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Abstract

Background: To determine the effect of unanticipated mid-flight medial-lateral external perturbation of the upper or lower trunk on anterior cru-
ciate ligament (ACL) loading variables during jump-landings.

Methods: Thirty-two participants performed double-leg vertical jump-landings while bilateral kinematics and kinetics were collected under 6
conditions (upper or lower trunk perturbation locations; no, left, or right perturbation directions). Two customized catapult apparatuses were cre-
ated to apply pushing perturbation to participants near the maximal jump height.

Results: The ball contacted participants near the center of mass for the lower-trunk conditions and approximately 23 cm above the center of mass
for the upper-trunk conditions. Under upper-trunk perturbation, the contralateral leg demonstrated significantly smaller knee flexion angles at ini-
tial contact and greater peak knee abduction angles, peak vertical ground reaction forces, peak knee extension moments, and peak knee adduction
moments compared to other legs among all conditions. Under lower-trunk perturbation, the contralateral leg showed significantly smaller knee
flexion angles at initial contact and increased peak vertical ground reaction forces and peak knee extension moments compared to legs in the no-
perturbation conditions.

Conclusion: Mid-flight external trunk pushing perturbation increased ACL loading variables for the leg contralateral to the perturbation. The
upper-trunk perturbation resulted in greater changes in ACL loading variables compared to the lower-trunk perturbation, likely due to trunk and
ipsilateral leg rotation and more laterally located center of mass relative to the contralateral leg. These findings may help us understand the mech-
anisms of indirect-contact ACL injuries and develop jump-landing training strategies under mid-flight trunk perturbation to better prevent ACL
injury.

Keywords: ACL injuries; Kinematics; Kinetics; Landing; Biomechanics

rotated.”’ Both in vivo and in vitro studies have shown that
an anterior tibial shear force applied to an almost fully

PR 12 %7 extended knee is the primary loading mechanism of the ACL,
most common and severe injuries in sports. *~ Video analyses

o hile tibial i fi knee internal rotati
of ACL injuries show that ACL injuries occur within 100 ms Xolrrfent;b?n d iirer:fprai)s(;ll‘sionorf(frients ifla H;ne;l?: se(r:gnadzlon
of initial ground contact during landing and cutting tasks.” ; Y Y
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They also show that near the time of injury the injured leg was Conﬁf’sl:tj:git?néusiSIO:CTErg'Wi thout external obiects direct]
supporting most of the body weight and the injured knee was J g Y

1. Introduction

The anterior cruciate ligament (ACL) injury is one of the

. . . contacting the knee joint.'" As such, the mechanisms and
typically close to full extension, abducted, and internall . NP .
ypreatly ’ ? Y risk factors for non-contact ACL injuries have been studied

extensively.”' "' However, indirect contact—defined as con-
tact with body parts other than the injured knee’—appears to
play a role in many ACL injuries. First, contact sports have
shown more than 3 and 6 times increased risk of ACL injury
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compared to limited-contact sports and non-contact sports,
respectively.'” Additionally, video analyses of ACL injury
cases in multiple team sports have shown that 8%—60% of
ACL injuries are associated with contact to the trunk and/or
arms prior to or near the estimated time of injury.” Approxi-
mately half of the ACL injuries in female team handball and
netball involved certain forms of perturbation and trunk con-
tact with external objects in the air.'*'> One frequent scenario
was when an athlete collided with something or someone or
was pushed or held, consequently demonstrating unbalanced
body control prior to the injury.'* '

