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Preface by Kevin Zumbrun: It is a great privilege to submit a paper to
this memorial issue in honor of long-time mentor and colleague Bob Glassey. Bob
enlivened the department at Indiana University for many years with his gentle wit
and incisive mathematical analysis. Bob is perhaps best known for his work on
kinetic equations. What I know about Boltzmann’s equation I know mainly from
sitting in on his delightful graduate course, which later became his delightful text on
the Cauchy problem for kinetic equations. So, this paper concerning Boltzmann’s
and related kinetic equations seems an appropriate submission, coming as a direct
result of Bob’s influence as a teacher and researcher. Of course, Bob is equally
well known for his seminal work on blowup in nonlinear pde. So, it is perhaps
also appropriate that our central estimate is a “blow-down” result consisting of the
reverse-time version of finite-time blowup for the Riccati equation.

Abstract. We establish an instantaneous smoothing property for decaying
solutions on the half-line (0,+∞) of certain degenerate Hilbert space-valued

evolution equations arising in kinetic theory, including in particular the steady

Boltzmann equation. Our results answer the two main open problems posed
by Pogan and Zumbrun in their treatment of H1 stable manifolds of such

equations, showing that L2
loc solutions that remain sufficiently small in L∞ (i)

decay exponentially, and (ii) are C∞ for t > 0, hence lie eventually in the H1

stable manifold constructed by Pogan and Zumbrun.

2020 Mathematics Subject Classification. Primary: 35Q35, 35Q20; Secondary: 76P05, 82C40.
Key words and phrases. Steady Boltzmann equation, evolution equation, boundary value prob-

lem, regularity, asymptotic behavior.
Research of F.N. was partially supported under NSF grant no. DMS-1600239; research of K.Z.

was partially supported under NSF grant no. DMS-0300487.
∗Corresponding author: Kevin Zumbrun.

1

http://dx.doi.org/10.3934/krm.2022012


2 FEDOR NAZAROV AND KEVIN ZUMBRUN

1. Introduction. The goal of this paper is to prove instantaneous smoothing and
decay properties for H-valued solutions of the evolution equation

(d/dt)(Ax) = −x+ G(x), (1)

where H is a separable Hilbert space, A : H → H is a constant bounded self-adjoint
operator, G : H → H is an infinitely differentiable map with

G(0) = 0, supx∈H ∥DxG∥ ≤ 1/4, and supx∈H ∥Dk
xG∥ < +∞ for all k. (2)

Our a priori assumptions are just that x : (0,+∞) → H belongs to (H-valued)
L2
loc(0,+∞) and Ax ∈ H1

loc(0,+∞), with (1) holding as an equation in L2
loc(0,+∞);

we call such a function a “weak L2
loc solution” of (1). Note that these conditions do

not imply any a priori smoothness for x itself because A may be quite degenerate;
in particular, we have in mind the case considered for kinetic equations in [8, 9, 12]
of A essentially singular, or one-to-one but not boundedly invertible.

These conditions seem quite natural to impose just to make sense of the differen-
tial equation (1). However it should be noted that our study was motivated by some
questions that were left open in [8] where another notion of solution, the so-called
“mild solution,” was introduced. We relate our results to [8] by showing that any
mild solution is in fact a solution in our sense as well.

Remark 1.1. The studies of [8, 9, 12] concerned the situation G(x) = B(x, x) with B
a bilinear map; we note that this satisfies the framework (1)–(2) for solutions with
sup |x| sufficiently small. This is relevant to kinetic (in particular, Boltzmann’s)
equations, as discussed in Section 4.

Remark 1.2. The condition supx∈H ∥DxG∥ ≤ 1/4 can be weakened to

sup
x∈H

∥DxG∥ ≤ γ

for γ < 1, with essentially no change in the arguments.1 The choice γ = 1/4 is for
expositional convenience.

Our main result is the following.

Theorem 1.3. For A constant, bounded, and self-adjoint, and G ∈ C∞ satisfying
(2), every weak L2

loc solution x of (1) lying in L∞(0,+∞) is, in fact, C∞ on
(0,+∞), and decays exponentially with all derivatives as t → ∞. Moreover, for all
t > 0 and k ≥ 0,

|(d/dt)kx(t)| ≤

{
Ct−k, 0 < t < 1,

Ce−ct, t ≥ 1,
(3)

where c depends only on ∥A∥, and C on ∥x∥L∞(0,+∞), ∥A∥, k, and supx∈H ∥Dj
xG∥,

j = 1, 2, . . . , k + 1.

Remark 1.4. For G ∈ Cr, we obtain instantaneous Hr
loc/C

r−1
loc smoothing by the

same argument.

Remark 1.5. A similar approach gives instantaneous smoothing for x ∈ L2(0,+∞),
with bounds |(d/dt)kx(t)| ≤ Ct−1/2−k, t > 0,2

1Namely, in the first step of the proof of Theorem 1.3, we may use |G(x)| = |G(x)−G(0)| ≤ γ|x|
to obtain −|x|2+⟨G(x), x⟩ ≤ −(1−γ)|x|2 ≲ −|x|2 in place of (6), and similarly in higher-derivative
estimates throughout.

2Specifically, substituting L2(0,+∞) for L∞(0,+∞) in item 1 of the proof in Section 2, and

using the Sobolev estimate in item 2 to bound |x(t)| for t ≤ 1, gives |x(τ)| ≤ Ct−1/2 for τ ≥ t,
yielding the result by Theorem 1.3.
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We believe that Theorem 1.3 may be of its own interest, but as far as the questions
in [8] are concerned, it implies, in the slightly different setting of Remark 1.1, that
L2
loc(0,+∞) solutions remaining sufficiently small in sup norm must by exponential

decay of ∥x∥H1(t,+∞) belong eventually to the H1 stable manifold constructed by
Pogan-Zumbrun, which may be characterized [8] as the union of all trajectories
x with ∥x∥H1(0,+∞) sufficiently small. Moreover, it implies that this H1 stable

manifold, expressed as in [8] as the union of trajectories in H1(0,+∞), lies in
C∞(t,+∞) for any t > 0. We recall that the analysis of [8] was motivated by
consideration of the steady Boltzmann equation, which, as shown in [6], may be
put by an appropriate coordinate transformation into the framework (1) considered
here, with G(x) = B(x, x), B a bounded bilinear map.

The paper is organized as follows. In Section 2, we prove the theorem itself.
The proof is rather elementary and the reader interested in the key ideas will lose
almost nothing assuming that we deal with a finite-dimensional Hilbert space H,
understand all derivatives in the classical sense, and just aim at quantitative bounds
independent of dimension, etc. We will still clearly state all standard facts from the
integration theory of Hilbert space-valued functions to make sure that everything
works in the generality we need, but we refer the reader to, e.g., [3] for their proofs.

In Section 3, we revisit equation (1) from the standpoint of existence and unique-
ness, in the process connecting with [8] and the notion of “mild solution”. Unlike
Section 2, which can be read from scratch, Section 3 assumes of the reader at
least some familiarity with standard Fourier transform, convolution, and Gagliardo-
Nirenberg bounds, and, differently from the situation in Section 2, the issues of how
exactly everything is defined and in what sense the equalities hold are central there.
Though it is for the most part self-contained, the reader of Section 3 will benefit in
Section 3.2 from familiarity with [8] and in Remark 3.12 will need it to make full
sense of the remark.

In Section 4, we discuss implications of our results for the questions considered
in [8], especially as they concern Boltzmann’s equation. Finally, in Section 5, we
describe some perspectives and open problems. We delegate the proofs of one
standard and one “semi-standard” Sobolev type embedding theorem (Lemmas A.1–
A.2) to be used in Section 2 to an appendix so as not to interrupt the flow of the main
argument. This appendix can be read completely independently of the main text.
In a second appendix, we discuss integrability of Hilbert space-valued functions as
it relates to the variation of constants formula in Section 3. This appendix refers
to but is not needed in the main text. It may be skipped by the reader if desired.

2. Proof of the main theorem. We start with a technical lemma.

Lemma 2.1. Suppose that F : (0,+∞) → R is absolutely continuous, f, g are
nonnegative with f ∈ L1

loc(0,+∞), g measurable, and (d/dt)F ≤ −F 2g + f a.e. on
(0,+∞). Then, for every t > t′ > 0,

F (t) ≤
∫ t

t′
f +

(∫ t

t′
g
)−1

.

Proof. Let G(s) := F (s)−
∫ s

t′
f , s ≥ t′. If there exists s ∈ (t′, t) such that G(s) ≤ 0,

then

F (t) = F (s) +

∫ t

s

F ′ ≤
∫ s

t′
f +

∫ t

s

f =

∫ t

t′
f
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and we are done. Otherwise, G > 0 on (t′, t), so 0 < G ≤ F and

(d/dt)G ≤ −F 2g ≤ −G2g,

or, equivalently, (d/dt)(1/G) ≥ g, hence (1/G)(t) ≥
∫ t

t′
g and G(t) ≤

( ∫ t

t′
g
)−1

.

Corollary 2.2. Suppose that h, y : (0,+∞) → H are in L2(0,+∞), ⟨h, y⟩ is
absolutely continuous, f : (0,+∞) → R is in L1(0,+∞) and nonnegative, and
(d/dt)⟨h, y⟩ ≤ −|y|2 + f a.e. on (0,+∞). Then, for every t > t′ > 0, there holds

⟨h, y⟩(t) ≤
∫ t

t′
f +

∫ t
t′ |h|

2

(t−t′)2 and∫ +∞

t

|y|2 ≤
∫ +∞

t′
f +

∫ t

t′
|h|2

(t− t′)2
.

