marked quasiprojective curve, and let (G’, D)
be a stable pair such that the stabilization of G' is equal to the dual graph G of X.
Then

[Divie.py(X, Pl = [ [IX D] [T [Cpw)-1l,
veG V' eG'\G

where G denotes the one-dimensional algebraic torus A' — {0} over k.

Proof. A point in Div(; ,, (X, p) gives a divisor of degree D(v) on X9 for

each v € G’. On nonexceptional components, these are points in (X ,(,0)) D). On
exceptional components, these are points in Gp(yy—1. (]

We now prove a series of propositions, which give us a way to iteratively relate
the divisorial motivic zeta function of a stable curve to the divisorial motivic zeta
functions of its components.
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PROPOSITION 3.6 (Self-intersection). Let (X, P, q1, q2) be a stable quasiprojective
curve with n + 2 marked points, and let (X/g4,~q,, p) be the curve with a nodal
self-intersection obtained by gluing q1 and q>. Then

Zav(X, poq1, —q2; 1) = Zai (X / gy~qs» D3 1)-

Proof. Using Lemmas and 3.5, we have that
Zav(X/qegy- Bi) =Y 1T Y T pwy] [] 1Gpwy-1l:
d>0 A(G,d)veG v'eG\G

Given a stable pair (G’, D) of degree d over G, let j be the degree of D away
from any exceptional vertices over the edge corresponding to the node g;. We
may reorganize the above sum by the quantity j:
d
Zaiv(X /g1~ Bi ) =Y 1Y IDVF(X, B, —q1,—g)] Y [Gla,
d>0  j=0 aecomp(d—j)

where we write [Gly 1= [Gg,—1]- - [Gg—1]. The last sum is taken over all or-
dered ways to write the integer d — j as a sum of positive integers. This accounts
for all ways to form stable pairs whose exceptional components emanate from the
point g1 (see Figure 3). Using a similar argument, we can show that the above
sum also equals Zgiv (X, P, q1, —q2; 1). O

ProposITION 3.7 (Intersection). Let (X, p, p) be a stable quasiprojective curve
with n + 1 marked points, and let (Y, g, q) be a stable quasiprojective curve with
m + 1 marked points. Denote by X Up~, Y the curve obtained by gluing X to Y
along a node at the points p, q. Then

ZdiV(X |—|p~q Y? ﬁ’ ‘75 t) = ZdiV(X’ ﬁ? P t) : ZdiV(Y’ Z]: —-q; t)
Proof. By Lemmas and 3.5 we have that the divisorial zeta function is

Za(X Upng ¥, PG 0) = 14 " [DIV (Y. G, —q)]

d>0 r+i=d
1

X(Z[Divlj<x,ﬁ,—p>] > [G]a),
1,=0 aecomp(l—Iy)

Figure 3 A stable pair for Proposition
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Figure 4 A stable pair for Proposition

where we interpret r to be the degree of the divisor restricted to Y, / to be the
degree of the divisor restricted to X and the exceptional components, and [, to be
the degree of the divisor restricted to X (see Figure 4). We observe that this is in
fact a product of series:

Zgiv(X Up~q Y, ﬁa f}: 1)

= (Z t[Div} (Y. g, —q)]>

d=0
d
x(th [Divy (X.p.-p)] Y [G]a).
d>0 d,=0 aecomp(d—d,)

On the left, we have Zgiy (Y, g, —q; t), and on the right, we have Zgiy (X, P, p; ).
O

ProprosiTION 3.8 (Closing). Let X be a smooth quasiprojective curve, and let
p € X be a point. Then

Zav(X, —pit) = Zaiv(X; 1) - (1 —1).
First, we need the following lemma.

LeEmMmA 3.9 ([ Chapter 7, Proposition 1.1.7]). If X is a quasiprojective
variety, and Y — X is a closed subvariety with complement U, then

[(X,l= ) i1 [U;1.

i+j=n

Proof of Proposition 3.5. In our case, we take Y = p and U = X (—p). Then

[(X.d= Y [1-[(X,—p)jl= ) _[(X,—p),l.

i+j=n j=0
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Since X is smooth, we have X; = Divj(X ). Applying the above equation, we
find

00 d
Zaw(X:t) =Y 11 Y [X(=p)j]
d=0 j=0

=ZawX,—p: VA +t+124+13+-0)

_ Zgy(X,—p;1)
1—1 ’ U

PROPOSITION 3.10. Denote by G be the one-dimensional algebraic torus A" — {0}
over k and by L the class of A" in the Grothendieck ring. Then

1—1¢
1 -1t

Zaiv(G; 1) = Zinot (G 1) =

Proof. By Lemma applied to X = A! and U = G we find that [A}i] =
Zf-i:o[(G,-]. Using the fact that (A!); = A? and therefore [(A!)4] =1L¢, we have:

