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Indirect contact matters: Mid-flight external trunk perturbation increased

unilateral anterior cruciate ligament loading variables during jump-landings
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Abstract

Background: To determine the effect of unanticipated mid-flight medial-lateral external perturbation of the upper or lower trunk on anterior cru-

ciate ligament (ACL) loading variables during jump-landings.

Methods: Thirty-two participants performed double-leg vertical jump-landings while bilateral kinematics and kinetics were collected under 6

conditions (upper or lower trunk perturbation locations; no, left, or right perturbation directions). Two customized catapult apparatuses were cre-

ated to apply pushing perturbation to participants near the maximal jump height.

Results: The ball contacted participants near the center of mass for the lower-trunk conditions and approximately 23 cm above the center of mass

for the upper-trunk conditions. Under upper-trunk perturbation, the contralateral leg demonstrated significantly smaller knee flexion angles at ini-

tial contact and greater peak knee abduction angles, peak vertical ground reaction forces, peak knee extension moments, and peak knee adduction

moments compared to other legs among all conditions. Under lower-trunk perturbation, the contralateral leg showed significantly smaller knee

flexion angles at initial contact and increased peak vertical ground reaction forces and peak knee extension moments compared to legs in the no-

perturbation conditions.

Conclusion: Mid-flight external trunk pushing perturbation increased ACL loading variables for the leg contralateral to the perturbation. The

upper-trunk perturbation resulted in greater changes in ACL loading variables compared to the lower-trunk perturbation, likely due to trunk and

ipsilateral leg rotation and more laterally located center of mass relative to the contralateral leg. These findings may help us understand the mech-

anisms of indirect-contact ACL injuries and develop jump-landing training strategies under mid-flight trunk perturbation to better prevent ACL

injury.

Keywords: ACL injuries; Kinematics; Kinetics; Landing; Biomechanics

1. Introduction

The anterior cruciate ligament (ACL) injury is one of the

most common and severe injuries in sports.1,2 Video analyses

of ACL injuries show that ACL injuries occur within 100 ms

of initial ground contact during landing and cutting tasks.3�7

They also show that near the time of injury the injured leg was

supporting most of the body weight and the injured knee was

typically close to full extension, abducted, and internally

rotated.3�7 Both in vivo and in vitro studies have shown that

an anterior tibial shear force applied to an almost fully

extended knee is the primary loading mechanism of the ACL,

while tibial compressive forces, knee internal rotation

moments, and knee abduction moments may make secondary

contributions to ACL loading.7�9

Most ACL injuries occur without external objects directly

contacting the knee joint.6,10 As such, the mechanisms and

risk factors for non-contact ACL injuries have been studied

extensively.7,11,12 However, indirect contact—defined as con-

tact with body parts other than the injured knee5—appears to

play a role in many ACL injuries. First, contact sports have

shown more than 3 and 6 times increased risk of ACL injury
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compared to limited-contact sports and non-contact sports,

respectively.13 Additionally, video analyses of ACL injury

cases in multiple team sports have shown that 8%�60% of

ACL injuries are associated with contact to the trunk and/or

arms prior to or near the estimated time of injury.5 Approxi-

mately half of the ACL injuries in female team handball and

netball involved certain forms of perturbation and trunk con-

tact with external objects in the air.14,15 One frequent scenario

was when an athlete collided with something or someone or

was pushed or held, consequently demonstrating unbalanced

body control prior to the injury.14�18

Previous studies quantified the effects of mid-flight self-ini-

tiated trunk motion on jump-landing mechanics. Self-initiated

trunk extension, lateral bending, and rotation could modify

mid-flight whole-body and segment center of mass (COM) tra-

jectories and result in increased unilateral ACL loading varia-

bles, such as increased ground reaction forces (GRF),

decreased knee flexion angles, and increased knee abduction

angles during landings.19�21 Only a single study assessed land-

ing mechanics by applying mid-flight lateral pulling perturba-

tion to the upper trunk from the dominant-leg side, and it

found that the perturbation resulted in increased GRF and

decreased knee flexion angles for the dominant leg.22 It should

be noted that the external perturbation was only applied to the

upper trunk in one direction, and only the dominant leg’s land-

ing mechanics were assessed. Quantifying the effects on bilat-

eral landing mechanics of unanticipated mid-flight external

perturbation of different locations on the trunk will provide

information for understanding indirect-contact ACL injury

mechanisms and help explain the connection between whole-

body movements and injured knee motion in ACL injury

events. A significant perturbation effect will support the inclu-

sion of external perturbation in ACL injury risk-screening

tasks, particularly for sports that have high rates of indirect-

contact ACL injuries. The potential effects of external pertur-

bation on landing mechanics may also be incorporated into

educational and training programs to increase athletes’ aware-

ness and readiness to prepare for safe landings after mid-flight

external perturbation.

