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Preface by Kevin Zumbrun: [t is a great privilege to submit a paper to
this memorial issue in honor of long-time mentor and colleague Bob Glassey. Bob
enlivened the department at Indiana University for many years with his gentle wit
and incisive mathematical analysis. Bob is perhaps best known for his work on
kinetic equations. What I know about Boltzmann’s equation I know mainly from
sitting in on his delightful graduate course, which later became his delightful text on
the Cauchy problem for kinetic equations. So, this paper concerning Boltzmann’s
and related kinetic equations seems an appropriate submission, coming as a direct
result of Bob’s influence as a teacher and researcher. Of course, Bob is equally
well known for his seminal work on blowup in monlinear pde. So, it is perhaps
also appropriate that our central estimate is a “blow-down” result consisting of the
reverse-time version of finite-time blowup for the Riccati equation.

ABSTRACT. We establish an instantaneous smoothing property for decaying
solutions on the half-line (0,4o00) of certain degenerate Hilbert space-valued
evolution equations arising in kinetic theory, including in particular the steady
Boltzmann equation. Our results answer the two main open problems posed
by Pogan and Zumbrun in their treatment of H! stable manifolds of such
equations, showing that LLQOC solutions that remain sufficiently small in L (i)
decay exponentially, and (ii) are C°° for ¢ > 0, hence lie eventually in the H?!
stable manifold constructed by Pogan and Zumbrun.
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1. Introduction. The goal of this paper is to prove instantaneous smoothing and
decay properties for H-valued solutions of the evolution equation

(d/dt)(Az) = —x + G(x), (1)

where H is a separable Hilbert space, A : H — H is a constant bounded self-adjoint
operator, G : H — H is an infinitely differentiable map with

G(0) =0, sup,cp || DG < 1/4, and sup,¢y | DEG|| < +oo for all k. (2)

Our a priori assumptions are just that z : (0,4+00) — H belongs to (H-valued)
L? (0,+00) and Az € H (0, +00), with (1) holding as an equation in L (0, +00);
we call such a function a “weak L? _ solution” of (1). Note that these conditions do
not imply any a priori smoothness for x itself because A may be quite degenerate;
in particular, we have in mind the case considered for kinetic equations in [8, 9, 12]
of A essentially singular, or one-to-one but not boundedly invertible.

These conditions seem quite natural to impose just to make sense of the differen-
tial equation (1). However it should be noted that our study was motivated by some
questions that were left open in [8] where another notion of solution, the so-called
“mild solution,” was introduced. We relate our results to [8] by showing that any

mild solution is in fact a solution in our sense as well.

Remark 1.1. The studies of [8, 9, 12] concerned the situation G(z) = B(z, z) with B
a bilinear map; we note that this satisfies the framework (1)—(2) for solutions with
sup |x| sufficiently small. This is relevant to kinetic (in particular, Boltzmann’s)
equations, as discussed in Section 4.

Remark 1.2. The condition sup,cy ||D.G| < 1/4 can be weakened to
sup || Dz G| <~y
zeH

for v < 1, with essentially no change in the arguments.! The choice v = 1/4 is for
expositional convenience.

Our main result is the following.

Theorem 1.3. For A constant, bounded, and self-adjoint, and G € C*° satisfying
(2), every weak L? . solution x of (1) lying in L*°(0,4o00) is, in fact, C* on
(0, +00), and decays exponentially with all derivatives as t — co. Moreover, for all
t>0andk >0,

CtF, 0<t<l1

d/dt)kz(t)| < ’ ’ 3
(af >x<>|_{06ct’ o1 @

where ¢ depends only on || A, and C on ||z|| Lo (0,400), [|All, k, and sup,cg |DigG|,
j=1,2,. . k+1.

Remark 1.4. For G € C", we obtain instantaneous Hfoc/C”"_1

loe Smoothing by the
same argument.

Remark 1.5. A similar approach gives instantaneous smoothing for = € L?(0, +00),
with bounds |(d/dt)*z(t)| < Ct=1/27F t > 0,2

!Namely, in the first step of the proof of Theorem 1.3, we may use |G(z)| = |G(z) —G(0)| < ~|z|
to obtain —|z|2+(G(z),z) < —(1—7)|z|?> < —|z|? in place of (6), and similarly in higher-derivative
estimates throughout.

pecifically, substituting , +00) for ,+00) in item 1 of the proof in Section 2, an

2Specificall bstituting L2 (0 for L*°(0 in i 1 of th f in Section 2 d
using the Sobolev estimate in item 2 to bound |z(t)| for ¢ < 1, gives |z(7)| < Ct~1/2 for 7 > t,
yielding the result by Theorem 1.3.
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We believe that Theorem 1.3 may be of its own interest, but as far as the questions
in [8] are concerned, it implies, in the slightly different setting of Remark 1.1, that
Lfoc(O, +00) solutions remaining sufficiently small in sup norm must by exponential
decay of ||@| g1 (t,400) belong eventually to the H' stable manifold constructed by
Pogan-Zumbrun, which may be characterized [8] as the union of all trajectories
@ with [|2]|g1(0,400) sufficiently small. Moreover, it implies that this H' stable
manifold, expressed as in [8] as the union of trajectories in H'(0,+o00), lies in
C>=(t,+o00) for any t > 0. We recall that the analysis of [8] was motivated by
consideration of the steady Boltzmann equation, which, as shown in [6], may be
put by an appropriate coordinate transformation into the framework (1) considered
here, with G(z) = B(x, z), B a bounded bilinear map.

The paper is organized as follows. In Section 2, we prove the theorem itself.
The proof is rather elementary and the reader interested in the key ideas will lose
almost nothing assuming that we deal with a finite-dimensional Hilbert space H,
understand all derivatives in the classical sense, and just aim at quantitative bounds
independent of dimension, etc. We will still clearly state all standard facts from the
integration theory of Hilbert space-valued functions to make sure that everything
works in the generality we need, but we refer the reader to, e.g., [3] for their proofs.

In Section 3, we revisit equation (1) from the standpoint of existence and unique-
ness, in the process connecting with [8] and the notion of “mild solution”. Unlike
Section 2, which can be read from scratch, Section 3 assumes of the reader at
least some familiarity with standard Fourier transform, convolution, and Gagliardo-
Nirenberg bounds, and, differently from the situation in Section 2, the issues of how
exactly everything is defined and in what sense the equalities hold are central there.
Though it is for the most part self-contained, the reader of Section 3 will benefit in
Section 3.2 from familiarity with [8] and in Remark 3.12 will need it to make full
sense of the remark.

In Section 4, we discuss implications of our results for the questions considered
in [8], especially as they concern Boltzmann’s equation. Finally, in Section 5, we
describe some perspectives and open problems. We delegate the proofs of one
standard and one “semi-standard” Sobolev type embedding theorem (Lemmas A.1-
A.2) to be used in Section 2 to an appendix so as not to interrupt the flow of the main
argument. This appendix can be read completely independently of the main text.
In a second appendix, we discuss integrability of Hilbert space-valued functions as
it relates to the variation of constants formula in Section 3. This appendix refers
to but is not needed in the main text. It may be skipped by the reader if desired.

2. Proof of the main theorem. We start with a technical lemma.

Lemma 2.1. Suppose that F : (0,+00) — R is absolutely continuous, f,g are
nonnegative with f € Li, (0,+00), g measurable, and (d/dt)F < —F?g+ f a.e. on

loc

(0,+00). Then, for everyt >t >0,

ro< [ ([o)"

Proof. Let G(s) :== F(s)— [/ f, s > t'. If there exists s € (t',¢) such that G(s) <0,

then t ) .
F(t):F(s)—l—/s F’S/:f+/s f:/t/f
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and we are done. Otherwise, G > 0 on (¢',t),s0 0 < G < F and
(d/dt)G < —F?g < —G?g,

or, equivalently, (d/dt)(1/G) > g, hence (1/G)(t) > ft, g and G(t (ft, ) . O

Corollary 2.2. Suppose that h,y : (0,4+00) — H are in L*(0,+0c0), (h,y) is
absolutely continuous, f : (0,4+00) — R is in L'(0,400) and nonnegative, and
(d/dt){h,y) < —|y|* + f a.e. on (0,+00). Then, for every t >t' > 0, there holds

A
(hyy)(t) <[5 f + ‘(f;_‘t/)lz and

+o00 ) ft’ ‘h|2
[ MSA f+ s

Proof. Note that |y|? > |h‘2> for all € > 0 and (ft, /(|h]? +€)))_ < W,

so Lemma 2.1 with F = (h,y), g = 1/(|h|? + ) implies (h,y)(t) < ft, f+ ft/(tlhl,;s)

for all € > 0, yielding the first inequality in the limit as ¢ — 0+. Since there exists
a sequence tr — +oo such that (h,y)(tx) — 0, we get fttk lyl2 < —(h, y)|i* + ftt"' I
Taking the limit as t; — 400, we get the result. O

In order to be able to use this corollary, we need the following key observation.