Zai(Git) =) 1U[Gy]

d>0
d—1
=> (]Ld —~ Z[(G,-])
d>0 i=0
d—1
=Y L= 1Y (Gl
d=0 d>0 i=0
After reindexing, we find:
1 d
Zaiv(G; 1) = 1L IZl‘d Z[Gi]
d>0 i=0
1
= 1 Za Gty (A 1412+
1 — Lt le( ) ( +t+ + )
. 1 t-Zgiv(G;t)
1—Lt 11—t

Solving for Zgiy (G, t), we find that Zgiy (G, t) = 11_*]];, as claimed. The equal-
ity Zaiv(G; 1) = Zmot(G; t) holds, since G is a smooth curve without marked
points. ]

ProposITION 3.11. Let (X, p, q) be a quasiprojective stable marked curve. Then

. . 1 -1t
Zav(X, p,q; 1) = Zaw(X, p, —q; 1) - ——————.
daiv(X, p.q; 1) div(X, p, —q; 1) I—Li—t+42
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Proof. We have

d
Zaw(X, prq; )=y 11y IDiv;_;(X,p,—q)] Y [GClq
d>0 j=0 aecomp(j)
= (Z[Div,;(x 22 —q)]t”’) (1 +y [G]a),
d>0 d>1 aecomp(d)

where we think of j as the degree of the divisor restricted to exceptional compo-
nents. Now we evaluate the right term in this product. Reorganizing by the length
of the composition, we find

1+Y 7 Y [Gla=1+)Y > 1 > [Gla

d>1 aecomp(d) k>1d>k aecomp(d)
lor| =k
=14 (t Za(G; )
k>1
B 1
11 Zaw(GD)’
Applying Proposition and simplifying, we obtain the result. (]

We are now ready to prove Theorem A from the introduction.

Proof of Theorem A. Let (X, p) be a pointed stable curve over k with dual
graph G. We use Propositions and to break up X into its components.
Each node in X yields a new marked point and a new hole. By Proposition ,
exchanging the | E| + n marked points for a holes leads to factors of

1 -1t
1—Lt—t+12
Stitching the 2| E| + n holes leads to factors of 1 — ¢ by Proposition 3.8. So we
obtain

1—Le \EHo -
Zagiv(X, p;t) = <m) (1—1)? |+n1_[Zdiv(Xv;t).
veV

Finally, we use that the motivic zeta function is equal to the divisorial zeta func-
tion for each X v because X v 18 smooth and does not have marked points. To de-
duce that Zg;y (X, p; t) is rational, we apply [ Theorem 1.1.9] and [

Theorem 10], which tell us that Zmot()N( vy 1) is rational forall v € V. O

4. Complements and Future Directions

4.1. Nodal Curves

We can also define Divy (X, p) when (X, p) is only a nodal curve with n distinct
smooth markings. The only difference is that in Condition (iii) in Section 2, we
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need to loosen the requirement that the twisted canonical divisor
K +eD+pi+--+p,

is ample and to only require it to be positive on the exceptional components of X’.
The rest of the argument goes through without any changes, and so we can show
that the resulting divisorial zeta function of a pointed nodal curve is rational as
well.

4.2. Functional Equation

In Part (b) of [ Theorem 1.1.9], Kapranov also proves that the motivic zeta
function Zno(X;t) of a smooth projective curve (that admits a rational point)
fulfills the functional equation

1
Zmot (x; ﬂ> =L'782728 20 (X; 1). @.1)

The central geometric facts that are used in the proof of (4.1) are the Riemann—
Roch theorem and Serre duality on X.

Let X be a stable curve. We can think of our space Div;(X) as the moduli
space of effective logarithmic divisors over the logarithmic Picard group of X (see

[ ] for details). It is tempting to speculate that logarithmic versions of the
Riemann—Roch theorem and of Serre duality for logarithmic curves, expanding
on [ ]and [ ], would lead to a similar functional equation in our setup.

4.3. Weighted Points

We can define a motivic zeta function by weighting the points of the divisor as
follows.

Letw = (wy, ..., wq, ...) be asequence in QN (0, 1], and let /Vg’ln’wg be the
moduli space of weighted stable curves of genus g with n marked points of weight
one and d marked points of weight wy in the sense of [ ]. There is a natural

operation of S; on M d that permutes the d marked points with weights w,.

g, 1" w

Write Divg 4,0, for the relative coarse moduli space of M w! /Sa] over

g1,
My, with a natural forgetful morphism Div, . 4,w, — Mg n. For (X, p), a sta-

ble marked curve of genus g given by a morphism Spec(k) — Mg, n, we define
Divg w, (X, p) = D_ivg,n,d,wd XM Spec(k).
We may now define a motivic zeta function Z,, (X, p; t) as
Zy(X, pit) =Y _[Diva.u, (X, p)It’.
d>0

In this paper, we have considered Z,, (X, p;t) for weight sequences w with
wy = 1/d. Interesting questions for future investigation will whether this function
is rational for all weight sequences w and whether or not there is any interesting
asymptotic wall crossing structure in the space of sequences w.
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