Previous studies quantified the effects of mid-flight self-ini-
tiated trunk motion on jump-landing mechanics. Self-initiated
trunk extension, lateral bending, and rotation could modify
mid-flight whole-body and segment center of mass (COM) tra-
jectories and result in increased unilateral ACL loading varia-
bles, such as increased ground reaction forces (GRF),
decreased knee flexion angles, and increased knee abduction
angles during landings.'” ' Only a single study assessed land-
ing mechanics by applying mid-flight lateral pulling perturba-
tion to the upper trunk from the dominant-leg side, and it
found that the perturbation resulted in increased GRF and
decreased knee flexion angles for the dominant leg.”” It should
be noted that the external perturbation was only applied to the
upper trunk in one direction, and only the dominant leg’s land-
ing mechanics were assessed. Quantifying the effects on bilat-
eral landing mechanics of unanticipated mid-flight external
perturbation of different locations on the trunk will provide
information for understanding indirect-contact ACL injury
mechanisms and help explain the connection between whole-
body movements and injured knee motion in ACL injury
events. A significant perturbation effect will support the inclu-
sion of external perturbation in ACL injury risk-screening
tasks, particularly for sports that have high rates of indirect-
contact ACL injuries. The potential effects of external pertur-
bation on landing mechanics may also be incorporated into
educational and training programs to increase athletes’ aware-
ness and readiness to prepare for safe landings after mid-flight
external perturbation.

Therefore, the purpose of this study was to determine the
effects of unanticipated mid-flight medial-lateral external per-
turbation of the upper or lower trunk on bilateral ACL loading
variables during jump-landings. It was hypothesized that the
leg contralateral to the pushing perturbation would show
increased ACL loading variables compared to the ipsilateral
leg for both upper-trunk and lower-trunk conditions and both
legs for the no-perturbation condition. In addition, upper-trunk
perturbation would result in greater increases in unilateral
ACL loading variables compared to lower-trunk perturbation.

2. Methods

2.1. Participants

An effect size of 0.89 was estimated for differences in peak
vertical GRF between the perturbation and no-perturbation
conditions.”” Based on this effect size, a sample size of 12 was
needed to achieve a power of 80% at a type I error rate of
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0.05. Thirty-two recreational athletes with jump-landing expe-
rience and without a history of major injuries (16 males and 16
females, age: 21.55 &+ 2.23 years (mean + standard deviation);
height: 1.72 4+ 0.10 m; mass: 71.57 £ 12.88 kg) were
recruited. To participate in the study, participants needed to
have experience playing sports that involve jump-landing
activities, such as basketball, soccer, volleyball, and American
football. Participants needed to be physically active at least
2 times per week for a total of 2 h at the time of testing.'” Par-
ticipants were excluded if they (a) had a previous ACL injury
or any other lower-extremity surgery, (b) had a lower-extrem-
ity injury that prevented participation in physical activities for
more than 2 weeks in the last 6 months, (c) had any conditions
that prevented them from maximal effort in sporting activities,
(d) were allergic to adhesive, or (e) were pregnant. This study
was approved by the University of Wyoming Institutional
Review Board, and participants signed a consent form prior to
participation.

2.2. Perturbation apparatuses

Two customized catapult apparatuses were designed to cre-
ate mid-flight external perturbation with consistent lateral
pushing momentum (Fig. 1). Two 4.54 kg slam balls were
placed on the apparatuses with stretched elastic bands. The
goal was to release the ball with constant horizontal and
upward velocities and, therefore, a pre-determined projectile
trajectory for a specific release height. During the jump-land-
ing trials, researchers pulled a trigger to release the ball with
the goal of having the ball contact the participant near the max-
imal jump height with a close-to-zero vertical ball velocity and
a horizontal ball velocity of 5 m/s. To ensure the ball had
close-to-full contact with the participant, the ball would need
to land within a 1-m diameter circle that was drawn on the
ground around the contact point. The mass and contact veloci-
ties of the ball were selected, based on preliminary testing, to
result in moderate perturbation to landing patterns without sig-
nificantly increasing injury risk to participants.