Lemma 2.3. If A is a bounded self-adjoint operator, = : (0,400) — H is in
L} .(0,400), and Az € H} (0,+00), then (Ax,x) is absolutely continuous, with

loc
(d/dt)(Az, ) = 2((d/dt)(Az), z). (4)

Proof. Fix 7 > 0 and consider the difference quotient

ArlAr,z) oy _ (A A0 2+ 7)) | (Ae(t), (Ar2)(H))
_ (ArAn)(®),2() £t £ 7))

where A v(t) := v(t+7)—v(t). Here, we have used in a crucial way self-adjointness
of A. Since A is bounded, M € L}, .(0,400), and we have the integral identity

/éﬁ%ﬁ=@mWw

t

T ¢

where
t+7
(Srv)(t) = (l/T)/t v. (5)
Note now that, as 7 — 01, S, ((Az,z)) — (Az,z) a.e. while
x(t) + x(t+7) — 22(t)
in L? _ and, by Lemma A.1(ii), M — (d/dt)(Az) in L? .. Hence, passing to the
limit as 7 — 0T, we get

(r.oly = [ 2((@jan(An).a)

for a.e. t',t € (0,+00), verifying (4). O
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Proof of Theorem 1.5. We proceed by a series of steps bounding = in successively
higher norms. The main idea of the argument may be seen in steps 1 and 2 showing
instantaneous smoothing from L> to H'. Steps 3-5, showing higher regularity,
proceed in similar but more complicated fashion.

1. (Proof that x € L?*(0,+00)). By time and space rescaling, we can always
assume without loss of generality that [[Al| = 1 and [|2||p~(0400) < 1. Now, we
have

(d/dt)(Az,x) = 2(d/dt(Ax),z) = —2|z|* + 2(G(x), z) < —|z|?, (6)

so (Ax,z) is decreasing. Moreover, since |z|?> > |(Az,x)|, either (Az,z) — —o0
as t — +o00, which is impossible, since z € L>®(0,+00) and A is bounded, or else
(Az,z) > 0 for all ¢t > 0, and

(Az,x)(t) < e YAz, z)(0) < e !

For, otherwise, (d/dt){Ax,z) < —|z|?> < (Ax,z) would be eventually uniformly
negative.

Thus, for any 7' > t > 0, ftT |z < —(Ax,2)|] < (Ax,2)(t) < et Letting
T — +oo, we get fjoo |z|2 < et for all t > 0. In particular, x € L?(0,+oc) and
[/l L2 (0,400) < 1.

2. (Proof that v € HJ,.(0,400)). It is enough to show that the difference ratios
% are uniformly bounded in L? (0,+o00) as 7 — 0. To this end, write

(d/dt) (A A;x) _ A AG@)

T T
Note that A% € H. .(0,+00) for any fixed 7 > 0. So, we get
AL G(x) ATJJ> < _‘ATx 2

)
T T

(7)

Az A,
Tx’ x>

(d/dt)<A
because sup, ¢y || DGl < 1/4, so |A%(m)’ < 1|8z2|. Note also that
ATI‘ B ‘A (Ax) ’
| =

S o e

T T

‘A

- (d/dt(Az) ’_|S (—2+G()| < 28]

for all 7, where S, is the averaging operator of (5).

Thus, applying Corollary 2.2 with h = A8z =ty = A L f=0, we get
/ e 4 [ (S ]a])?
. T T (=)
for any t > ¢’ > 0. Letting ¢ — 0 when 0 < ¢t < 1 and putting t' =t—1 when
t > 1, then using the bounds (S;|z[)? < 1 and [~ (S;|z|)? ft |z|? < ee™t

respectively, we get

/ ‘ , 0<t<l,
4ee tot>1.

Thus, z € H(t,+o0) for any t > 0 and the same bounds hold for 2’ (Lemma A.1(i),
Appendix A).
Moreover, we can now estimate z(t) for ¢ > 1 by writing

202 =2\/t+°°<x,a:/> < 2([00 x|2)”2(/t+°°x’2)”2 < Ce.
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Finally, applying Lemma A.1(i)—(ii), and passing to the L2-limit as 7 — 0% in (7),
we see that Az’ € H (0,400) and

(d/dt)(Ax") = —a' + D,G(z').
Specifically, we first apply Lemma A.1(ii) to the H}. (0, +00) functions z and G(x)

to see that 77 !A 2 — 2’ and 77'A.G(x) — (d/dt)G(x) = D,G(z') on the right-
hand side of (7). But, this implies that the limit

. 1 : -1
Tim [/ A AT Al g a0y = Tim 77 A A 2400

of the L2(t,+00) norm of the left-hand side of (7) exists and is bounded for all
t > 0, hence Az’ € H} (0, +00) by Lemma A.1(i). Here, we have used the fact
just established that z € H}\ _(0,+00) to rewrite (d/dt)AT~ 1Az = 771A Az’

Applying Lemma A.1(ii), we find, finally, that
(d/dt)Ax’ = lirg+ AL A2 = —2' + D,G(2). 9)
T

3. (Proof that x € Wllo’f(O, +00)). We shall start by fixing 7 > 0 and considering
the difference A,z’. We have AA, 2’ € H'(t,+00) for any ¢t > 0 and, applying the
linear ifference operator A, to (9) and using the product rule A,yz = y(A,z) +
Ary(a(- + 7))

(d/dt)(AA ") = =Nz’ + A, DG (x)
= —-A, 2"+ D,G(A2) + (A (DG)) (2 (- + 7)).
Passing to the corresponding differential equation for the quadratic form (AA, 2/,
A.x'), we can combine the first two terms on the right-hand side using the bound

(10)

1
1D2G(Ara)| < 7 |Ar|
to get
(d/dt){(AAra'), Ara’) < —gIATa:’I2 +2(A 2", A (D,G) (2 (- 4+ 7)))

— A2 P 4+ 2[| A DG |2 (- + 7))
_|AT$I‘2 + C|A7x\2|x/(- + T)|27

IAIA

where C is controlled by sup,cy ||[D2G||. Here, we have used Young’s inequality to
bound the term 2(A,a2’, A, (D,G)(2'(- + 7))) by an absorbable term (1/2)|A,2'|?
plus 2| A, D,G||?|2/(- + 7)|*. Using the equation, and the condition || D,G| < 1, we
also have

A(A2")] = | AL (d/dt) (Az)| = |Ar(—2 + G(x))] < 2/A ],

Finally, we have by Jensen’s inequality
—+oo
Az (t) = 787 f*(t) < 728 (J2'*)(t) < T/ |2
t

for S; as in (5), which is at most % for 0 <t<1and Cre~! fort > 1.
Applying Corollary 2.2 with y = A,2', h = AA2’, and f = |A 2?2/ (- + 7)|?,
we get
+oo +oo 4 t/ A-,—J} 2
Ay T (1)
¢ v (t—t)?
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Plugging in the estimates obtained just above for |A,z|?(t) and in step 2 for
ft+oo |z'|?, and letting ¢ = t/2 for 0 < t < 1 and ¢/ =t —1/2 for t > 1, we
get, noting that 7 > 0 is arbitrary,

/+°° A2 _ {Ct?, 0<t<l,
t <

e T Cet, t>1.

>0

By Lemma A.2, Appendix A, this together with our previous estimate
+oo
/ 2’2 <C/t forO<t<1
t

is enough to conclude that fjoo |2'|* < (1/2)(C/t2(C/t)) = (1/2)(C?/t3) < t73
for 0 < ¢t < 1. Similarly, using our previous estimate f;oo |27'|> < Ce~t for t > 1,

we obtain ft+°° |2'|* < C2%e~2 for t > 1. Combining, we have for some (possibly

larger) C >0
/+°° |t < Ct=3, 0<t<l,
: ~lCce 2, t>1.

4. (Proof that x € H? (0,+0c)). We shall use Corollary 2.2 once more with the

same y, f, h, but this time we shall estimate the right-hand side of the inequality
(11) in a different way. First note that

|A(A2")? = |AL(A2")? < 725, (| (d/dt)(Ax")])?
= TQST(| -2+ chg(:n/)|)2 < 47’25.,-(|£L'/D2

with S; as in (5), so j:_oo |A(A;2")]? < 472 ft+oo |2|?. Then observe that

+oo +oo
/ |Arzl*fa’(- +7)* < 72/ |82/ P2’ (- + 7)I* < 7212 La e, o)
t t

Thus, with the same choice t/ =¢/2 for 0 <t <land ¢ =¢t—1/2 fort > 1, we
arrive at the bound

/“’O |AL2'|? - Ct3, 0<t<]1,
. T2 T |Cet, t>1.

