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Abstract. We introduce a new approach to the study of modulation of high-
frequency periodic wave patterns, based on pseudodifferential analysis, multi-

scale expansion, and Kreiss symmetrizer estimates like those in hyperbolic
and hyperbolic-parabolic boundary-value theory. Key ingredients are local

Floquet transformation as a preconditioner removing large derivatives in the

normal direction of background rapidly oscillating fronts and the use of the
periodic Evans function of Gardner to connect spectral information on compo-

nent periodic waves to block structure of the resulting approximately constant-

coefficient resolvent ODEs. Our main result is bounded-time existence and
validity to all orders of large-amplitude smooth modulations of planar periodic

solutions of multi-D reaction diffusion systems in the high-frequency/small

wavelength limit.

1. Introduction. As described in a variety of settings [28, 9, 5, 26, 19], there is
a fascinating connection between modulation of periodic traveling-wave solutions
and quasilinear hyperbolic systems. This has led to rich mathematical interac-
tions in both directions between the theories of pattern formation and hyperbolic
and hyperbolic-parabolic systems [22, 1, 20, 21, 13, 10, 11, 23, 12]. In this paper,
adapting ideas used in [18, 7] to study large-amplitude viscous shock and boundary
layers of hyperbolic-parabolic systems, we propose a new approach to the study
of modulation in the high-frequency/zero-wavelength limit, designed for the treat-
ment of large-amplitude, multi-D solutions. Based on pseudodifferential analysis,
multi-scale expansion, and Kreiss symmetrizer estimates originating in hyperbolic
boundary-value theory [15, 16, 17], this yields in particular bounded-time existence
and expansion to all orders of large-amplitude smooth modulations for reaction
diffusion systems in the high-frequency limit.

Derivative notation. We use Dx, Dt, etc. to denote the usual differentials with
respect to x, t or other variables. In the case of a single derivative Dx or Dt,x,
this is considered as a row vector (Dx1

, . . .Dxd) or (Dt,Dx1
, . . .Dxd), so that ∇x =

2020 Mathematics Subject Classification. Primary: 35K57; Secondary: 35A35, 35Q53.
Key words and phrases. Modulation, periodic waves, multi-scale expansion, Kreiss symmetriz-

ers, Floquet transformation.
Research of K.Z. was partially supported under NSF grant no. DMS-0300487.
∗ Corresponding author: Kevin Zumbrun.

2609

http://dx.doi.org/10.3934/dcdss.2022070
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DTx , ∇t,x = DTt,x in vectorial notation. Multiple derivatives Dj , corresponding to
multilinear maps, are used here only in describing various error estimates, and for
that purpose could equally well be thought of as the total derivative, or set of all jth
order derivatives. For computations we will for ease of reading/writing use, rather,
summation notation with individual partial derivatives Dxj , Dt or vector calculus
notation with the symbols ∇x, ∇t,x.

1.1. Basic high-frequency modulation. Consider a general reaction diffusion
system

εDtu+ f(u) = ε2∆xu, x ∈ Rd, u, f ∈ Rn, (1.1)

in the high-frequency/small-wavelength limit ε → 0+. This corresponds, under
the rescaling (t, x) → (t/ε, x/ε) to solutions u(t/ε, x/ε) of the unscaled system
Dtu+ f(u) = ∆xu.

Assumption 1.1. There is a (nontrivial) smooth function p(k, θ) of k ∈ K ⊂ Rd,
K bounded and bounded away from the origin, and θ, 2π- periodic in θ, and a smooth
function ω(k) such that

ω(k)Dθp+ f(p) = |k|2D2
θp. (1.2)

Assumption 1.1 implies that for all k ∈ K,

u(t, x) = p(k, ψk(t, x)/ε), ψk(t, x) = k · x+ ω(k)t (1.3)

is an exact solution of (1.1). Consider now a smooth modulation

uε,a(t, x) = p(k, ψ/ε), (1.4)

where k and ψ are smooth enough functions of (t, x) and p is a smooth enough
function of k and θ, with truncation error

Rε := εDtuε,a + f(uε,a)− ε2∆uε,a. (1.5)

Computing

εDtuε,a = DtψDθp+ ε
∑
l

DtklDklp,

εDxjuε,a = DxjψDθp+
∑
l

εDxjklDklp,

ε2∆xu
ε,a = |Dxψ|2D2

θp+ ε∆ψDθp+ 2ε
∑
j,l

DxjψDxjklD2
θ,kl

p

+ ε2
∑
j,l,m

DxjklDxjkmD2
kl,km

p,

(1.6)

and combining, we have that the main (O(ε0)) term in Rε is

DtψDθp+ f(p)− |Dxψ|2D2
θp = (Dtψ − ω(k))Dθp+ (|k|2 − |Dxψ|2)D2

θp.

This vanishes when

Dtψ = ω(∇xψ), k = ∇xψ, (1.7)

yielding truncation error Rε = O(ε) formally validating the high-frequency approx-
imation (1.4).
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1.2. Higher-order expansion. Continuing, we seek a general multi-scale expan-
sion [14, 7]

uε,m(t, x) = Uε,m(t, x,
1

ε
ψ(t, x) + ϕε,m−1(t, x)) (1.8)

(with convention ϕε,−1 = 0) with

Uε,m(t, x, θ) =
m∑
n=0

εnUn(t, x, θ), ϕε,m(t, x) =
m∑
n=0

εnϕn(t, x), (1.9)

satisfying the consistency condition

Rε,m := εDtuε,m + f(uε,m)− ε2∆xu
ε,m = O(εm+1) (1.10)

on the residual, or truncation error Rε,m of the approximate solution uε,m.

Assumption 1.2. For k ∈ K, consider the linearization

L(k,Dθ) = −ω(k)Dθ − f ′(p(k, θ)) + |k|2D2
θ , (1.11)

of profile equation (1.2) about p, satisfying (by translation invariance)

L(k,Dθ)Dθp = 0. (1.12)

Assume that 0 is a simple eigenvalue of L(k,Dθ) in L2(T), with associated eigen-
function Dθp(k, · ).

Assumption 1.2 is equivalent to transversality of solutions p of the profile ODE
(1.2), which may be recognized as a slightly strengthened, linear version of Assump-
tion 1.1.

Remark 1. For f sufficiently smooth, and any k 6= 0 and transversal solution p,
ω of (1.2), Assumptions 1.1-1.2 hold locally near (k, ω, p) by the Implicit Function
Theorem and smooth dependence of solutions of ODE. The limit k → 0, explicitly
excluded here, is singular for (1.2), hence smooth dependence would not necessarily
hold at k = 0. More important, 0 < |k| <∞ excludes spatial periods X = 2πε/|k|
of ∞ or 0, as will be important at a technical level later on. We note that the
condition Dxψ = k 6= 0 is quite restrictive on the possible geometry of wave fronts
of uε,a, given by level sets of ψ, implying foliation of Rd. In particular, there can
be no closed level surfaces.

Let Hs denote the usual Sobolev spaces with respect to x and t, and Hsε the

spaces defined by norms ‖h‖2Hsε :=
∑s
j=1 ε

2j‖Djt,xh‖2L2 accomodating presence of

the fast variable θ = ϕ/ε. Note that ε−1/2‖ · ‖Hsε is equivalent to the usual Sobolev
norm in rescaled variables (x′, t′) = (x/ε, t/ε), hence we have for s ≥ [d/2] + 1,
where [·] denotes least integer, the Sobolev embedding

‖h‖L∞ ≤ Cε−1/2‖h‖Hsε . (1.13)

Here and elsewhere, all norms are with respect to Rd × [0, T ], unless otherwise
specified, in which case we shall write Hs[T1, T2], Hsε[T1, T2], etc. to denote norms
with respect to Rs × [T1, T2].

With these preparations, we have the following result, established in Section 2
by induction building on computations (1.5)-(1.7).

Theorem 1.3. Under Assumption 1.2, if ψ is a C∞ solution of eikonal equation
Dtψ = ω(∇xψ) on [0, T ]×Rd, then there are C∞ asymptotic solutions (1.8), (1.10)
at all orders, with

U0 = p(k(t, x), θ), k = ∇xψ. (1.14)
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More precisely, for f ∈ C2(m+1), ψ ∈ C2(m+1), there are L∞ solutions to order
n ≤ m, with

‖(Un, ϕn−1)‖L∞ . ‖Dt,xψ‖C2n , ‖Rε,m‖L∞ . εm+1‖D2
t,xψ‖C2(m+1) (1.15)

and for f ∈ Cs+1+2(m+1), D2
t,xψ ∈ Hs+2(m+1), s ≥ 0, there are Hs solutions to

order n ≤ m, satisfying

‖(Un, ϕn−1)‖Hsε . ‖Dt,xψ‖Hs+2n , ‖Rε,m‖Hsε . εm+1‖D2
t,xψ‖Hs+2(m+1) , (1.16)

in each case satisfying (1.14).

