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SYMMETRIC POWERS OF ALGEBRAIC AND TROPICAL
CURVES: A NON-ARCHIMEDEAN PERSPECTIVE

MADELINE BRANDT AND MARTIN ULIRSCH

ABSTRACT. We show that the non-Archimedean skeleton of the d-th symmetric
power of a smooth projective algebraic curve X is naturally isomorphic to the
d-th symmetric power of the tropical curve that arises as the non-Archimedean
skeleton of X. The retraction to the skeleton is precisely the specialization
map for divisors. Moreover, we show that the process of tropicalization natu-
rally commutes with the diagonal morphisms and the Abel-Jacobi map and we
exhibit a faithful tropicalization for symmetric powers of curves. Finally, we
prove a version of the Bieri-Groves Theorem that allows us, under certain trop-
ical genericity assumptions, to deduce a new tropical Riemann-Roch-Theorem
for the tropicalization of linear systems.
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INTRODUCTION

Throughout, let K be a non-Archimedean field with valuation ring R whose
residue field k is algebraically closed and contained in K. Let X be a smooth
projective curve over K of genus g and let d > 0. The d-th symmetric power X4 of
X is defined to be the quotient

Xy=X8,

of the d-fold product X? = X x---x X by the action of the symmetric group S; that
permutes the entries. The symmetric power X is again a smooth and projective
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algebraic variety and functions as the fine moduli space of effective divisors of degree
d on X (see [Mil86, Section 3] for details).

Let I' = I'x be the dual tropical curve of X, i.e. the minimal skeleton of X?".
As a set, the d-th symmetric power I'g of T is defined to be the quotient

Iyg=T49/9,

of the d-fold product by Ss-action. We will see in Section [ that, once we choose
a semistable model (G, |.|) for T', the symmetric power I'y naturally carries the
structure of a colored polysimplicial complex and it naturally functions as a moduli
space of effective divisors of degree d on I.

Let X be a semistable model of X over R that admits a section. The special
fiber of X is a semistable curve whose weighted dual graph (together with the
edge lengths given by the valuations of the deformation parameters at every node)
provides us with a natural choice of a model (G,|.|) of I'. There is a natural
tropicalization map

tropy,: Xg" — Ty
given by pushing forward an effective Cartier divisor D on X, for a non-Archime-
dean extension L of K, to the dual tropical curve I'x, = I'x, which is essentially
a version of Baker’s specialization map for divisors in [Bak08] (see Section [B.4] for
details).

On the other hand, using a variation of the compactification of the moduli space
of effective divisors over M, constructed in [MUW?21| Section 2], a special case
of the moduli space of stable quotients in [MOPII], we find a polystable model

ﬁj (X) of X4 over Spec R that has a natural modular interpretation. The space

ﬁj (X) is not the Sy-quotient of the fibered product X' Xgpecr -+ Xspec & X but
rather a resolution thereof with good moduli-theoretic properties.

By [Ber99], associated to the polystable model WI(X ) there is a strong defor-
mation retraction

px,: X§" — X(Xa)

onto the non-Archimedean skeleton £(Xg) of X$™, which naturally carries the struc-
ture of a colored polysimplicial complex. We refer the reader to Section[2lfor a guide
to this construction. Our main result is Theorem [Al

Theorem A. Let X be a smooth and projective algebraic curve over K. Let X be
a fixed semistable model of X over the valuation ring R of K that admits a section.
Denote by I' the dual tropical curve of X. There is a natural isomorphism

HXg: Fd L) E(Xd)

of colored polysimplicial complexes that makes the diagram

tropxd
Xgn
E(Xd) # Fd

commute.

In other words, the symmetric power I'y of the skeleton I' = I'y of X" is
isomorphic to the skeleton ¥(Xy) of the symmetric power X3" of X*”. The main
idea of our proof is to carefully describe the combinatorial structure stratification
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of the polystable model of X, coming from [MUW2I] and to identify it with the
discrete data of I'y (thought of as the space Div}j (') of effective divisors on T').

An alternative to Theorem[A]l A slightly different version of Theorem[Alhas ap-
peared in [Shel6] en route to the proof of a non-Archimedean Lefschetz hyperplane
theorem for the locus of effective divisors in the Picard group. In [Shel6] Section
6] the author first identifies the non-Archimedean skeleton of the d-fold product
X4 with the d-fold product using Berkovich’s skeleton construction in [Ber99] and
then shows that the deformation retraction is naturally S,,-invariant. This implies
that the skeleton of the quotient X3" = (X9)2"/S,, is equal to 'y as a set. We
refer the reader to [BM19] for more details on skeletons associated to products of
degenerations. The resulting polyhedral structure on the skeleton constructed in
[Shel6], however, is not the one we introduce in Section [1

In this article we prefer our approach via the explicit model D—iv;(é’( ), since its
modular interpretation simplifies the construction of the tropicalization map and
the combinatorial stratification of its special fiber “explains” where the a priori only
intrinsically defined polyhedral structure on I'; is coming from.

Tropicalization of subvarieties. Let Y C X, be a closed subvariety. We define
the tropicalization Tropy,(Y) of Y to be the closed subset of I'y given by the
projection of Y% to I'y via tropy ,, i.e. essentially via the specialization of effective
divisors from X to I'x from [Bak08]. In other words, we set

Tropy,(Y) := tropx,(Y).

By Theorem [Al this is nothing but the projection of Y to the skeleton of X3 via
PXa-

A surprisingly useful consequence of Theorem [Al is that the continuity of px,
implies the continuity of the tropicalization tropy,. This allows us to deduce a
collection of functoriality results in Section [ from the linearity of Baker’s special-
ization map in [Bak08] and from the compatibility of the process of tropicalization
with the Abel-Jacobi map proved in [BR15| Theorem 1.3]. Moreover, the usual
arguments from the proof of [EKL06, Theorem 2.2.7] (also see [Gub13l, Proposition
3.5]) immediately imply Corollary [B.

Corollary B. IfY C X is connected, then the tropicalization Tropx,(Y') is con-
nected as well.

Proof. Since Y is connected Y*" is also connected [Ber90, Theorem 3.4.8], and then
continuity of the tropicalization map implies that Tropy,(Y’) is connected. (Il

Denote by A C R the value group —log|K*| of K. In Section Bl we prove a
generalization of the classical Bieri-Groves-Theorem (see [BG84, Theorem A] and
[EKL06, Theorem 2.2.3]) for projections to the skeleton associated to a polystable
model, which for X, can be stated as follows.

Theorem C. Let X be a smooth projective curve over K and let X be a fixed
semistable model of X over R. Suppose that Y C X, is a closed subscheme that is
equidimensional of dimension ¢ such that Y N X3 # 0, where X3 parametrizes the
reduced divisors on X. Then the tropicalization

Tropx, (V) := tropy, (Y*")
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FIGURE 1. A chain of loops with edge lengths labeled

of Y is a A-rational polyhedral complex of dimension at most 6. If X has bad
reduction and the tropicalization contains a point in the interior of a maximal cell
of X% then the dimension of Tropy,(Y) is equal to 6.

The theory developed in this article allows us to study the tropical geometry
of linear series by directly tropicalizing them as subvarieties of X;. For example,
Theorem [C] immediately implies the following realizable Riemann-Roch Theorem.

Corollary D. Let X be an algebraic curve with bad reduction of genus g and let D
be a divisor on X of degree d. Let |D| C X4 denote the linear series of D. Suppose
that both Tropy, |D‘ and Tropx, |KX — D| contain a point in the interior of a
mazimal cell of T'y. Then we have:

dim Tropy, |D| — dim Tropy, |[Kx — D| =d — g+ 1.

By [Bak08], the dimension of Tropy, ‘D| is not always equal to the rank of the
specialization of D to I'. So, in particular, the realizable Riemann-Roch Theorem
does, in general, not imply the well-known intrinsic tropical Riemann-Roch The-
orem from [BNO7,/GKO8/[AC13]. In the special case when I" is a generic chain of
loops, however, the lifting results of [CJP15] allow us to say more.

Algebraic and tropical Riemann-Roch Theorem for generic chains of
loops. Let I" be a chain of g loops, where each loop consists of two edges hav-
ing lengths I; and m; (see Figure [1l). Suppose that T is a generic, i.e. suppose
that none of the ratios I;/m; is equal to the ratio of two positive integers whose
sum is less than or equal to 2g — 2 (see [CDPR12, Definition 4.1]). The results
of [CJP15] show that the algebraic Riemann-Roch-Theorem implies the tropical
Riemann-Roch-Theorem.

Let D a divisor on I' of degree d and rank r supported on A-rational points of
I'. Let X be a Mumford curve whose dual tropical curve is I'. By [CJP15] there
is a line bundle L of degree d and rank r on X such that the specialization of L is
equal to the divisor class [D]. The construction in [CJP15] is naturally compatible
with residue duality and thus the specialization of wx ® L~ is equal to the class
[KT — D] and the rank of wx ® L! is equal to the rank of Kt — D. Therefore we
have

r(D) —r(Kp — D) = dim |[L| = dim|wx @ L™ | =d—g +1
and, in this situation, the algebraic Riemann-Roch Theorem implies its tropical
counterpart. If both Tropy, |L| and Tropy, |L ® wx/| contain an interior point of
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a maximal cell of I'g, then we have r(D) = dim Tropy, |L| as well as 7(Kp — D) =
dim Tropy, |wx ® L™'| and the realizable Riemann-Roch-Theorem from above is
equivalent to the tropical Riemann-Roch-Theorem. One may think of Tropy, |L]
as the realizability locus in the tropical linear system |D| and the Baker-Norine
rank is equal to the polyhedral dimension of Tropy, |L|

Faithful tropicalization. The classical approach to the process of tropicaliza-
tion goes by choosing an embedding into a suitable toric variety and then ap-
plying coordinate-wise valuations to the embedded variety. For symmetric pow-
ers, however, Theorem [A] suggests that it might be more natural to think of
tropicalization as a projection to the non-Archimedean skeleton. The principle
of faithful tropicalization, as pioneered in [BPR16] and further developed e.g. in
[GRW16,[CHW14|[GRW17|, seeks to realign these two perspectives.