Therefore, the purpose of this study was to determine the

effects of unanticipated mid-flight medial-lateral external per-

turbation of the upper or lower trunk on bilateral ACL loading

variables during jump-landings. It was hypothesized that the

leg contralateral to the pushing perturbation would show

increased ACL loading variables compared to the ipsilateral

leg for both upper-trunk and lower-trunk conditions and both

legs for the no-perturbation condition. In addition, upper-trunk

perturbation would result in greater increases in unilateral

ACL loading variables compared to lower-trunk perturbation.

2. Methods

2.1. Participants

An effect size of 0.89 was estimated for differences in peak

vertical GRF between the perturbation and no-perturbation

conditions.22 Based on this effect size, a sample size of 12 was

needed to achieve a power of 80% at a type I error rate of

0.05. Thirty-two recreational athletes with jump-landing expe-

rience and without a history of major injuries (16 males and 16

females, age: 21.55 § 2.23 years (mean § standard deviation);

height: 1.72 § 0.10 m; mass: 71.57 § 12.88 kg) were

recruited. To participate in the study, participants needed to

have experience playing sports that involve jump-landing

activities, such as basketball, soccer, volleyball, and American

football. Participants needed to be physically active at least

2 times per week for a total of 2 h at the time of testing.19 Par-

ticipants were excluded if they (a) had a previous ACL injury

or any other lower-extremity surgery, (b) had a lower-extrem-

ity injury that prevented participation in physical activities for

more than 2 weeks in the last 6 months, (c) had any conditions

that prevented them from maximal effort in sporting activities,

(d) were allergic to adhesive, or (e) were pregnant. This study

was approved by the University of Wyoming Institutional

Review Board, and participants signed a consent form prior to

participation.

2.2. Perturbation apparatuses

Two customized catapult apparatuses were designed to cre-

ate mid-flight external perturbation with consistent lateral

pushing momentum (Fig. 1). Two 4.54 kg slam balls were

placed on the apparatuses with stretched elastic bands. The

goal was to release the ball with constant horizontal and

upward velocities and, therefore, a pre-determined projectile

trajectory for a specific release height. During the jump-land-

ing trials, researchers pulled a trigger to release the ball with

the goal of having the ball contact the participant near the max-

imal jump height with a close-to-zero vertical ball velocity and

a horizontal ball velocity of 5 m/s. To ensure the ball had

close-to-full contact with the participant, the ball would need

to land within a 1-m diameter circle that was drawn on the

ground around the contact point. The mass and contact veloci-

ties of the ball were selected, based on preliminary testing, to

result in moderate perturbation to landing patterns without sig-

nificantly increasing injury risk to participants.

2.3. Protocol

After changing into spandex clothes and standard running

shoes, participants performed a generalized warm-up proto-

col.21 The participant’s jump heights were measured using a

Vertec (Sports Imports, Columbus, OH, USA). The upper-

trunk and lower-trunk regions were defined between the acro-

mion and the 5th rib and between the iliac crest and the greater

trochanter, respectively. The horizontal distance of the appara-

tuses was adjusted based on the participants’ shoulder width

so that the ball would contact the participant at the ball’s maxi-

mal height. Based on the participants’ jump height and stand-

ing heights of the armpit and iliac crest, the release height of

the ball was adjusted by moving the component that held the

ball in the vertical direction so that the ball would contact the

upper- or lower-trunk region when the participant reached the

maximal jump height. Participants wore a helmet and per-

formed 2 standing and 6 jump-landing practice trials to

become accustomed to the perturbation. For standing trials,
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the ball contacted the lower trunk while participants stood still.

For jump-landing practice trials, participants started with feet

shoulder-width apart and each foot on a force platform (Bertec

FP4060-10; Bertec Corporation, Columbus, OH, USA; 1600

Hz) then jumped vertically as high as possible. Participants

raised both arms during mid-flight and experienced no pertur-

bation or left/right perturbation and landed with one foot on a

force platform. No instruction regarding specific landing tech-

niques (soft landing, trunk motion, knee flexion, etc.) was pro-

vided. Participants performed a combination of different

perturbation locations and directions for practice trials. The

current jump-landing task was designed to simulate a jump-

landing with mid-flight external pushing perturbation, which

could be created by pushing forces from another player or by

colliding with another player or equipment. Examples of such

scenarios include netball and handball players jumping to

catch a ball, soccer players jumping to head a ball, and basket-

ball players jumping to rebound a ball while there is bodily

contact with another player.14�18

Forty retro-reflective markers were placed19,21 on the par-

ticipant (Fig. 1), and 2 markers were placed on each ball.