Remark 2. In what follows, we shall assume Dt,xψ ∈ C2m, D2
xψ ∈ Hs+2(m+1), to

obtain for n ≤ m

‖(Un, ϕn−1)‖L∞ . ‖Dt,xψ‖C2m , ‖Rε,m‖Hsε . εm+1‖D2
t,xψ‖Hs+2(m+1) . (1.17)

By Dtψ = ω(∇xψ) . Dxψ and k = ∇xψ, these assumptions may be equivalently
phrased as

k ∈ C2m, Dxk ∈ Hs+2(m+1), (1.18)

implying in particular k ∈ L∞ and Dxk ∈ L2. The first condition corresponds to
k ∈ K in Assumption 1.1. The second imposes additional geometric constraints; for
example, radially symmetric configurations of k are disallowed in dimensions d ≥ 2,
as (since by assumption they are bounded from zero) their gradients decay no faster
than |x|−1, hence just miss being bounded in L2. Moreover, in all dimensions,
D2
xψ ∈ H [d/2]+1 implies by Sobolev embedding

D2
xψ → 0 as |x| → ∞, (1.19)

giving Dxk → 0 as |x| → ∞.

1.3. Linear estimates and nonlinear validation. Next, given an approximate
solution uε,m, we estimate the remainder, or convergence error,

vε,m := u− uε,m, (1.20)

where u is an exact solution. The equation for v = u− uε,a may be expressed as

εPuε,mvε,m = −Rε,m +Q(uε,m, vε,m) := εeε,m, (1.21)

where

εPuε,m := εDt + gε − ε2∆x, gε(t, x) = f ′(uε,m) = G(k,Ψ/ε) (1.22)

is the linearization of (1.1) about uε,m and

Q := −
(
f(uε,m + v)− f(uε,m)− f ′(uε,m)v

)
,

the Taylor remainder, is quadratic in v for ‖v‖L∞ ≤ C.

Assumption 1.4. For k ∈ K, consider the Bloch–Fourier operator

Lξ,η(k,Dθ) = −ω(k)(Dθ + iξ)− f ′(p(k, θ)) + |k|2(Dθ + iξ)2 − |η|2 (1.23)

ξ ∈ R, η = (η2, . . . , ηd) ∈ Rd−1 associated with linearized operator (1.11), where ξ is
Floquet number and η2, . . . , ηd are Fourier frequencies in directions transverse to k.
Denoting by σ(L) the spectrum of a linear operator L, assume that (i) L0,0(k,Dθ)
has a simple eigenvalue at λ = 0 and no other pure imaginary eigenvalues, and (ii)
<σ
(
Lξ,η(k,Dθ)

)
≤ −c|(ξ, η)|2 for some c > 0.
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Assumption 1.4 may be recognized as the diffusive stability condition of Schnei-
der [24], sufficient [24, 13, 10, 11, 23, 12] for linearized and nonlinear stability of
component planar periodic waves (1.3). The center of our analysis, and the main
contribution of this paper, is the following result converting the “local” spectral
stability condition of Assumption 1.4 to a global linear estimate.

Theorem 1.5. Under Assumption 1.4, together with f ∈ Cs+1+2(m+1), D2
xψ ∈

Hs+2(m+1)[−T0, T ], Dt,xψ ∈ C2m[−T0, T ], T0, T > 0, for every h ∈ Hsε[−T0, T ] with
h vanishing for t < 0, the problem

Puε,mv = h (1.24)

has a unique solution v ∈ Hsε[0, T ] vanishing for t < 0, satisfying

‖v‖Hs+1
ε

. ‖h‖Hsε . (1.25)

Remark 3. Problem (1.24) may be recognized as an exact analog of [18, Problem
(1.25)], and Theorem 1.5 as a simplified (since not involving conormal derivatives or
L∞ norms required in the boundary-layer case treated there) version of [18, Thms.
1.9-1.10]. Similarly as in the boundary-layer case, applying detailed estimates of
[13], appropriately rescaled in ε, one may verify that linear bound (1.25) is sharp
in the case k ≡ constant of an exactly periodic planar wave.

Remark 4. Evidently, for the simple isotropic (Laplacian) diffusion considered
here, multi-D diffusive spectral stability is equivalent to 1-D diffusive stability, η ≡
0, with σ(Lξ,η) = σ(Lξ,0 − |η|2).

Theorem 1.5 is established, following the general strategy of [18], by 1. first
reducing via local coordinate change/pseudodifferential calculus effectively to the
corresponding problem on the pseudodifferential symbol for the local planar prob-
lem, then 2. removing fast oscillations by a periodic Floquet transformation in the
normal direction conjugating the problem to approximately constant-coefficient,
and finally 3. obtaining linearized estimates on the resulting “averaged” system by
frequency-dependent “Kreiss-type” energy estimates as in [15, 16, 18, 7].

Whereas the key conjugation in step 2 was carried out in [18] by an asymptotically
constant-coefficient coordinate change (guaranteed by the “conjugation lemma” of
[18]), reducing to a known limiting constant-coefficient problem, the Floquet trans-
formation used here results in a constant-coefficient averaged system that is a priori
unknown. We make important use in step 3 of the periodic Evans function of Gard-
ner [6] in deducing needed averaged structure from spectral information encoded in
Assumption 1.4. These steps are carried out in Section 3.

From (1.25), we readily obtain the following nonlinear convergence result vali-
dating (1.4), (1.8).

Corollary 1.6. Under Assumption 1.4, for f ∈ Cs+1+2(m+1), D2
xψ ∈ Hs+2(m+1),

Dt,xψ ∈ C2m, m ≥ 2, s > [d/2], there is for ε > 0 sufficiently small a unique
solution u ∈ Hs+1

ε of (1.1) satisfying

u|t=0 = uε,m|t=0 (1.26)

and

‖u− uε,m‖Hs+1
ε

+ ε1/2‖u− uε,m‖
C
s−[d/2]
ε

. εm‖D2
t,xψ‖Hs+2(m+1) . (1.27)

Remark 5. Similarly as in [18], we need additional correctors (two here as com-
pared to one in [18]) to the basic high-frequency modulation uε,a = uε,0 in order to
close the analysis.
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Corollary 1.6 yields bounded-time existence and rigorous order-m expansion of
(possibly) large-amplitude modulations ψ satisfying |Dt,xψ|C0 , ‖D2

t,xψ‖Hs+2(m+2) <
∞ for m ≥ 2, s > [d/2].

By expanding to an extra order, and combining (1.27) with (1.16), we find for
f ∈ Cs+1+2(m+2), D2

xψ ∈ Hs+2(m+2) the improved, O(εm+1) remainder estimate

‖u−uε,m‖Hs+1
ε
≤ ‖u−uε,m+1‖Hs+1

ε
+‖uε,m+1−uε,m‖Hs+1

ε
. εm+1‖D2

t,xψ‖Hs+2(m+2) .

(1.28)
For m > s, this implies also the useful standard Sobolev embedding estimate

‖u− uε,m‖L∞ . εm+1/2‖D2
t,xψ‖Hs+2(m+2) .

1.4. Discussion and open problems. Corollary 1.6 may be recognized, after
accounting different scalings, as a multidimensional analog of the 1D results [5,
Thms. 6.1–6.2], obtained by quite different techniques. As noted in [5], solutions of
(1.7) in general become singular in finite time, hence the bounded-time assumption
is natural for smooth solutions. However, the analysis of [5], proceeding by normal
form reduction, approximates the function ω(k) appearing in modulation equation
(1.7) by its second-order Taylor expansion about a reference state k = k∗, hence
is inherently limited to the small-amplitude case |k − k∗| � 1. By contrast, our
restrictions on k in Assumption 1.1 are only to guarantee certain natural properties
of the associated periodic traveling-wave solutions, allowing the treatment of large-
amplitude solutions |k − k∗| � 1.

An advantage of our approach is that we obtain a “prescribed data” result (1.26)
yielding a unique exact solution u satisfying the initial data of approximate solution
uε,m, whereas the corresponding results stated in [5] are “prepared data” type,
asserting existence of a nearby exact solution for some, unspecified, initial data.
More (see Remark 10), our analysis gives the “approximate attraction” property
that exact solutions of (1.1) with u|t=0 ε

m+1-close to uε,m in Hsε(Rd) (i) exist up to
the full interval of existence [0, T ] of uε,m, and (ii) remain εm-close in Hsε[0, T ], thus
justifying the idea (see [3, 25, 27, 12] in related contexts) of modulation expansions
as approximate attracting manifolds. We discuss these issues further in Section 4.

On the other hand, our use of standard Sobolev norms imposes ‖D2ψ‖L2 <
∞, whereas the analysis of [5, Thms. 6.1–6.2], based on locally square-integrable
norms requires ‖Dxψ‖L∞ � 1, imposing smallness but no localization. It would be
interesting to try to extend our results to the case ‖Dxψ‖L∞ <∞, perhaps by the
use of local Sobolev norms as in [5]. Another interesting direction suggested by the
results of [5] would be to incorporate the diffusive scaling of [5, §4], leading in place
of modulation equation (1.7) to a second-order diffusive regularization, and allowing
the treatment of additional interesting solutions such as viscous shock profiles.

The restriction in (1.1) to isotropic, Laplacian diffusion was made for conve-
nience/simplicity in exposition, and should in principle be extensible to general
strictly parabolic diffusions. However, in the general case, the multi-D stability
analysis does not reduce to 1-D. A very interesting open problem is to construct
Kreiss type symmetrizers in this “truly multi-D” case. It is interesting to note that
the phenomenon of “glancing” treated in Appendix A arises here already in the 1-D
case, whereas in hyperbolic BVP theory it is associated only with multi-D phenom-
ena; this agrees with the intuition that 1-D periodic theory is roughly 1.5-D, due to
the incursion of an additional Floquet number ξ along with the spatial variable x.