Expanding on [GRW16] we prove in Section [6] a faithful tropicalization result for
skeletons associated to polystable models. As a consequence we obtain Theorem [E]

Theorem E. There is an open subset U C X4 as well as a morphism f: U — G},
such that the restriction tropofo to I'y ~ X(X4) C U of the induced tropical-
ization map

trop,: U L5 gpyen 2o g
is a homeomorphism onto its image in R™. If X is a strictly semistable model for
X, then the restriction of tropy to each cell of I'q is unimodular.

Unfortunately the construction of the map f: U — G}, is by no means effective.
In Section [T.1]we speculate how the recent work of Kawaguchi and Yamaki [KY21]
that uses linear series to find effective faithful tropicalizations of curves may be
generalized to find effective faithful tropicalization of symmetric powers.

Finally, in Section [7.2] we describe a further open question, on the tropical ge-
ometry of varieties of de Jonquieres divisors in a fixed linear system (expanding on
the recent work of Ungureanu [Ung21]).

Complements and related works. Symmetric powers of tropical curves have
already appeared in [MZ08,[HMY12,[GKO08|, where they form a key ingredient to
understand the polyhedral structure of tropical linear series. While the process of
tropicalization on the level of divisor classes, e.g. as a tropicalization map of Picard
groups, has been studied widely (e.g. in [Bak08,BR15]), the purpose of this paper
is to provide non-Archimedean foundations for the tropicalization of symmetric
powers.

Our perspective on Theorem [A]is that it is another incarnation of the princi-
ple that the non-Archimedean skeleton of an algebraic moduli space typically is a
tropical moduli space that has recently been implemented in a multitude of dif-
ferent cases, e.g. in [BR15] for Picard varieties, in [ACPI5] for the moduli space
of curves, in [CMR16] for Hurwitz space, in [CHMR16,Uli15b] for Hassett spaces,
in [Ranl7,RSPW19| for rational and elliptic stable maps, and in [AP20] for the
universal Picard variety.

In fact, in [MUWZ21] Theorem 3], Méller, the second author, and Werner prove
that the skeleton of the moduli space Divy 4 of effective divisors over M, is equal to
the moduli space of effective tropical divisors Div'" 7 o7 over M, trop Tt is tempting to
speculate that this result would imply our Theorem [A] Unfortunately our current
understanding of the functoriality of skeleton constructions does not seem to allow
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us to formally deduce such a result. The main obstacle to overcome here lies in the
fact that the functor that associates to a K-analytic space its underlying topological
space does not preserve fibered products.

1. SYMMETRIC POWERS OF TROPICAL CURVES

1.1. Colored polysimplicial complexes. In this section we build polyhedral
complexes from simplices and products of simplices which have sizes, or colors,
and only glue along faces that have the same color.

Let n € N. We identify the non-negative positive orthant R;“gl with the space
of monoid homomorphisms Hom(N"™! R+) into the additive monoid (R>q,+). A

colored n-simplezx is a topological space A together with an injective homomorphism
da: N s CY(A,R>0) such that the induced map

A — RZE = Hom(N"*! R>o),
z— (m— ¢a(m)(z))
is a homeomorphism of A onto a subset

(1.1) A(n,a) =< (xg,...,zy) € Rg‘gl Zm, =a,C Rggl
=0

for some a € R+(. The real number a is uniquely determined by the datum (A, ¢a)
and is called the color of A. More generally, we define the notion of a colored
polysimplex.

Definition 1.1. Let 7 = (n1,...,n;) € N¥ and @ = (a1,...,ax) € RE, a vector of
colors. Set |7i| := Ele(ni +1). A colored Ti-polysimplex with colors @ is a topo-
logical space A together with an injective homomorphism ¢a : NIl < CO(A, R>0)
such that the induced map

A — R} = Hom(N | R),
T — (m — ¢A(m)(as))

is a homeomorphism of A onto the subset

n;
(12) A(ﬁ, d) = (:Eij)lﬁigk,OSjSm € R;b+1+.”+nk+1 inj = a; for all ¢
j=0

We refer to A(n,a) as the standard colored simplex of type (n,a) and to A(7, @)
as the standard colored polysimplex of type (i, @).

Example 1.2. The polysimplex A((1,1),(2,3)) is the set
{(z10, 211, 320, 221) € RLg| @10 4+ 211 = 2, @20 + 221 = 3}.
This is a two dimensional rectangle inside of R*, with sides of length 2 and 3.

We may think a colored polysimplex as a finite product of colored simplices. In
fact, we naturally have

A(7i, @) = A(ny,aq) X -+ X A(ng, ag).
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A morphism f: (A, ¢a) = (A’,dar) of colored polysimplices is a continuous map
f: A — A’ such that the pullback homomorphism

CO(A/,RZ()) — CO(A,RZQ),
u— ffui=wuof

restricts to a homomorphism of monoids NIl — NIl Here and in the rest of the
paper we think of NI7! as an embedded submonoid of C°(A,R>p) and often drop
the reference to ¢a from our notation.

A face of a colored polysimplex (A, ¢) is the zero set of a function ¢(m) €
C%(A,Rx) for an m € NI, Each face inherits the structure of a colored polysim-
plex by restriction of the functions in NI7l. We say that a morphism A — A’ is a
face morphism if it induces an isomorphism of A with a face of A’.

Example 1.3. Let A be the standard ((1, 1), (2, 3))-polysimplex. It has a face F
given by
{(z10, 11, w20, 221) € Ryg| w10 = 2, @20 + w21 = 3,211 =0} .

After projection, this is the standard ((1), (3)) polysimplex.

We denote by cPoly the category of standard colored polysimplices with face
morphisms. In Definition [I.4] we give a new perspective on the notion of a colored
polysimplicial complex, originally described by Berkovich in [Ber99, Section 3 and
4].

Definition 1.4. A (generalized) colored polysimplicial complex is a functor X :
= — cPoly from a small index category = to cPoly such that

(i) for all F € E and all i : A — X(F) there exists an F’ € Z and a map
t: F' — F such that (F') = A and X(¢) =4,
(i) for all F,G,H e Zand a: G = F, §: H — F and c¢: £(G) — X(H) with

S(F)
Z(a) =(8)
/ c \E(H

2(G)

)

commutative, there exists a unique v : G — H such that X(v) = ¢, and
(iii) the functor ¥: E — cPoly is faithful.

If, instead of (iii), we require the stronger condition that
(iii)’ all objects F' € = have no automorphisms but the trivial one,

we say that X is without self-gluing.

Formally, this makes a colored polysimplicial complex a category fibered in
groupoids over cPoly. We think of this definition in the following way. The cate-
gory = is an index category specifying how faces should be glued together. The first
condition says that whenever X(F) is part of our colored polysimplicial complex,
so are its faces. The second condition says that, given two faces which are a face
of a colored polysimplex, with one contained in the other, then the index category
= has a unique arrow corresponding to the inclusion. Condition (iii) ensures that
the only automorphisms in = are the ones that are in one-to-one correspondence
with certain self-gluings of colored polysimplices in ¥.. Condition (iii)’ prohibits the
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relative interior of a colored polysimplex in ¥ from being glued to itself and makes
Y into a category fibered in sets.

Example 1.5. We will construct the torus as a colored polysimplicial complex.
Let = be the category with objects {a, A, B, S}, pictured in Figure 2l Now, we
must make a functor ¥ : = — cPoly. The object a is sent to the standard zero
dimensional polysimplex (vertex), the objects A and B are sent to the standard
((n1), (a1)) = ((1), (1)) polysimplex (interval of length 1), and S is sent to the
standard ((1,1), (1,1)) polysimplex (square with side lengths 1). The arrows are as
described in Figure Bl

[ X0 Qe

S

FicURE 3. The torus as
a colored polysimplicial
complex

FiGURE 2. The index
category for Example[L5]

Example 1.6. We will now see how to construct the Mdébius band as a colored
polysimplicial complex. Let E be the category with objects {a, A, B, T} pictured
in Figure dal Now, we must make a functor ¥ : © — cPoly. The object a is
sent to the standard zero dimensional polysimplex (vertex), the objects A and
B are sent to the standard ((1), (1)) polysimplex, and T is sent to the standard
((n1), (a1)) = ((2),(1)) polysimplex (triangle with volume 1). The arrows are as
described in Figure

Given a polysimplicial complex ¥ indexed by E, its geometric realization |3| is
obtained by gluing the disjoint union of the standard polysimplices associated to
each polysimplex in ¥(Z) along the images of the face morphisms. In other words,
|| is the colimit of the functor which takes each element in = to the associated
standard polysimplex, and takes each face morphism ¢qp : F, = Fj3 to the unique
affine linear embedding taking ¥(F,,) to the corresponding face of X(Fj).