The difference ratios A%”/ are thus uniformly bounded in L2 (¢, 4+o00) for any ¢ > 0,
hence, applying again Lemma A.1(i), Appendix A, we have z € H? (0, +00) and

oo Ct3, 0<t<l,
|:C”|2 <
¢ | Cet, t>1.

+oo 1/2 t+oo 1/2
§2</ Ix’lg) (/ |x//|2>
t t

-2
<{Ct L 0<t<l,

Also,

+o0
PPy [ @
t

Ce™t, t>1,

verifying (3) for £ = 1. Finally, applying again Lemma A.1(i)—(ii) and passing to
the L2-limit as 7 — 0% on both sides of 77! times equation (10), we get Az" €
H} (0,+00) and

(d/dt)(Az") = =2 + D2G(2',2') + D,G(2"). (12)
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Namely, we first observe that 2’ and (d/dt)G(xz) = D,G(z') are both contained
in H} .(0,400), by the fact that 2/ € H} N L2, (0, 4+00) together with the uniform
derivative bounds (2) on G. Thus, we may argue as in the end of step 2 to obtain
first convergence in L?(t, +00) of 7'_1 times the right-hand side of (10) by Lemma
A1(ii), to —2” + (d/dt)D,G(2") = —a" + D2G(2',2") + D,G(x"), for any t > 0.
This implies convergence in L%(t,+00) of 77! times the left-hand side of (10), or

(d/dt)(t7 Ay = 77 AL Az,

whence Az” € H} (0, +00) by Lemma A.1(i). Applying Lemma A.1(ii), we obtain
finally that lim,_, o+ 77 1A, Az” = (d/dt)Az"”, yielding (12) by equality of left- and

right-hand limits.
5. (Proof that x € H;} (0,400), J > 3). The rest of the argument we carry

out by induction. Specifically, at each level J, starting with J = 2, we make the
following induction hypotheses.

(I1) For 0 < k < J, & € W2F(0,4+00), with (d/dt)*z satisfying (3) for ¢ > 0.

loc

2Q)For1<k<J,ze€ 0, 4+00), wit
12) F k<J xeHE, h
Heo Ct=2k1 0<t<1
djdt)*z)? < ’ ’ 13
| @l _{Cet, o (13)
(I3) For 1 < k < J, A(d/dt)*z € H} (0,400) and z, G(z) € Hf (0, +00), with
(d/dt)A(d/dt)*z = —(d/dt)*x + (d/dt)*G(x) in L}, (0,+00). (14)

We have shown in Step 4 that (I1)—(I3) are satisfied for J = 2, ie., z €
1(0,400) and (3) holds for k = 0,1; z € H?_(0,+00), and (13) holds for
k =1,2; and z, G(x) are in H}

Wi loc
e (0, 400), satis-
fying (14) in the L?

loc

(0,+00), and A(d/dt)*z is in H],

7.c(0,400) sense for k = 0,1,2. We now show that satisfaction
of (I1)—(I3) at level J = j > 2 implies satisfaction of (I1)—(I3) at level J = j + 1,
whence, by induction, (I1)—(I3) hold for all J > 2. This implies that = is C*° on
(0,+00) and satisfies (3) for all & > 0, completing the proof.

By (I3), we have that (d/dt)AA,(d/dt)iz, A, (d/dt) xz, and A, (d/dt)’G(x) are
in L2 (0, +00), with
(d/dt) AN, (d/dtY x = —A,(d/dt) = + A (d/dt) G(x). (15)

Repeated application of the chain rule gives the expansion

(d/dtY Gz Z > Ci,DLg((d/dt) M, ... (d/dt)"x), (16)
=1 s14+s;=7—1, 5,20
with Ci . denoting the number of occurences of the derivative distribution s =

(s1,.-.,81). In particular, there is only one term for [ = 1, namely C’f G = L
Thus, we have

AL (d/dtY G(z) = A, Z > C{,DLG((d/dt)" T, ..., (d/dt)* x)
=2 s1++s;=j—1, ;20
17
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Noting that
Do+ G(Ar(d/dt)y z)| < (1/4)|A7(d/dt) )| (18)

by (2), and arguing as in step 3, we find therefore for y = A,(d/dt)’z and h =
AN, (d/dt) z that
(y:h)" < [y + f,
where f = 2|g|*> with g := A-(d/dt)IG(x) — Dy(.+nG(A;(d/dt) x)).
3 : +o0 +oo

With an eye toward applying Corollary 2.2, we first bound ft Ifl=2] . g%
Evidently, g is given by the sum of the first two terms on the right-hand side of
(17). The first, Y 7_,, term, involves only derivatives (d/dt)* 'z of order < j, since

there are at least two summands s; + 1, and the sum of all such is j. Thus, we may
use the relation A, = 75.(d/dt) to rewrite this term as

j+1
=Y > B DLG((d/dt) ' x, ... (d/dt)" ) (19)

=2 s1+-+s=j+1-1, ;20

with By, integer valued, where, in each summand, at most one of the derivatives

(d/dt)*T1x is of order j, and the rest are of order < j. Here, we are using in an
important way the fact that j > 2. For j = 1, the multi-index s = (1,1) gives two
derivatives of highest order j, a fact that cost some extra effort in steps 3—4.

By (12)—(I3), therefore, the highest-order derivative appearing in each summand
is bounded in L?(t, +00) by Ct=(5:+D+1/2 for 0 < ¢ < 1 and Ce¥/? for t > 1, and
the remaining derivatives are bounded in L>(t,+00) by Ct=(+1) for 0 < ¢t < 1
and Ce~*/? for t > 1. Combining these bounds with the uniform derivative bounds
(2) on G and the fact that S, is bounded from L?(t, +00) to itself, we thus find that
the L2(t,+00) norm of each summand in (19) is bounded by

= (i (st 1)+1/2 _ = (+1)+1/2

for 0 <t <1and e t/2 for t > 1.
Likewise, in the remaining term (A,D,G)((d/dt) z) of g, operator

ATng = TST(d/dt)ng - TSTD?:g(m/7 )

involves only derivatives of z of order 1 < j, hence its operator norm may be
estimated using the L*°(¢, +00) bound (3) of induction hypothesis (I1), the bounds
(2), and boundedness in operator norm of the averaging operator Sy as ||A,D,G| <
Tt for 0 <t < 1 and < Te 2 for t > 1. Together with bounds

[(d/dt))a|| L2 o) STIT2 for0<t <1
and ||(d/dt)j)x||L2(t7+oo) < et for t > 1 of induction hypothesis (12), this gives

, —ly—j+1/2 _ 4—(GH+DFL/2 g 1
||(ATng)((d/dt)Jx)HLQ(t +00) < {Tt tt Tt or 0 <t<1,
’ ~ ) ret/?

for t > 1.
(20)
Combining the above estimates, we obtain finally
Tt I = = GHDHL2 for 0 < t < 1 and
PP S (21)
Te fort>1,
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and thus

T ", t>1.

+o0 +o0 24—2(j+1)+1
2t . 0<t<l,
/ |f|=2/ wg{“
t t

We next bound ft+oo |h|2. Arguing as in previous steps, we have
h=AA.(d/dt)x = 7S, (d/dt)A(d/dt) z = 7S, ( — (d/dt)’x + (d/dt) G(x)).

Expanding (d/dt)?G(x) as in (16) and noting that there appears in each term at
most one derivative of x of order j and the rest of order < j, we find that the
L?(t,+00) norm of (d/dt)’G(x) can be bounded using induction hypotheses (I1)-
(I2) by Ct=9+1/2 for 0 < t < 1 and Ce~*/? for t > 1. Likewise, the L?(¢,400) norm
of (d/dt)? x is bounded, by the induction hypothesis, by Ct~7+/2 for 0 < ¢t < 1 and
Ce~'/2 for t > 1. Thus, noting again the harmless effect of averaging operator S;,

we obtain
/+°° h? < U 0<t <1,
t ~ T2€7t, t Z 1.

Applying Corollary 2.2 with ¢/ =¢/2 for 0 <t <land t' =t—1/2 fort > 1, we
obtain therefore f;roo |AL(d/dt)iz)? < 727200+ for 0 < ¢t < 1 and < 72~ for
t > 1, hence, by Lemma A.1(i), :OO |(d/dt)? x> <2040+ for 0 < ¢ < 1 and
<Setfor t > 1, giving = € H7'(0, +00) and verifying the H* bound of induction
hypothesis (12) for k = j + 1. This verifies (I2) for J = j + 1.