As a final open problem, we mention the extension of our results to systems of
conservation laws or relaxation systems, for which the associated formal modulation
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system analogous to (1.7) is no longer scalar, but of system form. See, for example
the 1-D analysis of [19].

2. Asymptotic solutions. We begin by deriving (1.8)-(1.10), starting from first
principles, rederiving (1.4) in the course of the analysis. We look for asymptotic
solutions

uε(t, x) = Uε(t, x,
1

ε
ψ(t, x) + ϕε(t, x)) (2.1)

with Uε(t, x, θ) ∼
∑
n≥0 ε

nUn(t, x, θ), 2π-periodic in θ, and

ϕε(t, x) ∼
∑
n≥0

εnϕn(t, x).

We have

εDtuε ∼ DtψDθU0 +
∑
n≥0

εn+1
(
DtψDθUn+1 +DtUn +

n∑
p=0

DtϕpDθUn−p
)

ε2∆xu
ε ∼ |Dxψ|2D2

θU0 + ε
(
|Dxψ|2D2

θU1 + ∆ψDθU0 + ε
∑
j,l

DxjψDxjklD2
θ,kl

U0

)
+
∑
n≥0

εn+2
(
|Dxψ|2D2

θUn+2 + ∆ψDθUn+1+2
∑
j,l

DxjψDxjklD2
θ,kl

Un+1

+
∑
j,l,m

DxjklDxjkmD2
kl,km

Un

)
.

Thus, plugging the expansion into the equation we get

εDtuε + f(uε)− ε2∆xu
ε ∼

∑
n≥0

εnFn

with

F0 = DtψDθU0 + f(U0)− |Dxψ|2D2
θU0

and

Fn+1 = L(t, x, θ,Dθ)Un+1 +DtϕnDθU0 + Fn,
where

L(t, x, θ,Dθ) = DtψDθ + f ′(U0(t, x, θ))− |Dxψ|2D2
θ = L(k(t, x),Dθ)

and Fn depends only on (U0, . . . , Un) and (ϕ0, . . . , ϕn−1) and their derivatives.
Thus, we get an asymptotic solution if we solve by induction

L(k(t, x),Dθ)U0 = 0 (2.2)

and

L(k(t, x),Dθ)Un+1 +DtϕnDθU0 = −Fn. (2.3)

Under Assumption 1.2, 0 is a simple eigenvalue in L2(T) of

L(k,Dθ) = ω(k)Dθ + f ′(p(k, θ))− |k|2D2
θ

with associated eigenfunction Dθp(k, · ). In this case, the range of L is of codimen-
sion one and there is h(k, ·), 2π-periodic in θ, in the kernel of the adjoint L∗, thus
smooth in θ and in k because of the constant multiplicity, with∫

h(k, θ)Dθp(k, θ)dθ = 1 (2.4)
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and such that f belongs to the range of L(k,Dθ) if and only if∫
h(k, θ)f(θ)dθ = 0. (2.5)

Moreover, there is a partial inverse R(k) of L(k,Dθ) such that R(k)Dθp(·, k) = 0
and if f satisfies (2.5), then L(k,Dθ)R(k)f = f .

Lemma 2.1. For f, p(k, ·) ∈ C∞, the operator R(k) maps C∞(T) into C∞(T) and
depends smoothly on k ∈ K. Moreover, for f ∈ Cm+1, p(k, ·) ∈ Cm, m ≥ 0, it is
bounded on Cm(T).

Proof. The statement is clear for m = 0. For higher m, it may be obtained by
induction, applying Dmθ to the equation Lw = f̃ for w = Rf , where f̃ := (Id−Π0)f
is the projection of f onto h⊥, with

‖f̃‖Cm . ‖f‖Cm ,

then rearranging to express L(Dmθ w) as Dmθ f̃ plus the sum of products of lower θ-
derivative terms in w and the variable coefficient f ′(p(k, θ) in L, the latter bounded
by our smoothness assumptions on f and p. This yields

‖Dmθ Rf‖L∞ = ‖Dmθ w‖L∞ . ‖f̃‖Cm . ‖f‖Cm
as claimed.

Proof of Theorem 1.3. The first equation (2.2) is satisfied if U0 is given by (1.14).
Next, (2.3) is satisfied if

Dtϕn(t, x) = −
∫
h(k(t, x), θ)Fn(t, x, θ)dθ (2.6)

and
Un+1(t, x, θ) = −R(k(t, x))

(
Fn −Dtϕn(t, x)DθU0). (2.7)

By Lemma 2.1, one checks by induction that for f, ψ ∈ C∞ the Un and ϕn
are C∞ functions of (t, x, θ). Moreover, for f ∈ Cs+2(m+1), ψ ∈ C2(m+1) and
f ∈ Cs+1+2(m+1), ψ ∈ Hs+2(m+1), respectively, one has bounds (1.15) and (1.16),
respectively.

3. Linear estimates. Consider an approximate solution

uε,m(t, x) =
m∑
n=0

εnUn(t, x,Ψ/ε), Ψ = ψ + ε
m−1∑
n=0

εnϕn = ψ + εϕ, (3.1)

where for ease of writing we have suppressed dependence of Ψ upon ε, t, x. Then

εDtuε,m + f(uε,m)− ε2∆xu
ε,m = Rε,m = O(εm+1). (3.2)

The equation for v = u− uε,m is

εDtv + gεv − ε2∆xv = −Rε,m +Q(uε,m, v) := εeε. (3.3)

where gε(t, x) = f ′(uε,m) and Q is quadratic in v for bounded v.
Local to any point (t, x) = (t, x), we may introduce new spatial coordinates

z = Ψ(t, x), y = (y2, . . . , yd) (3.4)

with ∇xyj orthonormal and orthogonal to ∇xz at (x, t), and yj constant along
integral curves of ∇Ψ, hence Dxy∇xz = Dxy∇xΨ = 0 at all (t, x). Here, we
are using the assumed property, inherited for |∇xΨ|, that |∇xψ| is bounded and
bounded from zero.
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Then,

Dtv = DzvDtz +DyvDty +Dtv = DzvDtΨ +DyvDty +Dtv,

Dxv = DzvDxz +DyvDxy = DzvDxΨ +DyvDxy,
(3.5)

and so, using Dxy∇xΨ = 0, and orthonormality of {∇xyj} at (t, x) = (t, x),

∆xv = ∇x · (Dxv)T = ∇x ·
(
∇xΨDzv

)
+∇x ·

(∑
j

∇xyjDyjv
)

=
(
(∆xΨ)Dzv +∇x(Dzv) · ∇xΨ

)
+
∑
j

(
∇x(Dyjv) · ∇xyj + ∆xyjDyjv

)
=
(
(∆xΨ)Dzv +Dx(Dzv)∇xΨ

)
+
∑
j

(
Dx(Dyjv)∇xyj + ∆xyjDyjv

)
= (∆xΨ)Dzv + |DxΨ|2D2

zv + 2(DyDzv)(Dxy∇xΨ))

+
∑
ij

(DyiDyjv)(∇xyi · ∇xyj) +
∑
j

(∆xyj)Dyjv

= |DxΨ|2D2
zv + ∆yv + (∆xΨ)Dzv + o(1)|D2

yv|+O(|Dyjv|),
where o(1)→ 0 as (t, x)→ (t, x).

Thus, in a neighborhood of (x, t), (3.3) is transformed to

εDtv+ε
∑
j

cjDyjv + gεv + εaDzv − ε2|k|2D2
zv − ε2∆yv

+ o(1)ε2|D2
yv|+O(ε2)|Dyv| = −Rε +Q(uε,m, v) := εeε,

(3.6)

where
k := DxΨ, a = ω(k) + εa1(t, x), cj = Dtyj ,

and
gε(t, x) = G(k, z/ε) + εg1(t, x, z/ε),

with

a = ε−1DtΨ + ∆xψ − ε−1ω(∇xΨ)

= ε−1Dtψ +Dtφ+ ∆xψ − ε−1ω(∇xψ) + ε−1
(
ω(∇xψ)− ω(∇xΨ)

)
= Dtφ+ ∆xψ + ε−1

(
ω(∇xψ)− ω(∇xψ + ε∇xφ)

)
,

G(k, ·) := f ′(U0(t, x, ·)) = f ′(p(k, ·)),
g1 = f ′(uε,m(t, x, ·))− f ′(U0(t, x, ·))

= f ′
(
U0(t, x, ·) + ε

m∑
j=1

εj−1U j(t, x, ·)
)
− f ′(U0(t, x, ·),

and o(1)→ 0 with the size of the neighborhood about (x, t). Here, g1 is controlled
in relevant norms by

∑m
j=1 ε

j−1U j(t, x, ·) and derivatives of f ′, and a by ψ, φ, ω
and their derivatives.