Proof. Note that |y|2 ≥ ⟨h,y⟩2
|h|2+ε for all ε > 0 and

( ∫ t

t′
(1/(|h|2 + ε))

)−1

≤
∫ t
t′ (|h|

2+ε)

(t−t′)2 ,

so Lemma 2.1 with F = ⟨h, y⟩, g = 1/(|h|2 + ε) implies ⟨h, y⟩(t) ≤
∫ t

t′
f +

∫ t
t′ (|h|

2+ε)

(t−t′)2

for all ε > 0, yielding the first inequality in the limit as ε → 0+. Since there exists

a sequence tk → +∞ such that ⟨h, y⟩(tk) → 0, we get
∫ tk
t

|y|2 ≤ −⟨h, y⟩|tkt +
∫ tk
t

f.
Taking the limit as tk → +∞, we get the result.

In order to be able to use this corollary, we need the following key observation.

Lemma 2.3. If A is a bounded self-adjoint operator, x : (0,+∞) → H is in
L2
loc(0,+∞), and Ax ∈ H1

loc(0,+∞), then ⟨Ax, x⟩ is absolutely continuous, with

(d/dt)⟨Ax, x⟩ = 2⟨(d/dt)(Ax), x⟩. (4)

Proof. Fix τ > 0 and consider the difference quotient

∆τ ⟨Ax, x⟩
τ

(t) =
⟨∆τ (Ax)(t), x(t+ τ)⟩

τ
+

⟨Ax(t), (∆τx)(t)⟩
τ

=
⟨∆τ (Ax)(t), x(t) + x(t+ τ)⟩

τ
,

where ∆τv(t) := v(t+τ)−v(t). Here, we have used in a crucial way self-adjointness

of A. Since A is bounded, ∆τ ⟨Ax,x⟩
τ ∈ L1

loc(0,+∞), and we have the integral identity∫ t

t′

∆τ ⟨Ax, x⟩
τ

=
(
Sτ ⟨Ax, x⟩

)∣∣∣t
t′
,

where (
Sτv

)
(t) := (1/τ)

∫ t+τ

t

v. (5)

Note now that, as τ → 0+, Sτ (⟨Ax, x⟩) → ⟨Ax, x⟩ a.e. while

x(t) + x(t+ τ) → 2x(t)

in L2
loc and, by Lemma A.1(ii), ∆τ (Ax)

τ → (d/dt)(Ax) in L2
loc. Hence, passing to the

limit as τ → 0+, we get

⟨Ax, x⟩|tt′ =
∫ t

t′
2⟨(d/dt)(Ax), x⟩

for a.e. t′, t ∈ (0,+∞), verifying (4).
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Proof of Theorem 1.3. We proceed by a series of steps bounding x in successively
higher norms. The main idea of the argument may be seen in steps 1 and 2 showing
instantaneous smoothing from L∞ to H1. Steps 3–5, showing higher regularity,
proceed in similar but more complicated fashion.

1. (Proof that x ∈ L2(0,+∞)). By time and space rescaling, we can always
assume without loss of generality that ∥A∥ = 1 and ∥x∥L∞(0,+∞) ≤ 1. Now, we
have

(d/dt)⟨Ax, x⟩ = 2⟨d/dt(Ax), x⟩ = −2|x|2 + 2⟨G(x), x⟩ ≤ −|x|2, (6)

so ⟨Ax, x⟩ is decreasing. Moreover, since |x|2 ≥ |⟨Ax, x⟩|, either ⟨Ax, x⟩ → −∞
as t → +∞, which is impossible, since x ∈ L∞(0,+∞) and A is bounded, or else
⟨Ax, x⟩ ≥ 0 for all t > 0, and

⟨Ax, x⟩(t) ≤ e−t⟨Ax, x⟩(0) ≤ e−t.

For, otherwise, (d/dt)⟨Ax, x⟩ ≤ −|x|2 ≤ ⟨Ax, x⟩ would be eventually uniformly
negative.

Thus, for any T > t > 0,
∫ T

t
|x|2 ≤ −⟨Ax, x⟩|Tt ≤ ⟨Ax, x⟩(t) ≤ e−t. Letting

T → +∞, we get
∫ +∞
t

|x|2 ≤ e−t for all t > 0. In particular, x ∈ L2(0,+∞) and
∥x∥L2(0,+∞) ≤ 1.

2. (Proof that x ∈ H1
loc(0,+∞)). It is enough to show that the difference ratios

∆τx
τ are uniformly bounded in L2

loc(0,+∞) as τ → 0+. To this end, write

(d/dt)
(
A
∆τx

τ

)
= −∆τx

τ
+

∆τG(x)
τ

. (7)

Note that A∆τx
τ ∈ H1

loc(0,+∞) for any fixed τ > 0. So, we get

(d/dt)
〈
A
∆τx

τ
,
∆τx

τ

〉
= −2

∣∣∣∆τx

τ

∣∣∣2 + 2
〈∆τG(x)

τ
,
∆τx

τ

〉
≤ −

∣∣∣∆τx

τ

∣∣∣2, (8)

because supx∈H ∥DxG∥ ≤ 1/4, so
∣∣∆τG(x)

τ

∣∣ ≤ 1
4

∣∣∆τx
τ

∣∣. Note also that∣∣∣A∆τx

τ

∣∣∣ = ∣∣∣∆τ (Ax)

τ

∣∣∣ = ∣∣∣Sτ

(
d/dt(Ax)

)∣∣∣ = ∣∣Sτ

(
− x+ G(x)

)∣∣ ≤ 2Sτ |x|

for all τ , where Sτ is the averaging operator of (5).
Thus, applying Corollary 2.2 with h = A∆τx

τ , y = ∆τx
τ , f = 0, we get∫ +∞

t

∣∣∣∆τx

τ

∣∣∣2 ≤
4
∫ t

t′
(Sτ |x|)2

(t− t′)2

for any t > t′ > 0. Letting t′ → 0 when 0 < t < 1 and putting t′ = t − 1 when

t ≥ 1, then using the bounds (Sτ |x|)2 ≤ 1 and
∫∞
t−1

(Sτ |x|)2 ≤
∫ +∞
t−1

|x|2 ≤ ee−t

respectively, we get ∫ +∞

t

∣∣∣∆τx

τ

∣∣∣2 ≤

{
4
t , 0 < t < 1,

4ee−t, t ≥ 1.

Thus, x ∈ H1(t,+∞) for any t > 0 and the same bounds hold for x′ (Lemma A.1(i),
Appendix A).

Moreover, we can now estimate x(t) for t ≥ 1 by writing

|x(t)|2 = 2
∣∣∣ ∫ +∞

t

⟨x, x′⟩
∣∣∣ ≤ 2

(∫ +∞

t

|x|2
)1/2(∫ +∞

t

|x′|2
)1/2

≤ Ce−t.



6 FEDOR NAZAROV AND KEVIN ZUMBRUN

Finally, applying Lemma A.1(i)–(ii), and passing to the L2-limit as τ → 0+ in (7),
we see that Ax′ ∈ H1

loc(0,+∞) and

(d/dt)(Ax′) = −x′ +DxG(x′).

Specifically, we first apply Lemma A.1(ii) to the H1
loc(0,+∞) functions x and G(x)

to see that τ−1∆τx → x′ and τ−1∆τG(x) → (d/dt)G(x) = DxG(x′) on the right-
hand side of (7). But, this implies that the limit

lim
τ→0+

∥(d/dt)Aτ−1∆τx∥L2(t,+∞) = lim
τ→0+

∥τ−1∆τAx′∥L2(t,+∞)

of the L2(t,+∞) norm of the left-hand side of (7) exists and is bounded for all
t > 0, hence Ax′ ∈ H1

loc(0,+∞) by Lemma A.1(i). Here, we have used the fact
just established that x ∈ H1

loc(0,+∞) to rewrite (d/dt)Aτ−1∆τx = τ−1∆τAx′.
Applying Lemma A.1(ii), we find, finally, that

(d/dt)Ax′ = lim
τ→0+

τ−1∆τAx′ = −x′ +DxG(x′). (9)

3. (Proof that x ∈ W 1,4
loc (0,+∞)). We shall start by fixing τ > 0 and considering

the difference ∆τx
′. We have A∆τx

′ ∈ H1(t,+∞) for any t > 0 and, applying the
linear ifference operator ∆τ to (9) and using the product rule ∆τyz = y(∆τz) +
∆τy(z(·+ τ)):

(d/dt)(A∆τx
′) = −∆τx

′ +∆τDxG(x′)

= −∆τx
′ +DxG(∆τx

′) + (∆τ (DxG))(x′(·+ τ)).
(10)

Passing to the corresponding differential equation for the quadratic form ⟨A∆τx
′,

∆τx
′⟩, we can combine the first two terms on the right-hand side using the bound

|DxG(∆τx
′)| ≤ 1

4
|∆τx

′|

to get

(d/dt)⟨(A∆τx
′),∆τx

′⟩ ≤ −3

2
|∆τx

′|2 + 2⟨∆τx
′,∆τ (DxG)(x′(·+ τ))⟩

≤ −|∆τx
′|2 + 2∥∆τDxG∥2|x′(·+ τ)|2

≤ −|∆τx
′|2 + C|∆τx|2|x′(·+ τ)|2,

where C is controlled by supx∈H ∥D2
xG∥. Here, we have used Young’s inequality to

bound the term 2⟨∆τx
′,∆τ (DxG)(x′(· + τ))⟩ by an absorbable term (1/2)|∆τx

′|2
plus 2∥∆τDxG∥2|x′(·+ τ)|2. Using the equation, and the condition ∥DxG∥ ≤ 1

4 , we
also have

|A(∆τx
′)| = |∆τ (d/dt)(Ax)| = |∆τ (−x+ G(x))| ≤ 2|∆τx|.

Finally, we have by Jensen’s inequality

|∆τx|2(t) = |τSτx|2(t) ≤ τ2Sτ (|x′|2)(t) ≤ τ

∫ +∞

t

|x′|2

for Sτ as in (5), which is at most Cτ
t for 0 < t < 1 and Cτe−t for t ≥ 1.