2.3. Protocol

After changing into spandex clothes and standard running
shoes, participants performed a generalized warm-up proto-
col.”! The participant’s jump heights were measured using a
Vertec (Sports Imports, Columbus, OH, USA). The upper-
trunk and lower-trunk regions were defined between the acro-
mion and the 5th rib and between the iliac crest and the greater
trochanter, respectively. The horizontal distance of the appara-
tuses was adjusted based on the participants’ shoulder width
so that the ball would contact the participant at the ball’s maxi-
mal height. Based on the participants’ jump height and stand-
ing heights of the armpit and iliac crest, the release height of
the ball was adjusted by moving the component that held the
ball in the vertical direction so that the ball would contact the
upper- or lower-trunk region when the participant reached the
maximal jump height. Participants wore a helmet and per-
formed 2 standing and 6 jump-landing practice trials to
become accustomed to the perturbation. For standing trials,
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Fig. 1. This figure shows (A) anterior and (B) posterior views of marker placement and customized catapult apparatuses in a static trial.

the ball contacted the lower trunk while participants stood still.
For jump-landing practice trials, participants started with feet
shoulder-width apart and each foot on a force platform (Bertec
FP4060-10; Bertec Corporation, Columbus, OH, USA; 1600
Hz) then jumped vertically as high as possible. Participants
raised both arms during mid-flight and experienced no pertur-
bation or left/right perturbation and landed with one foot on a
force platform. No instruction regarding specific landing tech-
niques (soft landing, trunk motion, knee flexion, etc.) was pro-
vided. Participants performed a combination of different
perturbation locations and directions for practice trials. The
current jump-landing task was designed to simulate a jump-
landing with mid-flight external pushing perturbation, which
could be created by pushing forces from another player or by
colliding with another player or equipment. Examples of such
scenarios include netball and handball players jumping to
catch a ball, soccer players jumping to head a ball, and basket-
ball players jumping to rebound a ball while there is bodily
contact with another player.'* '®

Forty retro-reflective markers were placed'”*' on the par-
ticipant (Fig. 1), and 2 markers were placed on each ball.
Eight opto-reflective cameras (Bonita 10; Vicon Motion Sys-
tem, Oxford, UK; 160 Hz) were used to capture the 3-dimen-
sional coordinates. After a static trial, participants performed
a minimum of 3 successful trials for each combination of

perturbation locations (upper or lower trunk) and perturbation
directions (no, left, or right perturbation) (Fig. 2) in a ran-
domized order. Participants knew the perturbation location
but did not know the perturbation direction prior to the trial.
A minimum of a 30-s break was provided between trials. A
trial was repeated if (a) participants did not land with one
foot on each force platform, (b) the ball contacted the partici-
pant 125 ms before or after the maximal jump height, or (c)
the ball did not land in the targeted area after the impact. The
check of timing offset was done by opening the motion cap-
ture software, visually inspecting the marker positions, and
counting the time frames after each trial.

After completion of official trials, participants were asked
whether they could predict the perturbation direction and how
strongly they felt about the mid-flight perturbation via a 5-
point scale (minimum (1), minor (2), moderate (3), major (4),
and maximum (5)) using their sports experience as a refer-
ence.

2.4. Data reduction

Raw kinematic and GRF data were filtered using a fourth-
order Butterworth low-pass filter at 15 Hz for the inverse
dynamic approach.””> Raw GRF data were also filtered at
100 Hz to extract impact GRF. Fifteen segments were defined
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Fig. 2. This figure shows different mid-flight perturbation locations and directions, including (A and B) upper trunk—right perturbation, (C and D) lower
trunk—left perturbation, and (E and F) lower trunk—no perturbation. The two events are (A, C, and E) the ball contacting the participant near the maximal jump

height and (B, D, and F) the participant landing on the force platforms.

to calculate the whole-body COM.”>' The definitions of joint
centers, segment reference frames, the calculations of knee
joint angles and internal joint resultant moments, and trunk
segment angles were previously described.”” Forces were nor-
malized to body weight. Joint moments were expressed as
internal moments and normalized to the product of body
weight and body height. The ball contact was defined as the
first frame when the horizontal ball velocity decreased by 3%.