Remark 6. The careful choice of time-varying coordinates y is made here to avoid
cross diffusion terms in the (z, y) representation, thus preserving up to absorbable
errors and transverse drift the isotropic form of the equations and allowing the re-
duction of symmetrizer calculations to the one-dimensional case. In treating the
case of general, anisotropic diffusion, there would be no advantage to such coordi-
nates, and no harm to choosing a constant coordinate frame y analogously as in
[18].
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We now mimic [18]1 and write (3.6) as a system

DzV =
( 1

εk
M +O(1) + o(ε|D2

y)|) +O(ε|Dy|)
)
V + E,

V =

(
v

εkDzv

)
, E =

(
0

1
ke
ε

)
,

(3.7)

where

M(t, x, εDt) =

(
0 1

εDt + ε
∑
j cjDyj +G(k, z/ε)− ε2D2

y ω(k)

)
. (3.8)

We will perform a semi-classical pseudo-differential analysis in t and y, and replace
εDt and εDy by their symbols λ = iτ and iη, η = (η2, . . . , ηd). See Appendix B or
[18, §3.1] for a brief description of the relevant tools, phrased in the paradifferential
calculus of Bony [2]. Moreover, we consider (3.7) as an evolution equation in the
fast variable θ := z/ε, and this yields to consider the system

DθV =
(
M+O(1) + o(ε|η|2) +O(ε|η|)

)
V + E , θ ∈ R, (3.9)

with

M(k, θ, λ, η) =
1

k

(
0 1

(iτ + ε
∑
j cjiηj + ε|η|2) +G(k, θ) ω(k)

)
, (3.10)

or, dropping error terms,

DθV =MV + E . (3.11)

Note that θ here varies on the line R, as we are not imposing θ-periodicity on
V ; note also that here k = ∇xΨ = ∇xψ + O(ε), allowing an O(ε) perturbation of
the prescription of Section 2.

Our goal is to prove the following basic L2 estimates for the solutions of (3.7):

Proposition 3.1. There is γ0 ≥ 0 such that for γ + ε|η|2 ≥ γ0, solutions V of
(3.7) satisfy ∥∥V ∥∥

L2
γ
.
∥∥E∥∥

L2
γ
, (3.12)

where L2
γ = e−γtL2(Rt×Rx) and V , E are supported on a sufficiently small neigh-

borhood of (x, t).

Instead of V we introduce Ṽ = e−γtV , and dropping the tildes we are reduced
to proving

γ
∥∥V ∥∥

L2 .
∥∥E∥∥

L2 (3.13)

for the solutions of (3.9), where now, setting λ := γ + iτ,

M(t, x, λ, η) =

(
0 1

(λ+
∑
j cjiηj + ε|η|2) +G(k, z/ε) ω(k)

)
. (3.14)

1Compare principal terms of (3.7) with the equivalent [18, eq. (2.13)].
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3.1. Paradifferential calculus and proof of the main estimates. We split V
into high and low (and medium) frequencies

Vl = χ
(
ζ(εDt, εγ, εDy)

)
V, Vh =

(
1− χ

(
ζ(εDt, εγ, εDy)

))
V (3.15)

where ζ := |γ + i(Dt +
∑
j cjiηj)| + ε|Dy|2 and χ is a C∞ cutoff function equal to

1 on a large ball B(0, R) to be chosen later on, and zero outside B(0, R + 1). The
commutator of χ(εDt, εγ,Dy) with the equation is O(1)V (see Propositions B.2 and
B.4, Appendix B), hence can be absorbed by choosing γ0 large enough. So we are
reduced to proving the estimates for Vl and Vh separately.

3.2. Low and medium frequencies. For ζ := |γ + i(Dt +
∑
j cjiηj)|+ ε|Dy|2 in

a bounded region we use the following reduction.

Proposition 3.2 (Floquet’s Lemma). There exists an invertible smooth periodic
matrix-valued function W(k, θ, λ, η), such that the change of coordinates V1 =WV
reduces (3.11) to

DθV1 =M1V1 + E1 (3.16)

where M1 =M1(k, λ, η) is independent of θ. Equivalently, W solves

DθW +WM =M1W. (3.17)

Proof. Let X (θ) be the fundamental matrix of the system (3.11),

DθX =MX , X (0) = Id ⇒ DθX−1 = −X−1M, X−1(0) = Id.

Consider a constant matrix M1 and W = eθM1X−1(θ). Then

DθW =M1W −WM.

Thus W conjugates the system (3.11) to the constant coefficient system (3.16).
Moreover, W is periodic if and only if W(1) = Id, that is

eM1 = X (1). (3.18)

Because X (1) is invertible, we can choose a logarithm M1 = lnX (1).

Accordingly, we make the change of unknowns

V1(t, z) =W(k, z/ε, εDt + εγ)χ̃(εDt, εγ)Vl(t, z) (3.19)

where we now consider k as a given function of the variables t, y, and z and χ̃ = 1
on the support of χ. The symbolic calculus shows that the commutators are O(1)Vl
and

DzV1 =
1

ε

(
M1(k, εDt + εγ, εDy)

)
V1 + E1 (3.20)

with E1 =
(
O(1) + o(ε|η|2) + O(ε|η|)

)
V1 + O(1)E. Next we use the method of

symmetrizers.

Proposition 3.3. For λ+ i
∑
j cjηj) + |η|2 bounded, λ = γ + iτ , there exist locally

smooth symmetrizers for M1, that is, matrices S(k, λ, η), C1 in (λ, k, η) such that
S = S∗, |S| uniformly bounded, and

<S(k, λ, η)M1(k, λ, η) = (γ + |τ +
∑
j

cjηj |2 + |η|2)Γ(k, λ, η), Γ ≥ Id. (3.21)
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Corollary 3.4. On a neighborhood of (x, t) such that error term o(ε|η|2) is suffi-
ciently small compared to ε|η|2, Vl satisfies

(γ + ε|τ +
∑
j

cjηj |2 + ε|η|2)
∥∥Vl∥∥L2 .

∥∥E∥∥
L2 +

∥∥Vl∥∥L2 . (3.22)

Proof. Use the energy balance

<
(
SE1, V1

)
L2 =

1

ε
<
(
SM1V1, V1

)
L2 + o(1)

1

ε
‖V1‖L2 +

(
KV1, V1

)
L2 (3.23)

K = −1

2
DzS + ε−1<op(SM1) + ε−1<

(
op(S)op(M1)− op(SM1)

)
where op denotes the semiclassical quantification of symbols. By the symbolic cal-
culus, the last term is O(1) and the second one is ε−1op(<SM1) + O(1). Finally,
by (3.21) applied to (3.20),

ε−1op(<SM1) = (γ + ε|τ +
∑
j

cjηj |2 + ε|η|2)op(Γ),

which proves that the right-hand side of (3.23) is

& (γ + ε|τ +
∑
j

cjηj |2 + ε|η|2)
∥∥V1

∥∥2

L2 +O(
∥∥V1

∥∥
L2).

Meanwhile, the left-hand side is .
∥∥E∥∥2

L2+
(
O(1)+o(ε|η|2)+O(ε|η|)

)∥∥V1

∥∥2

L2 , where

o(ε|η|2) � ε|η|2 and O(ε|η|) =
√
ε
√
O(ε|η|2) = o(1). Combining, and absorbing

error terms, we obtain the result. For details of the pseudodifferential computations
used here, see Appendix B or [18, §3.1].

From (3.22), the estimate (3.12) follows for γ large enough, completing the proof
of Proposition 3.1 for low and medium frequencies.

3.2.1. Proof of Proposition 3.3. It remains to establish existence of symmetrizers,
Proposition 3.3, for the averaged coefficient matrix M1 of (3.16). To this end, we
first deduce the eigenstructure of M1 from Assumption 1.4, via the periodic Evans
function of Gardner [6], which, in the coordinates of (3.16), takes the simple form
D(λ, ξ, η) = det

(
e2πM1(k,λ,η)−e2πiξ

)
. Evidently analytic with respect toM1, ξ, the

Evans function has the fundamental property [6, 29] that zeros of D(·, ξ, η) agree
in location and multiplicity with eigenvalues of the Bloch-Fourier operator Lξ,η of
(1.23).

Observing as in Remark 4 that λ, η enter M1 only in the combinations λ̃ :=
(λ + |η|2) and τ̃ := τ +

∑
j cjηj , we see that it is sufficient to treat the 1-D case

η ≡ 0. For simplicity, take η ≡ 0 from now on, and consider the 1-D Evans function

D(λ, ξ) = det
(
e2πM1(k,λ) − e2πiξ

)
, (3.24)

M1(k, λ) =M1(k, λ, 0), and its relation to the Bloch operator Lξ = Lξ,0.
By the spectral mapping theorem, zeros λ of D(·, ξ) correspond to pure imaginary

(matrix) eigenvalues µ = iξ, (mod 2π) of M1(k, λ). But, by the properties of the
Evans function, these also correspond to (operator) eigenvalues λ of Lξ. Thus,
by Assumption 1.4, M1(k, λ) has no pure imaginary eigenvalues for γ = <λ ≥ 0,
except for the eigenvalue µ = 0 (mod 2π) at λ = 0, which, by choice of the logarithm
function in the proof of Proposition 3.2, may be normalized as µ = 0.