Eight opto-reflective cameras (Bonita 10; Vicon Motion Sys-

tem, Oxford, UK; 160 Hz) were used to capture the 3-dimen-

sional coordinates. After a static trial, participants performed

a minimum of 3 successful trials for each combination of

perturbation locations (upper or lower trunk) and perturbation

directions (no, left, or right perturbation) (Fig. 2) in a ran-

domized order. Participants knew the perturbation location

but did not know the perturbation direction prior to the trial.

A minimum of a 30-s break was provided between trials. A

trial was repeated if (a) participants did not land with one

foot on each force platform, (b) the ball contacted the partici-

pant 125 ms before or after the maximal jump height, or (c)

the ball did not land in the targeted area after the impact. The

check of timing offset was done by opening the motion cap-

ture software, visually inspecting the marker positions, and

counting the time frames after each trial.

After completion of official trials, participants were asked

whether they could predict the perturbation direction and how

strongly they felt about the mid-flight perturbation via a 5-

point scale (minimum (1), minor (2), moderate (3), major (4),

and maximum (5)) using their sports experience as a refer-

ence.

2.4. Data reduction

Raw kinematic and GRF data were filtered using a fourth-

order Butterworth low-pass filter at 15 Hz for the inverse

dynamic approach.23 Raw GRF data were also filtered at

100 Hz to extract impact GRF. Fifteen segments were defined

Fig. 1. This figure shows (A) anterior and (B) posterior views of marker placement and customized catapult apparatuses in a static trial.
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to calculate the whole-body COM.21 The definitions of joint

centers, segment reference frames, the calculations of knee

joint angles and internal joint resultant moments, and trunk

segment angles were previously described.20 Forces were nor-

malized to body weight. Joint moments were expressed as

internal moments and normalized to the product of body

weight and body height. The ball contact was defined as the

first frame when the horizontal ball velocity decreased by 3%.

Variables to assess the consistency of the perturbation

included horizontal and vertical ball velocities at contact, tim-

ing offset between ball contact and maximal COM height, and

ball contact locations relative to COM height. ACL loading

variables were quantified at initial contact and during the

early-landing phase, defined as the first 100 ms after initial

contact.24 Kinematic variables included bilateral landing time

differences; lateral trunk bending angles; COM�ankle abso-

lute distances; knee flexion, knee abduction, and knee internal

rotation angles at initial contact; and peak knee flexion, abduc-

tion, and internal rotation angles during early landing. Kinetic

variables included peak vertical GRF and peak knee extension,

external rotation, and adduction moments during early landing.

Data reduction was performed in MATLAB 2021b (Math-

Works, Natick, MA, USA).

2.5. Statistical analysis

Two (upper-trunk and lower-trunk perturbation locations)

by 2 (left and right perturbation directions) repeated-measures

analyses of variance (RMANOVA) were applied to ball veloc-

ities, contact time, and contact locations. Two (upper-trunk

and lower-trunk) by 3 (no-perturbation, left-perturbation, and

right-perturbation) RMANOVAs were performed for jump

height, landing time differences, and lateral trunk bending

angles. Two (upper-trunk and lower-trunk) by 6 (left-leg and

Fig. 2. This figure shows different mid-flight perturbation locations and directions, including (A and B) upper trunk�right perturbation, (C and D) lower

trunk�left perturbation, and (E and F) lower trunk�no perturbation. The two events are (A, C, and E) the ball contacting the participant near the maximal jump

height and (B, D, and F) the participant landing on the force platforms.
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right-leg for no-perturbation, ipsilateral-leg and contralateral-

leg for left-perturbation, and ipsilateral-leg and contralateral-

leg for right-perturbation) RMANOVAs were performed for

other variables.

Paired t tests were utilized between each pair of compari-

sons when a significant main effect was found by RMANO-

VAs. A type-I error of RMANOVAs was set at 0.05. The

Benjamini�Hochberg procedure was performed on all t tests

to control the study-wide false discovery rate at 0.05.25 The

effect sizes were evaluated using Cohen’s dz. Effect size �0.5

is defined as “small,” 0.5�0.8 is “medium,” or �0.8 is

“large.”26 Statistical analyses were conducted in SPSS statis-

tics (Version 22.0; IBM, Armonk, NY, USA).