Applying Corollary 2.2 with y = ∆τx
′, h = A∆τx

′, and f = |∆τx|2|x′(· + τ)|2,
we get ∫ +∞

t

|∆τx
′|2 ≤

∫ +∞

t′
|∆τx|2|x′(·+ τ)|2 +

4
∫ t

t′
|∆τx|2

(t− t′)2
. (11)
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Plugging in the estimates obtained just above for |∆τx|2(t) and in step 2 for∫ +∞
t

|x′|2, and letting t′ = t/2 for 0 < t < 1 and t′ = t − 1/2 for t ≥ 1, we
get, noting that τ > 0 is arbitrary,

sup
τ>0

∫ +∞

t

|∆τx
′|2

τ
≤

{
Ct−2, 0 < t < 1,

Ce−t, t ≥ 1.

By Lemma A.2, Appendix A, this together with our previous estimate∫ +∞

t

|x′|2 ≤ C/t for 0 < t < 1

is enough to conclude that
∫ +∞
t

|x′|4 ≤ (1/2)(C/t2(C/t)) = (1/2)(C2/t3) ≲ t−3

for 0 < t < 1. Similarly, using our previous estimate
∫ +∞
t

|x′|2 ≤ Ce−t for t ≥ 1,

we obtain
∫ +∞
t

|x′|4 ≤ C2e−2t for t ≥ 1. Combining, we have for some (possibly
larger) C > 0 ∫ +∞

t

|x′|4 ≤

{
Ct−3, 0 < t < 1,

Ce−2t, t ≥ 1.

4. (Proof that x ∈ H2
loc(0,+∞)). We shall use Corollary 2.2 once more with the

same y, f , h, but this time we shall estimate the right-hand side of the inequality
(11) in a different way. First note that

|A(∆τx
′)|2 = |∆τ (Ax

′)|2 ≤ τ2Sτ (
∣∣(d/dt)(Ax′)

∣∣)2
= τ2Sτ (

∣∣− x′ +DxG(x′)
∣∣)2 ≤ 4τ2Sτ (|x′|)2

with Sτ as in (5), so
∫ +∞
t

|A(∆τx
′)|2 ≤ 4τ2

∫ +∞
t

|x′|2. Then observe that∫ +∞

t′
|∆τx|2|x′(·+ τ)|2 ≤ τ2

∫ +∞

t

|Sτx
′|2|x′(·+ τ)|2 ≤ τ2∥x′∥4L4(t,+∞).

Thus, with the same choice t′ = t/2 for 0 < t < 1 and t′ = t− 1/2 for t ≥ 1, we
arrive at the bound ∫ +∞

t

|∆τx
′|2

τ2
≤

{
Ct−3, 0 < t < 1,

Ce−t, t ≥ 1.

The difference ratios ∆τx
′

τ are thus uniformly bounded in L2(t,+∞) for any t > 0,

hence, applying again Lemma A.1(i), Appendix A, we have x ∈ H2
loc(0,+∞) and∫ +∞

t

|x′′|2 ≤

{
Ct−3, 0 < t < 1,

Ce−t, t ≥ 1.

Also,

|x′(t)|2 ≤ 2
∣∣∣ ∫ +∞

t

⟨x′, x′′⟩
∣∣∣ ≤ 2

(∫ +∞

t

|x′|2
)1/2(∫ +∞

t

|x′′|2
)1/2

≤

{
Ct−2, 0 < t < 1,

Ce−t, t ≥ 1,

verifying (3) for k = 1. Finally, applying again Lemma A.1(i)–(ii) and passing to
the L2-limit as τ → 0+ on both sides of τ−1 times equation (10), we get Ax′′ ∈
H1

loc(0,+∞) and

(d/dt)(Ax′′) = −x′′ +D2
xG(x′, x′) +DxG(x′′). (12)
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Namely, we first observe that x′ and (d/dt)G(x) = DxG(x′) are both contained
in H1

loc(0,+∞), by the fact that x′ ∈ H1
loc ∩L∞

loc(0,+∞) together with the uniform
derivative bounds (2) on G. Thus, we may argue as in the end of step 2 to obtain
first convergence in L2(t,+∞) of τ−1 times the right-hand side of (10) by Lemma
A.1(ii), to −x′′ + (d/dt)DxG(x′) = −x′′ + D2

xG(x′, x′) + DxG(x′′), for any t > 0.
This implies convergence in L2(t,+∞) of τ−1 times the left-hand side of (10), or

(d/dt)(τ−1∆τx
′) = τ−1∆τAx′′,

whence Ax′′ ∈ H1
loc(0,+∞) by Lemma A.1(i). Applying Lemma A.1(ii), we obtain

finally that limτ→0+ τ−1∆τAx
′′ = (d/dt)Ax′′, yielding (12) by equality of left- and

right-hand limits.

5. (Proof that x ∈ HJ
loc(0,+∞), J ≥ 3). The rest of the argument we carry

out by induction. Specifically, at each level J , starting with J = 2, we make the
following induction hypotheses.

(I1) For 0 ≤ k < J , x ∈ W∞,k
loc (0,+∞), with (d/dt)kx satisfying (3) for t > 0.

(I2) For 1 ≤ k ≤ J , x ∈ Hk
loc(0,+∞), with∫ +∞

t

|(d/dt)kx|2 ≤

{
Ct−2k+1, 0 < t < 1,

Ce−t, t ≥ 1.
(13)

(I3) For 1 ≤ k ≤ J , A(d/dt)kx ∈ H1
loc(0,+∞) and x, G(x) ∈ Hk

loc(0,+∞), with

(d/dt)A(d/dt)kx = −(d/dt)kx+ (d/dt)kG(x) in L2
loc(0,+∞). (14)

We have shown in Step 4 that (I1)–(I3) are satisfied for J = 2, i.e., x ∈
W∞,1

loc (0,+∞) and (3) holds for k = 0, 1; x ∈ H2
loc(0,+∞), and (13) holds for

k = 1, 2; and x, G(x) are in H2
loc(0,+∞), and A(d/dt)2x is in H1

loc(0,+∞), satis-
fying (14) in the L2

loc(0,+∞) sense for k = 0, 1, 2. We now show that satisfaction
of (I1)–(I3) at level J = j ≥ 2 implies satisfaction of (I1)–(I3) at level J = j + 1,
whence, by induction, (I1)–(I3) hold for all J ≥ 2. This implies that x is C∞ on
(0,+∞) and satisfies (3) for all k ≥ 0, completing the proof.

By (I3), we have that (d/dt)A∆τ (d/dt)
jx, ∆τ (d/dt)

jx, and ∆τ (d/dt)
jG(x) are

in L2
loc(0,+∞), with

(d/dt)A∆τ (d/dt)
jx = −∆τ (d/dt)

jx+∆τ (d/dt)
jG(x). (15)

Repeated application of the chain rule gives the expansion

(d/dt)jG(x) =
j∑

l=1

∑
s1+···+sl=j−l, sj≥0

Cj
l,s D

l
xG

(
(d/dt)s1+1x, . . . , (d/dt)sl+1x

)
, (16)

with Cj
l,s denoting the number of occurences of the derivative distribution s =

(s1, . . . , sl). In particular, there is only one term for l = 1, namely Cj
1,(j) = 1.

Thus, we have

∆τ (d/dt)
jG(x) = ∆τ

j∑
l=2

∑
s1+···+sl=j−l, sj≥0

Cj
l,s D

l
xG

(
(d/dt)s1+1x, . . . , (d/dt)sl+1x

)
+ (∆τDxG)((d/dt)jx) +Dx(·+τ)G(∆τ (d/dt)

jx).

(17)
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Noting that

|Dx(·+τ)G(∆τ (d/dt)
jx)| ≤ (1/4)|∆τ (d/dt)

jx)| (18)

by (2), and arguing as in step 3, we find therefore for y = ∆τ (d/dt)
jx and h =

A∆τ (d/dt)
jx that

⟨y, h⟩′ ≤ −|y|2 + f,

where f = 2|g|2 with g := ∆τ (d/dt)
jG(x)−Dx(·+τ)G(∆τ (d/dt)

jx)).

With an eye toward applying Corollary 2.2, we first bound
∫ +∞
t

|f | = 2
∫ +∞
t

|g|2.
Evidently, g is given by the sum of the first two terms on the right-hand side of

(17). The first,
∑j

ℓ=2 term, involves only derivatives (d/dt)si+1x of order < j, since
there are at least two summands si +1, and the sum of all such is j. Thus, we may
use the relation ∆τ = τSτ (d/dt) to rewrite this term as

τSτ

j+1∑
l=2

∑
s1+···+sl=j+1−l, sj≥0

Bj
l,s D

l
xG

(
(d/dt)s1+1x, . . . , (d/dt)sl+1x

)
(19)

with Bj
l,s integer valued, where, in each summand, at most one of the derivatives

(d/dt)si+1x is of order j, and the rest are of order < j. Here, we are using in an
important way the fact that j ≥ 2. For j = 1, the multi-index s = (1, 1) gives two
derivatives of highest order j, a fact that cost some extra effort in steps 3–4.