Variables to assess the consistency of the perturbation
included horizontal and vertical ball velocities at contact, tim-
ing offset between ball contact and maximal COM height, and
ball contact locations relative to COM height. ACL loading
variables were quantified at initial contact and during the
early-landing phase, defined as the first 100 ms after initial
contact.”* Kinematic variables included bilateral landing time
differences; lateral trunk bending angles; COM—ankle abso-
lute distances; knee flexion, knee abduction, and knee internal

rotation angles at initial contact; and peak knee flexion, abduc-
tion, and internal rotation angles during early landing. Kinetic
variables included peak vertical GRF and peak knee extension,
external rotation, and adduction moments during early landing.
Data reduction was performed in MATLAB 2021b (Math-
Works, Natick, MA, USA).

2.5. Statistical analysis

Two (upper-trunk and lower-trunk perturbation locations)
by 2 (left and right perturbation directions) repeated-measures
analyses of variance (RMANOVA) were applied to ball veloc-
ities, contact time, and contact locations. Two (upper-trunk
and lower-trunk) by 3 (no-perturbation, left-perturbation, and
right-perturbation) RMANOVAs were performed for jump
height, landing time differences, and lateral trunk bending
angles. Two (upper-trunk and lower-trunk) by 6 (left-leg and
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right-leg for no-perturbation, ipsilateral-leg and contralateral-
leg for left-perturbation, and ipsilateral-leg and contralateral-
leg for right-perturbation) RMANOVAs were performed for
other variables.

Paired ¢ tests were utilized between each pair of compari-
sons when a significant main effect was found by RMANO-
VAs. A type-I error of RMANOVAs was set at 0.05. The
Benjamini—Hochberg procedure was performed on all ¢ tests
to control the study-wide false discovery rate at 0.05.”° The
effect sizes were evaluated using Cohen’s dz. Effect size <0.5
is defined as “small,” 0.5—0.8 is “medium,” or >0.8 is
“large.””° Statistical analyses were conducted in SPSS statis-
tics (Version 22.0; IBM, Armonk, NY, USA).

3. Results

No injury occurred, and no participant reported that they
could predict the perturbation direction. The subjective assess-
ments of the perturbation were 2.6 & 0.7, indicating a close-
to-moderate perturbation. Seven trials (none in the same condi-
tion) were excluded due to the ball contacting participants out
of the 125 ms range or missing markers. The largest p value
for paired ¢ tests was 0.031 after the false discovery adjust-
ment. The effect sizes and p values for each comparison were
included in the Supplementary Tables 1—4.

3.1. Perturbation consistency

Horizontal ball velocities at contact were slightly (2%) but
significantly faster for the lower-trunk conditions than the
upper-trunk conditions for both left and right perturbations
(Table 1). Contact locations were significantly higher for the
upper-trunk conditions compared to the lower-trunk conditions
for both left and right perturbations. No significant differences
were observed for vertical ball velocities or contact time.

3.2. Perturbation effects

Significant interactions were found for all variables except
jump height and peak knee internal rotation angle (Tables
2—4). Left and right perturbation generally resulted in similar
changes in ACL loading variables to the ipsilateral and contra-
lateral legs compared to no-perturbation for both upper-trunk
and lower-trunk conditions. The upper-trunk perturbation
resulted in the greatest landing-time difference, with the con-
tralateral leg landing earlier than the ipsilateral leg, and the
greatest lateral trunk bending to the contralateral leg when
compared to other conditions. The upper-trunk perturbation
also showed the shortest COM—ankle distance for the contra-
lateral leg and the greatest COM—ankle distance for the ipsi-
lateral leg.