(Medium frequencies.) For medium frequencies, 1/R ≤ |λ| ≤ R, we have by
continuity of spectra and compactness in (λ, k) that M1 has a uniform spectral
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gap <σ(M1(λ, k)) ≥ c0 > 0, whence there exist smooth coordinate transformations
T (λ, k) reducing M1 to form

TM1T
−1(λ, k) =: M̃1 =

(
P+ 0
0 P−

)
(λ, k),

where P+,−P− & 1. Since γ+ |τ | ∼ |λ| . 1 by assumption, hence also γ+ |τ |2 . 1,
we thus have

P+,−P− & γ + |τ |2.
By Lyapunov’s Lemma, there exist S+, S− symmetric with <(SP ) & γ+ |τ |2, hence

S̃ :=

(
S+ 0
0 S−

)
is a symmetrizer for M̃1, and S := |T−1|2T ∗S̃T is a symmetrizer

for M1, with

<(SM1) = |T−1|2T ∗
(
<(S̃M̃1)

)
T = |T−1|2(γ + |τ |2)T ∗Γ̃T =: (γ + |τ |2)Γ,

where Γ̃ ≥ Id and thus Γ ≥ |T−1|2(T ∗Γ̃T ) ≥ Id. We note in passing that this
argument demonstrates the important observation of Kreiss [15] that the property of
existence of a symmetrizer to be invariant under smooth coordinate transformations,
a fact we shall use freely below.

(Low frequencies.) We now come to the key, low-frequency case |λ| ≤ 1/R, R > 0
sufficiently large, where lies the main difficulty of the symmetrizer construction.
Here, we have by Assumption 1.4 that the eigenvalues of M1 split into a strongly
stable subset with real part strictly negative, a strongly unstable subset with real
part strictly positive, and a single small eigenvalue µ∗ that is uniformly spectrally
separated from both, associated with the “neutral stability” curve

{λ : λ = λ∗(ξ)},
where λ∗(ξ) is the eigenvalue of Lξ bifurcating from the simple “translational”
eigenvalue λ = 0 of L0.

By spectral separation of these three groups of eigenvalues, there exists a smooth
coordinate transformation T (λ, k) transforming M1 to block-tridiagonal form

M̃1 =

P+ 0 0
0 P− 0
0 0 m

 (λ, k),

where P+,−P− & 1 & γ. Taking S± as in the previous case, we see that it is
sufficient to find a symmetrizer s for m, in which case S := blockdiag{S+, S−, s}
is a symmetrizer for M̃1, and we are done. We are thus reduced to constructing
a symmetrizer for the block m associated with the small eigenvalue µ∗, considered
as a separate analytic function m(λ, k) = m0 + λm1 + . . . . By a further coordinate
transformation, we may reduce to the case that m0 = m(0) is in Jordan form. The
treatment of this neutral block hinges on the following linear-agebraic observation.

Lemma 3.1. Let d(λ, ξ) := det
(
e2πm(λ) − e2πiξ

)
in a neighborhood of λ = 0,

with m : C → Cr×r in Cs, s ≥ 1, m(0) a nilpotent standard Jordan form, and
Dλd(0, 0) 6= 0, and let λ(ξ) ∈ C1 be the unique local function defined implicitly by
d(λ(ξ), ξ) = 0. Then, m(0) consists of a single Jordan block, and m1 := m′(0) has
nonvanishing r-1 entry α = −Dλd(0, 0). Moreover, for j ≤ s,

djλ(0)

j!
=

{
0 for j < r,

(i)r/α for j = r.
(3.25)
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Proof. In the case that m(0) = J is a single r × r Jordan block, we find by Taylor
expansion that

e2πm(λ) − e2πiξ = 2πλ(J +m1)− (e2πiξ − 1) +O(λ2),

whence, by direct computation, d(0, 0) = 0 and Dλd(0, 0) = −(m1)r1. In the general
case, d decomposes into the products of the Evans functions for the different Jordan
blocks of m(0), hence Dλd(0, 0) = 0 if there were more than one block, and so, by
contradiction, there is only one. This establishes the first assertion. For λ, ξ small,
we may expand (e2πiξ − 1) as well, to obtain

‘0 = d(λ(ξ), ξ)/2π = det
(
λ(J +m1)− (iξ +O(|ξ|)2)Id +O(|λ|2)

)
= −(m1)r1λ− (iξ)r +O(|λ|2 + |ξ|r+1),

‘

from which we may obtain the second assertion by implicit differentiation.

Corollary 3.5. Under Assumption (1.4), either (i) ω′(k) 6= 0, r = 1, α = −1/ω′(k)
is real, λ∗(ξ) = −iξω′(k)−bξ2+O(ξ3), and m(λ, k) = −λ/ω′(k)+bλ2/ω′(k)3+O(λ3)
with b positive real, or (ii) ω′(k) = 0, r = 2, α is positive real, and λ∗(ξ, k) =
− 1
αξ

2 +O(ξ3).

Proof. Recall [26, 5, 11, 23] that the neutral spectral curve λ∗ has Taylor expansion

λ∗(ξ) = −iω′(k)ξ − b(k)ξ2 + . . .

about ξ = 0, b real, corresponding to the second order formal Whitham expansion
[28]

kt +Dxω(k) = Dx(b(k)Dxk). (3.26)

The result then follows by Lemma 3.1, together with the observation, above, that λ∗
is determined by the reduced Evans function d associated with the neutral Jordan
block of M1 at λ = 0, followed in case (i) by inversion of relation λ = λ∗(ξ, k) to
get the Taylor expansion of iξ = m(λ, k).

Remark 7. Note that the neutral eigenvalue µ(0) = 0 of M1(0) may have higher
multiplicity even though 0 is a simple root of L0; as a consequence, µ(λ) may
be singular at λ = 0 even though M1 is analytic. In particular (cf. [20]), when

ω′(k) = 0, µ has a square-root singularity, µ(λ) ≈ c
√
λ. We note further that the

apparently degenerate case ω′(k) ≡ 0 is in fact quite common, occurring generically
for stationary solutions ω(k) = 0, by reflection-invariance x→ −x of (1.1) [5].

We are now ready to construct symmetrizers for the neutral block m(λ, k). In
case (i), ω′(k) 6= 0, m(λ, k) = −λ/ω′(k) + bλ2/ω′(k)3 +O(λ3) is scalar by Corollary
3.5, with b positive real, hence s(λ, k) = −ω′(k) is a symmetrizer, smooth in (λ, k),
with

<(sm)(λ, k) = <(λ+ bλ2/ω′(k)2) = γ + (b/ω′(k)2)<(λ2) +O(λ3) & γ + |τ |2.

In case (ii), ω′(k) = 0 at k = k∗,

m(λ, k) =

(
0 1
0 0

)
+

(
a(κ, λ)λ b(κ, λ)λ

c0λ+ c(κ, λ)λ2 + e0(κ)κλ d(κ, λ)λ

)
+ κn(κ),

by Corollary 3.5, κ := k−k∗, c0 constant real and positive, without loss of generality
(rescaling λ) c0 = 1. This can be recognized as a variant of the case of a glancing
mode of order 2 arising in the theory of hyperbolic boundary-value problems, for
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which we may use a construction like that of Kreiss [15] in the hyperbolic boundary-
value setting to obtain a smooth symmetrizer s(λ, k). We carry out this more
complicated construction separately, in Appendix A.

In either case, the constructed neutral-block symmetrizer s yields a full block-
diagonal local symmetrizer for M1 that is smooth in (k, λ), yielding the desired
estimate (3.12). This completes the proof of Proposition 3.1 for low and medium
frequencies.

3.3. High frequencies. For ζ := |γ + iDt| + ε|Dy|2 sufficiently large, we may
proceed by the argument already established in [18]. Namely, we may construct a
symmetrizer for the principal-part symbol of the original, periodic in z system, by
a simplified version of [18, Lemma 2.14] (establishing property (ii) of the reference
and ignoring properties (i) and (iii)), applying a periodic block-diagonalizing trans-
formation at each point z and noticing that commutator errors absorb, reducing M

to form

(
P+ 0
0 P−

)
, where P+,−P− & γ + ε|η|2. By Lyapunov’s Lemma, there

exist S+, S− symmetric such that <(SP ) & γ + ε|η|2, hence

S :=

(
S+ 0
0 S−

)
serves as a symmetrizer giving <(SM) &

√
γ + ε|η|2. The result for the full system

is then obtained, similarly as in the proof of Corollary 3.4 by pseudodifferential
estimates showing that commutators and other errors absorb, from which (3.12)
immediately follows. The latter computations are carried out using the semiclassical
parabolic paradifferential calculus described in [18, §32]. For details, see [18]. This
completes the proof of Proposition 3.1.

Remark 8. Note, as in [18], the essentially different scalings in bounded- vs. high-
frequency regimes, as evidenced by the different bounds <(SM) & γ + ε|τ |2 + ε|η|2
vs. <(SM) &

√
γ + ε|η|2.2

From Proposition 3.1, we readily obtain our final linear bounds.

Proof of Theorem 1.5. From (3.12) of Proposition 3.1 and the definition of V , E
in (3.7), we obtain for solutions v, h of (1.24) supported in a sufficiently small
neighborhood of (x, t) and γ > 0 sufficiently large the estimate γ‖e−γtv‖H1

ε
.