Remark 1.7.

(i) Notice that Condition (iii) or (iii)’ in Definition [[.4] would also both imply
the uniqueness in Condition (ii). We prefer to keep our axioms this way to
ease the conversion to the language of categories fibered in groupoids.

(ii) If in the index category = there is at most one arrow between any two
objects, i.e. if it is thin, the index category is naturally equivalent to (the
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ou @ e
- ° °
Ae : B
T

o7
(a) The index category for gg%oigepﬁ;:iﬁlﬁzz?;sri
Example plex

@ 2
1 ST 6

N\

(@]
l1e

(¢) The category of stable
pairs Z2(G)°? in Example

[L10]

FIGURE 4. The Mobius band is realized as a colored polysimplicial
complex, as this is the symmetric power (S!)q

category associated to) a poset. In this case no polysimplex in ¥ is glued
to itself. See Example [L.16l

(iii) If we had dropped condition (iii) in Definition [L.4] altogether we would get
a notion of a colored polysimplicial stack, in analogy with [CCUW2()].

(iv) In [CGP21] the authors introduce the notion of a symmetric A-complez. If
in Definition [L.4l we had considered a functor ¥: 2 — I to the category I of
finite sets [p] = {0, ..., p} with inclusions as morphisms (i.e. the category of
abstract simplices) with the same conditions (i)-(iii), our definition would
be equivalent to that of a symmetric A-complex in the sense of [CGP21].

1.2. Divisors on tropical curves. Let G = (V, E) be a graph. A length function
is a function |.| : F — Rso. We say that two tuples (G,|.|) and (G',[.|) are
equivalent if there exists a common length preserving refinement. An equivalence
class of such tuples is called a metric graph. We usually identify a metric graph
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with its geometric realization, the metric space that is given by gluing intervals of
length |e| according to the incidences in G. A tropical curve is a metric graph T
together with a weight function h : I' = Z>¢ which has finite support. A model for
I is a pair (G, |.|) which represents I' as a metric graph, and the support of h is
contained in the vertex set of G. We define the genus of a vertex-weighted graph
(G, h) to be g(G,h) := b1(G) + 3_,cy () M(v). The genus of a tropical curve I is
the genus of one of its models.

A divisor on a tropical curve is a finite formal sum D = 3 a;p; of points p; € T
with integer coefficients a;. The degree of a divisor D = > a;p; is defined to be
deg(D) = > a;. A divisor D is effective if D(p) :== >_ _ a; > 0 for all p € T".
Given a tropical curve I', we denote by Div&|r (T) the set of effective divisors of degree
donT.

Define the d-th symmetric product I'y of I' to be the quotient of the d-fold
product I'? of T' by the action of Sy which permutes the factors.

Lemma 1.8. We have a set-theoretic equality Divj (T)=Ty.

Proof. Let p € T'y. Then there is a representative (p, ..., pq) € I'Y for p. Consider
the map ¢ : 'y — Divj (T"), where
d

(Pry- - spa) = > pic

i=1
Then ¢ is well-defined, because for any permutation o € S;, we have Zle pi =
'-i, . The ma is surjective, because given any effective divisor D of degree
> i1 Poi) p ] ; g y g

d, we may write it in the form E?Zl p;. Then, we see that ¢ is injective because
if pr + -+ psg = q1 + -+ + qq, then there is a permutation o € Sy such that
Pi = Qo (s)- O

1.3. Div} (') as a colored polysimplicial complex. Let (G,h) and (G, h’) be
weighted graphs. A weighted edge contraction ¢': (G',h') — (G,h) is an edge
contraction G — G such that h'(¢=1(v)) = h(v) for all v € V(G). We say that
a weighted edge contraction ¢: (G',h') — (G,h) is a chain contraction if it is
given by contracting chains of edges that contain only vertices v with h'(v) =
0. We refer to the inner vertices of these chains as the exceptional vertices. A
chain contraction ¢ defines a map ¢, : Div)} (G’) — Div} (G) by 2 vev(cr) Tl
2 vev(c)(Xpes1(v) Mo )v. We say that a weighted graph (G, 1) is a (relatively)
semistable model of (G, h) if there is a chain contraction ¢': (G',h') — (G, h) to
(G, h).

Let T" be a tropical curve and fix a model (G, |.|) of I'. We show that, associated
to this data, there is a natural polysimplicial complex A(G,d) whose geometric
realization is equal to Div} (") = I'y.

Definition 1.9. A stable pair of degree d over G is a tuple (G, h'; D) consisting
of a relatively semistable model (G’, h') of (G, h) together with an effective divisor
D € Div4(G’) such that D(v) > 0 for all exceptional vertices of G'.

In our notation we typically suppress the reference to ¢ and only write (G’, D)
instead of (¢: G’ — G, D). Denote by Z4(G) the category whose objects are stable
pairs over G of degree d and whose morphisms (G1,D1) — (G4, D2) are chain
contractions ¢15: G| — G.
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Example 1.10. Let I" be the circle with circumference 1, and let G be the graph
with one edge and one vertex giving a model for T'. Then Z5(G)°? is as pictured in
Figure [dcl

Consider now the functor
Z(G’,d): Ed(G)OP — CPOly

that associates to (G’, D) a colored polysimplex

(1.3) E(G’d)(G’,D) =A(G',D) := H A(ne, |e|),
e€E(G)

where n. denotes the number of exceptional vertices in G’ that are contracted to
the endpoints of e. Notice that A(ne, |e|) is a point whenever n, = 0 and so these
factors do not contribute to the product in Equation (L.3)). This way we may think
of a point in A(G’, D) as a tuple (le/)erep(ery of non-negative numbers subject to
the conditions

> e =le|

o

for all edges e of G, where the sum is taken over all edges e’ for which ¢(¢’) = e
or an endpoint of e. As we will see in Proposition [L.11] the polysimplex A(G’, D)
parameterizes all divisors on I' whose combinatorics is described by the stable pair
(G, D).

The functor ¥(g 4y sends an arrow (G, D1) — (G5, D2) corresponding to the
chain contraction ¢q2 in Z4(G) to the face morphism A(G4, Do) — A(GY, D)
whose image is given by setting those z.» = 0 that correspond to edges in G}
that are contracted by ¢1o.

Proposition 1.11. The functor X(g,q) defines a colored polysimplicial complex
without self-gluing whose geometric realization is in natural bijection with Divj ().

From now on we always implicitly fix a semistable model (G, |.|) of I' and, in a
slight abuse of notation, denote ¥ 4) by I's.

Proof of Proposition [L11l. The arrow (G, D1) — (G%, D2) in Z4(G) naturally in-
duces a face morphism A(G), Dy) — A(GY, D1) onto the face of A(GY, D) that is
given by setting those z,, = 0 that correspond to edges in G that are contracted
by ¢12.

Conversely, given a face F' of A(GY, D1), there is a collection of edges ¢’ of G} for
which z.» = 0 holds in the image of F. Let ¢12: G} — G} be the chain contraction
that contracts exactly those edges and set Dy = ¢12..D1. Then A(Gh, D) = F
and the arrow (G, D1) — (G4, D2) is sent to the face morphism F — A(GY, D).
This verifies Axiom (i) in Definition [L.4] and, since ¢12 is uniquely determined by
the face F" also Axiom (iii), i.e. the fact that ¥ q) is faithful.

Suppose now we have (G, D1), (G4, D), and (G%,D3) € Z4(G) with « :
(GllaDl) - ( /2’D2)7 B ( llaDl) - (G{%D?ﬁ)v and c: A(GZ%DB) - A( /27D2)
so that Xg 4 () o c = E(g,q)(). This implies that there are edges in G that
are not contracted by ¢12 but are contracted by ¢13. We now define v to be the
contraction of these edges. Then ¥ 4)(7) = ¢ and 7 is uniquely determined by c;
thus also Axiom (ii) holds.
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2v

FiGURE 5. The graph I'" and the associated colored polysimplex
when d = 2

Finally, no objects in Z4(G) have automorphisms except the trivial one, since
there are no automorphisms that commute with the chain contraction. So, the
functor A(g,q) defines a colored polysimplicial complex without self-gluing.

Let D be an effective divisor of degree d on I'. Since I' is semistable, there is
a unique model G’ of T' that admits a (possibly not unique) chain contraction to
G such that for all exceptional vertices v of G’ we have D(v) > 0. Then (G’, D)
naturally defines a point in the relative interior of A(G’, D). Conversely, for a point
in the geometric realization of the polysimplicial complex ¥ 4), there is a unique
stable pair (G', D) such that this point lies in the relative interior of A(G’, D). So
we may write this point as (2./)ecp(e) in the relative interior of the geometric
realization of A(G’,D) (with z.» > 0). The geometric realization of (G’) with
edge lengths x.» > 0 is equal to I' and D naturally defines an effective divisor of
degree d on I'. Thus the geometric realization of A(g gy is in natural bijection with
Div (T). |

Remark 1.12. Note that in this construction you can recover the degree d only as
the dimension of a maximal polysimplex A(G’, D) in ¥ g 4y, where D(v) = 1 for
all exceptional vertices v of G’.

Example 1.13. Let I' be a tropical curve consisting of one edge e of length [
connecting two vertices v and v'. Write G for the underlying graph of T'. Consider
an effective divisor D on I' of degree 2. Then we are in one of the following cases:

D = 2v, i.e. the divisor D is supported only at v.