Moreover, applying Lemma A.1(i)—(ii) as in the last parts of Steps 2 and 4, we
obtain in the L?(t,+0c0) limit as 7 — 0T of

(d/dt) AT AL (d/dtY x = =7 A (d/dt) x + 77 AL (d/dt) G (x) (22)
that A(d/dt) ™'z € HL (0,400) and z, G(x) € HI T (0, +00), with

loc
(d/dt)A(d/dt)! T e = —(d/dt) a4 (d/dt) TG (z), (23)

verifying induction hypothesis (I3) at level J = j + 1.

Specifically, recalling that A-(d/dt)IG(z) = g+ Dy(.+G(A;(d/dt) z)), we have
from (18), (21), and the previously-obtained bounds on y = A, (d/dt)’z)) together
with boundedness of G, that

Tt ITY2 = = GHDHY2 . for 0 < ¢ < 1 and
(t,-‘rOO) ~

AL (d/dt) 2
14 (d/dty G, e to

loc

giving G(x) € Hljotl, by Lemma A.1(i), and therefore
lim 77 'A(d/dt)’G(x) = (d/dt)’ TG
T—01

by Lemma A.1(ii). By the fact z € Hljotl verified in the previous step, we have by
Lemma A.1(ii) also

lim 7 A (d/dt)x = —(d/dt) .

T—0+
Thus, the right-hand side of (22) converges to —(d/dt)’*la + (d/dt)’*t1G(z) as
T—0".

Using = € H"' to re-express the left-hand side of (22) as 77 *A, (A(d/dt)’+1z),

we obtain by Lemma A.1(i) that A(d/dt)’*'z € H} ., and thus by Lemma A.1(ii),
the left-hand side of (22) converges to (d/dt)A(d/dt)’*x. Comparing the limits

loc?
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of left- and right-hand sides of (22) then yields (23), completing the verification of
(I3) for J =5 + 1.

Finally, from our H/*! and H7 bounds, we obtain the L (t, +00) estimate (3)
for k = j by the one-dimensional Sobolev embedding estimate

H(d/dt)jxlliOO(t,+oo) < ||(d/dt)jx||%’-’(t,+oo)||(d/dt)j+1x||%2(t,+oo)
< 220D+ g4y

for 0 <t < 1and < e 2 for t > 1. This verifies induction hypothesis (I1) for
J = j + 1, completing the induction and the proof. O

Remark 2.4. The instantaneous smoothing result (3) of Theorem 1.3 can be mo-
tivated by the canonical example of linear diagonal flow Az’ = —z on H = ¢2.
Writing z = {z;}, with }_, |z;]? < o0, take Az = {ajz;}, with a; > 0 and a; — 0
as j — oo. Then, for |z(0)] =1,

[(d/dt)"a(t)] < supaj e f(0)] S ¢, (24)
J
in agreement with (3). Noting that max,cp+ z~he= 't — =14~k ig attained at
z = t, we find by considering initial data of form e, = (0,...,0,1,0,...) with
n — oo, and evaluating at t = a,, that (24), hence also (3), is sharp in the sense
that there is no better uniform bound as ¢ — 0.

3. Linear existence theory: Weak vs. mild solutions. We next compare our
notion of “weak L? 7 solution with that of “mild” solution defined in [8], in the
process establishing linear existence and uniqueness of weak LzQOC solutions. We
show, first, that mild solutions are solutions in our sense as well, hence subject
to the smoothing results of section 2, and, second, that solutions z € L?(tg,t;) in
our sense are mild solutions in the sense of [8] precisely if lim;_,,, |A|*/2x(t) and
limy_,,, |A|"/22(t) lie in Range |A|'/2. Here, |A|'/? as we now describe is defined via
the spectral decomposition formula for bounded self-adjoint operators.

Recall [11] that a bounded self-adjoint operator A on H admits a spectral de-
composition

A:/adEa, Id:/dEm (m,y>=/<x,dan), (25)
R R R

where dF, is a projection-valued measure. Following the standard operator calcu-
lus, we define sgn(A) := [, sgn(a)dE,, |A| = sgn(A)A = [, |a|dE,, and

|A|" :== [;|a|"dE, for real r > 0.

3.1. The linear boundary-value problem and prescription of data for weak
LZQOC solutions. The comparison of weak and mild solutions hinges ultimately on
the question, of interest in its own right, of how or in what sense boundary data is

attained for weak solutions that are merely L? .

Formalizing the discussion of the introduction, we make the following definition.

2

e Solution of the

Definition 3.1. For f € L? on a given domain D, a weak L

loc
linear inhomogeneous equation

(d/dt)(Az)+x = f (26)
is a function z(t) such that z € L? (D), Az € H} (D), and (26) holds on L? (D).
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We begin by observing that a weak L? . solution, or indeed any function with
x € L?, and Az € H} , admits a representative for which |A|'/2z is continuous.
Moreover, if z,(d/dt)(Az) € L*(1p,71), then this representative extends contin-
uously to [rg,71]. Thus, for solutions on (tg,t1), we may speak of the boundary
values of |A|*?x at t = 19,7,

Lemma 3.2 (Extension to R). Let x, (d/dt)(Ax) € L?(r9,71), Then, there exists
an extension T of x to the whole line such that

12l L2 ) + (d/dt)(AT)|| L2®) S N2llL2(ro,m) + (d/dE)(A) || L2(7g,70)-

Proof. We define z as the even reflection of x across boundaries ¢t = 75 and ¢t = 7,
supported on [1p — d, 71 + d], with d = 71 — 70, that is:

-73<7-O‘|'(7'0—?f))7 te [To—d,To]
z(t) = q z(t), t € [ro, 7]
z(nn—(t—m)), te€[m,n+d.

Clearly 7 is in L2, with L? norm bounded by three times that of x.

We show next that AT has a weak derivative y = (d/dt)(AZ) equal to the odd
reflection of y := (d/dt)(AZ) across boundaries t = 7y and t = 71, likewise with L?
norm bounded by three times that of y on (79, 71):

—y(10 + (10 — t)), t € [r0—d,70]
y(t) = S y(t), t € [0, 1]
—y(r = (t—m)), te€[n,n+d,
That is, we claim [4] that

/ (d/dt)g, AT) = — / (6.7) (27)

for all test functions ¢ € C5°(19 — d, 71 + d).

For test functions ¢ that are even reflections about ¢ = 7 and supported in
(70,71 + d), this follows because ((d/dt)¢, AZ) and (¢, y) are both odd about t = 7
as inner products of even and odd functions, hence have integral zero. For test
functions ¢ € C§°(79,71), it follows because the restrictions of § and Z to (19, 71)
are y = (d/dt)(Az) and x. Because test functions ¢ € Hg (79, 7) may be uniformly
approximated in H!(R) by test functions in C§°(7g, 1), (27) follows also for test
functions ¢ € Hg (79, 71). By reflection, we find that (27) holds also for test functions
¢ in Hi (10 — d,79) or H} (11,71 + d).

But, any test function in C§° (79 — d, 71 + d) may be decomposed into the sum of
test functions that are even around 79 and supported in (79 — d, 71), even around 71
and supported in (79,71 + d), plus test functions in H} (o — d,70), Ha (70, 71), and
H} (71,71 + d), whence (27) holds by linear superposition for arbitrary ¢ € C*°(R)
supported on (179 — d,71 + d). Finally, we may multiply Z by a smooth bump
function that is identically equal to one on [7g,71] and identically equal to zero
outside (79 — d, 71 + d) to obtain an extension of = defined on all of R and satisfying
the same bounds. O

Corollary 3.3. If z,(d/dt)(Az) € L*(10,71), then |A|Y/%x may be taken to be in
C[ro, 1], with

APzl cory ray S Nallz(ro,ry) + 1(d/dt)(Az) | L2(ry )
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2
loc*

In particular, |A|Y/?x may be taken to be continuous wherever x, (d/dt)(Az) € L

Proof. Observing that the bounded linear operator sgn(A) commutes with weak
differentiation, and applying Lemma 3.2, we may assume without loss of generality
that x, (d/dt)(|Alz) € L*(R), with ||z 12r) S [|2] L2(ro,7,) and