3. Results

No injury occurred, and no participant reported that they

could predict the perturbation direction. The subjective assess-

ments of the perturbation were 2.6 § 0.7, indicating a close-

to-moderate perturbation. Seven trials (none in the same condi-

tion) were excluded due to the ball contacting participants out

of the 125 ms range or missing markers. The largest p value

for paired t tests was 0.031 after the false discovery adjust-

ment. The effect sizes and p values for each comparison were

included in the Supplementary Tables 1�4.

3.1. Perturbation consistency

Horizontal ball velocities at contact were slightly (2%) but

significantly faster for the lower-trunk conditions than the

upper-trunk conditions for both left and right perturbations

(Table 1). Contact locations were significantly higher for the

upper-trunk conditions compared to the lower-trunk conditions

for both left and right perturbations. No significant differences

were observed for vertical ball velocities or contact time.

3.2. Perturbation effects

Significant interactions were found for all variables except

jump height and peak knee internal rotation angle (Tables

2�4). Left and right perturbation generally resulted in similar

changes in ACL loading variables to the ipsilateral and contra-

lateral legs compared to no-perturbation for both upper-trunk

and lower-trunk conditions. The upper-trunk perturbation

resulted in the greatest landing-time difference, with the con-

tralateral leg landing earlier than the ipsilateral leg, and the

greatest lateral trunk bending to the contralateral leg when

compared to other conditions. The upper-trunk perturbation

also showed the shortest COM�ankle distance for the contra-

lateral leg and the greatest COM�ankle distance for the ipsi-

lateral leg.

Regarding ACL loading variables, the contralateral leg for

the upper-trunk perturbation demonstrated the smallest knee

flexion and the greatest knee abduction angles at initial contact

and the greatest peak knee abduction angles, peak vertical

GRF, peak knee extension moments, and peak knee adduction

moments compared to other legs among all conditions. The

contralateral leg for the lower-trunk perturbation also showed

decreased knee flexion angle at initial contact and increased

peak vertical GRF and knee extension moment compared to

the 2 legs in the no-perturbation conditions.

A secondary analysis was performed with sex as a between-

participant variable. While males and females demonstrated

significant differences for several variables, their responses to

perturbation locations and directions were similar overall

(Supplementary Tables 5�7).

4. Discussion

The purpose of this study was to determine the effects of

unanticipated mid-flight medial-lateral external perturbation of

the upper or lower trunk on bilateral ACL loading variables

Table 1

RMANOVAs for ball contact parameters (mean § standard deviation).

Left perturbation Right perturbation p for RMANOVA

Location Direction Interaction

Horizontal ball velocity (m/s)

Upper trunk 5.05 § 0.30* 5.06 § 0.27* <0.001 0.807 0.020

Lower trunk 5.18 § 0.24* 5.14 § 0.24*

Vertical ball velocity (m/s)

Upper trunk �0.05 § 0.29 �0.00 § 0.33 0.207 0.499 0.662

Lower trunk �0.03 § 0.26 0.01 § 0.27

Timing offset (ms)

Upper trunk 6.0 § 30.4 �0.9 § 42.5 0.183 0.681 0.393

Lower trunk 8.0 § 37.5 9.0 § 33.1

Contact location (m)

Upper trunk 0.22 § 0.07* 0.24 § 0.06* <0.001 0.169 0.943

Lower trunk �0.04 § 0.07* �0.02 § 0.07*

Notes: Timing offset was defined as the time differences between ball contact and maximal COM height, with a positive number indicating the ball contacted ear-

lier than the maximal COM height. Contact locations were defined as the differences between the ball and the COM, with a positive number indicating the ball

was higher than the COM.Q2 X X

* Significantly different between upper and lower trunks for both perturbation directions.Abbreviations: COM = center of mass; RMANOVA = repeated-measures

analyses of variance.
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during jump -landings. The ball parameters were consistent,

with only minimal differences in horizontal ball velocity

between the upper-trunk and lower-trunk conditions, likely

due to the inherent variation of the apparatuses. It is unlikely

this difference affected the results since the upper-trunk condi-

tion, which demonstrated the greatest ACL loading variables,

exhibited slightly lower horizontal ball velocities. On average,

the ball contacted the participant near the maximal jump

height with close-to-zero vertical ball velocity. Ball contact

locations were near the COM (�3 § 7 cm) in the vertical

direction for the lower-trunk conditions and approximately

23 § 7 cm above the COM for the upper-trunk conditions.

Table 2

RMANOVAs for jump height, landing time differences, and lateral trunk bending angles (mean § standard deviation).