Regarding ACL loading variables, the contralateral leg for
the upper-trunk perturbation demonstrated the smallest knee
flexion and the greatest knee abduction angles at initial contact
and the greatest peak knee abduction angles, peak vertical
GREF, peak knee extension moments, and peak knee adduction
moments compared to other legs among all conditions. The
contralateral leg for the lower-trunk perturbation also showed
decreased knee flexion angle at initial contact and increased
peak vertical GRF and knee extension moment compared to
the 2 legs in the no-perturbation conditions.

A secondary analysis was performed with sex as a between-
participant variable. While males and females demonstrated
significant differences for several variables, their responses to
perturbation locations and directions were similar overall
(Supplementary Tables 5—7).

4. Discussion

The purpose of this study was to determine the effects of
unanticipated mid-flight medial-lateral external perturbation of
the upper or lower trunk on bilateral ACL loading variables

Table 1
RMANOVAs for ball contact parameters (mean =+ standard deviation).
Left perturbation Right perturbation p for RMANOVA
Location Direction Interaction
Horizontal ball velocity (m/s)
Upper trunk 5.05 +0.30* 5.06 +0.27* <0.001 0.807 0.020
Lower trunk 5.18 £ 0.24% 5.14 £ 0.24%
Vertical ball velocity (m/s)
Upper trunk —0.05 +0.29 —0.00 £ 0.33 0.207 0.499 0.662
Lower trunk —0.03 £ 0.26 0.01 +£0.27
Timing offset (ms)
Upper trunk 6.0 £304 —09+425 0.183 0.681 0.393
Lower trunk 8.0 £37.5 9.0 +33.1
Contact location (m)
Upper trunk 0.22 £0.07* 0.24 + 0.06* <0.001 0.169 0.943
Lower trunk —0.04 £ 0.07* —0.02 £ 0.07*

Notes: Timing offset was defined as the time differences between ball contact and maximal COM height, with a positive number indicating the ball contacted ear-
lier than the maximal COM height. Contact locations were defined as the differences between the ball and the COM, with a positive number indicating the ball

was higher than the COM.

* Significantly different between upper and lower trunks for both perturbation directions.Abbreviations: COM = center of mass; RMANOVA = repeated-measures

analyses of variance.
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Table 2
RMANOVAs for jump height, landing time differences, and lateral trunk bending angles (mean =+ standard deviation).
No perturbation Left perturbation Right perturbation p values for RMANOVAs
Location Direction Interaction
Jump height (m)
Upper trunk 0.44 £0.11 0.44 £0.11 0.44 £0.11 0.138 0.709 0.268
Lower trunk 0.44 £0.11 0.44 £0.11 0.44 £0.11
Landing time differences (ms) _ _
Upper trunk 0.1 £6.0 38.0 £ 77.0%" 30.6 £25.2%" 0.002 0.003 0.023
Lower trunk 1.0+74 6.7 £ 10.2%' 7.9 £11.5%!
Lateral trunk bending angles at initial contact (*)
Upper trunk —-04+23 6.4 +3.0%1 6.8 & 3.4%! <0.001 <0.001 <0.001
Lower trunk —-02+£29 —34 438" —1.8 £3.3%"

Notes: Landing time differences were defined as the time differences at initial ground contact between 2 legs, with a positive number indicating the contralateral
leg or the right leg landed earlier with or without perturbation. Lateral trunk bending angles were positive when the trunk bent to the contralateral or the right side
with or without perturbation.

* Significantly different compared with lower trunk for each perturbation direction.

T Significantly different compared with no perturbation for each perturbation location.

* Significantly different compared with left perturbation for each perturbation location.Abbreviations: RMANOVA = repeated-measures analyses of variance.