I(d/dt)(|Alx) ]| L2y S 2]l 2 (70,7 + (d/dE)(A2)| L2 (7 ,71) -

Arguing as in Section 2, we have that (|A|'/%z,|A|'/?z) = (|A|z, x) is absolutely
continuous and in L?(R), with derivative 2{(d/dt)(|A|x), z), whence
t
(A2, |A]22) (1) =2/ ((d/dt)(|Alx), x)dr.
— 00
Bounding  [*_(@/d)(Al),a)dr < |(d/d)(|Al0)]l el e by
Cauchy-Schwarz, and applying Young’s inequality, we obtain
|||A\1/25FHLoc[m,n] S lzllze @) + [[(d/dt)(Az) || 2 (r)
S H£E||L2(T0771) + ||(d/dt)(Ax)HL2(T0,T1)‘
Continuity of |A|'/2z follows, finally, by a standard mollification argument, ap-
proximating z by 2° := x x n°, where n°(t) = e~ 1n(t/e) is a smooth mollification
kernel, n > 0 a C* bump function equal to 1 for |[t| < 1/4 and 0 for |t| > 1, with
Jgn(t)dt = 1. Noting that 2° — x and (d/dt)(|Alz®) — (d/dt)(|Alz) in L? [4], we
find by (28) applied to |A|'/2z° that
AP 225 — A 2252 | oy ) < [l = 2% | L2y

+ [I(d/dt)(Az") — (d/dt)(Az"2)|| L2 r) = O

(28)

as e1,e9 — 0. Thus, the sequence {|A|'/22¢} is Cauchy in L>[ry, 1], whence |A|'/2z
is a uniform limit of the continuous (indeed C*°) functions |A|'/?2° as ¢ — 0, and
thus continuous. O

We next recall two fundamental resolvent estimates from [8]. In the remainder
of this section, in order to use Fourier transform techniques, we complexify the real
Hilbert space H in the standard way [2, Ch. 1, Ex. 1.7]. as H + ¢H with inner
product

(g1 +igo, fr +if2) = ({g1, f1) + (92, f2)) +i({g1, f2) — (g2, f1))-
Lemma 3.4 (cf. Lemma 3.4, [8]). The Fourier symbol (iwA + 1d), w € R of
(A(d/dt) +1d) satisfies

sup ||(iwA +1d)7Y| <1, sup |liwA(iwA+1d)7 | <2. (29)
w€eR weR

Proof. The first inequality follows by symmetry of A, which implies that the sym-
metric part of (iwA + Id) is just Id, hence bounded below by 1. The second one
then follows by resolvent identity

iwA(iwA 4+1d)™ =1d — (iwA +1d)~.

From (29) and Parseval’s identity, we find for f € L?(R) that x defined by
T(w) = (iwA +1d) "' f(w) (30)
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g denoting Fourier transform of g, gives a unique solution x, (d/dt)(Az) € L*(R) of
(26) for f € L*(R), that is, a weak L? _ solution in the sense of Definition 3.1 for
the linear inhomogeneous problem on the line.

Now, define stable, center, and unstable projections

IL, := X(O,—Q—oo)(A) = ‘/]RXDL>O dEOéa
Hc = XO(A) = / Xa=0 dEa,
R

IT, := X (—=00,0) (A) = /RXa<O dE,

of — A, where x; denotes indicator function associated with set I, and stable, center,
and ustable subspaces X3 = RangeIl;, 3. = Rangell., and ¥, = Rangell,.
It is straightforward to see that the operator-valued functions

Ts(t) = / Xa>0 e_t/adEom t>0
. (31)

Tu(t) = / Xa<0 e_t/adEon t S Ou
R

corresponding formally with e =4 'TI, and e~*4™ 'II,, are strongly continuous with
T,(0) = Idy, and T,,(0) = Idx,,* and for hy € X4 and h, € X, generate solutions
xs(t) := T(t)hs and x,(t) := T, (t)h, of the homogeneous equation ((d/dt)A +
Id)xz = 0 in forward and backward time, respectively, via x4(t) := Ts(t)hs and
Xy (t) := Ts(t)hy. For,

|(Ts(t 4+ 6) — T (t))h|? = / Xaso (1 — e /) 2e=2040 /e (h dE,h)
R

< / Xas0 (1= e 2(h,dE,h) — 0
R

as § — 0T, for each fixed h, by Lebesgue Dominated Convergence, and similarly for
—t < §d — 0. A symmetric argument yields the result for T,.

These are exactly the “bi-stable semigroups” constructed by quite different,
Fourier transform means in [8] (cf. [8, §2]). Note that in general, T is not bounded
in the backward time direction, nor T, in forward time direction, as |a| may be
arbitrarily small, yielding arbitrarily large exponential growth elt/@l. In particular,
the Cauchy problem ((d/dt)A + Id)x = 0 for t = 0, 2(0) = 2" € H is ill-posed in
both forward and backward time directions. Note also that the only homogeneous
solutions on center subspace X. are, by inspection, the trivial ones z(¢t) = 0.

For real r > 0, define the unbounded operator |A|~" as the inverse of |A|" from
Range |A|" to s @ X, that is, |47z = f]R\{O} |a|"dE,x for x € Range|A|".
The next result shows that |A|~/2T, and |A|~'/2T,, give solution operators for
boundary data |A|'/22(0) in ¥, and X, respectively.

Lemma 3.5. Fort > 0 andt < 0, respectively, Ts(t) and Ty, (t) take H to Range | A|"
for any r > 0, with sharp bounds
[|A|7"Ts(t)h] < Ct~"|h| for t > 0 and ||A| 7" Ty (t)h] < Ct~"|h| for t < 0. (32)

3Recall [7] that strong continuity of an operator T'(t) on H is defined as continuity of T'(¢)z for
each fixed = € H.
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In particular, x,(t) == |A|7/2Ty(t)gs and x,(t) := |A|7/?T,(t)g. are well-defined
for any gs € X5 and g, € ¥,,. Moreover,
zs, (d/dt)(Axs) € L*(RY) and z,,, (d/dt)(Az,) € L*(R7), (33)

so that x5 and x, solve (d/dt)(Ax) + = = 0 in forward and backward time, respec-
tively, with boundary values

| A[V22,(0) = g5 and |A["?2,(0) = gu, (34)
and these solutions are unique in the class x, (d/dt)(Ax) € L?(0,7), for all T > 0

and T < 0, respectively.

Proof. Noting that Range |A|" consists of  such that fR\{O} (z,|a| 2" dEyz) < +00,
we obtain the first result from
(To(t)h, |0] "> dEoT(t)h) = (h,Xa>0 e 2"/*|a|~>"dE,h)

together with |a|=2"[e=2//¢| < t727 for t,a > 0, as follows from 22" < e?* for

~

z € RT. This gives at the same time (32), which, by taking data h with measure
(h,dE.h) supported near a = t, is easily be seen to be sharp.
The second assertion, (33), follows similarly by the observation that

+oo “+o0 +oo
/ (|| ~Y2e7V*)2at = / la|tem 2/ %qt = / e~%*dz = constant,
0 0 0
by substitution z = t/a, dz = a~'dt. This gives by Fubini’s Theorem

2122 @y = (JA|=2Tygo, |A| Y Tego)
R+

= [ tan. 1417 T2 00

— /+ /+ |a|_1e_2t/“(go7dEago>dt
R+ JR

:/ / |a|_1e_2t/°‘dt<go,dEago>
R+ JRT
=C|g0|2,

hence z, € L2(R*) and, by (d/dt)(Ax,) = —x,, also (d/dt)(Ax,) € L*(RT). A sim-
ilar computation gives (33) for T,. Meanwhile, (34) follows by |A|'/?z, = Ty(t)gs,
|A|*/?2,, = Ty(t)g, and strong continuity of T, T, at t = 0.

Finally, uniqueness can be seen by an argument like that of Section 2, after first
projecting by II,, TI,,, and TI, onto ¥, ¥,, and .. For, |A|'/22(0) = 0 implies

(x, Az)(0) = 0.
But, for solutions x, (d/dt)(Az) € L? of homogeneous equation (d/dt)(Az) = —,

the quadratic form (z, Ax) is absolutely continuous, with derivative —(z,z) < 0.
Restricted to X4, where A > 0, we thus have by

(x, Az)(t) = (z, Az)(0) —/0 |2](s)%ds <0

that (z, Az)(t) = 0 for t > 0. This gives forward uniqueness, or uniqueness for
t > 0, of the projection onto ¥4. A similar argument yields backward uniqueness,
or uniqueness for ¢t < 0, of the projection onto %,,. Finally, on 3., the homogeneous
equation reduces to x = 0, giving uniqueness for all ¢ of the projection onto X..
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Putting this information together, suppose we have a nontrivial solution = €
(0,7) with |A|'/22(0) = 0, 7 > 0. Then, the projection 2, = IT,z vanishes on (0,7),
as does the projection z. = Il.z. It remains to verify that x, = Il,x vanishes
on (0,7). If |A|*22,(7) = 0, then this follows by backward uniqueness on X,.
If |A|'22,(7) = g # 0, on the other hand, then z,(t) = |A|=Y2T,(t — 7)g, by
backward uniqueness of functions valued in ¥,,. In particular, we would have

0= 2,(0) = |A| "2 T,(—r)g = /R Yoo [a] V27 /% dE g,

which is evidently false unless dE,g = 0 and thus ¢ = 0. By contradiction, therefore,
the result is proved. O

Remark 3.6. Note that we have obtained not only forward (backward) existence for
Cauchy data in X (X,), but uniqueness in both forward and backward directions.
For our purposes here, we only require forward (backward) uniqueness of solutions
in ¥, (3,); however, the more general result seems interesting to note.