‖e−γth‖L2
ε
. This may be extended to general v, h by a partition of unity argument

as in the proof of Proposition 5.1 in [18, §5.2], as we now describe,
Namely, we first observe, by the property ((1.19)) that D2

xψ → 0 as |x| → ∞
together with

k := DxΨ = Dxψ +O(ε),

that for ε sufficiently small and R sufficiently large, we may obtain the same esti-
mates for v, h supported on any neighborhood lying outside CR := {(t, x) : |x| ≤ R}
and of diameter ≤ 1/R. For, the size of allowable neighborhoods is determined by
required smallness of o(ε|η|2) terms relative to ε|η|2, coming from change of coordi-
nates of the Laplacian diffusion terms to the (z, y) frame, z = Ψ, specifically, error
terms arising from nonconstancy of k = ∇xΨ that are controlled by

‖D2
xΨ‖L∞ ∼ ‖D2

xψ‖L∞ + ε,

2The latter may be sharpened slightly to <(SM) &
√
γ + |τ | + ε|η|2, though we do not show

it here.
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together with existence of a smoothly varying frame (z, y), which holds so long as
variation of k = ∇xΨ is small, in particular for diameter times ‖D2

xΨ‖L∞ small.

We may thus cover C{
R by a countable collection of identical translates Ωj on

which the estimates are satisfied, for which each point (t, x) ∈ C{
R lies in at most a

fixed finite number N of the Ωj . (For example, we may achieve N = 2d by tiling

C{
R with identical rectangular tiles Rj , then taking Ωj := Rj ⊕ B(0, δ) for δ > 0

sufficiently small.) Covering the compact set CR with finitely many more Ωj , we
obtain a countable cover {Ωj} of Rd × [0, T ] for which all but finitely many are
identical translates, each point (t, x) ∈ Rd × [0, T ] lies in at most N1 of the Ωj , and
the estimates are satisfied for v, h supported in Ωj .

Defining a partition of unity
∑
j χj subordinate to {Ωj}, we have that the esti-

mate holds for each vj := χjv. Moreover, by construction sup |Dχ|, sup |D2χ| ≤ C
for some fixed C > 0. Computing

εhj : = εPuε,mvj = ε
(
χjh+O(|Dχj |)(|v|+ |εDxv|) +O(|D2

xχj |(ε)|v|
)

= ε
(
χjh+O(|v|+ ε|Dxv|)

)
and using the fact that each (t, x) lies in at most N1 of the Ωj , we find that the sum
over j of the L2 norm of commutator terms O(|Dχj |)(|v|+ |εDxv|)+O(|D2

xχj |(ε)|v|
is . N1‖v‖H1

ε
. ‖v‖H1

ε
, hence absorbs in the left-hand side of the error estimate,

giving the result for s = 0. See the discussion of [18, p. 57] for a similar argument
in the hyperbolic-parabolic boundary-layer case.

Derivative estimates s+ 1 ≥ 1 then follow by a standard induction, differentiat-
ing the equation and absorbing lower-order commutator terms using the estimates
obtained previously in Hsε, to yield γ‖e−γtv‖Hs+1

ε
. ‖e−γth‖Hsε for s in the range

specified for Theorem 1.5. The desired estimate (1.25) then follows by the observa-
tion that e−γt ∼ 1 for t on the bounded domain [0, T ].

4. Nonlinear convergence. With linear estimates in hand, nonlinear validity
now follows by a standard contraction mapping argument together with some care
in dealing with initial-/boundary-layers in time variable t.

4.1. Prepared data. For simplicity of exposition, and because the argument seems
of interest in its own right, we first treat the easier case of “prepared data”, seeking
an exact solution near the approximate solution uε,m, but not necessarily agreeing
at initial time t = 0.

Proposition 1. Under the assumptions of Corollary 1.6, for ε > 0 sufficiently
small, there exists an exact solution u ∈ Hs+1

ε of (1.1) on [0, T ], satisfying

‖u− uε,m‖Hs+1
ε

+ ε1/2‖u− uε,m‖
C
s−[d/2]
ε

. εm‖D2
t,xψ‖Hs+2(m+1) . (4.1)

Proof. By the assumptions on ψ, and standard smooth hyperbolic theory, we may
extend ψ to a slightly enlarged time interval [−δ, T ] on which it satisfies (a multiple
of) the same bounds. Thus, for 0 < ε < δ, we may extend the residual equation
(1.21) from t ∈ [0, T ] to t ∈ [−δ, T ], via

εPuε,mvε,m = εχε(t)eε,m, (4.2)

where χε(t) := χ(−t/ε), with χ(z) a smooth cutoff function vanishing for z ≥ 1 and
1 at to z = 0. Evidently, (4.2) agrees with (1.21) on the original time domain [0, T ],
and χε(t)eε,m vanishes for t ≤ −ε; moreover, the extension and cutoff functions do
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not change the bounds on the remainder, nor on the quadratic-order function Q.
Thus, it is sufficient to solve (4.2) and then restrict to [0, T ].

Defining now εmv̄ε,m := vε,m and Q̄(uε,m, v̄) := ε−2mQ(uε,m, εmv̄), and inverting
(1.21), we may express v̄ε,m as a solution of the fixed-point problem

v̄ = T v̄ := P−1
uε,m

(
− ε−(m+1)Rε,m + εm−1Q̄(uε,m, v̄)

)
(4.3)

on t ∈ [−δ, T ]. (Here, we are using Sobolev embedding to see that ‖v̄‖L∞ . ε−1/2,
hence ‖εmv̄‖L∞ by m ≥ 2 is O(ε3/2), thus small.) Recalling that |P−1

uε,m |Hsε and

‖ε−(m+1)Rε,m‖Hsε are uniformly bounded, and Q̄ smooth and quadratic order in

v̄, so that the Lipschitz norm of Q̄ with respect to v̄ is is . ‖v̄‖L∞ . ε−1/2 by
Sobolev embedding/Moser’s inequality, we find that T is a contraction mapping
with Lipschitz constant . εm−3/2 . ε1/2 = o(1) for m ≥ 2 on a ball of radius
. ‖ε−(m+1)Rε,m‖Hsε , yielding a unique solution vm,ε ∈ Hsε with vm,ε = 0 for t ≤ −ε
and ‖v‖Hsε . εm‖ε−(m+1)Rε,m‖Hsε . εm‖D2

t,xψ‖Hs+2(m+1) , by (1.16)(ii). Applying
(1.25) to the original equation (1.21), with h := eε,m, we obtain (4.1).

Remark 9. Evidently, the solution u obtained by this argument is not unique,
nor does the argument show that the exact “prescribed data” solution u|t=0 =
uε,m|t=0 remains close, or even is defined on an O(1) interval of time, its guaranteed
time of existence 0 ≤ t . ε being given by well-posedness of the unscaled system
Dtu+ f(u) = ∆xu. Note that in the extension of (1.21) to [−δ, T + δ] we made use
of reversibility of the hyperbolic equation for ψ. For an irreversible, e.g., diffusive
modulation equation, one could solve forward to extend from [0, T ] to [0, T + 2ε],
then use cutoffs to obtain a nearby solution for t ∈ [ε, T + ε]. Alternatively, one
might restrict to analytic data for which the diffusive equation may be solved in
reverse time, giving a result on [0, T ].

4.2. Prescribed data. To treat the prescribed data problem u|t=0 = uε,m|t=0, or
v|t=0 = 0, we first examine the initial layer resulting from the mismatch between
u and uε,m equations, i.e., from forcing Rm,ε 6≡ 0 in v-equation εPuε,mv = εeε,m of
the introduction ((1.21)–(1.22)):

εDtv + gεv − ε2∆xv = −Rε,m +Q(uε,m, vε,m). (4.4)

Lemma 4.1. Under the assumptions of Corollary 1.6, for ‖w0‖Hsε(Rd) . εm+1,

m ≥ 2, and ε > 0 sufficiently small, there exists a unique solution w ∈ Hsε(Rd×[0, ε])
of (4.4) with data w|t=0 = w0, satisfying

‖w‖Hs+1
ε

. ‖w0‖Hsε(Rd) + ‖Rε,m‖Hsε(Rd×[0,T ]). (4.5)

Proof. The rescaling (t, x)→ (t/ε, x/ε) converts (4.4) to

Dtv + gεv −∆xv = −Rε,m +Q(uε,m, vε,m),

Hsε to ε1/2Hs, and [0, ε] to [0, 1], whereupon the result follows by well-posedness of
linear diffusion equation Dtv + gεv − ∆xv = f , smallness of initial data w0, and
standard Picard iteration.

Proof of Corollary 1.6. First note, as in the proof of Proposition 1, that ψ and uε,m

may be extended without loss of generality to the interval [−ε, T + ε]. Letting χ(z)
be a smooth cutoff function vanishing for z ≥ 1 and 1 for z ≤ 0 and χε(t) := χ(t/ε),
set

ṽ := (1− χε(t))v + χεw,

where w is the solution described in Lemma 4.1, with w0 = w|t=0 ≡ 0.
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Substituting in (4.4) and rearranging, we obtain

εPuε,m ṽ = εẽε,m := R̃ε,m + Q̃(uε,m, ṽ), (4.6)

where R̃ε,m = (1− χε(t))Rε,m +O
(
χε)′(t)w

)
+O

(
(1− χε(t))w

)
and

Q̃(uε,m, ṽ) := χε(t− T )Q(uε,m, ṽ).