D = 2¢/, i.e. the divisor is supported only in v’.

D = v+, i.e. the divisor is supported in both v and v'.

D = v+ p for a point p in the relative interior of e.

D = ' + p for a point p in the relative interior of e.

D = 2p for a point p in the relative interior of e.

D = p + q for two different points p and ¢ in the relative interior of e.

The first three cases correspond to three zero-dimensional simplices in ¥ (g ), the
next three cases correspond to three one-dimensional simplices of length (i.e. color)
lin 3@ 2), and the last case corresponds to a 2-dimensional simplex ¥ ) of color
l. See Figure 6l

Example 1.14. Consider the graph G in Figure[fl The spaces G? (the Cartesian
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€ €1
L & ]
v ™ V2

FIGURE 6. The graph G for Example [1.14]

(o, va) (21, v2) (e, va) Vo 1 v2 V1 + V2

7Y 21)2
{vp, 1) v+ vt
2’01
epXeg|e1Xe

(‘uﬂs ‘Uﬂ) (”1: (Wp ) 2;)0

FIGURE 7. The
space G? in Exam-

ple [L.14]

Ficure 8. The space
G in Example [1.14]

FIGURE 9. The second symmetric power (S')q, as in Example [LT5]

product of G with itself) and G5 (the second symmetric product of G) are displayed
in Figures[7 and [§ respectively. In Figure[8l G is displayed with the polysimplicial
complex structure described in the proof of Proposition [LL.11}

We note that this is not the quotient of I' x I" by the natural Zy operation.

Example 1.15. Consider the metric graph S, the unit circle, and let G be the
graph with one edge and one vertex giving a model for S'. Then the second
symmetric power (S1) is the Mébius band, see Figure [0

Example 1.16. Let G be the dumbbell graph, or the chain of two loops. In
Figure [10 we give the category E4(G). Since we have chosen a loopless model G,
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FIGURE 10. The poset Z4(G) for the dumbbell graph G and d = 2

the category Z4(G) is thin. The polysimplicial complex A(G,2) has 15 maximal
cells, five of which are triangles and 10 of which are squares. It has 25 edges and
10 vertices.

2. SKELETONS OF POLYSTABLE MODELS—A USER’S GUIDE

Let K be a non-Archimedean field, i.e. a field that is complete with respect to
a fixed non-trivial non-Archimedean absolute value |.|. Denote by R its valuation
ring and by k its residue field.

Definition 2.1. Let X be a smooth variety over K. A polystable model of X is a
flat and separated scheme X over R, whose generic fiber is isomorphic to X and
such that for every geometric point x of X there is an étale neighborhood U of = in
X as well as an étale morphism v: U — Spec A1 Qi --- ®g A, over R where A; is
of the form R[t1,...,t,]/(t1-- -ty —a) for a € R. If we may choose U to be Zariski
open for all x, we say that X is a strict polystable model.

Suppose now that X is a scheme that is locally of finite type over K. In [Ber90]
Berkovich has introduced a non-Archimedean analytic space X %" associated to
X. When X = SpecA is affine, a point z € X" is a multiplicative seminorm
|.lz: A = R>p that extends the non-Archimedean absolute value on K. This space
carries the coarsest topology that makes the evaluation maps

evy: X" — R,

continuous for all f € A. For a general X we obtain X" by gluing the affine
patches. We refer the interested reader to [Ber90] for full details on this construc-
tion.

Suppose now that X is proper over K and that X is a proper polystable model
of X. In [Ber99] Berkovich constructed a strong deformation retraction py: X" —
¥(X) onto a closed subset of X*" that naturally carries the structure of a colored
polysimplicial complex, the non-Archimedean skeleton associated to X. In this
section we shall recall the basic properties of this construction. Our presentation
is inspired by [GRW16, Section 4] and [Thu07].
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Notation 2.2. Let X be a flat and separated model of X . Following [Gub13 Section
4.9], we denote by X° the analytic domain in X" consisting of those points that
naturally extend to the model X. If X = Spec A is affine, this means we consider
only those seminorms on A = A® K that are induced by multiplicative seminorms
|.| on A that are bounded, i.e. for which we have |f|, <1 for all f € A. Note that,
if X is proper over R, then the valuative criterion for properness implies X° = X",

2.1. Tropicalization of a stable standard model. Let n > 0,k < n,and a € R.
We refer to the affine R-scheme Z(n, k,a) = Spec A with
A= Rlto,...,tn]/(to-- tx —a)
as a stable standard model. Consider the standard simplex (as in Equation (LI]))
A(k,a) = A(k,val(a)) = {v € R’;&l‘vo + ...+ vy =val(a)}.

Here, we overload the notation by writing A(k,a) for a € R with A(k,val(a)).
There is a natural continuous tropicalization map

trop, ko Z(k,n,a)° — A(k, a)
given by

T ( - IOg |t0|ra ey T IOg ‘tk|m)
This map is well-defined, since

—log|tole — ... —log|tk|l. = —log|to - - - tk|. = —log|al. = val(a).

2.2. The skeleton of a stable standard model. The tropicalization map

trop, . has a natural section Jy,1.: A(k,a) — Z(n,k,a)° given by sending
v € A(k, a) to the multiplicative seminorm given by

3ty - t) s max (- e o),
: lenn

lenn
This is bounded because aj € R and lpvg + -+ + lgvr, > 0, by assumption. The
section is well-defined, since

Tsea(V){t -+ ta) = e~ (o) = g wll@) _ g
The composition pn k,q = JIn,k,a © trop,, 4 defines a retraction map
Pnka: Z(n,k,a)° — Z(n, k,a)°
onto a closed subset of Z(n,k,a)°, the non-Archimedean skeleton %(n,k,a) of

Z(n,k,a)°.

2.3. Tropicalization of a polystable standard model. Write @ = (nq,...,n,),
k= (ki,..., k) as well as @ = (aq,...,a,) so that k; < n;. A polystable standard
model is an affine R-scheme of the form

Z(,k,@) = Z(n1,k1,a1) Xg -+ Xg Z(nr, kyy ay),
where each Z(n;, k;,a;) = Spec A; with A; = R[t((f), . ,tEZZ]/(tff) . t,(j) — a;) for
a; € R. The colored polysimplex associated to Z(7, k, @) is defined to be (as in
Equation (.2))
Ak, a@) = A(E, val(@))

_ {U € RhFthetr

v(gi) +...+ v,(c? = val(a;) for all i =1,. T}
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There is a natural continuous tropicalization map
trop;, 7 2+ Z(7i, k,@)° — Ak, @)
given by
T — (—10g|t(()i)|w,... log\t | Jict

It is well-defined, since
—log |t(z)\m .+ log \t(z)|gC = —log |t(1) tfj}\w = —log |a;i|, = val(a;).

2.4. The skeleton of a polystable standard model. The tropicalization map
has a natural section J; 7 .+ A(k, @) — Z(#, k,@)°. This is given by associating to
v € A(k, ) the bounded seminorm on A; ®g -+ ®g A, given by

S @ @ f0) s max (Joul - T tras @A) - Ty a0 D)),

l

where >, (f1 ®-- ®f ) or f; € A; denotes a general element in A1 Qg - Qr A,
The composition p » - = J iR ©tropg ko defines a retraction map

—

pa i =i Z(7t k,@)° — 2(7, k,a@)°

whose i image is a closed subset in Z (i, k, @)°, the non-Archimedean skeleton X(i, k, @)
of Z(i, k, a)°.

2.5. Stratification of a polystable model. Given a polystable model X of X,
the special fiber Xy admits a natural stratification by locally closed subsets, defined
inductively as follows: we first write X as a disjoint union

n

Xo=| ],

i=0
Let XO(O) be the open locus of regular points of Xy and let Xo(l)
0)

be the open locus
of regular points in Xy — Xé . In general, given Xo(l) for i = 1,...,n, we define

XO(HD to be the open locus of regular points in
Xo— (AP U uxl).

The subsets Xéi) are locally closed and smooth. We refer to the connected compo-

nents of Xo(i) as the strata of Xp.

2.6. The skeleton of small open neighborhood. Let & be a polystable model
of X. An étale open neighborhood §: U — X of a geometric point x of a stratum F
is itself a polystable model of its generic fiber. The étale open neighborhood is said
to be small if U is a strict polystable model of its generic fiber and the closure of all
strata in the special fiber of U contains ! E. We refer to a chart v: U — Z(7, k, a)
as in Definition 2.1]as small with respect to a stratum F if 0: U — X is a small étale
open neighborhood of a geometric point in E and the image of 1 E is contained
in the closed stratum of Z(i, k, @).

Let U be a small étale open neighborhood in X'. In [Ber99)] it is shown that there
is a retraction py: U° — U° onto a closed subset X(U) of U° such that, whenever
v: U = Z(7, Ig, @) is small chart, the diagram
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Uue pu Ue

commutes and the restriction of 4° to X(I) induces a homeomorphism (i) —
(71, k,@). The closed subset X(U) is called the skeleton of U°. Tt carries the struc-
ture of a colored polysimplex: the injective homomorphism ¢, : N7l — CO(S(U), R)
is given by the restrictions of the pullbacks ’y_ltg-l) to X(U) for j =0,...,k;.