We have also the following more familiar reinterpretation of the Fourier-transform
solution (30) via variation of constants. According to our earlier convention, define
the unbounded operator A" for integer r > 0 as the inverse of A" from Range A" =
Range |[A|" to X5 @ X, that is,

A" = fR\{O} a~"dE.x for x € Range |A|".

By Lemma 3.5, A™" is well-defined on Ts(¢)x for ¢t > 0 and T, (t)x for ¢t < 0.
To state things most simply, define the spectral cutoffs g*(t) := f|a\>a dE.g(t)

for a > 0 of a function g € L?(R). Evidently, ¢* — gs + gu := Ilsg + II,g both
pointwise and in L?(R) as a — 0. Then, we have the following variation of
constants type formula, expressed in terms of improper integrals with respect to
the spectral parameter a.

Lemma 3.7. The unique solution y, (d/dt)(Ay) € L*(R) of (d/dt)(Ay) +y = f
defined by (30) may be expressed alternatively as

y(t) = lim AT (t — T f(1)dT
a—0+t (\/700 (35)

+00
_ /t AT, (t — T)Hufa(r)dT) + T f (1),

where the limit is taken in L*(R). In particular, for f supported on (19,71),
ys(t) =0 for t < 79 and y,,(t) =0 for t > 7. (36)

Proof. Since I, 1., and II,, commute with A, it is equivalent to show that ys :=
sy, yu := Iy, and y. := Il .y are given by
t
ys(t) = lim AT (t — ) f(7)dr,

a—0t J_
t

yu(t) = — lim ATV, (t — T, f(7)dr,

a—0t J_ o
and y. = II.f.
The third relation is nothing other than the projection of the evolution equation
onto X, since II. A = 0. For operators A with |A| > ald > 0 in the sense of quadratic
forms, the first two follow from the standard variation of constants formula for the
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solution of (d/dt)x = —A~1z. For, example, restricting for definiteness to the stable
subspace X5, we may first project the equation by II; onto X, then, noting that A
in this case has bounded inverse, apply A~! to obtain the bounded-coefficient ODE

(d/dt)ys + A"y = (AT) 'L f (37)

Observing that ||e_A71tHs|| < Ce /41l we obtain by variation of constants that
ys(t) = fjoo AT, (t—7)I0, f(7)dT is the unique solution of (37) in L2. A symmetric
argument yields the result for y, (t).

Now, introduce the spectral cutoffs f* := la|>a dE.f of f defined above, for
a > 0, and denote the corresponding solutions y as y®. By f* — I f +II,f in
L?(R), together with the previously-shown boundedness of the solution operator,
we have y® — ys + ¥y, in L?. But, also, |A| > ald > 0 with respect to functions
supported on spectra |a| > a, hence, by the discussion of the previous paragraph,

t —+o0
Yo () = / ATt — DL fo()dr — | AVt — 1) o (r)dr

—00 t

yielding (35). Property (36) is an immediate consequence. O

Remark 3.8. The expression of (35) in terms of improper integrals as |a| — 0
highlights again the difference from the usual, nondegenerate case [5], for which the
right-hand side of (35) may be expressed in terms of a standard Bochner integral on
Hilbert space-valued functions [3]. We show by explicit counterexample in Appendix
B that this is not necessarily the case in the present, degenerate context.

Remark 3.9. Equation (35) differs from the standard variation of constants formula
in the final term II.f(¢), which appears to be of different form. But, note that
kernels o~ te~*/@ for the first two terms converge as o — 0 to a d-function, formally
yielding the third upon convolution with f.

Combining the above facts, we obtain the following solution formula for the
boundary-value problem on an interval, that is, for solutions x(t) in our L7, sense
of the linear problem (26) on (to,t¢;) with boundary conditions imposed on the
continuous image |A|'/2x(t) at t = to,t;.

Proposition 3.10. For each f € L?*(to,t1), go € Xs, and g1 € %, there is a
unique weak L} . solution x, (d/dt)(Az) € L%(to,t1), of (26) satisfying boundary
conditions

(A" Ta)(to) = 9o, (|AIY*Tu2)(t1) = g1 (38)
on |A|Y?x, given by
w(t) = y(t) + |A|PTy(t — to)go + [A]7°Tu(t — t1)gn,
Y(w) = (iwA+1d) ™" fiig.0) (W),

or alternatively, with y defined by (35), with f extended as 0 outside (19,71).

(39)

Proof. Evidently, z = x — y is a solution of the homogeneous equation
(d/dt)(Az)+2=0
satisfying the prescribed boundary conditions, while y is a solution of

(d/dt)(Ay) +y = f[to,tl]a
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satisfying by (36) homogeneous boundary conditions |A|'/?TLy(ty) = 0 and
AV, y(t) = 0.

Thus, by linear superposition, z = y + z satisfies (26) with boundary conditions
(38). Uniqueness follows from uniqueness of solution zg, z,, and z. = 0 of the
homogeneous equation for z on [tg,¢1] under the boundary conditions at tg, t1, a
consequence of Lemma 3.5. O

3.2. Relation to mild solutions. With these preparations, we are now ready to
compare our notion of weak L7  solution with that of “mild” L7 . solution defined
as follows in [8] (cf. [5]).

Definition 3.11 ([8, 5]). For f € L? _ on a given domain D, a mild L? . solution

loc loc

of (26) is a function z € L?, (D) with Fourier transform satisfying

T(w) = A(iwA +1d) " e 20 hg — e 2™ hy ]| + (iwA +1d) ! Jﬂ;] (w)  (40)

with hg € X¢ and hy € ,,,* or, equivalently (see [8, Remark 3.2]), the variation of
constants type formula

o(t) = y(t) + Tult — to)ho + Tu(t — t1)h1,  G(w) = (iwA +1d) ™ iy o) (@), (41)

Definition 3.11 gives a notion of a mild L? _ solution of (26); a mild L?*(R™)
solution of (1) may then be defined as in [8, 9] as a mild L}  solution z € L*(R")
of (26) with f = G(z) (cf. [8, Def. 3.1(ii)] and [8, Lemma 3.3]).

In (40)—(41), ho and h; are in general not connected with boundary values of z
at top and t1, which may not even be defined. However,

Ts(t —to)ho + Tu(t — t1)ha

is continuous, while y(t) (since decaying at 4o0o) vanishes on (—oo,tg) in stable

modes and on (t;,00) in unstable modes. Thus, for H! solutions, admitting con-

tinuous representatives (the class ultimately considered in the invariant manifold

constructions of [8, 9, 12]), we have Il x(tg) = ho and I,z (¢1) = hq; in particular,

for HY(R™) solutions of (1), there is a well-defined boundary value I;x(0) at ¢ = 0.
Comparing (39) and (41), and noting that

|A|71/2TS|A|1/2 =T, ‘A|71/2Tu|A‘1/2 =Ty,

we see that mild solutions are L? . solutions as defined here, but not conversely.
Indeed, they are precisely the subclass of leoc solutions for which the boundary
values go and g; of |A|'/2x(t) at to and t; are given by |A|'/?TI,hy and |A|*/?T1,hy

with h; € H, i.e., for which gy and g; lie in Range |A|'/2.

Remark 3.12. The representations (40)—(41) were derived in [8] under the assump-
tion that A be one-to-one; however, this assumption is not necessary, as shown
by our analysis above. Indeed, one may check that the entire H' stable mani-
fold construction of [8] goes through for general A. We note that the key relation
A(iwA + 1d) ~te=2mwlog(tg) = (Ty(t —/tsx(to)) linking (40) and (41) (see [8, Re-
mark 3.2(ii)]) follows in the general case from the result in the invertible case, by
the observation that

A(iwA +1d) " te 2™l = T, A(iwA + 1d)~te2mwto
41n [8, 5], for which there was assumed no center subspace, this definition was given for h; € H;

however, without loss of generality it may be stated as above, thus allowing also the case of a
nontrivial center subspace.
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where I, = II; 4+ II, denotes projection onto X4 @ X,. Likewise, (39) has the
equivalent frequency-domain formulation

T(w) = A(iwA +1d)~! |A|71/2 [672“‘”%90 — 672“1‘”191] + (iwA+ Id)flmz] (w).