By (I2)–(I3), therefore, the highest-order derivative appearing in each summand
is bounded in L2(t,+∞) by Ct−(si+1)+1/2 for 0 < t < 1 and Ce−t/2 for t ≥ 1, and
the remaining derivatives are bounded in L∞(t,+∞) by Ct−(si+1) for 0 < t < 1
and Ce−t/2 for t ≥ 1. Combining these bounds with the uniform derivative bounds
(2) on G and the fact that Sτ is bounded from L2(t,+∞) to itself, we thus find that
the L2(t,+∞) norm of each summand in (19) is bounded by

τt−(
∑l

i=1(si+1))+1/2 = τt−(j+1)+1/2

for 0 < t < 1 and τe−t/2 for t ≥ 1.
Likewise, in the remaining term

(
∆τDxG

)
((d/dt)jx) of g, operator

∆τDxG = τSτ (d/dt)DxG = τSτD
2
xG(x′, ·)

involves only derivatives of x of order 1 < j, hence its operator norm may be
estimated using the L∞(t,+∞) bound (3) of induction hypothesis (I1), the bounds
(2), and boundedness in operator norm of the averaging operator Sτ as ∥∆τDxG∥ ≲
τt−1 for 0 < t < 1 and ≲ τe−t/2 for t ≥ 1. Together with bounds

∥(d/dt)j)x∥L2(t,+∞) ≲ t−j+1/2 for 0 < t < 1

and ∥(d/dt)j)x∥L2(t,+∞) ≲ e−t for t ≥ 1 of induction hypothesis (I2), this gives

∥
(
∆τDxG

)
((d/dt)jx)∥L2(t,+∞) ≲

{
τt−1t−j+1/2 = τt−(j+1)+1/2 for 0 < t < 1,

τe−t/2 for t ≥ 1.

(20)
Combining the above estimates, we obtain finally

∥g∥L2(t,+∞) ≲

{
τt−1t−j+1/2 = τt−(j+1)+1/2 for 0 < t < 1 and

τe−t/2 for t ≥ 1,
(21)
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and thus ∫ +∞

t

|f | = 2

∫ +∞

t

|g|2 ≲

{
τ2t−2(j+1)+1, 0 < t < 1,

τ2e−t, t ≥ 1.

We next bound
∫ +∞
t

|h|2. Arguing as in previous steps, we have

h = A∆τ (d/dt)
jx = τSτ (d/dt)A(d/dt)jx = τSτ

(
− (d/dt)jx+ (d/dt)jG(x)

)
.

Expanding (d/dt)jG(x) as in (16) and noting that there appears in each term at
most one derivative of x of order j and the rest of order < j, we find that the
L2(t,+∞) norm of (d/dt)jG(x) can be bounded using induction hypotheses (I1)–
(I2) by Ct−j+1/2 for 0 < t < 1 and Ce−t/2 for t ≥ 1. Likewise, the L2(t,+∞) norm
of (d/dt)jx is bounded, by the induction hypothesis, by Ct−j+1/2 for 0 < t < 1 and
Ce−t/2 for t ≥ 1. Thus, noting again the harmless effect of averaging operator Sτ ,
we obtain ∫ +∞

t

|h|2 ≲

{
τ2t−2j+1, 0 < t < 1,

τ2e−t, t ≥ 1.

Applying Corollary 2.2 with t′ = t/2 for 0 < t < 1 and t′ = t− 1/2 for t ≥ 1, we

obtain therefore
∫ +∞
t

|∆τ (d/dt)
jx|2 ≲ τ2t−2(j+1)+1 for 0 < t < 1 and ≲ τ2e−t for

t ≥ 1, hence, by Lemma A.1(i),
∫ +∞
t

|(d/dt)j+1x|2 ≲ t−2(j+1)+1 for 0 < t < 1 and

≲ e−t for t ≥ 1, giving x ∈ Hj+1
loc (0,+∞) and verifying the Hk bound of induction

hypothesis (I2) for k = j + 1. This verifies (I2) for J = j + 1.
Moreover, applying Lemma A.1(i)–(ii) as in the last parts of Steps 2 and 4, we

obtain in the L2(t,+∞) limit as τ → 0+ of

(d/dt)Aτ−1∆τ (d/dt)
jx = −τ−1∆τ (d/dt)

jx+ τ−1∆τ (d/dt)
jG(x) (22)

that A(d/dt)j+1x ∈ H1
loc(0,+∞) and x, G(x) ∈ Hj+1

loc (0,+∞), with

(d/dt)A(d/dt)j+1x = −(d/dt)j+1x+ (d/dt)j+1G(x), (23)

verifying induction hypothesis (I3) at level J = j + 1.
Specifically, recalling that ∆τ (d/dt)

jG(x) = g+Dx(·+τ)G(∆τ (d/dt)
jx)), we have

from (18), (21), and the previously-obtained bounds on y = ∆τ (d/dt)
jx)) together

with boundedness of Gx that

∥∆τ (d/dt)
jG(x)∥L2

loc(t,+∞) ≲

{
τt−1t−j+1/2 = τt−(j+1)+1/2 for 0 < t < 1 and

τe−t/2 for t ≥ 1,

giving G(x) ∈ Hj+1
loc , by Lemma A.1(i), and therefore

lim
τ→0+

τ−1∆τ (d/dt)
jG(x) = (d/dt)j+1G

by Lemma A.1(ii). By the fact x ∈ Hj+1
loc verified in the previous step, we have by

Lemma A.1(ii) also

lim
τ→0+

τ−1∆τ (d/dt)
jx = −(d/dt)j+1x.

Thus, the right-hand side of (22) converges to −(d/dt)j+1x + (d/dt)j+1G(x) as
τ → 0+.

Using x ∈ Hj+1
loc to re-express the left-hand side of (22) as τ−1∆τ (A(d/dt)j+1x),

we obtain by Lemma A.1(i) that A(d/dt)j+1x ∈ H1
loc, and thus by Lemma A.1(ii),

the left-hand side of (22) converges to (d/dt)A(d/dt)j+1x. Comparing the limits
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of left- and right-hand sides of (22) then yields (23), completing the verification of
(I3) for J = j + 1.

Finally, from our Hj+1 and Hj bounds, we obtain the L∞(t,+∞) estimate (3)
for k = j by the one-dimensional Sobolev embedding estimate

∥(d/dt)jx∥4L∞(t,+∞) ≤ ∥(d/dt)jx∥2L2(t,+∞)∥(d/dt)
j+1x∥2L2(t,+∞)

≲ t−2j+1t−2(j+1)+1 = t−4j

for 0 < t < 1 and ≲ e−2t for t ≥ 1. This verifies induction hypothesis (I1) for
J = j + 1, completing the induction and the proof.

Remark 2.4. The instantaneous smoothing result (3) of Theorem 1.3 can be mo-
tivated by the canonical example of linear diagonal flow Ax′ = −x on H = ℓ2.
Writing x = {xj}, with

∑
j |xj |2 < ∞, take Ax = {ajxj}, with aj > 0 and aj → 0

as j → ∞. Then, for |x(0)| = 1,

|(d/dt)kx(t)| ≤ sup
j

a−k
j e−a−1

j t|x(0)| ≲ t−k, (24)

in agreement with (3). Noting that maxz∈R+ z−ke−z−1t = e−1t−k is attained at
z = t, we find by considering initial data of form en = (0, . . . , 0, 1, 0, . . . ) with
n → ∞, and evaluating at t = an, that (24), hence also (3), is sharp in the sense
that there is no better uniform bound as t → 0+.

3. Linear existence theory: Weak vs. mild solutions. We next compare our
notion of “weak L2

loc” solution with that of “mild” solution defined in [8], in the
process establishing linear existence and uniqueness of weak L2

loc solutions. We
show, first, that mild solutions are solutions in our sense as well, hence subject
to the smoothing results of section 2, and, second, that solutions x ∈ L2(t0, t1) in
our sense are mild solutions in the sense of [8] precisely if limt→τ0 |A|1/2x(t) and
limt→τ1 |A|1/2x(t) lie in Range |A|1/2. Here, |A|1/2 as we now describe is defined via
the spectral decomposition formula for bounded self-adjoint operators.

Recall [11] that a bounded self-adjoint operator A on H admits a spectral de-
composition

A =

∫
R
αdEα, Id =

∫
R
dEα, ⟨x, y⟩ =

∫
R
⟨x, dEαy⟩, (25)

where dEα is a projection-valued measure. Following the standard operator calcu-
lus, we define sgn(A) :=

∫
R sgn(α)dEα, |A| = sgn(A)A :=

∫
R |α|dEα, and

|A|r :=
∫
R |α|rdEα for real r > 0.

3.1. The linear boundary-value problem and prescription of data for weak
L2
loc solutions. The comparison of weak and mild solutions hinges ultimately on

the question, of interest in its own right, of how or in what sense boundary data is
attained for weak solutions that are merely L2

loc.
Formalizing the discussion of the introduction, we make the following definition.

Definition 3.1. For f ∈ L2
loc on a given domain D, a weak L2

loc solution of the
linear inhomogeneous equation

(d/dt)(Ax) + x = f (26)

is a function x(t) such that x ∈ L2
loc(D), Ax ∈ H1

loc(D), and (26) holds on L2
loc(D).
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We begin by observing that a weak L2
loc solution, or indeed any function with

x ∈ L2
loc and Ax ∈ H1

loc, admits a representative for which |A|1/2x is continuous.
Moreover, if x, (d/dt)(Ax) ∈ L2(τ0, τ1), then this representative extends contin-
uously to [τ0, τ1]. Thus, for solutions on (t0, t1), we may speak of the boundary
values of |A|1/2x at t = τ0, τ1.

Lemma 3.2 (Extension to R). Let x, (d/dt)(Ax) ∈ L2(τ0, τ1), Then, there exists
an extension x̃ of x to the whole line such that

∥x̃∥L2(R) + ∥(d/dt)(Ax̃)∥L2(R) ≲ ∥x∥L2(τ0,τ1) + ∥(d/dt)(Ax)∥L2(τ0,τ1).

Proof. We define x̃ as the even reflection of x across boundaries t = τ0 and t = τ1,
supported on [τ0 − d, τ1 + d], with d = τ1 − τ0, that is:

x̃(t) =


x(τ0 + (τ0 − t)), t ∈ [τ0 − d, τ0]

x(t), t ∈ [τ0, τ1]

x(τ1 − (t− τ1)), t ∈ [τ1, τ1 + d].