By (4.5) with w0 = 0, we have ‖R̃ε,m‖Hs . ‖Rε,m‖Hs . Moreover, (1 − χε) and

(χε)′, hence also R̃ε,m, all vanish for t < 0. Thus, by Theorem 1.5, we may express
(4.6) as ṽ = (Puε,m)−1ẽε,m, or, rescaling as in (4.3), the fixed-point equation

¯̃v = T ¯̃v := P−1
uε,m

(
− ε−(m+1)R̃ε,m + εm−1 ¯̃Q(uε,m, ¯̃v)

)
,

for ¯̃v := ε−mṽ vanishing for t ≤ 0. Arguing as in the proof of Proposition 1, we
find that T is contractive on a ball of radius . ‖ε−(m+1)Rε,m‖Hsε , with Lipschitz

constant . εm−3/2 . ε1/2 = o(1), hence there exists a unique solution vm,ε ∈ Hsε
vanishing for t ≤ 0 and satisfying (1.27).

Remark 10. Evidently, by (4.5), we could choose any initial data w0 satisfying

‖w0‖Hsε(Rd) . ‖Rε,m‖Hsε(Rd×[0,T ]) . εm+1‖D2
t,xψ‖Hs

without affecting the argument above, hence the conclusion

‖u− uε,m‖Hsε . εm‖D2
t,xψ‖Hs

of Corollary 1.6 holds for any u satisfying ‖u|t=0 − uε,m|t=0‖Hsε(Rd) . εm+1

‖D2
t,xψ‖Hs .

Appendix A. Kreiss-type construction for 2 × 2 blocks. Here, under As-
sumption 1.4, we construct a smooth symmetrizer s(λ) in the sense of Proposition
3.3 for a 2× 2 block

m(λ, k) = J +

(
a(κ, λ)λ b(κ, λ)λ

λ+ c(κ, λ)λ2 + e0(κ)κλ d(κ, λ)λ

)
+ κn(κ), J :=

(
0 1
0 0

)
,

where a = a1 + a2i, b = b1 + b2i, c = c1 + c2i, d = d1 + d2i, e0 = e0,1 + e0,2i are
smooth functions of λ = γ + iτ and κ, n is a smooth function of κ, and γ, τ, κ are
real and sufficiently small. That is, assuming that the small spectral curve

λ∗(ξ) = θ(κ)iξ − η(κ)ξ2 + . . . (A.1)

determined by d(λ∗(ξ), λ, κ) ≡ 0 where d(λ, κ) := det(em(λ,κ)X − eiξX), or equiva-
lently

det
(
m(λ∗(ξ), κ)− iξ

)
≡ 0, (A.2)

satisfies the conditions
θ real, η real and positive (A.3)

inherited from Assumption 1.4 and the structure of the original problem, we seek

s(λ, κ) =

(
α 1 + iσ

1− iσ β

)
(λ, κ) (A.4)

smooth with respect to (λ, κ), with α, β, σ real such that for κ, λ small enough,
<(sm) & γ + |τ |2.

Lemma A.1. Assuming A.3, there exists a smooth change of coordinates T (κ) =

Id+κT1(κ) such that J+κn(κ) is transformed to a (1+O(κ)) multiple of

(
0 1
0 fκ

)
,

where f = f(κ) is real.
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Proof. Write J + n(κ) as

(
ãκ 1 + b̃κ

c̃κ d̃κ

)
. Rescaling by factor (1 + b̃κ)−1, we may

take without loss of generality b̃ ≡ 0. Setting T =

(
1 0
ãκ 1

)
, and computing, we

obtain

T (J + κn(κ))T−1 =

(
1 0
ãκ 1

)(
ãκ 1

c̃κ d̃κ

)(
1 0
−ãκ 1

)
=

(
0 1

(c̃− ãd̃)κ2 (ã+ d̃)κ

)
Recalling that det(J+κn) = 0, by λ∗(0) = 0, we have that c̃ = ãd̃, whence, defining

f : ã+ d̃, we obtain the asserted form. Noting that M for λ = 0 is real-valued, we
find that its eigenvalues are real or else occur in conjugate pairs. As there are only
two small eigenvalues, and one is zero, the other must be real as well. But fκ by
inspection is the other eigenvalue, whence f is real.

By Lemma A.1, we are reduced to finding a smooth symmetrizer (A.4) for

m1(λ, k) = TmT−1 =

(
a(κ, λ)λ 1 + b(κ, λ)λ

λ+ c(κ, λ)λ2 + e0(κ)κλ d(κ, λ)λ+ f(κ)κ

)
with f(κ) real. Setting T̃ =

(
1 0

aλ/(1 + bλ) 1

)
, and making the coordinate trans-

formation

m̃ := T̃mT̃−1

similarly as in the proof of Lemma A.1, we may simplify further to form

m̃(λ, k) =

(
0 1 + b(κ, λ)λ

λ+ c(κ, λ)λ2 + e0(κ)κλ d(κ, λ)λ+ f(κ)κ

)
. (A.5)

We will require the following key observation relating e0, f to expansion (A.1).

Lemma A.2. Assuming A.3, e0 is real if θκ 6= 0 and κf = 0 if θκ = 0. In either
case, e0,2fκ = 0.

Proof. Substituting (A.5) into (A.2) gives

0 = (−iξ)(dλ∗ − fκ)− λ∗(1 + bλ∗)(1 + cλ∗ + e0κ).

Substituting (A.1) and solving to order ξ for κ fixed then gives fκ−θκ(1+e0κ) = 0,
and thus for θκ 6= 0, e0 = (f − θ)/κθ = real by reality of f , θ, κ, or e0,2 = =e0 = 0.
Similarly, for θκ = 0 we have fκ = 0. Combining cases, we have e0,2fκ = 0 in
either scenario.

We are now ready to prove existence of symmetrizers. Computing, we have for
|λ|, |κ| = o(1),

<(sm) = <
(

(1 + iσ)(λ+ cλ2 + e0κλ) α(1 + bλ) + (1 + iσ)(dλ+ fκ)
β(λ+ cλ2 + e0κλ) (1− iσ)(1 + bλ) + βdλ+ βfκ

)
=

(
Y X
X̄ 1 + o(1) +O(σ) + o(1)β

)
,

(A.6)

where, separating out γ contributions, we have, for α, β, σ bounded,

X = O(γ) + α(1 + biτ) + (1 + iσ)(diτ + fκ) + β(−iτ − c̄τ2 − ē0iτ)

Y = γ<
(
(1 + iσ)(1 + c(γ + 2iτ) + e0κ) + τ<

(
(1 + iσ)(i− cτ + e0κi)

)
= γ(1 +O(|τ, κ|(1 + |σ|)) + τ

(
− c1τ − e0,2κ+ σ(−1 + 2c2τ − e0,1κ)

)
,
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giving, for |σ| bounded and κ, τ small,

<X = α(1− b2τ) + β(e0,2κτ − c1τ2)− σd1τ − d2τ + κf +O(γ),

=X = αb1τ + β(−τ + c2τ
2 − e0,1κτ) + σ(−d2τ + fκ) + d1τ,

Y = γ(1 + o(1)) + στ(−1 + c2τ − e0,1κ)− e0,2κτ − c1τ2.

(A.7)

Next, we seek α, β, σ such that non-γ terms in (A.7) are cancelled in <X, =X,
and give total contribution |τ |2 in Y , i.e.,

α = αb2τ + β(c1τ
2 − e0,2κτ) + σd1τ + d2τ − κf,

β = αb1 + β(c2τ − e0,1κ) + σ(fκ/τ − d2) + d1,

τ2 = στ(−1 + c2τ − e0,1κ)− e0,2κτ − c1τ2,

(A.8)

giving <(sm) =

(
γ(1 + o(1)) + |τ |2 O(γ)

O(γ) 1 + o(1)

)
, hence, by Sylvester’s principal

minor criterion,

<(sm)− (γ/2 + |τ |2)Id > 0,

and thus <(sm) & γ + |τ |2 as desired, for γ, κ sufficiently small.
It remains to solve the the linear system (A.8). Solving the third, decoupled

equation as

σ = (1− c2τ + e0,1κ)−1(−τ − e0,2κ− c1τ) = O(|τ, κ|), (A.9)

and substituting into the second, we may rewrite the apparently singular term
σκf/τ as

σκf/τ = (1− c2τ + e0,1κ)−1(−τ − e0,2κ− c1τ)κf/τ

= −(1− c2τ + e0,1κ)−1(1 + c1)κf = O(κ).

Here, we have made crucial use of Lemma A.2 in observing the cancellation e0,2fκ =
0. This reduces (A.8) to a linear system in α, β with bounded coefficients,

α = αb2τ + β(c1τ
2 − e0,2κτ) + d2τ − κf +O(|τ, κ|)τ,

β = αb1 + β(c2τ − e0,1κ) + d1 +O(κ),
(A.10)

or, for τ, κ sufficiently small,(
α
β

)
=

(
1 +O(τ) O(|τ, κ|)
−b1 1 +O(|τ, κ|)

)−1(
O(|τ, κ|)

d1 +O(|τ, κ|)

)
=

(
1 0
b1 1

)(
0
d1

)
+O(|τ, κ|) =

(
0
d1

)
+O(|τ, κ|),

(A.11)

where O(τ), O(κ), and O(|κ, τ |) terms are smooth functions of (κ, τ), yielding ex-
istence/uniqueness of smooth bounded solutions α, σ = O(|τ, k|) and β = d1 +
O(|τ, κ|) of (A.8).