4. Applications to Boltzmann’s equation. The main example considered in
[8] was the steady Boltzmann equation (plus cousins and discrete approximations),

&f:=Q(f.f), z€R,EeR’ (42)

with hard-sphere collision operator @, f = f(z,&) denoting density at spatial point
z of particles with velocity &, which, after the coordinate change f — (£)Y/2f,
Q — (OV2Q, () := \/1+[€[2, can be put in form Aw, = Q(w,w), with H the
standard square-root Maxwellian-weighted L? space in variable £, A = &/(£) a
multiplication operator, and @ a bounded bilinear map [6]. Note that A has no
kernel on L?. However, 0 is in the essential range of the function &;/(¢), hence in
the essential spectrum of the operator of multiplication by & /(£). That is, A is
“essentially singular”.

Introducing the perturbation variable z := w — wq, where wq is an equilibrium,
Q(wo,wp) = 0, and performing some straightforward further reductions [8, 12]
converts the equations to form (1), with ¢ = z and G(x) = B(x,z), B a bounded
bilinear map. In this context, the problem considered here, of decay and smoothness
of small solutions x(t), amounts to the study of convergence and smoothness of
solutions toward an equilibrium wg. The particular motivation described in [8] was
the desire to study existence and temporal stability of large-amplitude heteroclinic
connections, or planar Boltzmann shock or boundary layers, for which the study
of stable manifolds and decay to equilibria is an important first step. The main
result of [8] was construction of an H' stable manifold at wg containing all orbits
sufficiently close to wq in H'(R"), exhibiting uniform exponential decay.

The global problem of existence and structure of large-amplitude Boltzmann
shocks, as discussed by Truesdell, Ruggeri, Boillat, and others [1], is one of the
fundamental open problems in Boltzmann theory. For this larger problem, it is im-
portant to know that the H' stable manifolds of [8] in fact contain all candidates for
heteroclinic connections, i.e., that the H'(0,4o00) regularity imposed on solutions
in [8] is not too strong, eliminating potential connections. Thus, the questions of
regularity considered in the present paper are not just technical, but central to the
physical discussion.

In particular, we have answered here in the affirmative the two main open ques-
tions posed in [8]:

1. Do asymptotically decaying (or just sufficiently small) L} (R™) solutions of
(1) decay exponentially in ¢?

2. Are small (in sup norm) L?
spaces?

These results, together with those of [8], imply that the tail of any (small- or large-
amplitude) Boltzmann shock or boundary layer is C> and lies in the H' stable
manifold constructed in [8].

(R*) solutions necessarily in H* or higher Sobolev

5. Discussion and open problems. The results of instantaneous smoothing ob-
tained here are somewhat analogous to interior regularity results for more standard
boundary-value problems, e.g., elliptic and other boundary-value ODE. However,
here, it should be noted, due to allowed degeneracy of A, there is in general no gain
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in regularity in solutions of the linear inhomogeneous problem (d/dt)Ax + x = f
of Proposition 3.10, with L? forcing f leading to L? regularity and not higher of
solutions x. More, as discussed in [8, 12], the Fourier multiplier (iwA + Id)~! is
bounded on LP for 1 < p < oo, but not p = 1 or oo; thus, the solution operator is
not associated with an integrable kernel as in more standard cases.

An interesting remaining open problem is to construct L*° decaying solutions of
(1) that are not small in H', i.e., backward extensions of the manifold of H' solu-
tions constructed in [8]. (Here, we showed that solutions that are eventually small
in L™ in fact decay to this manifold, but did not produce any such.) A related very
interesting open problem, moving toward construction of full heteroclinic orbits, is
the question of backward uniqueness of solutions of (1), i.e., whether L°(0,+00)
solutions agreeing on ¢t > ¢’ > 0 must agree on ¢t > 0. Existence of large Boltz-
mann shocks- the “structure problem of Ruggeri et al [1]- is a major open problem,
involving in addition separate, and presumably more problem-dependent, issues of
global analysis.

We note that forward uniqueness of small L (0, 400) solutions holds for G Lips-
chitz with small Lipschitz norm, by essentially the same argument as in step 1 of the
proof of Theorem 1.3 applied to the error equation governing e := xy — z9, where
x1 and x2 are two solutions with #1(0) = x2(0). This extends the result of forward
uniqueness of H'(0,+00) solutions following from the H! stable manifold results
of [8]. Thus, an interesting preliminary question is whether backward uniqueness
of small L*°(0,400) solutions can fail for the same class of Lipschitz G with small
Lipschitz norm.

Appendix A. Sobolev estimates for difference operators.

Lemma A.1. (i) For f: (0,+00) — H in L?(0,+00), there holds

[ 10 St e 4 ) = Ol
0 7—0+

(ii) For f : (0,400) — H in H\ (0, +00), there holds T~ (f(-+ 1) — f(-)) = [ in
L. asT— 0.

Proof. (i). By Fatou’s Lemma,
I/ dt)glioe) = [ P

- / lim 71 (e — 1)g(w)[2d
R

T—0*t

< liminf / 7L (e~ — 1)g(w)|dw
R

T—0t
)

= lim inf Hf—l(g(. +7)—g()

T—0+

L*(R)

for functions g € L?(R). Setting g = x°f with x°(2) := x(z/¢) a smooth cut-
off function, x(z) equal to zero for z = 0 and 1 for z > 1, and observing that
sup |(x%)'| < e, we thus have

THUXESCHT) =X Oy STHC+7) = FOll20,400) + € Il L2(0,400)5

whence f € H'(g,+o0), and f € C%¢,+00), for each ¢ > 0 (albeit with bound
~ e~ ! blowing up as ¢ — 07F).
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In particular, f has a well-defined vaue f(e) at x = e. Extending f|[. 1) by

3 o f(t) t> &,
Je)= {f(s) t<e,

and defining a different smooth cutoff function y*(z) := >Z(z /L), with x(z) equal to
zero for z < —1 and 1 for z > 0, set § = x*f. Using § = (X*) f(e) + XEF | (e 400)
we have 3

1F 2 t00) < 1192y < liminf 7= HIG( +7) = Gl 2w (43)

Computing, by Jensen’s inequality that

[+t - fe) P = e v syasl
0 0

<72 / E 2 erry < 1 ey = O

as 7 — 07, and using [|(x*)’ ||L2 = L‘1/2||X ||L2 together with the reverse
inequality 7 Y||x"(- + 7) — X HLz( sce—1) < (%) ||L2(_OO,E), we have also, for
T <Eg,
T HGC+7) = Gl — TG+ T) = fllreso) <
T_llf(€)| ||>ZL( + T) - XLHLZ(foo,EfT) (44)

+T—1(/OT f(e+1) —f(e)|2dt)1/2 50

as L — oo and 7 — 0.
Taking liminf,_,g+ limy_,» of (44), and combining with (43), we thus obtain

1/l o0y < Hminf 7Y F(+7) = £ 22 100)

for each € > 0, whence the first assertion follows in the limit as ¢ — 0.

(ii) Similarly, for functions g € H'(R), we have 771 (g(-+7)—g(*)) — ¢’ in L*(R),
by lim,_g+ 771 (e7"% —1)g = iwg(w) a.e. and the Lebesgue dominated convergence
theorem, noting that |77 (e —1)g| < |wg| € L*(R) by sup,cp |27 (e —1)| < 1.
Thus, for f € H(tg — §,to +9), § > 0, we have, defining g := x(¢)f(t), where x is a
smooth cutoff equal to 1 for ¢t € (to —/2,t9 + §/2) and zero outside (tg — d,tg + 9),
that 771(g(- +7) — g(-)) — ¢’ in L?(R), and therefore 771 (f(- +7) — f(-)) — f’ in
L3(to — 6/4,tg + §/4). As tg and § > 0 were arbitrary, the result follows. O

Lemma A.2. For any t € R, there holds

[ =) () (s [ e ) atPas).