No perturbation Left perturbation Right perturbation p values for RMANOVAs

Location Direction Interaction

Jump height (m)

Upper trunk 0.44 § 0.11 0.44 § 0.11 0.44 § 0.11 0.138 0.709 0.268

Lower trunk 0.44 § 0.11 0.44 § 0.11 0.44 § 0.11

Landing time differences (ms)

Upper trunk 0.1 § 6.0 38.0 § 77.0*,y 30.6 § 25.2*,y 0.002 0.003 0.023

Lower trunk 1.0 § 7.4 6.7 § 10.2*,y 7.9 § 11.5*,y

Lateral trunk bending angles at initial contact (˚)

Upper trunk �0.4 § 2.3 6.4 § 3.0*,y 6.8 § 3.4*,y <0.001 <0.001 <0.001

Lower trunk �0.2 § 2.9 �3.4 § 3.8*,y �1.8 § 3.3*,z

Notes: Landing time differences were defined as the time differences at initial ground contact between 2 legs, with a positive number indicating the contralateral

leg or the right leg landed earlier with or without perturbation. Lateral trunk bending angles were positive when the trunk bent to the contralateral or the right side

with or without perturbation.

* Significantly different compared with lower trunk for each perturbation direction.
y Significantly different compared with no perturbation for each perturbation location.
z Significantly different compared with left perturbation for each perturbation location.Abbreviations: RMANOVA = repeated-measures analyses of variance.

Table 3

RMANOVAs for landing kinematic variables (mean § standard deviation).

No perturbation Left perturbation Right perturbation p for RMANOVA

Left leg Right leg Ipsilateral leg Contralateral leg Ipsilateral leg Contralateral leg Location Direction-leg Interaction

COM-ankle distance at initial contact (m)

Upper trunk 0.18 § 0.03b 0.18 § 0.03b 0.27 § 0.05a,* 0.16 § 0.03c,* 0.28 § 0.04a,* 0.16 § 0.03c,* <0.001 <0.001 <0.001

Lower trunk 0.19 § 0.03b,c 0.17 § 0.03c 0.21 § 0.03a,* 0.19 § 0.03b,* 0.21 § 0.03a,* 0.18 § 0.03b,c,*

Knee flexion angle at initial contact (˚)

Upper trunk 15.2 § 5.9b 15.2 § 6.6b 20.7 § 9.4a,* 12.2 § 5.9c,* 22.7 § 13.0a,* 12.6 § 4.6c,* 0.006 <0.001 <0.001

Lower trunk 16.0 § 5.8a 15.2 § 6.2a,b 16.0 § 6.4a,* 13.3 § 5.8c,* 16.3 § 8.3a,b,* 14.1 § 5.1b,c,*

Knee abduction angle (�) at initial contact (˚)

Upper trunk 0.7 § 2.3c �0.4 § 1.8b 2.5 § 2.6d,* �2.3 § 1.7a,* 1.7 § 3.5c,d,* �1.5 § 2.1a,* 0.041 <0.001 <0.001

Lower trunk 0.9 § 2.4d �0.3 § 2.0b,c 0.6 § 2.5c,d,* �1.0 §1.7a,* �0.6 § 1.9a,b,* �0.3 § 2.1a,b,*

Knee internal rotation angle at initial contact (˚)

Upper trunk �0.9 § 4.7b,c �1.8 § 4.5c 2.9 § 6.6a �0.5 § 4.7b,* 2.6 § 6.0a �1.2 § 4.9b,c 0.037 0.002 0.040

Lower trunk �0.9 § 4.2b,c,d �0.9 § 5.6c 2.0 § 4.2a �2.8 § 5.3d,* 1.1 § 5.6a,b �1.9 § 4.8c,d

Peak knee flexion angle during early landing (˚)

Upper trunk 61.6 § 10.3a 61.2 § 10.4a,b 53.2 § 13.2e,* 57.7 § 8.3c,d 55.1 § 12.9d,e 59.3 § 8.1b,c,* 0.106 <0.001 <0.001

Lower trunk 62.0 § 11.0a 62.0 § 10.1a 58.0 § 10.2b,* 57.5 § 10.6b 56.6 § 10.4b 57.4 § 9.7b,*

Peak knee abduction angle (�) during early landing (˚)

Upper trunk 0.5 § 2.4c �1.0 § 2.4b 2.0 § 2.8d,* �2.9 § 2.3a,* 0.2 § 3.8c,* �1.7 § 2.4b,* 0.064 <0.001 <0.001

Lower trunk 0.6 § 2.7d �1.0 § 2.7b,c �0.2 § 3.1b,c,* �1.3 § 2.0b,* �2.1 § 2.8a,* �0.4 § 2.3b,c,*

Peak knee internal rotation angle during early landing (˚)

Upper trunk 6.7 § 4.6 5.6 § 4.8 7.7 § 5.7 7.5 § 5.1 7.5 § 6.2 7.5 § 5.1 0.426 0.559 0.091

Lower trunk 6.3 § 4.3 7.0 § 5.5 6.8 § 4.5 7.4 § 5.6 6.0 § 5.1 7.3 § 5.0

Notes: COM�ankle distance was defined as the absolute distance between the whole-body COM and each ankle center in the medial-lateral direction.�means

knee abduction angles were negative based on the way we defined the direction of 3D joint angles.
a Was the greatest.
b Was the second greatest.
c Was the third greatest.
d Was the fourth greatest.
e Was the least among 6 combinations between perturbation directions and landing legs for each perturbation location. The conditions with the same letter were

not significantly different from one another.