Clearly x̃ is in L2, with L2 norm bounded by three times that of x.
We show next that Ax̃ has a weak derivative ỹ = (d/dt)(Ax̃) equal to the odd

reflection of y := (d/dt)(Ax̃) across boundaries t = τ0 and t = τ1, likewise with L2

norm bounded by three times that of y on (τ0, τ1):

ỹ(t) =


−y(τ0 + (τ0 − t)), t ∈ [τ0 − d, τ0]

y(t), t ∈ [τ0, τ1]

−y(τ1 − (t− τ1)), t ∈ [τ1, τ1 + d],

That is, we claim [4] that ∫
⟨(d/dt)ϕ,Ax̃⟩ = −

∫
⟨ϕ, ỹ⟩ (27)

for all test functions ϕ ∈ C∞
0 (τ0 − d, τ1 + d).

For test functions ϕ that are even reflections about t = τ1 and supported in
(τ0, τ1 + d), this follows because ⟨(d/dt)ϕ,Ax̃⟩ and ⟨ϕ, y⟩ are both odd about t = τ1
as inner products of even and odd functions, hence have integral zero. For test
functions ϕ ∈ C∞

0 (τ0, τ1), it follows because the restrictions of ỹ and x̃ to (τ0, τ1)
are y = (d/dt)(Ax) and x. Because test functions ϕ ∈ H1

0 (τ0, τ1) may be uniformly
approximated in H1(R) by test functions in C∞

0 (τ0, τ1), (27) follows also for test
functions ϕ ∈ H1

0 (τ0, τ1). By reflection, we find that (27) holds also for test functions
ϕ in H1

0 (τ0 − d, τ0) or H
1
0 (τ1, τ1 + d).

But, any test function in C∞
0 (τ0 − d, τ1 + d) may be decomposed into the sum of

test functions that are even around τ0 and supported in (τ0−d, τ1), even around τ1
and supported in (τ0, τ1 + d), plus test functions in H1

0 (τ0 − d, τ0), H
1
0 (τ0, τ1), and

H1
0 (τ1, τ1 + d), whence (27) holds by linear superposition for arbitrary ϕ ∈ C∞(R)

supported on (τ0 − d, τ1 + d). Finally, we may multiply x̃ by a smooth bump
function that is identically equal to one on [τ0, τ1] and identically equal to zero
outside (τ0−d, τ1+d) to obtain an extension of x defined on all of R and satisfying
the same bounds.

Corollary 3.3. If x, (d/dt)(Ax) ∈ L2(τ0, τ1), then |A|1/2x may be taken to be in
C0[τ0, τ1], with

∥|A|1/2x∥C0[τ0,τ1] ≲ ∥x∥L2(τ0,τ1) + ∥(d/dt)(Ax)∥L2(τ0,τ1).
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In particular, |A|1/2x may be taken to be continuous wherever x, (d/dt)(Ax) ∈ L2
loc.

Proof. Observing that the bounded linear operator sgn(A) commutes with weak
differentiation, and applying Lemma 3.2, we may assume without loss of generality
that x, (d/dt)(|A|x) ∈ L2(R), with ∥x∥L2(R) ≲ ∥x∥L2(τ0,τ1) and

∥(d/dt)(|A|x)∥L2(R) ≲ ∥x∥L2(τ0,τ1) + ∥(d/dt)(Ax)∥L2(τ0,τ1).

Arguing as in Section 2, we have that ⟨|A|1/2x, |A|1/2x⟩ = ⟨|A|x, x⟩ is absolutely
continuous and in L2(R), with derivative 2⟨(d/dt)(|A|x), x⟩, whence

⟨|A|1/2x, |A|1/2x⟩(t) = 2

∫ t

−∞
⟨(d/dt)(|A|x), x⟩dτ.

Bounding
∫ t

−∞⟨(d/dt)(|A|x), x⟩dτ ≤ ∥(d/dt)(|A|x)∥L2(R)∥x∥L2(R) by
Cauchy-Schwarz, and applying Young’s inequality, we obtain

∥|A|1/2x∥L∞[τ0,τ1] ≲ ∥x∥L2(R) + ∥(d/dt)(Ax)∥L2(R)

≲ ∥x∥L2(τ0,τ1) + ∥(d/dt)(Ax)∥L2(τ0,τ1).
(28)

Continuity of |A|1/2x follows, finally, by a standard mollification argument, ap-
proximating x by xε := x ∗ ηε, where ηε(t) = ε−1η(t/ε) is a smooth mollification
kernel, η ≥ 0 a C∞ bump function equal to 1 for |t| ≤ 1/4 and 0 for |t| ≥ 1, with∫
R η(t)dt = 1. Noting that xε → x and (d/dt)(|A|xε) → (d/dt)(|A|x) in L2 [4], we

find by (28) applied to |A|1/2xε that

∥|A|1/2xε1 − |A|1/2xε2∥L∞[τ0,τ1] ≤ ∥xε1 − xε2∥L2(R)

+ ∥(d/dt)(Axε1)− (d/dt)(Axε2)∥L2(R) → 0

as ε1, ε2 → 0. Thus, the sequence {|A|1/2xε} is Cauchy in L∞[τ0, τ1], whence |A|1/2x
is a uniform limit of the continuous (indeed C∞) functions |A|1/2xε as ε → 0, and
thus continuous.

We next recall two fundamental resolvent estimates from [8]. In the remainder
of this section, in order to use Fourier transform techniques, we complexify the real
Hilbert space H in the standard way [2, Ch. 1, Ex. 1.7]. as H + iH with inner
product

⟨g1 + ig2, f1 + if2⟩ :=
(
⟨g1, f1⟩+ ⟨g2, f2⟩

)
+ i

(
⟨g1, f2⟩ − ⟨g2, f1⟩

)
.

Lemma 3.4 (cf. Lemma 3.4, [8]). The Fourier symbol (iωA + Id), ω ∈ R of
(A(d/dt) + Id) satisfies

sup
ω∈R

∥(iωA+ Id)−1∥ ≤ 1, sup
ω∈R

∥iωA(iωA+ Id)−1∥ ≤ 2. (29)

Proof. The first inequality follows by symmetry of A, which implies that the sym-
metric part of (iωA + Id) is just Id, hence bounded below by 1. The second one
then follows by resolvent identity

iωA(iωA+ Id)−1 = Id− (iωA+ Id)−1.

From (29) and Parseval’s identity, we find for f ∈ L2(R) that x defined by

x̂(ω) := (iωA+ Id)−1f̂(ω) (30)
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ĝ denoting Fourier transform of g, gives a unique solution x, (d/dt)(Ax) ∈ L2(R) of
(26) for f ∈ L2(R), that is, a weak L2

loc solution in the sense of Definition 3.1 for
the linear inhomogeneous problem on the line.

Now, define stable, center, and unstable projections

Πs := χ(0,+∞)(A) =

∫
R
χα>0 dEα,

Πc := χ0(A) =

∫
R
χα=0 dEα,

Πu := χ(−∞,0)(A) =

∫
R
χα<0 dEα

of −A, where χI denotes indicator function associated with set I, and stable, center,
and ustable subspaces Σs = RangeΠs, Σc = RangeΠc, and Σu = RangeΠu.

It is straightforward to see that the operator-valued functions

Ts(t) :=

∫
R
χα>0 e

−t/αdEα, t ≥ 0

Tu(t) :=

∫
R
χα<0 e

−t/αdEα, t ≤ 0,

(31)

corresponding formally with e−tA−1

Πs and e−tA−1

Πu, are strongly continuous with
Ts(0) = IdΣs and Tu(0) = IdΣu ,

3 and for hs ∈ Σs and hu ∈ Σu generate solutions
xs(t) := Ts(t)hs and xu(t) := Tu(t)hu of the homogeneous equation ((d/dt)A +
Id)x = 0 in forward and backward time, respectively, via xs(t) := Ts(t)hs and
xu(t) := Ts(t)hu. For,

|(Ts(t+ δ)− Ts(t))h|2 =

∫
R
χα>0 (1− e−δ/α)2e−2(t+δ)/α(h, dEαh)

≤
∫
R
χα>0 (1− e−δ/α)2(h, dEαh) → 0

as δ → 0+, for each fixed h, by Lebesgue Dominated Convergence, and similarly for
−t < δ → 0−. A symmetric argument yields the result for Tu.

These are exactly the “bi-stable semigroups” constructed by quite different,
Fourier transform means in [8] (cf. [8, §2]). Note that in general, Ts is not bounded
in the backward time direction, nor Tu in forward time direction, as |α| may be
arbitrarily small, yielding arbitrarily large exponential growth e|t/α|. In particular,
the Cauchy problem ((d/dt)A + Id)x = 0 for t ≷ 0, x(0) = x0 ∈ H is ill-posed in
both forward and backward time directions. Note also that the only homogeneous
solutions on center subspace Σc are, by inspection, the trivial ones x(t) ≡ 0.

For real r > 0, define the unbounded operator |A|−r as the inverse of |A|r from
Range |A|r to Σs ⊕ Σu, that is, |A|−rx =

∫
R\{0} |α|

−rdEαx for x ∈ Range |A|r.
The next result shows that |A|−1/2Ts and |A|−1/2Tu, give solution operators for
boundary data |A|1/2x(0) in Σs and Σu, respectively.

Lemma 3.5. For t > 0 and t < 0, respectively, Ts(t) and Tu(t) take H to Range |A|r
for any r > 0, with sharp bounds

||A|−rTs(t)h| ≤ Ct−r|h| for t > 0 and ||A|−rTu(t)h| ≤ Ct−r|h| for t < 0. (32)

3Recall [7] that strong continuity of an operator T (t) on H is defined as continuity of T (t)x for
each fixed x ∈ H.
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In particular, xs(t) := |A|−1/2Ts(t)gs and xu(t) := |A|−1/2Tu(t)gu are well-defined
for any gs ∈ Σs and gu ∈ Σu. Moreover,

xs, (d/dt)(Axs) ∈ L2(R+) and xu, (d/dt)(Axu) ∈ L2(R−), (33)

so that xs and xu solve (d/dt)(Ax) + x = 0 in forward and backward time, respec-
tively, with boundary values

|A|1/2xs(0) = gs and |A|1/2xu(0) = gu, (34)

and these solutions are unique in the class x, (d/dt)(Ax) ∈ L2(0, τ), for all τ > 0
and τ < 0, respectively.