Given another small étale neighborhood U’ of E, we consider the fiber product
U X x U and find a Zariski open subset V that is a small étale open neighborhood
of E. The charts v und 4’ of & and U’ induce charts of V and thus an isomorphism
S(U) ~ 3 (U’") (see [Thu07, Lemme 3.28 and Prop. 3.29] for an analogous argument
in the trivially valued case). We therefore write ¥ = X(U) ~ X(U’) for the colored
polysimplex associated to E.

The étale fundamental group 71 (F, x) of the stratum FE acts by permuting the
’y’lt(()z), . 777115’(;1_) for each i = 1,...,r and thus on 3(U) = X g by automorphisms
of colored polysimplices. As above, the image of this operation does not depend
on the choice of U. We write Sg for the image of this operation in Aut(X(U)) =
Aut(Xg) and refer to this as the monodromy group of E.

2.7. The polysimplicial complex of a polystable model. Let X be a smooth
variety over K and let X be a polystable model of X over the valuation ring R.
We now associate to X' a polysimplicial complex X(X).

The index category Z(X) is the category of strata of Xy. Its objects are the strata
FE of Xy, the endomorphisms of an object are given by the monodromy group Sg,
and we have an arrow F — FE’ (with E # E’) for every étale specialization from
E to E’. We refer the reader to [CCUW20, Appendix A] for a precise definition
of étale specializations. In our situation we can consider a component E of the
preimage of E in a small étale neighborhood U of E. The étale specializations
E — E’ are then in one-to-one correspondence with the irreducible components of
the preimage of E’ in U that are in the closure of E.

We now define a functor ¥: Z(X) — cPoly by F — X on objects. An auto-
morphism of F in Z(X") induces an automorphism of X5 and an étale specialization
E — E’ induces a face morphism X — Y. The avid reader may now check that
the functor ¥ defines a colored polysimplicial complex by restriction to small étale
neighborhoods.

2.8. The skeleton of a polystable model. Let X be a smooth variety over K
and let X' be a polystable model of X over the valuation ring R. In [Ber99] Berkovich
has shown that the retraction maps py; on small étale open subsets naturally descend
to a retraction map py: X° — X° such that the diagram

Uue Pu U°

l

x° Px x°
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commutes. The image of py in X° is the non-Archimedean skeleton of X°. From
this construction we immediately obtain that the skeleton is naturally homeomor-
phic to the geometric realization of the colored polysimplicial complex %(X). In a
slight abuse of notation we also use the notation X(X) for the skeleton of X.

In fact, the retraction map px is actually a strong deformation retraction onto
¥(X) using the natural torus operation on a polystable standard model and formally
lifting them to X'. Since this aspect of the construction will play no further role in
the remainder of this article, we refer the avid reader to [Ber99] for details.

3. SKELETONS OF SYMMETRIC POWERS

3.1. A polystable model of X;. Let X — S be a scheme over k. Recall that a
relative effective Cartier divisor D on X over S is a closed subscheme of X that
is flat over S and for which the ideal sheaf I(D) is a line bundle. Let d > 0 and
2g—24+n>0.

Definition 3.1. Let ﬁgysnyd be the category fibered in groupoids over schemes,
whose objects are tuples (7: X’ — S, 3, D) consisting of the following data:

(i) m: X' — S'is a flat and proper morphism of connected nodal curves;
(ii) & is an ordered collection of e-weighted sections si,...,s,,: S — X’ that
do not meet the nodes in each fiber X/ of m; and
(iii) D is a relative effective Cartier divisor of degree d on X’ over S, whose
support does not intersect the nodes in each fiber X! of X’ over S, such
that the twisted canonical divisor

K, +€eD +es)+...+es,

is m-relatively ample for one and therefore all 0 < ¢ < -1

d+n"

We remind the reader of the useful characterization that a Q-divisor D on a nodal
curve X is ample if and only if the restriction of D to every irreducible component
of X has positive degree. So Condition (iii) above ensures that on each rational
component of X there are at least three special points (i.e. nodes, marked points,
or points in the support of D), two of which have to be nodes. This, in particular,
means that the underlying curve is semistable.

Let € > 0, such that € < dJ+n. Denote by Mg’en-f—d the moduli space of weighted
stable curves of genus g with n+d marked points of weight € in the sense of [Has03].
This moduli space parametrizes pairs (X, p) consisting of a projective nodal curve
X and n + d marked, not necessarily distinct points o' = (p1,...,Pn+q) such that
the divisor Kx +¢€p1 +. ..+ €p,1q is ample. Note that this condition, in particular,
forces the underlying curve to be semistable.

There is a natural operation of Sy on ﬂg&md that permutes the last d marked
points of weight e. Then D—ivg,ﬁn,d is naturally equivalent to the relative coarse
moduli space of the (non-representable) morphism

[mgae"ﬂéd/sd] — Hg.,(-:"

in the sense of [AOV11, Theorem 3.1]. So, in particular, mg,gn,d is a smooth and
proper Deligne-Mumford stack. There is a natural forgetful-stabilization morphism
D—iqud — ﬂwn and we write Divy (n 4 for its restriction to Mg .

Let [X,ﬁ] be a point in M%EHM. Then, since Mwwd has a normal cross-
ing boundary by [Ulil5b, Theorem 1.1], the formal completion of the local ring of
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M97€n+d at the point [X,ﬁ] may be written as the ring of power series
k[t1,. .. ,t3973+n+d]], where the last n + d coordinates parametrize formal defor-
mations of the marked points. Then, at the image [X,pl, ce ey Py Pl + oo F

pn+d] of [Xﬂ in Divy en 4, the formal completion of the local ring is given by

Elt1,. .. t3g—3+n+d] Sa_ where Sy operates on the last d coordinates. Using elemen-
tary symmetric polynomials we see that this is isomorphic to
Elt1,...,t3g—34n,T1,...,Tq]. Thus the complement of Divgen 4 in Divgen g has

(stack-theoretically) normal crossings.

Remark 3.2. For n = 0, the moduli space D—ivmd was constructed in [MUW21],
Section 2]. Tt is also equal to a special case of the moduli space of stable quotients,
as defined in [MOPT1] Section 4].

Proposition 3.3. Let (X,p) = (X,p1,...,pn) be a stable e-weighted marked curve
of genus g given by a morphism Spec(k) — Mg en. The fiber Divg en 4 X, o Spec(k)

over this point is represented by a fine moduli scheme mj (X, 15') which parametrizes
tuples (X', 9, D) consisting of the following data:
(i) a nodal curve X';

(ii) a collection of e-weighted marked points p' = (p},...,p,) of X' such that
Py, ...,Dl, do not meet the nodes of X' together with an isomorphism from
the stabilization of (X', p') to (X, p);

(iii) a relative effective Cartier divisor D of degree d on X' whose support does
not intersect the nodes or marked points of X' such that the twisted canon-
ical divisor

K+eD+ep) +- - +epl,

is ample, where € = dj%ﬂ > 0.

Proof. This functor has a fine moduli scheme, since the forgetful and stabilization
map mg,gn,d — H%En is representable. The interpretation of the fiber product
in Parts (i) - (iii) is an immediate consequence of the definition of the 2-fiber
product. (Il

If X is smooth and does not have marked points, the space WI(X ) gives
effective divisors on X and is the d-th symmetric power X, (see [Mil86, Theorem
3.13]). The natural forgetful morphism Div, e 4 — M, associates to (X' —
S, p, D) the stabilization of (X’ — S, p).

Definition 3.4. Let X be a smooth projective curve of genus g over K and suppose
that X is a semistable model of X over Spec R that admits a section. Let n be
the number of rational irreducible components in the special fiber of X having 2
nodes. Choose n marked sections s1, ..., s, of weight € of X that do not meet the
singularities in the special fiber, such that (X, s1,...,s,) is stable of type (g,€").

This datum is specified by a morphism Spec R — M, (. Define m} (X, 5) to be
m:(%, 5) = SpecR XK, on Divgen .-

While the sections §= (s1,...,s,) are part of our data, their only purpose is to
replace the a priori only semistable X’ by the stable (X,§). So, from now on, we
suppress the reference to § to avoid an overly clumsy (and potentially misleading)
notation.
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Proposition 3.5. The scheme WI(X) is a proper polystable model of X4.

Proof. Since D—inJr(X) is the fibered product Spec R x37 Divy en g it is flat and

proper over R. The generic fiber of WZ(X ) consists of effective degree d divisors
on the curve X. Since the divisor can possibly be supported on the points p, this
is nothing but the d-th symmetric power X, of X. So the generic fiber of m; (X)
is isomorphic X .

Points in the special fiber of D—inJr(X) are given by pairs ((X’,7"), D) where the
special fiber A is semistable, (X’,p") is an e-weighted n-marked curve, together
with an isomorphism between the stabilization of (X}, p’) and (Xy, p), and D is an
effective divisor on X’ of degree d whose restriction to the special fiber is supported
in the non-singular locus of A} and which has positive degree on every exceptional
component of (X}, p’) (i.e. exceptional components of (X, ") that do not contain
a marked point).