This gives existence of smooth symmetrizers, completing the proof of Proposi-
tion 3.3.

Remark 11. A similar symmetrizer construction yielding the same bounds (3.21)
was carried out for 2 × 2 “parabolic blocks” in [4, Lemma 5.2] in the context of
hyperbolic finite difference schemes. An important new aspect complicating our
analysis here is presence of the additional parameter κ.
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Appendix B. Semiclassical paradifferential calculus. For completeness, we
include here essentially verbatim the useful résumé of [8, §4.2, p. 60-62], describing
the paradifferential calculi used here and in [18, 7, 8], etc. For an extended version,
including proofs, see [18, §3.1]. These include both homogeneous and parabolic
calculi, the former used for the bounded-frequency and the latter for the large-
frequency regime. The reader may skip over the parts about parabolic calculus if
desired, as this is used in the present paper only implicitly, through reference to
previous results of [18].

Each calculus has its own associated scaling. With ζ = (τ, γ, η) as before and

α = (ατ , αη) ∈ N× Nd−1 a multi-index, set Rd+1
+ = {ζ : γ ≥ 0} and

〈ζ〉 = (1 + |ζ|2)1/2

Λ(ζ) = (1 + τ2 + γ2 + |η|4)1/4

|α| = ατ + |αη|, ‖α‖ = 2ατ + |αη|.
(B.1)

Definition B.1 (Symbols). 1. Let µ ∈ R. The space of homogeneous symbols Γµ0
is the set of locally L∞ functions a(t, y, x, ζ) on Rd+1 × Rd+1

+ which are C∞ in ζ
and satisfy:

|∂ατ,ηa| ≤ Cα〈ζ〉µ−|α|, for all (t, y, x, ζ) and α. (B.2)

2. For k = 0, 1, 2, . . . , Γµk denotes the space of symbols a ∈ Γµ0 such that ∂αt,ya ∈
Γµ0 for |α| ≤ k.

3. The spaces of parabolic symbols PΓµ0 and PΓµk are defined in the same way,
using Λ(ζ) in place of 〈ζ〉 and ‖α‖ in place of |α|.

Observe that symbols in Γµk which are independent of x constitute a subspace of
Γµk , and similarly for the spaces PΓµk .

The spaces Γµk are equipped with the natural seminorms

|a|µ,k,N := sup
|α|≤N

sup
|β|≤k

sup
(t,y,x,ζ)

〈ζ〉|α|−µ|∂βt,y∂αζ a(t, y, x, ζ)|. (B.3)

Seminorms on the spaces PΓµk are defined in the same way by the substitutions
described earlier.

We consider a semiclassical quantization of symbols. When a ∈ Γµ0 is independent
of (t, y) the associated homogeneous paradifferential operator acts in (t, y) and is
defined by the Fourier multiplier a(x, εζ):

T ε,γa u(t, y, x) =
1

(2π)d

∫
eitτ+iyηa(x, εζ)û(x, τ, η)dτdη. (B.4)

For a ∈ PΓµ0 the associated parabolic operator P ε,γa is defined by the same formula.
When the symbols depend on (t, y), the corresponding operators are defined by
formulas similar to (B.4), except that the symbols are first smoothed in (t, y) using
an idea of Bony [2]. The smoothing process in the homogeneous case differs from
that in the parabolic case (see [18], Proposition B.7). We shall often drop the
superscripts ε, γ and write the operator defined by (B.4) as Ta.

B.0.1. Sobolev spaces. For s ∈ R let Hs denote the space of functions u(t, y) such
that

|u|s,ε,γ :=

(∫
Rd
〈εζ〉2s|û(τ, η)|2dτdη

)1/2

<∞, (B.5)
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and let Hs be the space of functions u(t, y, x) such that

‖u‖s,ε,γ =

(∫
|u(·, x)|2s,ε,γdx

)1/2

<∞. (B.6)

Similarly define spaces PHs and PHs by substituting the weight Λ(εζ) for 〈εζ〉 in
(B.5) and (B.6). We use the same notation ‖u‖s,ε,γ for norms in Hs and PHs,
depending on context for distinction.

B.0.2. Action on Sobolev spaces, symbolic calculus.

Proposition B.1 (Action). For any a ∈ Γµ0 and s ∈ R there is a C such that for
ε ∈ (0, 1], γ ≥ 1 and u ∈ Hs:

‖T ε,γa u‖s−µ,ε,γ ≤ C‖u‖s,ε,γ . (B.7)

The constant C is bounded when a remains in a bounded subset of Γµ0 .
For a ∈ PΓµ0 the operators P ε,γa have the same mapping property on the spaces

PHs.

Proposition B.2 (Compositions). Consider a ∈ Γµ1 and b ∈ Γν1 . Then ab ∈ Γµ+ν
1

and there is a C such that for ε ∈ (0, 1], γ ≥ 1 and u ∈ Hs:

‖(T ε,γa ◦ T ε,γb − T ε,γab )u‖s−µ−ν+1,ε,γ ≤ Cε‖u‖s,ε,γ . (B.8)

The constant C is bounded when a and b remain in bounded subsets of Γµ1 and Γν1
respectively.

Moreover, if b is independent of (t, y) then T ε,γa ◦ T ε,γb = T ε,γab .
The same inequality holds for compositions of operators P ε,γa and P ε,γb acting on

u ∈ PHs.

Proposition B.3 (Adjoints). Let a∗ denote the adjoint of the matrix symbol a ∈ Γµ1
and let (T ε,γa )∗ be the adjoint operator of T ε,γa . There is a C such that for ε ∈ (0, 1],
γ ≥ 1 and u ∈ Hs:

‖((T ε,γa )∗ − T ε,γa∗ u‖s−µ+1,ε,γ ≤ Cε‖u‖s,ε,γ . (B.9)

The same inequality is true for adjoints of operators P ε,γa acting on u ∈ PHs.

Proposition B.4 (Commutators). For a ∈ Γµ1 and u ∈ Hs we have

[∂, T ε,γa ]u = T ε,γ∂a u, (B.10)

for ∂ = ∂t or ∂yj . A similar result holds in the parabolic calculus.

Proposition B.5 (G̊arding inequalities). Consider symbols a ∈ Γµ1 and w ∈ Γ0
1.

Suppose that there is χ ∈ Γ0
1 and c > 0 such that χ ≥ 0, χw = w and

χ2(t, y, x, ζ)<a(t, y, x, ζ) ≥ cχ2(t, y, x, ζ)〈ζ〉µ for all (t, y, x, ζ). (B.11)

Then there is C such that for all ε ∈ (0, 1], γ ≥ 1 and u ∈ Hµ/2:

c

2
‖T ε,γw u‖2µ

2 ,ε,γ
≤ <(T ε,γa T ε,γw u, T ε,γw u)L2 + Cε2‖u‖2µ

2−1,ε,γ . (B.12)

The same inequality holds for operators P ε,γa acting on u ∈ PHµ/2.
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B.0.3. Paraproducts. Paraproducts are paradifferential operators associated to sym-
bols independent of ζ. The following two propositions are used to estimate the errors
introduced in the passage from differential operators to their paradifferential coun-
terparts. They can also be used to estimate errors caused by passage from one
calculus to the other.

Definition B.2. For k ∈ N, letWk denote the space of functions a(t, y, x) on Rd+1

such that ∂βt,ya ∈ L∞(Rd+1) for |β| ≤ k.

Observe that

Wk ⊂ Γ0
k ∩ PΓ0

k. (B.13)

Proposition B.6 (Homogeneous paraproducts). For any a ∈ W1 there is a con-
stant C such that for all ε ∈ (0, 1], γ ≥ 1 and u ∈ H1:

‖au− T ε,γa u‖1,ε,γ ≤ Cε‖u‖0,ε,γ ,
γ‖au− T ε,γa u‖0,ε,γ + ‖a∂u− T ε,γa ∂u‖0,ε,γ ≤ C‖u‖0,ε,γ , for ∂ = ∂t or ∂yj .

(B.14)

Proposition B.7 (Parabolic paraproducts). For any a ∈ W1 there is a constant
C such that for all ε ∈ (0, 1], γ ≥ 1 and u ∈ PH1:

‖au− P ε,γa u‖1,ε,γ ≤ Cε‖u‖0,ε,γ ,
‖a∂yju− P

ε,γ
a ∂yju‖0,ε,γ ≤ C‖u‖0,ε,γ ,

γ‖au− P ε,γa u‖0,ε,γ + ‖a∂tu− P ε,γa ∂tu‖0,ε,γ +
∑
|α|=2

ε‖a∂αy u− P ε,γa ∂αy u‖0,ε,γ ≤ C‖u‖1,ε,γ .

(B.15)

Remark B.8. The difference between the above two propositions is due to the fact
that the symbol iτ + γ is of order two in the parabolic calculus, but of order one in
the homogeneous calculus.
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