Proof. Noting that Range |A|r consists of x such that
∫
R\{0}⟨x, |α|

−2rdEαx⟩ < +∞,

we obtain the first result from

⟨Ts(t)h, |α|−2rdEαTs(t)h⟩ = ⟨h, χα>0 e
−2t/α|α|−2rdEαh⟩

together with |α|−2r|e−2t/α| ≲ t−2r for t, α > 0, as follows from z2r ≲ e2z for
z ∈ R+. This gives at the same time (32), which, by taking data h with measure
(h, dEαh) supported near α = t, is easily be seen to be sharp.

The second assertion, (33), follows similarly by the observation that∫ +∞

0

(|α|−1/2e−t/α)2dt =

∫ +∞

0

|α|−1e−2t/αdt =

∫ +∞

0

e−2zdz = constant,

by substitution z = t/α, dz = α−1dt. This gives by Fubini’s Theorem

∥xs∥2L2(R+) =

∫
R+

⟨|A|−1/2Tsg0, |A|−1/2Tsg0⟩

=

∫
R+

⟨g0, |A|−1T 2
s g0⟩

=

∫
R+

∫
R+

|α|−1e−2t/α⟨g0, dEαg0⟩dt

=

∫
R+

∫
R+

|α|−1e−2t/αdt⟨g0, dEαg0⟩

= C|g0|2,

hence xs ∈ L2(R+) and, by (d/dt)(Axs) = −xs, also (d/dt)(Axs) ∈ L2(R+). A sim-
ilar computation gives (33) for Tu. Meanwhile, (34) follows by |A|1/2xs = Ts(t)gs,
|A|1/2xu = Tu(t)gu and strong continuity of Ts, Tu at t = 0±.

Finally, uniqueness can be seen by an argument like that of Section 2, after first
projecting by Πs, Πu, and Πc onto Σs, Σu, and Σc. For, |A|1/2x(0) = 0 implies

⟨x,Ax⟩(0) = 0.

But, for solutions x, (d/dt)(Ax) ∈ L2 of homogeneous equation (d/dt)(Ax) = −x,
the quadratic form ⟨x,Ax⟩ is absolutely continuous, with derivative −⟨x, x⟩ ≤ 0.
Restricted to Σs, where A ≥ 0, we thus have by

⟨x,Ax⟩(t) = ⟨x,Ax⟩(0)−
∫ t

0

|x|(s)2ds ≤ 0

that ⟨x,Ax⟩(t) ≡ 0 for t ≥ 0. This gives forward uniqueness, or uniqueness for
t ≥ 0, of the projection onto Σs. A similar argument yields backward uniqueness,
or uniqueness for t ≤ 0, of the projection onto Σu. Finally, on Σc, the homogeneous
equation reduces to x = 0, giving uniqueness for all t of the projection onto Σc.
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Putting this information together, suppose we have a nontrivial solution x ∈
(0, τ) with |A|1/2x(0) = 0, τ > 0. Then, the projection xs = Πsx vanishes on (0, τ),
as does the projection xc = Πcx. It remains to verify that xu = Πux vanishes
on (0, τ). If |A|1/2xu(τ) = 0, then this follows by backward uniqueness on Σu.
If |A|1/2xu(τ) = g ̸= 0, on the other hand, then xu(t) ≡ |A|−1/2Tu(t − τ)g, by
backward uniqueness of functions valued in Σu. In particular, we would have

0 = xu(0) = |A|−1/2Tu(−τ)g =

∫
R
χα<0 |α|−1/2eτ/αdEαg,

which is evidently false unless dEαg ≡ 0 and thus g = 0. By contradiction, therefore,
the result is proved.

Remark 3.6. Note that we have obtained not only forward (backward) existence for
Cauchy data in Σs (Σu), but uniqueness in both forward and backward directions.
For our purposes here, we only require forward (backward) uniqueness of solutions
in Σs (Σu); however, the more general result seems interesting to note.

We have also the following more familiar reinterpretation of the Fourier-transform
solution (30) via variation of constants. According to our earlier convention, define
the unbounded operator A−r for integer r > 0 as the inverse of Ar from RangeAr =
Range |A|r to Σs ⊕ Σu, that is,

A−rx =
∫
R\{0} α

−rdEαx for x ∈ Range |A|r.

By Lemma 3.5, A−r is well-defined on Ts(t)x for t > 0 and Tu(t)x for t < 0.
To state things most simply, define the spectral cutoffs ga(t) :=

∫
|α|≥a

dEαg(t)

for a > 0 of a function g ∈ L2(R). Evidently, ga → gs + gu := Πsg + Πug both
pointwise and in L2(R) as a → 0+. Then, we have the following variation of
constants type formula, expressed in terms of improper integrals with respect to
the spectral parameter α.

Lemma 3.7. The unique solution y, (d/dt)(Ay) ∈ L2(R) of (d/dt)(Ay) + y = f
defined by (30) may be expressed alternatively as

y(t) = lim
a→0+

(∫ t

−∞
A−1Ts(t− τ)Πsf

a(τ)dτ

−
∫ +∞

t

A−1Tu(t− τ)Πuf
a(τ)dτ

)
+Πcf(t),

(35)

where the limit is taken in L2(R). In particular, for f supported on (τ0, τ1),

ys(t) ≡ 0 for t ≤ τ0 and yu(t) ≡ 0 for t ≥ τ1. (36)

Proof. Since Πs, Πc, and Πu commute with A, it is equivalent to show that ys :=
Πsy, yu := Πuy, and yc := Πcy are given by

ys(t) = lim
a→0+

∫ t

−∞
A−1Ts(t− τ)Πsf

a(τ)dτ,

yu(t) = − lim
a→0+

∫ t

−∞
A−1Tu(t− τ)Πuf

a(τ)dτ,

and yc = Πcf .
The third relation is nothing other than the projection of the evolution equation

onto Σc, since ΠcA = 0. For operators A with |A| ≥ aId > 0 in the sense of quadratic
forms, the first two follow from the standard variation of constants formula for the
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solution of (d/dt)x = −A−1x. For, example, restricting for definiteness to the stable
subspace Σs, we may first project the equation by Πs onto Σs, then, noting that A
in this case has bounded inverse, apply A−1 to obtain the bounded-coefficient ODE

(d/dt)ys +A−1ys = (A+)−1Πsf (37)

Observing that ∥e−A−1tΠs∥ ≤ Ce−t/∥A∥, we obtain by variation of constants that

ys(t) =
∫ t

−∞ A−1Ts(t−τ)Πsf(τ)dτ is the unique solution of (37) in L2. A symmetric

argument yields the result for yu(t).
Now, introduce the spectral cutoffs fa :=

∫
|α|≥a

dEαf of f defined above, for

a > 0, and denote the corresponding solutions y as ya. By fa → Πsf + Πuf in
L2(R), together with the previously-shown boundedness of the solution operator,
we have ya → ys + yu in L2. But, also, |A| ≥ aId > 0 with respect to functions
supported on spectra |α| ≥ a, hence, by the discussion of the previous paragraph,

ya(t) =

∫ t

−∞
A−1Ts(t− τ)Πsf

a(τ)dτ −
∫ +∞

t

A−1Tu(t− τ)Πuf
a(τ)dτ

yielding (35). Property (36) is an immediate consequence.

Remark 3.8. The expression of (35) in terms of improper integrals as |α| → 0+

highlights again the difference from the usual, nondegenerate case [5], for which the
right-hand side of (35) may be expressed in terms of a standard Bochner integral on
Hilbert space-valued functions [3]. We show by explicit counterexample in Appendix
B that this is not necessarily the case in the present, degenerate context.

Remark 3.9. Equation (35) differs from the standard variation of constants formula
in the final term Πcf(t), which appears to be of different form. But, note that
kernels α−1e−t/α for the first two terms converge as α → 0 to a δ-function, formally
yielding the third upon convolution with f .

Combining the above facts, we obtain the following solution formula for the
boundary-value problem on an interval, that is, for solutions x(t) in our L2

loc sense
of the linear problem (26) on (t0, t1) with boundary conditions imposed on the
continuous image |A|1/2x(t) at t = t0, t1.

Proposition 3.10. For each f ∈ L2(t0, t1), g0 ∈ Σs, and g1 ∈ Σu, there is a
unique weak L2

loc solution x, (d/dt)(Ax) ∈ L2(t0, t1), of (26) satisfying boundary
conditions

(|A|1/2Πsx)(t0) = g0, (|A|1/2Πux)(t1) = g1 (38)

on |A|1/2x, given by

x(t) = y(t) + |A|−1/2Ts(t− t0)g0 + |A|−1/2Tu(t− t1)g1,

ŷ(ω) = (iωA+ Id)−1f̂|[t0,t1](ω),
(39)

or alternatively, with y defined by (35), with f extended as 0 outside (τ0, τ1).

Proof. Evidently, z = x− y is a solution of the homogeneous equation

(d/dt)(Az) + z = 0

satisfying the prescribed boundary conditions, while y is a solution of

(d/dt)(Ay) + y = f[t0,t1],
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satisfying by (36) homogeneous boundary conditions |A|1/2Πsy(t0) = 0 and

|A|1/2Πuy(t1) = 0.

Thus, by linear superposition, x = y + z satisfies (26) with boundary conditions
(38). Uniqueness follows from uniqueness of solution zs, zu, and zc ≡ 0 of the
homogeneous equation for z on [t0, t1] under the boundary conditions at t0, t1, a
consequence of Lemma 3.5.