* Significantly different between upper and lower trunks for each combination between perturbation directions and landing legs.Abbreviations: COM = center of

mass; RMANOVA = repeated-measures analyses of variance.
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4.1. Perturbation vs. no-perturbation

The findings supported the hypothesis that mid-flight exter-

nal perturbation would result in increased ACL loading varia-

bles for the leg contralateral to the pushing perturbation

compared to the ipsilateral leg and both legs in the no-pertur-

bation conditions. Both upper-trunk and lower-trunk perturba-

tion demonstrated smaller knee flexion angles at initial

contact, increased peak vertical GRF, and increased knee

extension moments for the contralateral leg compared to the

ipsilateral leg and both legs in the no-perturbation conditions.

Video analyses of ACL injuries have shown that contact with

the trunk and arms comprises more than 80% of indirect con-

tact near the time of ACL injuries in team sports, such as soc-

cer, handball, and basketball.6,14,17,18 Trunk contact prior to

landing might increase lateral trunk bending and apply forces

to the athlete, consequently resulting in increased knee loading

and sub-optimal knee controls.5 The increased unilateral ACL

loading variables in the current study are in line with previous

video observations of trunk perturbation in many ACL injury

events4,14,17,18,27 and support the theory that indirect contact

can result in asymmetrical landing patterns and elevated injury

risk for one leg.

In addition, Yom et al.22 reported that the mid-flight lateral

pulling perturbation of the upper trunk resulted in decreased

knee flexion angles, increased GRF, and increased knee

moments for the dominant leg (ipsilateral leg). From a

mechanical perspective, a lateral pulling force on one side of

the trunk has the same effect on the COM trajectory and

whole-body rotation as a lateral pushing force on the other

side. Therefore, the findings of increased ACL loading varia-

bles for the contralateral leg associated with pushing perturba-

tion were consistent with increased ACL loading variables for

the ipsilateral leg associated with pulling perturbation in the

previous study.22 The current study utilized the pushing mech-

anism, as it is more likely to occur in real-life sports situations

than the pulling mechanism because a collision between ath-

letes results in a pushing perturbation. Both external pushing

and pulling forces could increase the whole-body lateral veloc-

ity prior to landing. A study showed that individuals preferred

to use the lateral leg to decelerate the horizontal velocity of

the COM during a lateral jump landing, potentially due to

stronger hip abductors than hip adductors.20 As such, the

mechanical consequence of an increased horizontal velocity,

along with the preference for one leg in the lateral landing,

was likely a cause of the increased unilateral ACL loading var-

iables for both trunk perturbation locations in this study.

4.2. Upper-trunk vs. lower-trunk perturbation

The findings also support the hypothesis that the upper-

trunk perturbation would result in greater increases in unilat-

eral ACL loading variables compared to the lower-trunk per-

turbation. In addition to the increased horizontal ball velocity,

the external perturbation could also increase the whole-body

angular momentum when the pushing force was acting away

from the COM. For the lower-trunk perturbation conditions, as

the perturbation was applied close to the COM, the perturba-

tion effect was mainly related to the horizontal velocity of the

COM. Due to a lack of changes in rotation, there was no signif-

icant trunk bending towards the contralateral leg. Furthermore,

the COM had a similar distance to each ankle, and the landing

time differences at initial contact were small for the lower-

trunk perturbation conditions.

On the other hand, the perturbation was applied superior to

the COM for the upper-trunk perturbation conditions, causing

Table 4

RMANOVAs for landing kinetic variables (mean § standard deviation).