Consider the nodes of X given by étale local equations z;y; = a; for a; € R

(for ¢ = 1,...,r). Write the nodes in X’ above z;y; = a; as xg-i)yj(-i) = t;i) for
(1) (1)
t)

;i) on D_iv;r(X). In this case we have a; =t;" - -1,
on D_iv;r (X). These coordinates can be chosen on a étale open neighborhood U and
()
ki+1 - _'
after shrinking U, they define a small étale chart v: U — Z(7i, k, ). O

j=1,...,k; and coordinates t

we may add further coordinates ¢ .,tﬁf} (for ¢ = 1,...,7) so that, possibly

We explicitly point out that the scheme mj(x ) is not the quotient of X xg- - -
X gX by the operation of S;. While not being smooth over R, the R-scheme
m: (X) only admits at most toroidal singularities over R, since, heuristically, we
are allowed to perform a weighted blow-up in the special fiber of X whenever the
support of D is at risk of meeting the singularities in Xj.

3.2. Stratification by dual graphs. Consider a point in the special fiber of
Wj (X). It is given by a pair (X, D) where X{ is a nodal curve together with a
morphism X{; — X given by contracting rational components and D is an effective
divisor on X} whose support is contained in the non-singular locus of X, and which
has positive degree on every exceptional component of X{.

We associate to (X(, D) a dual stable pair (G’,mdeg(D)) over G as follows:
The graph G’ is the weighted dual graph of X|. Its vertices v correspond to the
components X, of X{, and it contains an edge e emanating from two vertices v and
v’ for every node connecting the two components X/ and X/,. It is endowed with
a natural vertex weight h: V(G') — Zx>¢ given by h(v) = g(X,), the genus of the
component X,. Finally the degree of the restriction of D to every component X,
defines a divisor

mdeg(D) = Z deg (D|x,) - v
veV(G)

on G’ supported on the vertices of G, the multidegree of D.

The graph G’ is naturally a subdivision of G, the dual graph of Xy. The condition
that Kx; + D has non-empty intersection with every exceptional component of X}
over X is equivalent to the condition that D(v) > 0 for every exceptional vertex v
of G’ over G, i.e. to the condition that (G’, mdeg(D)) is a stable pair over G.
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Proposition 3.6. The colored polysimplicial complex T'y is naturally isomorphic
to ¥ (Div, (X)).

Proof. The strata of the special fiber of Wj(x ) are precisely the locally closed
subsets on which the dual graphs are constant. Let Y be the special fiber of
D—inJr (X). In fact, the smooth locus Y(9) of Y is the exactly locus of stable pairs
(X{), D) for which X| is isomorphic to Xy, which translates into the dual graph G’
of X} being isomorphic to the dual graph G of X,. The different strata in Y'(°) are
distinguished by the multidegree of D.

Similarly, for i = 0,...,d — 1 the regular locus of Y (t1) of

Y — (y(O) U...uy(i))

corresponds exactly to the locus of stable pairs (X, D) that contain i+1 exceptional
components. This translates into the condition that the dual graph contains exactly
1+ 1 exceptional vertices over G. The different strata, again, are distinguished by
the multidegree of D.

Moreover, notice that for every stable pair (G’, D) the locus Fg py of points
in Y whose dual pair is (G’, D) is non-empty. The étale specializations g/ pry —
E(gr,py between strata are in a natural one-to-one correspondence with chain con-
tractions w: G” — G’ over G for which 7,D’ = D. The automorphism group of
a stratum is always trivial by part (ii) of Proposition B.3] So there is an order-
preserving equivalence between the category Z(Div, (X)) of strata of Y and the
category Z4(@G) of stable pairs (G', D) over G.

Finally, consider the nodes of X given by local equations z;y; = a; for a; €

R (for i = 1,...,7). Write the nqdes in X’ above x;y; = a; as arg.i)y](.i) = t;i)
for j = 1,...,k; and coordinates t;z) on m:{ (X) and recall that in this case we
have a; = tgi) X t,(;) on ﬁj (X). From this description we see that the colored

polysimplex (B ) of the stratum E g/ py is equal to A(E, a).

On the other hand, the k; are precisely the number of exceptional vertices over
an edge e; of G and the edge length |e;| of e; is equal to val(a;). So the colored
polysimplex A(G, D’) = A(IZ, val(c'i)) of a stable pair (G', D) is equal to A(E, a) =
Yk (D) This identification naturally commutes with the face morphisms induced
by étale specializations E(¢/ py = E(g»,py and (G”, D) — (G’, D) respectively and
so we have found a canonical isomorphism between I'; and the skeleton E(W:{ (X))
of Div, (X). O

3.3. The process of tropicalization. Let X be a smooth projective curve over
K and suppose there is a fixed semistable model A of X over R that admits as
section. By the semistable reduction theorem, we can always find such a X if we
are willing to replace X by its base change to a finite extension of K.

Denote by I' the dual tropical curve of X. We now define the tropicalization
map

tropy,: Xg" — La.

A point z in XJ" can be represented by a morphism SpecL — X, for a non-
Archimedean extension L of K. This, in turn, corresponds to an effective Cartier
divisor D of degree d on Xy, via the interpretation of X; as a moduli space of

effective divisors (see [Mil86, Theorem 3.13]). Since m:()( ,§) is proper over
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Spec R, the valuative criterion provides us with a unique semistable model (X’ 5")
together with an isomorphism between its stabilization and (X, 3) and a relative
effective Cartier divisor D in X’ such that

e the generic fiber of D is equal to D,

e the support supp(Dy) in the special fiber does not meet the nodes of X,
and

e supp(Dy) N E #  for every exceptional component E of X over Xj.

We may now define tropy,(z) to be the divisor that arises as the multidegree of
Dy on I'. Tt is naturally supported on the model G’ of T given by the dual graph
of Aj.

A posteriori, Theorem[A]implies that the construction of trop y , does not depend
on any of the above choices and that the tropicalization map is invariant under
base change. In other words, given a non-Archimedean extension K’ of K the dual
tropical curve Iy, is naturally isometric to I'y and the natural diagram

trop x
K’.d
Xl ———= (Ix)

! |~

an
_
X tropxd Fd

d

comimutes.

3.4. The specialization map. Denote by Divg 4(X) the group of K -split divisors
on X, which may be written >, a;p; for points p; € X(K) and ), a; = d. Write
px: X — T for the retraction of X" to I'x ~ I', which can be thought of as the
skeleton of X ™. In [Bak08], Baker constructs a specialization homomorphism

PX ,x: DiVK_’d(X) — DlVd(F)
It is defined by sending a K-split divisor D = """ | a;p; on X to the divisor

PX,*(D) = Z a; PxX (Pz‘)
i=1

on I
Recall that if Y is a scheme locally of finite type over K, then there is a natural
injective map i: Y(K) — Y, whose image is dense if K is algebraically closed.
On an affine patch U = Spec A it is given by associating to a K-rational point the
multiplicative seminorm
|.|x

A—>K———>RZQ

on A. So, in particular, there is a natural injective map
i Div}’d(X) — X"
whose image is dense in X 3" if K is algebraically closed.
Proposition 3.7. Given a K-split effective divisor D on X of degree d, we have
tropx, (i(D)) = px (D).

In other words, the natural diagram



608 MADELINE BRANDT AND MARTIN ULIRSCH

Divy 4(X) 2% Divy (I)

[ -

xan Ty

tropxd

comimutes.

Proof of Proposition B.7l Suppose first that K = K is algebraically closed. Let
D = "  a;p; be an effective K-split divisor on X. Since m:(%) is proper
over R, we find a unique semistable model X’ over X as well as a relative effective
Cartier divisor D on X’ such that

e the generic fiber of D is equal to D,

e the support supp(Dy) in the special fiber does not meet the nodes of A,
and

e supp(Dy) N E #  for every exceptional component E of X over Xj.

By [BPR13, Theorem 4.11] (also see [Ber90, Theorem 4.3.1]), the semistable
model X’ gives rise to a semistable vertex set V in X", i.e. a set of points v
in X% whose complement is a collection of closed pointed discs and annuli. The
vertices v are precisely the vertices in the dual graph of &p and the edges of the
dual graph correspond to the annuli in X% — V.

Let r: X% — Xj be the reduction map. Then the pointed discs in X" are
given by B(v) = r~1(U,) — V where U, is the open subset of a component in A,
given by removing all of its nodes, and the annuli are given by B(e) = r~1(z.),
where the z. are the nodes of Xj. The restriction of the retraction map px to a
pointed disc B(v) shrinks all points B(v) to the corresponding point v € T" and
its restriction to an annulus B(e) is given by the retraction of the annulus to its
skeleton which is isometric to e.

So, if the point p; extends to a component X(/);'Ui of X via D, its reduction is
an element of U,,. Therefore p; is a point of B(v;) and thus px(p;) = v;. So, by
linearity, we have:

px (D)= awi= > deg(Dlx,) v= mdeg y, (Do)
=1 VeV (G)

The general case, when K may not be algebraically closed, follows from the
invariance of tropy, and px under base change by a non-Archimedean extension
K' of K. |

3.5. Proof of Theorem[A]l We conclude this section with the proof of Theorem[Al

Proof of Theorem [Al By Propositions [[.11] and [3.6] there is a natural isomorphism
px,: g — X(X4). What remains to show is that the diagram

trode
Xgn
p%
E(Xd) # Fd

commutes.
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Consider the nodes of the special fiber of X' given by local equations z;y; = a;
for a; € R (fori =1,...,r). Write the nodes in X’ above z;y; = a; as xg-z)yj(-l) = t;l)

for j =1,...,k; and coordinates t§.i) on D_iv;(/'\f ). Write D for the relative effective
Cartier divisor on &” that extends D on X. Then the tropicalization tropy, (D) is
given by the following data:

e the dual graph G- of the special fiber of X;
e the chain contraction Gy, — Gy that is given by stabilization and the
given isomorphism (X”)s — X;
e the edge length of the edge egz) corresponding to the node xg-z)yj(-z) = tgz)
given by |e§-i)\ = V&l(t;i)).
In this situation the special fiber of WI(X ) is locally given by the equations
a; = tgz) e tgi) on m:(%). By Sections 2.3} .4] and 2.6] the retraction to the
skeleton is given by sending z € X3" to (—log \tgi)|x, ...,—log |t§€? \x);l in A(k, a@).
But these are precisely the edge lengths |e§.i)| = Val(t;i)) and so the above diagram
commutes. O

4. FUNCTORIALITY

There are two classes of tautological maps associated to symmetric powers:
(i) For u= (ma,...,my,) € Z%; and § = (di,...,dn) € Z%, such that m;d; +
...+ mpd, = d, we have the diagonal morphism
Ous: Xay X - x Xg, — Xq,
(D1,...,Dp) —miD1 +...m,Dy.
(ii) For d > 0 we have the Abel-Jacobi map
ag: Xq — Picg(X),
D — Ox (D).