3.2. Relation to mild solutions. With these preparations, we are now ready to
compare our notion of weak L2

loc solution with that of “mild” L2
loc solution defined

as follows in [8] (cf. [5]).

Definition 3.11 ([8, 5]). For f ∈ L2
loc on a given domain D, a mild L2

loc solution
of (26) is a function x ∈ L2

loc(D) with Fourier transform satisfying

x̂(ω) = A(iωA+ Id)−1
[
e−2πiωt0h0 − e−2πiωt1h1

]
+ (iωA+ Id)−1f̂|[t0,t1](ω) (40)

with h0 ∈ Σs and h1 ∈ Σu,
4 or, equivalently (see [8, Remark 3.2]), the variation of

constants type formula

x(t) = y(t) + Ts(t− t0)h0 + Tu(t− t1)h1, ŷ(ω) = (iωA+ Id)−1f̂|[t0,t1](ω). (41)

Definition 3.11 gives a notion of a mild L2
loc solution of (26); a mild L2(R+)

solution of (1) may then be defined as in [8, 9] as a mild L2
loc solution x ∈ L2(R+)

of (26) with f = G(x) (cf. [8, Def. 3.1(ii)] and [8, Lemma 3.3]).
In (40)–(41), h0 and h1 are in general not connected with boundary values of x

at t0 and t1, which may not even be defined. However,

Ts(t− t0)h0 + Tu(t− t1)h1

is continuous, while y(t) (since decaying at ±∞) vanishes on (−∞, t0) in stable
modes and on (t1,∞) in unstable modes. Thus, for H1 solutions, admitting con-
tinuous representatives (the class ultimately considered in the invariant manifold
constructions of [8, 9, 12]), we have Πsx(t0) = h0 and Πux(t1) = h1; in particular,
for H1(R+) solutions of (1), there is a well-defined boundary value Πsx(0) at t = 0.

Comparing (39) and (41), and noting that

|A|−1/2Ts|A|1/2 = Ts, |A|−1/2Tu|A|1/2 = Tu,

we see that mild solutions are L2
loc solutions as defined here, but not conversely.

Indeed, they are precisely the subclass of L2
loc solutions for which the boundary

values g0 and g1 of |A|1/2x(t) at t0 and t1 are given by |A|1/2Πsh0 and |A|1/2Πuh1

with hj ∈ H, i.e., for which g0 and g1 lie in Range |A|1/2.
Remark 3.12. The representations (40)–(41) were derived in [8] under the assump-
tion that A be one-to-one; however, this assumption is not necessary, as shown
by our analysis above. Indeed, one may check that the entire H1 stable mani-
fold construction of [8] goes through for general A. We note that the key relation

A(iωA + Id)−1e−2πiωt0x(t0) = ̂(Ts(t− t0)x(t0)) linking (40) and (41) (see [8, Re-
mark 3.2(ii)]) follows in the general case from the result in the invertible case, by
the observation that

A(iωA+ Id)−1e−2πiωt0 = ΠsuA(iωA+ Id)−1e−2πiωt0 ,

4In [8, 5], for which there was assumed no center subspace, this definition was given for hj ∈ H;
however, without loss of generality it may be stated as above, thus allowing also the case of a

nontrivial center subspace.
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where Πsu = Πs + Πu denotes projection onto Σs ⊕ Σu. Likewise, (39) has the
equivalent frequency-domain formulation

x̂(ω) = A(iωA+ Id)−1|A|−1/2
[
e−2πiωt0g0 − e−2πiωt1g1

]
+ (iωA+ Id)−1f̂|[t0,t1](ω).

4. Applications to Boltzmann’s equation. The main example considered in
[8] was the steady Boltzmann equation (plus cousins and discrete approximations),

ξ1fz = Q(f, f), z ∈ R1, ξ ∈ R3, (42)

with hard-sphere collision operator Q, f = f(z, ξ) denoting density at spatial point
z of particles with velocity ξ, which, after the coordinate change f → ⟨ξ⟩1/2f ,
Q → ⟨ξ⟩1/2Q, ⟨ξ⟩ :=

√
1 + |ξ|2, can be put in form Awz = Q(w,w), with H the

standard square-root Maxwellian-weighted L2 space in variable ξ, A = ξ1/⟨ξ⟩ a
multiplication operator, and Q a bounded bilinear map [6]. Note that A has no
kernel on L2. However, 0 is in the essential range of the function ξ1/⟨ξ⟩, hence in
the essential spectrum of the operator of multiplication by ξ1/⟨ξ⟩. That is, A is
“essentially singular”.

Introducing the perturbation variable x := w − w0, where w0 is an equilibrium,
Q(w0, w0) = 0, and performing some straightforward further reductions [8, 12]
converts the equations to form (1), with t = z and G(x) = B(x, x), B a bounded
bilinear map. In this context, the problem considered here, of decay and smoothness
of small solutions x(t), amounts to the study of convergence and smoothness of
solutions toward an equilibrium w0. The particular motivation described in [8] was
the desire to study existence and temporal stability of large-amplitude heteroclinic
connections, or planar Boltzmann shock or boundary layers, for which the study
of stable manifolds and decay to equilibria is an important first step. The main
result of [8] was construction of an H1 stable manifold at w0 containing all orbits
sufficiently close to w0 in H1(R+), exhibiting uniform exponential decay.

The global problem of existence and structure of large-amplitude Boltzmann
shocks, as discussed by Truesdell, Ruggeri, Boillat, and others [1], is one of the
fundamental open problems in Boltzmann theory. For this larger problem, it is im-
portant to know that the H1 stable manifolds of [8] in fact contain all candidates for
heteroclinic connections, i.e., that the H1(0,+∞) regularity imposed on solutions
in [8] is not too strong, eliminating potential connections. Thus, the questions of
regularity considered in the present paper are not just technical, but central to the
physical discussion.

In particular, we have answered here in the affirmative the two main open ques-
tions posed in [8]:

1. Do asymptotically decaying (or just sufficiently small) L2
loc(R+) solutions of

(1) decay exponentially in t?
2. Are small (in sup norm) L2

loc(R+) solutions necessarily in H1 or higher Sobolev
spaces?
These results, together with those of [8], imply that the tail of any (small- or large-
amplitude) Boltzmann shock or boundary layer is C∞ and lies in the H1 stable
manifold constructed in [8].

5. Discussion and open problems. The results of instantaneous smoothing ob-
tained here are somewhat analogous to interior regularity results for more standard
boundary-value problems, e.g., elliptic and other boundary-value ODE. However,
here, it should be noted, due to allowed degeneracy of A, there is in general no gain
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in regularity in solutions of the linear inhomogeneous problem (d/dt)Ax + x = f
of Proposition 3.10, with L2 forcing f leading to L2 regularity and not higher of
solutions x. More, as discussed in [8, 12], the Fourier multiplier (iωA + Id)−1 is
bounded on Lp for 1 < p < ∞, but not p = 1 or ∞; thus, the solution operator is
not associated with an integrable kernel as in more standard cases.

An interesting remaining open problem is to construct L∞ decaying solutions of
(1) that are not small in H1, i.e., backward extensions of the manifold of H1 solu-
tions constructed in [8]. (Here, we showed that solutions that are eventually small
in L∞ in fact decay to this manifold, but did not produce any such.) A related very
interesting open problem, moving toward construction of full heteroclinic orbits, is
the question of backward uniqueness of solutions of (1), i.e., whether L∞(0,+∞)
solutions agreeing on t ≥ t′ > 0 must agree on t > 0. Existence of large Boltz-
mann shocks- the “structure problem of Ruggeri et al [1]- is a major open problem,
involving in addition separate, and presumably more problem-dependent, issues of
global analysis.

We note that forward uniqueness of small L∞(0,+∞) solutions holds for G Lips-
chitz with small Lipschitz norm, by essentially the same argument as in step 1 of the
proof of Theorem 1.3 applied to the error equation governing e := x1 − x2, where
x1 and x2 are two solutions with x1(0) = x2(0). This extends the result of forward
uniqueness of H1(0,+∞) solutions following from the H1 stable manifold results
of [8]. Thus, an interesting preliminary question is whether backward uniqueness
of small L∞(0,+∞) solutions can fail for the same class of Lipschitz G with small
Lipschitz norm.

Appendix A. Sobolev estimates for difference operators.

Lemma A.1. (i) For f : (0,+∞) → H in L2(0,+∞), there holds√∫ ∞

0

|f ′|2 ≲ lim inf
τ→0+

τ−1∥f(·+ τ)− f(·)∥L2(R+,H).

(ii) For f : (0,+∞) → H in H1
loc(0,+∞), there holds τ−1(f(·+ τ)− f(·)) → f ′ in

L2
loc as τ → 0+.