No perturbation Left perturbation Right perturbation p for RMANOVA

Left leg Right leg Ipsilateral leg Contralateral leg Ipsilateral leg Contralateral leg Location Direction-leg Interaction

Peak vertical GRF during early landing (BW)

Upper trunk 2.5 § 0.7b 2.4 § 0.6b 1.4 § 0.7c,* 3.7 § 0.6a,* 1.4 § 0.5c,* 3.7 § 0.7a,* 0.295 <0.001 <0.001

Lower trunk 2.3 § 0.7b 2.5 § 0.6b 2.0 § 0.9c,* 3.2 § 0.7a,* 2.1 § 0.8c,* 3.2 § 0.7a,*

Peak knee extension moment (�) during early landing (BW£BH)

Upper trunk �0.09 § 0.02c �0.10 § 0.02b �0.04 § 0.03d,* �0.13 § 0.03a �0.04 § 0.02d,* �0.13 § 0.03a 0.005 <0.001 <0.001

Lower trunk �0.09 § 0.02d �0.10 § 0.03c �0.05 § 0.02e,* �0.13 § 0.03a �0.06 § 0.02e,* �0.12 § 0.03b

Peak knee adduction moment during early landing (BW£BH)

Upper trunk 0.017 § 0.010c 0.021 § 0.013b,c 0.019 § 0.010b,c,* 0.035 § 0.015a,* 0.022 § 0.010b,* 0.033 § 0.014a,* 0.539 <0.001 <0.001

Lower trunk 0.020 § 0.013b 0.019 § 0.014b 0.036 § 0.015a,* 0.020 § 0.013b,* 0.037 § 0.014a,* 0.019 § 0.013b,*

Peak knee external rotation moment (�) during early landing (BW£BH)

Upper trunk �0.006 § 0.004a,b,* �0.003 § 0.004c �0.005 § 0.005b,c,* �0.003 § 0.003c,* �0.004 § 0.003c,* �0.006 § 0.004a,b,* 0.742 <0.001 <0.001

Lower trunk �0.004 § 0.004c,* �0.004 § 0.003c �0.002 § 0.002d,* �0.007 § 0.006b,* �0.002 § 0.002d,* �0.009 § 0.005a,*

Note:�means knee abduction angles were negative based on the way we defined the direction of 3D joint angles.
a Was the greatest
b Was the second greatest
c Was the third greatest
d Was the fourth greatest.
e Was the least among 6 combinations between perturbation directions and landing legs for each perturbation location. The conditions with the same letter were

not significantly different from each other.

* means significantly different between upper and lower trunks for each combination between perturbation directions and landing legs.Abbreviations: BH = body

height; BW = body weight; GRF = ground reaction force; RMANOVA = repeated-measures analyses of variance.
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whole-body angular momentum in the frontal plane to rotate

towards the contralateral side.5 Participants, therefore, mostly

rotated the trunk and the ipsilateral leg as a function of the

increased angular momentum. Consequently, trunk bending

angles were greater, and the COM was located much closer to

the contralateral leg in the medial-lateral direction at initial

ground contact. Also, the ipsilateral leg was likely placed fur-

ther away from the ground in the vertical direction due to its

rotation compared to the contralateral leg. This asymmetrical

landing posture at initial ground contact subsequently resulted

in greater landing time differences, with the contralateral leg

demonstrating the smallest knee flexion and greatest knee

abduction angles compared to other conditions. While increas-

ing ACL loading variables for the contralateral leg, this asym-

metric landing pattern allowed participants to land with the leg

that had a short moment arm between the point of GRF appli-

cation and the COM, making it less likely they would fall lat-

erally to the ground. For several participants’ upper-trunk

perturbation trials, the landing time differences were so signifi-

cant that they almost demonstrated a single-leg landing, as the

ipsilateral leg was still lifted from the ground when the contra-

lateral leg landed. A previous study found that self-initiated

lateral trunk bending resulted in the upper-body COM moving

to the bending direction while the lower-body COM shifted to

the opposite direction, leading the leg in the trunk bending

direction to land earlier and experience greater loading.21 The

current findings are consistent with those of this previous study

and suggest that asymmetric landing postures at initial ground

contact could increase unilateral ACL loading during early

landing. Despite being instructed to land with both legs, per-

formance demands such as self-initiated trunk motion and

external trunk perturbation could have caused individuals to

land mostly on a single leg.

In addition to the greatest loading in the sagittal plane, the

contralateral leg in the upper-trunk conditions also demonstrated

the greatest knee abduction angles and internal knee adduction

moments, which were not observed for the lower-trunk condi-

tions. Previous studies have suggested that limited knee flexion,

greater impact GRF, and greater external knee abduction

moments all contribute to greater ACL loadings.7,8,28,29 The

increased frontal-plane loading was likely due to increased lat-

eral movement of the whole-body COM relative to the contra-

lateral knee, creating an external knee abduction moment to

move the knee into a more abducted position. These findings of

increased knee abduction angles and internal knee adduction

moments as a function of a more laterally placed whole-body

COMwere consistent with previous findings related to self-initi-

ated trunk motion.21 The findings were also in line with video

analyses showing that the trunk was more likely to bend toward

the injured leg when ACL injuries occurred.5

4.3. Clinical implications

First, the findings may help us better understand the mecha-

nisms of indirect-contact ACL injuries. Indirect contact does

not apply a force to directly rupture the ACL, but it can

increase ACL loading and injury risk by changing landing

postures and loading distributions among segments and joints.