In this section, we show that the process of tropicalization naturally commutes with
both classes of morphisms.

4.1. Diagonal morphisms. Let y = (mi,...,my,) € Z%; and § = (dy,...,d,) €
Z%, be such that midy + ... + mud, = d. Define the tropical diagonal map

¢trop

uo - Ldy x -+ xTq, = Tq by the association

(Dl,...,Dn) n—>m1D1 + mnDn

Proposition 4.1. The tropical diagonal map is a morphism of colored polysimpli-
ctal complexes that makes the diagram

tropxd1 ><~~><troden
Xgn x - x XG0 Ly, % xTq

an trop
l 1.6 l‘%,a

trode
Xan Ty

commute.

Proof. The linearity of the specialization map from Section B.4]limplies the commu-
tativity of
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Div} 4 (X) x -+ x Divg ; (X) PX XXX Divy (I') x -+ x Div} (I)
l o l oo
Divy; 4(X) P Div} (T).

Suppose first that K = K is algebraically closed. Then the monoids Div}% d (X)x

- X Div}} 4, (X) and Div‘}} 4(X) of effective divisors are dense in Xg" x Xg"
and Xam respectively. Therefore the continuity of tropy, x--- X tropX and
tropy, (coming from Theorem [A) together with Proposmon 3.7 1mphes the clalm

The general case, when K may not be algebraically closed, follows from the
compatibility of the tropicalization map with base changes by non-Archimedean
extensions K’ of K. O

4.2. Abel-Jacobi map. Denote by Rat(T") the abelian group of rational functions
on I', i.e. the group of continuous piecewise integer linear functions on I'. There is
a natural homomorphism

div: Rat(I') — Div(I"),
fr— Zordp(f) p

pel’

where ord,(f) denotes the sum of all outgoing slopes at the point p. Its image is
the subgroup PDiv(T") of principal divisors in Div(T'). One can verify that PDiv(T")
is, in fact, a subgroup of Divg(T"). The Picard group Pic(T') is defined to be the
quotient Div(T")/ PDiv(T"). Denote the image of a divisor D on I' in Pic(T") by [D].

Since PDiv(T") is actually a subgroup of Divy(I'), the quotient respects degrees
and Pic(I") naturally decomposes into a disjoint union of union of Picy(T'), each
of which is naturally a torsor over Pico(I'). By the tropical Abel-Jacobi Theorem
[MZ08, Theorem 6.2] and [BF11, Theorem 3.4], the Picard group naturally carries
the structure of a principally polarized tropical abelian variety.

Let X be a smooth projective curve over K. In [BRI5, Theorem 1.3], Baker
and Rabinoff show that the non-Archimedean skeleton X(Picq(X)) of Picg(X)*™
is naturally isomorphic (as a principally polarized tropical abelian variety) to the
Picard variety Picy(I") and that the continuous retraction ppic,(x): Picg(X)*" —
Y (Picq(X)) to the skeleton naturally commutes with the tropical Abel-Jacobi map
aq: X — Pico(X) given by p — [p — ¢] for a fixed point ¢ of X. We expand on
their result in Theorem 4.2

Theorem 4.2. Ford > 0, the tropical Abel-Jacobi map ;% T'y — Picy(T') given
by the association D — [D] naturally makes the diagram

tropxd

xgn Lq

an trop

Picg(X)o — 4% 4 $3(Picy(X)) — Picy(T)

commute.

We remark that a version of Theorem [4.2] has also appeared in [Shel6| Section
7]. We include the proof here for completeness.
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Proof of Theorem [4.2. Suppose first that K = K is algebraically closed. There is
a natural homomorphism

trop: Rat(X)* — Rat(T")

that is given by sending a non-zero rational function f € Rat(X)* to the map
x — —log|f|, on T', thought of as the non-Archimedean skeleton of X*". Since
K is algebraically closed, we have Div(X) = Divg(X). By the slope formula
[BPR16, Theorem 5.14], we have div(trop(f)) = px,«(div(f)) where px . denotes
the specialization map px .: Div(X) ~ Divg(X) — Div(I') discussed in Sec-
tion [3.4] Therefore the specialization map descends to a homomorphism

px.: Picg(X) — Picg(T)

and this immediately implies that the diagram

Div} (X) —2 s Div}(I)

(@) Jo Jes

Picg(X) —2X 5 Picy(D)

commutes.

In [BR15, Proposition 5.3], the authors show that the Picard group Picy(T")
is naturally isomorphic (as a principally polarized tropical abelian variety) to the
non-Archimedean skeleton 3(Picy(X)) of Picy(X)®" such that the induced diagram

Picg(X) — X" Picy(T)
lg PPic (X lﬁ
Picg(X)mm — 2% 5 53 (Picy(X))

commutes. In fact, Baker and Rabinoff only show this statement for Pico(X), but
since K is algebraically closed, we may choose a point p € X(K) and identify
Picy(X) with Pico(X).

Note that, since K is assumed to be algebraically closed, both Div} (X) and
Picg(X) are dense in X$" and Picg(X)®". Therefore, by Proposition 8.7} since the
MAaPS Pprot (xyr PPica(X): and ag4 are all continuous, the commutativity of diagram

(4.I) implies that

tropxd

Xan Ty

an trop
J/O‘d lad

Pica(X)en —20% 5 (Picy (X)) — = Picy(T)

commutes.

The general case, when K may not be algebraically closed, again follows from the
invariance of the projection to the skeleton under base change by non-Archimedean
field extensions. |
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5. A BIERI-GROVES-THEOREM

In this section we deduce Theorem [E.] from the Bieri-Groves-Theorem (see
[BG84l Theorem A] and [EKLO06L Theorem 2.2.3]), which immediately implies The-
orem [C from the introduction.

Theorem 5.1. Let X be a smooth and proper variety over K and let X be a proper
polystable model of X. Suppose that'Y is a closed subvariety of X (defined over K )
that is equidimensional of dimension 0. Then the tropicalization

Tropy (Y) = pa(Y"") C B(X)

of Y (as a subspace of X ) is a A-rational polyhedral complex in X(X) of dimension
<. If X has a deepest stratum E that is a point and Trop (YY) contains a point
in the interior of X (as in Section [2.6]), then the dimension of Trop (Y) is equal
to d.

Let G}, = SpecK[tlﬂ, e ,tfl] be a split algebraic torus over K. Recall e.g.
from [Gub13] that there is a natural proper and continuous tropicalization map

tropg, (an)an — R".

It is given by sending a point z € (G&)an, which corresponds to a multiplicative

seminorm |.|, on K[tlﬂ, .. ,tfl] extending the absolute value on K, to the point

(\tl s - - s |tn|x) € R™. Using this map, the tropicalization of a subvariety Y C G},
may be defined to be the projection

Tropgn (V) := tropg. (Y*")
of Yo C (Gr,)™" to R™.
Lemma 5.2. Let Z_ ;- -~ be a standard polystable model over R. Then the generic

fiber is the algebraic torus Glyﬁ‘ and the natural diagram

trop; i & i

zo . ——— A(k,q)
| JC
|7i]\ an OPg |7l —
(G 7 ) ™ RI7|

of tropicalization maps commutes.

Proof. Recall from Section 2l that a polystable standard model is an affine R-scheme
of the form

Z,

T Z(n1,ki,a1) Xg - Xg Z(np, ki, ar),

where each Z(n;, k;,a;) = Spec A; with A; = R[t(()i), .. ,tﬁf}]/(tfj) . t,(;) — a;) for
a; € Rand it = (ny,...,n;) € N", k = (ky,..., k) € N" with k; < n; and
= (ay,...,a,) € R". Notice that the scheme-theoretic generic fiber is isomorphic
to Glﬁ'j where |7i| = n1 + -+ + n, and so Z° - - is naturally a subset of (Gml)“”.