Proof. (i). By Fatou’s Lemma,

∥(d/dt)g∥L2(R) =

∫
R
ω2|ĝ|2dω

=

∫
R

lim
τ→0+

|τ−1(e−iτω − 1)ĝ(ω)|2dω

≤ lim inf
τ→0+

∫
R
|τ−1(e−iτω − 1)ĝ(ω)|2dω

= lim inf
τ→0+

∥∥∥τ−1(g(·+ τ)− g(·))
∥∥∥
L2(R)

for functions g ∈ L2(R). Setting g = χεf with χε(z) := χ(z/ε) a smooth cut-
off function, χ(z) equal to zero for z = 0 and 1 for z ≥ 1, and observing that
sup |(χε)′| ≲ ε−1, we thus have

τ−1∥χεf(·+ τ)− χεf(·)∥L2(R) ≲ τ−1∥f(·+ τ)− f(·)∥L2(0,+∞) + ε−1∥f∥L2(0,+∞),

whence f ∈ H1(ε,+∞), and f ∈ C0[ε,+∞), for each ε > 0 (albeit with bound
∼ ε−1 blowing up as ε → 0+).
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In particular, f has a well-defined vaue f(ε) at x = ε. Extending f |[ε,+∞) by

f̃(t) :=

{
f(t) t ≥ ε,

f(ε) t ≤ ε,

and defining a different smooth cutoff function χ̃L(z) := χ̃(z/L), with χ̃(z) equal to

zero for z ≤ −1 and 1 for z ≥ 0, set g̃ = χ̃Lf̃ . Using g̃′ = (χ̃L)′f(ε) + χ̃Lf ′|(ε,+∞),
we have

∥f̃ ′∥L2(ε,+∞) ≤ ∥g̃′∥L2(R) ≤ lim inf
τ→0+

τ−1∥g̃(·+ τ)− g̃∥L2(R). (43)

Computing, by Jensen’s inequality that

τ−2

∫ τ

0

|f(ε+ t)− f(ε)|2dt =
∫ τ

0

∣∣∣ ∫ t

0

f ′(ε+ s)ds
∣∣∣2dt

≤ τ−2

∫ τ

0

t dt∥f ′∥2L2(ε,ε+τ) ≤ ∥f ′∥2L2(ε,ε+τ) → 0

as τ → 0+, and using ∥(χ̃L)′∥L2(R) = L−1/2∥χ̃′∥L2(R) together with the reverse

inequality τ−1|∥χ̃L(· + τ) − χ̃L∥L2(−∞,ε−τ) ≤ ∥(χ̃L)′∥L2(−∞,ε), we have also, for
τ < ε,

τ−1∥g̃(·+ τ)− g̃∥L2(R) − τ−1∥f(·+ τ)− f∥L2(ε,∞) ≤
τ−1|f(ε)| ∥χ̃L(·+ τ)− χ̃L∥L2(−∞,ε−τ)

+ τ−1
(∫ τ

0

|f(ε+ t)− f(ε)|2dt
)1/2

→ 0

(44)

as L → ∞ and τ → 0+.
Taking lim infτ→0+ limL→∞ of (44), and combining with (43), we thus obtain

∥f ′∥L2(ε,+∞) ≤ lim inf
τ→0+

τ−1∥f(·+ τ)− f(·)∥L2(ε,+∞)

for each ε > 0, whence the first assertion follows in the limit as ε → 0+.
(ii) Similarly, for functions g ∈ H1(R), we have τ−1(g(·+τ)−g(·)) → g′ in L2(R),

by limτ→0+ τ−1(e−iτω−1)ĝ = iωĝ(ω) a.e. and the Lebesgue dominated convergence
theorem, noting that |τ−1(e−iτω−1)ĝ| ≲ |ωĝ| ∈ L2(R) by supz∈R |z−1(eiz−1)| ≲ 1.
Thus, for f ∈ H1(t0− δ, t0+ δ), δ > 0, we have, defining g := χ(t)f(t), where χ is a
smooth cutoff equal to 1 for t ∈ (t0 − δ/2, t0 + δ/2) and zero outside (t0 − δ, t0 + δ),
that τ−1(g(·+ τ)− g(·)) → g′ in L2(R), and therefore τ−1(f(·+ τ)− f(·)) → f ′ in
L2(t0 − δ/4, t0 + δ/4). As t0 and δ > 0 were arbitrary, the result follows.

Lemma A.2. For any t ∈ R, there holds∫ +∞

t

|x|4 ≤
( 2

21/4 − 1

)2(∫ +∞

t

|x|2
)(

sup
τ>0

∫ +∞

t

τ−1|x(s+ τ)− x(s)|2ds
)
.

Proof. Denoting C1 =
∫ +∞
t

|x|2 and C2 = supτ>0

∫ +∞
t

τ−1|x(s+ τ)− x(s)|2ds, we
have ∫ +∞

t

|x|2 ≤ C1

and
∫ +∞
t

|x(s+ τ)− x(s)|2ds ≤ C2τ for all τ > 0.
Let

ϕh(t) :=

{
1/h for 0 ≤ t ≤ h,

0 otherwise.
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Then, on (t,+∞), we have for any choice of scale σ > 0 the Haar decomposition

x(s) = lim
k→∞

∫ +∞

0

x(s+ u)ϕ2−kσ(u)du

=

∫ +∞

0

x(s+ u)ϕσ(u)du+
∑

k≥1, h=2−kσ

∫ +∞

0

x(s+ u)[ϕh(u)− ϕ2h(u)]du

=: xσ +
∑

k≥1, h=2−kσ

x̃h.

Note by Jensen’s inequality that∫ +∞

t

|xσ|2 ≤
∫ +∞

t

∫ +∞

0

ϕσ(u)|x(s+ u)|2du ds

=

∫ +∞

0

ϕσ(u)

∫ +∞

t

|x(s+ u)|2ds du

≤
(∫ +∞

0

ϕσ

)(∫ +∞

t

|x|2
)
≤ C1,

and by Cauchy-Schwarz’ inequality that

∥xσ∥L∞(t,+∞) ≤
(∫ +∞

t

|x|2
)1/2(∫ +∞

0

|ϕσ|2
)1/2

≤
√
C1(1/

√
σ) =

√
C1/σ,

whence
∫ +∞
t

|xσ|4 ≤ ∥xσ∥2L∞(t,+∞)

∫ +∞
t

|xσ|2 ≤ C2
1/σ.

Note also that ϕh(u)− ϕ2h(u) = (1/2)[ϕh(u)− ϕh(u− h)], so that

x̃h(s) = (1/2)

∫ +∞

0

x(s+ u)[ϕh(u)− ϕh(u− h)]du

= (1/2)

∫ +∞

0

[x(s+ u)− x(s+ u+ h)]ϕh(u)du,

and therefore, similarly to the previous computation,∫ +∞

t

|x̃h|2 ≤ (1/4)

∫ +∞

t

|x(s+ h)− x(s)|2ds ≤ (1/4)C2h,

while

∥x̃h∥L∞(t,+∞) ≤ (1/2)

√∫ +∞

t

|x(s+ h)− x(s)|2ds

√∫ +∞

0

ϕ2
h

≤ (1/2)
√

C2h(1/
√
h) = (1/2)

√
C2.

Thus,
∫ +∞
t

|x̃h|4 ≤ ∥x̃h∥2L∞(t,+∞)

∫ +∞
t

|x̃h|2 ≤ (1/16)C2
2h ≤ (1/16)C2

2σ2
−k for

h = σ2−k, whence

∥x∥L4(t,+∞) ≤ ∥xσ∥L4(t,+∞) +
∑

k≥1, h=2−kσ

∥x̃h∥L4(t,+∞)

≤ (C2
1/σ)

1/4 + (C2
2σ/16)

1/4
∑
k≥1

2−k/4

= C
1/2
1 /σ1/4 + C

1/2
2 σ1/4/(2(21/4 − 1)).
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Taking σ1/4 = (C1/C2)
1/4

√
2(21/4 − 1) to minimize the right-hand side gives

∥x∥L4(t,+∞) ≤
(
(2/(21/4 − 1))2C1C2

)1/4

as required.

Appendix B. Integrals and counterexample. We conclude with an explicit
counterexample showing that our expression (35) of the variation of constants for-
mula in terms of improper integrals as a → 0+ cannot in general be reformulated
in terms of standard Bochner integrals for Hilbert space-valued functions [3].

Let H = L2(0, 1) and A the multiplication operator Ah(α) = αh(α). Then, Ts(t)
is also a multiplication operator, with Ts(t)h(α) = e−t/αh(α) and A−1Ts(t)h(α) =
α−1e−t/αh(α). Meanwhile Πs = Id, Πu, Tu, and Πc are identically zero, hence (35)
reduces to

y(t) = ys(t) = lim
a→0+

∫ t

−∞
A−1Ts(t− τ)fa(τ)dτ. (45)

The question is whether the righthand side of the above, or, equivalently, after the

change of variables σ := t− τ , expression lima→0+
∫ +∞
0

A−1Ts(σ)f
a(t− σ)dσ, can

be interpreted as a Bochner integral
∫ +∞
0

A−1Ts(σ)f(· − σ)dσ in L2(R,H), that is,
as an integral over σ ∈ (0,+∞) of an integrand valued not in H but in the large
Hilbert space L2(R,H).

Recall [3] that Bochner integrability requires Lebesgue integrability with respect
to σ of the norm of the integrand, in this case, integrability on (0,+∞) of

∥A−1Ts(σ)f(· − σ)∥L2(R,H) =
(∫

R

∫ 1

0

(
α−1e−σ/αf(t− σ, α)

)2
dα dt

)1/2

. (46)

Take now f(t, α) := α−1/2(| logα|+ 1)−r/2ϕ(t), where ϕ ∈ L2 and r > 1. Then,

∥f∥2L2(R,H) =

∫
R

∫ 1

0

(
α−1/2(| logα|+ 1)−r/2ϕ(t)

)2
dα dt = ∥ϕ∥2L2

∫ 1

0

α−1(| logα|+ 1)−rdα
)

is finite, hence f ∈ L2(R,H). But,(∫
R

∫ 1

0

(
α−1e−σ/αf(t− σ, α)

)2
dα dt

)1/2

=(∫
R

∫ 1

0

(
α−1e−σ/αα−1/2(| logα|+ 1)−r/2ϕ(t)

)2
dα dt

)1/2

= ∥ϕ∥L2(R,R)

(∫ 1

0

α−3e−2σ/α(| logα|+ 1)−rdα
)1/2

,

after the change of coordinates z := α/σ becomes

∥ϕ∥L2(R,R)σ
−1

(∫ 1/σ

0

z−3e−2/z

(| log z + log σ|+ 1)r
dz

)1/2

≳ σ−1
(∫ 1

1/2

z−3e−2/z

(| log z + log σ|+ 1)r
dz

)1/2

≳ σ−1(| log σ|+ 1)−r/2

as σ → 0, which, for 1 < r ≤ 2 is not integrable on (0,+∞). This example shows
that (35) cannot in general be expressed in terms of standard, Bochner integrals.
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