Proof. Denoting Oy = ft |z|? and Cy = sup,. < f;roo Tz (s + 7) — x(s)|*ds, we

have
—+oo
[ Pz
t
and ft (s +7) —x(s)|?ds < Cor for all T > 0.
Let

1/h for 0 <t <h,
t) := - =
on(t) {0 otherwise.
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Then, on (t,+00), we have for any choice of scale 0 > 0 the Haar decomposition
+oo
z(s) = lim (s + u)pg—rg(u)du

k—oo Jo

+o0 +oo
| st ans [T e+ wion( - omtwiin

k>1,h=2"%¢
=Ty + E Th.
k>1,h=2"%c

Note by Jensen’s inequality that

+oo +oo +oo
[ k< o ()]s + ) Pdu ds
t t 0
+oo +oo
:/ qba(u)/ |z(s 4+ u)|*ds du
0 t

<([ 7o) Tlr) <an

and by Cauchy-Schwarz’ inequality that

ot~ < ([ 6)( [ 1002) " < vEOVE) = VETE,

whence [ w6 < @62y o) i Tol? < C3 /o
Note also that ¢p(u) — ¢ap(u) = (1/2)[dn(u) — én(u — h)], so that

+oo
50(5) = (1/2) [ (s w)ln0) = 6nu Wl
+o0
—/2) [ fals )~ s+ ut Wlon(wdu
0
and therefore, similarly to the previous computation,

“+o0 “+oo
/t 1l < (1/4) / (s + h) — (s)|2ds < (1/4)Cah,

+oo +oo
2]l oo (t,400) < (1/2)\//t lz(s + h) x(s)l2d8\//0 o
< (1/2)v/C2h(1/Vh) = (1/2)/Cs.
Thus, [ |En* < @02t so0) J, [30]* < (1/16)C3h < (1/16)C3027" for

t
h = 027 %, whence

while

|2l Lot 400y < Tollzagesoy + D I&EnllLageroo)
k>1,h=2"%c
< (CY/o)'/* + (C3o/16)1 /4> 27K/

k>1
=C12 /o't 4 ) %61 (2214 - 1)).
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Taking o'/4 = (Cy/Cy)*/*\/2(21/4 — 1) to minimize the right-hand side gives

1/4
||J"HL4(t,+oo) < ((2/(21/4 — 1))20102>

as required. O

Appendix B. Integrals and counterexample. We conclude with an explicit
counterexample showing that our expression (35) of the variation of constants for-
mula in terms of improper integrals as a — 07 cannot in general be reformulated
in terms of standard Bochner integrals for Hilbert space-valued functions [3].

Let H = L?(0,1) and A the multiplication operator Ah(a) = ah(a). Then, Ts(t)
is also a multiplication operator, with T,(t)h(a) = e */*h(a) and A~ T,(t)h(a) =
a~te t/*p(a). Meanwhile IT, = Id, T1,,, T\, and TI,. are identically zero, hence (35)

reduces to .

y(t) = ys(t) = lim AT, (t — 1) fo(7)dr. (45)

a—0t ) o
The question is whether the righthand side of the above, or, equivalently, after the

change of variables o :=t — 7, expression lim,_,o+ 0+°C AT, (o) f%(t — o)do, can

be interpreted as a Bochner integral f0+°o AT (o) f(- — 0)do in L*(R,H), that is,
as an integral over o € (0,+00) of an integrand valued not in H but in the large
Hilbert space L?(R,H).

Recall [3] that Bochner integrability requires Lebesgue integrability with respect
to o of the norm of the integrand, in this case, integrability on (0, +o00) of

/2
AT T (o) f(- = o)l L2 = // a~te O f(t - 0,a)) dadt) . (46)
Take now f(t,a) := a~/2(|logal + 1)7"/2¢(t), where ¢ € L? and r > 1. Then,

1

112 ) = / / 12| log o] +1)""/2¢(t)) dacdt = || 2 / a " (|loga| +1)"da)
0

is finite, hence f € L?(R,H). But,

T L e oot
</R/01 (a—le_a/aa—1/2(|10ga| + 1)_7'/2¢(t))2dadt)

Lo 1/2
= ||¢||L2(R,R)</ a~3e27/%(|log o] + 1)”"da) ,
0

after the change of coordinates z := «/o becomes

1/o —-3,-2/z 1/2 1 —3,-2/z 1/2
—1 z € —1 z e
o dz) >0 (/ dz)
9l (/0 (Jlog 2 +log o[ + 1)" ~ 1/2 (Nogz + log | + 1)7

0_1(\ logo| + 1)_’“/2

as o — 0, which, for 1 < r < 2 is not integrable on (0, +00). This example shows
that (35) cannot in general be expressed in terms of standard, Bochner integrals.

1/2

Acknowledgments. Thanks to Benjamin Jaye for helpful discussions, and to Alin
Pogan for several readings of the manuscript and helpful suggestions for the expo-
sition. Thanks also to the anonymous referees for their careful reading and helpful
suggestions.



24 FEDOR NAZAROV AND KEVIN ZUMBRUN

REFERENCES

[1] G. Boillat and T. Ruggeri, On the shock structure problem for hyperbolic system of balance
laws and convex entropy, Contin. Mech. Thermodyn., 10 (1998), 285-292.
[2] J. B. Conway, A Course in Functional Analysts, 274 edition, Graduate Texts in Mathematics,
96. Springer-Verlag, New York, 1990.
[3] J. Diestel and J. J. Uhl, Vector Measures, Mathematical Surveys, No. 15. American Mathe-
matical Society, Providence, R.I., 1977.
[4] L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, 19. American
Mathematical Society, Providence, RI, 1998.
[5] Y. Latushkin and A. Pogan, The dichotomy theorem for evolution bi-families, J. Diff. Eq.,
245 (2008), 2267-2306.
[6] G. Métivier and K. Zumbrun, Existence and sharp localization in velocity of small-amplitude
Boltzmann shocks, Kinet. Relat. Models, 2 (2009), 667-705.
[7] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,
Applied Mathematical Sciences, 44. Springer-Verlag, New York, 1983.
[8] A. Pogan and K. Zumbrun, Stable manifolds for a class of singular evolution equations and
exponential decay of kinetic shocks, Kinet. Relat. Models, 12 (2019), 1-36.
9] A. Pogan and K. Zumbrun, Center manifolds for a class of degenerate evolution equations
and existence of small-amplitude kinetic shocks, J. Diff. Eq., 264 (2018), 6752-6808.
[10] M. Reed and B. Simon, Methods of Mathematical Physics, 274 edition, Academic Press, Inc.
[Harcourt Brace Jovanovich, Publishers], New York, 1980.
[11] W. Rudin, Functional Analysis, 2*? edition, International Series in Pure and Applied Math-
ematics. McGraw-Hill, Inc., New York, 1991.
[12] K. Zumbrun, Invariant manifolds for a class of degenerate evolution equations and structure
of kinetic shock layers, Springer Proc. Math. Stat., 237 (2018), 691-714.

Received September 2021; revised December 2021; early access April 2022.

E-mail address: nazarov@math.kent.edu
E-mail address: kzumbrun@indiana.edu


http://www.ams.org/mathscinet-getitem?mr=MR1652858&return=pdf
http://dx.doi.org/10.1007/s001610050094
http://dx.doi.org/10.1007/s001610050094
http://www.ams.org/mathscinet-getitem?mr=MR1070713&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0453964&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1625845&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2446192&return=pdf
http://dx.doi.org/10.1016/j.jde.2008.01.023
http://www.ams.org/mathscinet-getitem?mr=MR2556717&return=pdf
http://dx.doi.org/10.3934/krm.2009.2.667
http://dx.doi.org/10.3934/krm.2009.2.667
http://www.ams.org/mathscinet-getitem?mr=MR710486&return=pdf
http://dx.doi.org/10.1007/978-1-4612-5561-1
http://www.ams.org/mathscinet-getitem?mr=MR3835530&return=pdf
http://dx.doi.org/10.3934/krm.2019001
http://dx.doi.org/10.3934/krm.2019001
http://www.ams.org/mathscinet-getitem?mr=MR3771823&return=pdf
http://dx.doi.org/10.1016/j.jde.2018.01.049
http://dx.doi.org/10.1016/j.jde.2018.01.049
http://www.ams.org/mathscinet-getitem?mr=MR751959&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1157815&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR3828316&return=pdf
mailto:nazarov@math.kent.edu
mailto:kzumbrun@indiana.edu

	1. Introduction
	2. Proof of the main theorem
	3. Linear existence theory: Weak vs. mild solutions
	3.1. The linear boundary-value problem and prescription of data for weak L2loc solutions
	3.2. Relation to mild solutions

	4. Applications to Boltzmann's equation
	5. Discussion and open problems
	Appendix A. Sobolev estimates for difference operators
	Appendix B. Integrals and counterexample
	Acknowledgments
	REFERENCES