Given a point x € Z° . , using the definition from Section 2.3] we have:

n,k,a

,...,—1og‘tgr)

e, —log [tV 7---,—1og\t;§?!m)-

trop;; i 2(7) = ( —log |t§1)

x
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Let j=k;+1,...,n;and i =1,...,r. Since |.|, is multiplicative, we have
[, 1D, = 1], =

Since |.|, is bounded and both tl(-j) and (¢ (-))_ pull back to the coordinate ring of

Z°’~’4, we have ’t( ‘ < 1 as well as | t(l 1| < 1. This implies |t( ’ = 1 for
j=ki+1,...,n;andi=1,... 7. Therefore we have
tropg | (:v) =( —log ‘t&l) ’I, ...,—log ’t;ll) greeer—log ’tgr) ’I, )
:( —log|t§1)|,...,—1og‘t,(€11)|w,0,...,0,
— log ‘tEZ) |w, ..., —log ‘t,(i)|w, 0,...,0,
—log ‘th_1)|, ...,—log |t§€Tj) 0,50,
— log ‘tgr) ..., —log ‘t,(ci) U 7O)
which is precisely the image of tropﬁj’a(:ﬂ) under the embedding RF1+-+kr
Rt |

The proof of Theorem [5.1] closely follows along the lines of the proof of [Ulil5al,
Theorem 1.1], the Bieri-Groves-Theorem for subspaces of log-regular varieties.

Proof of Theorem [5.1l We need to show that Trop,(Y) = Trop,(Y) N Z(U) is
a A-rational polyhedral complex for a small étale open subset U around every
stratum FE of Xy. We may choose U so that there is a small chart v: U —
Z(, E, @). By the local description of py in terms of the tropicalization map
trop ¢ -1 Z(7, I;:, a)° — A(I;, @) in Section 2] we may identify Trop,,(Y") with the
projeetion tropﬁﬁﬁ(yo(Y‘m NU°)) and, by Lemmal5.2] with tropg|mi (yve(Yernu®)).

Since 7 is étale, the image v(Y NU) is locally closed in Gml. Denote by VA, its clo-

sure in Gl,ﬁl. By a generalization of Draisma’s tropical lifting lemma [Dra08 Lemma
4.4] (see [Gubl3, Proposition 11.5] and [Ulil5a, Lemma 3.10]), the tropicalization
of a locally closed subset is equal to the tropicalization of its closure and so we have

Tropy, (Y*") = Trop(Y,) N A(k, d@).

The tropicalization Trop;, (Y *") is a A-rational polyhedral complex of dimension
0 by the classical Bieri-Groves-Theorem [BG84, Theorem A] and [EKL06, Theorem
2.2.3]. Due to the intersection with A(k, @), the tropicalization Trop,, (Y ") might
have dimension < §. If F is a point, then the cell ¥ will be |77|-dimensional and,
if Tropy, (Y *™) has a point in the interior of a cell, it will be part of a d-dimensional
cell of Trop(Y,,) whose intersection with A(k,@) = Y is 0-dimensional, since
’ITopG\,L\( ~) fulfills the balancing condition. O

6. FAITHFUL TROPICALIZATION OF POLYSTABLE SKELETONS

In this section we prove Theorem [6.1] which is a generalization of [GRW1G6,
Theorem 9.5] to the polystable case (when no extra divisor at infinity is present).
It immediately implies Theorem [E] from the introduction.
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Theorem 6.1. Let X be a smooth and proper variety over K and let X be a proper
polystable model of X over R. Then there is an open subset U C X as well as a
morphism f: U — G such that the restriction of trop of®™ to L(X) C U of the
induced tropicalization map

trop

Rn

tropy: U L Gen

18 a homeomorphism onto its image in R™. If X is a strictly polystable model for
X, then the restriction of trop o f®" to each cell of (X)) is unimodular.

Proof. Suppose that X is strictly polystable. Fix a stratum FE of A and choose
a small chart v: U — Z(, k,d) around E (with & C X). Let U(g) := Uk be the
generic fiber and let f(gy: Ug) — Glﬁ‘ be the base change of 7 to the generic fiber.
By Lemma [5.2] the tropicalization map

I, Glilan trop, il
. an ni,an n
tropy ..+ Ulp) Gy R

naturally restricts to the projection to A(7, E, @) on U° C U(“g). Therefore, by
Section [2.6] the restriction to the skeleton X(U) C U° C U(“EC‘ is a unimodular

)
homeomorphism onto its image in RI7!.

Set U = (g Urg), where E is passing through all the strata of Xp. We take
[=(fg)): U — G}, where n = |fi.| and f is given by f(z) = (f(E)(x))E €
GI',. The above reasoning shows that the restriction to the skeleton X (X) is a
homeomorphism on every polysimplex in 3(X), and in the case that X is strictly
polystable, it is unimodular as well.

We now show that trop; is injective: Consider two points z,z" € ¥(X) such
that trop,(z) = trop;(z'). Then tropy, ,, (x) = tropy, (2') for all strata E of Ajp.
Suppose that z is in the relative interior of A(E) and 2’ is in the relative interior
of A(E"). By Lemma[5.2] and Section [2.6] we then have

z=px(r) = px(a').
Since z is in the relative interior of A(FE), the point 2’ is in the relative interior
of A(E) as well, by the construction of ¥(X) as a geometric realization of the
polysimplicial complex associated to X (see Proposition [B.6). In particular, we
have F = FE’ and x = 2/, since the restriction of tropy , to A(E) C X(X) is
injective.

In general, if X is only a polystable model, we may apply a barycentric subdi-
vision to 3(X) that corresponds to a toroidal modification of X over R making it
strictly polystable. The argument in the strictly polystable case now yields a uni-
modular faithful tropicalization of the barycentric subdivision. Since the barycen-
tric subdivision of 3(X) is homeomorphic to 3(X) we find that X(X") maps home-
omorphically onto its image in R"”. (Il

7. OPEN QUESTIONS
7.1. Effective faithful tropicalization via linear series. Let L be a line bundle.
For g > 0 set
1 if g =0,
t(g) =143 if g =1,
3g—1 ifg>2.
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In [KY21], Kawaguchi and Yamaki show that, if deg L > t(g), then there are

sections so, . ..,s, € H°(X, L) such that the associated map
X —P,
z— (so(2),...,s.(x))

induces a tropicalization map
trop g, sy X*" —> TP,
T ( - 1Og |80|r7 ceey T IOg |Sr|z)
that is faithful on the skeleton I' of X, i.e. that restricts to a piecewise integer

linear and unimodular map on T'.
Let L be a (d — 1)-ample line bundle on X. There is a natural map

Xq — Gr(d, H*(X, L))

into the Grassmannian of d-dimensional quotients of HY(X, L) that is given by
associating to an effective divisor D on X the surjective restriction map

HY(X,L) - H°(X,L® Op).

If L is d-ample, this map is an injection.
Choosing global sections s, ..., s, € H*(X, L) we find a map

Xq — Gr(d,r)
that on the open locus X (parametrizing reduced divisors on X) is given by sending

a split reduced effective divisor D = Z _ Pi to the linear space spanned by the p;.
If we compose this with the Pliicker embedding, we obtain a map X4 — PV with
N = (;) — 1 such that the vanishing of the Pliicker coordinates precisely describes
the locus of non-reduced divisors. In other words, we have X4 NG = X§.

Expanding on the work of Kawaguchi and Yamaki [KY21], one might be tempted
to ask the following:

Question 7.1. Suppose that L is a line bundle on X that is d-ample. Under
which conditions is there a basis sg, ..., s, of H°(X,L) such that the induced
tropicalization map

X5 — Gr° (d,r)"" — G TP, gV
is faithful on the skeleton X (X4) ~ T'4?
One can think of the desired condition as a tropical analogue of d-ampleness.

7.2. de Jonquiéres divisors. We now discuss de Jonquiéres divisors, and we
begin with a discussion of the classical case. Let X be a smooth projective curve
with genus g. Consider a fixed complete linear series | = (L, V') of degree d and
dimension r. Then a de Jonquiéres divisor of length N is a divisor a1 Dy + -+ +
ar Dy € X4 contained in PV that fulfills Zle deg(D;) = N. These are studied
extensively in [Ung2l]. If py = (a1,...,ar) and pe = (di,...,d;) are positive
partitions such that Zle a;d; = d, then we denote the set of de Jonquiéres divisors
of length N determined by 1 and psy by DJ,::‘}V (w1, p2, C,1). In [Ung21], the author
proves that for general curves, if N —d+r > 0, then DJ,::';V(ul,ug,C,l) has the
expected dimension N — d + r. In particular, when N —d + r < 0, the variety
DJI::(]iV('[Ll,/.LQ, C,1) is empty.
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One may wonder whether this result remains true tropically. Proposition [7.2]
addresses the emptiness result and would imply its algebraic counterpart.

Proposition 7.2. Let T" be a generic chain of loops and K its canonical divisor,
sod=2g9g—2andr =g—1. If n is such that n+d —r < 0, then |K| does not
contain a divisor of the form dip1 + - - dppp-

Proof. The canonical divisor has degree 2g — 2 and rank g — 1. Therefore, in order
for n+d—r < 0 to hold, we must have n < g—1. The canonical divisor is supported
on g — 1 vertices, and because of the genericity condition, any divisor equivalent to
the canonical divisor will have at least that many vertices in its support. Therefore,
there is no divisor of the form dyp; + - - - d,p, when n < g — 1. O

However, unlike in the classical case, the result does not hold for all divisors. We
give Example [L.3]

Example 7.3. Consider the length 2 generic chain of loops, and let p be the middle
vertex. Let D = K + p. Then the rank of D is 1 (because there is a divisor p; + pa,
with each point coming from a separate loop, such that D — D’ is not effective),
and soif n =1thenn—d+ 1= —1 < 0. So, in the classical case we would expect
there to be no divisor in |D| of the form 3q for ¢ € I'. However, in this case D = 3p.
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