Indirect contact not only applies an external force to the ath-

lete, but can change an athlete’s movement velocities, joint

angles, whole-body rotation, whole-body COM and segment

COM distribution, and self-selected strategies for landing

under the constraints of their specific sports environment.

While more studies have begun documenting indirect contact

as a key characteristic of ACL injuries, future video-analysis

studies are encouraged to provide more information, such as

the estimated magnitudes, time, and location of the perturba-

tion, as well as its potential effect on whole-body motion dur-

ing ACL injuries.

Second, the current ACL injury risk screening generally

uses pre-planned and controlled double-leg or single-leg tasks

to assess landing biomechanics. Future studies might consider

incorporating jump-landing tasks with external perturbation to

better simulate single-leg landing patterns imposed by sports

performance, particularly for sports that have a high injury

rate of indirect-contact ACL injuries. For instance, athletes’

lateral trunk bending angles, bilateral landing time differences,

and knee flexion may be practically assessed during catching

and passing ball maneuvers while external pulling or pushing

perturbation is applied to the athlete’s upper trunk by a coach

or trainer. For research studies, similar dynamic screening

tasks with external perturbation and close-to-play sports sce-

narios may be considered for improving the limited ACL

injury screening tools.30�32

Third, athletes and practitioners need to be aware of the

increased unilateral ACL loading associated with external per-

turbation, particularly on the upper trunk. To promote athletes’

awareness of how mid-flight external pushing or pulling per-

turbation might increase knee loading for a specific leg,

educational videos can be made to explain the mechanical con-

nection between trunk perturbation and landing mechanics.

Practically, athletes could perform sports-specific jump-land-

ing tasks with unanticipated trunk perturbation provided man-

ually or through a resistance band by teammates or coaches.33

Athletes should be encouraged to land softly with increased

knee flexion angles if the mid-flight external perturbation

results in one-leg landing much earlier than the other leg.

When the sports environment allows, athletes may be trained

to decrease ACL loading variables by using safe and effective

falling strategies that increase the joint range of motion and

utilize other parts of the body, as well as eliminate the con-

straint between the COM and base of support.24 New educa-

tional and training strategies may help athletes better prepare

for high-risk scenarios with significant external trunk perturba-

tion in sports competitions.

4.4. Limitations

First, the perturbation was limited to a single magnitude in

the frontal plane. Participants with lower body weight might

experience greater perturbation compared to those with greater

body weight. Participants with different sports backgrounds

might also interpret the magnitude of the perturbations differ-

ently. Future studies could consider varying the perturbation
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magnitudes and including perturbation in other planes. Second,

participants knew the perturbation location prior to the jump-

landing task; this could be incorporated as an unanticipated fac-

tor in the future. Third, the current study only included jump-

landing tasks. The effect of trunk perturbation on cutting and

other direction-changing task mechanics warrants further inves-

tigation. Fourth, participants were constrained to land bilaterally

with each foot on a force platform. A larger data collection area

with more force platforms may allow participants to utilize

landing techniques more similar to those they perform in real

sports situations. Last, participants utilized their self-selected

landing techniques in all jump-landing conditions. A worthy

investigation would be to evaluate how different landing techni-

ques might help reduce the elevated ACL loading variables

associated with mid-flight trunk perturbation.

5. Conclusion

Mid-flight external pushing perturbation of the upper and

lower trunk resulted in increased ACL loading variables for

the leg contralateral to the pushing perturbation. The increased

COM horizontal velocity likely contributed to increased knee

extension moment for both upper-trunk and lower-trunk condi-

tions. The upper-trunk perturbation further resulted in greater

increases in unilateral ACL loading variables, with decreased

knee flexion angle at initial contact, increased knee abduction

angle at initial contact, increased peak knee abduction angle,

and increased peak knee extension and adduction moments

compared to the lower-trunk perturbation. The upper-trunk

perturbation resulted in greater changes in ACL loading varia-

bles compared to the lower-trunk perturbation, likely due to

the trunk and ipsilateral leg rotation imposed by the increased

whole-body angular momentum and the more laterally located

COM relative to the contralateral leg. These findings may help

us better understand the mechanisms of indirect-contact ACL

injuries and develop effective jump-landing screening and

training strategies under mid-flight trunk perturbation to pre-

vent ACL injury.
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