Table 3
RMANOVAs for landing kinematic variables (mean =+ standard deviation).
No perturbation Left perturbation Right perturbation p for RMANOVA
Left leg Right leg Ipsilateral leg  Contralateral leg Ipsilateral leg  Contralateral leg Location Direction-leg Interaction

COM-ankle distance at initial contact (m)
Upper trunk  0.18 4 0.03°  0.18 £ 0.03°  0.27 £ 0.05™*  0.16 £ 0.03°* 0.28 +0.04>* 0.16 £0.03°*  <0.001  <0.001 <0.001
Lower trunk  0.19 £0.03>°  0.17 £0.03° 021 £0.03™*  0.19 £ 0.03"* 0.21 +0.03™*  0.18 & 0.03™*

Knee flexion angle at initial contact (*)

Upper trunk 152 4+ 5.9° 152+ 6.6° 20.7 £9.4%F 122+ 5.9%% 22.7 £ 13.0%%  12.6 &+ 4.65% 0.006  <0.001 <0.001
Lower trunk  16.0 + 5.8° 152 £62%  16.0+64%% 133 +£5.8%* 16.3 £ 83>  14.1 £ 5.1+

Knee abduction angle (—) at initial contact (*)
Upper trunk 0.7 4+23°  —04+1.8° 25426% 234+ 1.7 1.7 £3.5%% 154215 0.041  <0.001 <0.001
Lower trunk 09424  —03+2.0°° 0.6 £2.5%%%  —1.04£1.7* —0.6 4 1.9%>%  —0.3 £ 2,140

Knee internal rotation angle at initial contact (*)
Upper trunk  —0.9 +4.7%¢  —1.8 +4.5° 2.9 +6.6" —0.5 4+ 4.7%% 2.6 +6.0° —124+49% 0.037 0.002 0.040
Lower trunk —0.9 £4.2%¢ —0.9 +5.6° 2.0 +4.2° —2.8+53%% 1.1 +£56%° —1.9+48%

Peak knee flexion angle during early landing (°)
Upper trunk  61.6 +10.3° 612+ 104" 5324 13.2%%  57.7 4 8.3°¢ 55.1 £ 12.9% 593 481> 0.106  <0.001 <0.001

Lower trunk  62.0 +11.0°  62.0+10.1*°  58.0410.2>* 57.5+10.6" 56.6 + 104> 574 +£9.7*
Peak knee abduction angle (—) during early landing ()

Upper trunk 0.5 £2.4° —1.0+2.4° 20£28%  —29423%* 02+£3.8%% —1.7+24% 0.064  <0.001 <0.001
Lowertrunk  0.6+2.7"  —1.0£27% —02£3.1"%% —134+£20™  —2.1£28" —04+23"

Peak knee internal rotation angle during early landing (*)
Upper trunk 6.7+ 4.6 56+£48 7.7+£5.7 75+£5.1 7.5+6.2 7.5+£5.1 0.426 0.559 0.091
Lower trunk 6.3 +£4.3 7.0+55 6.8 4.5 74+£5.6 6.0+ 5.1 73+£5.0

Notes: COM—ankle distance was defined as the absolute distance between the whole-body COM and each ankle center in the medial-lateral direction. — means
knee abduction angles were negative based on the way we defined the direction of 3D joint angles.

? Was the greatest.

® Was the second greatest.

¢ Was the third greatest.

9 Was the fourth greatest.

¢ Was the least among 6 combinations between perturbation directions and landing legs for each perturbation location. The conditions with the same letter were
not significantly different from one another.

* Significantly different between upper and lower trunks for each combination between perturbation directions and landing legs.Abbreviations: COM = center of
mass; RMANOVA = repeated-measures analyses of variance.

during jump -landings. The ball parameters were consistent,  exhibited slightly lower horizontal ball velocities. On average,
with only minimal differences in horizontal ball velocity the ball contacted the participant near the maximal jump
between the upper-trunk and lower-trunk conditions, likely  height with close-to-zero vertical ball velocity. Ball contact
due to the inherent variation of the apparatuses. It is unlikely =~ locations were near the COM (—3 £ 7 cm) in the vertical
this difference affected the results since the upper-trunk condi- direction for the lower-trunk conditions and approximately
tion, which demonstrated the greatest ACL loading variables, 23 £ 7 cm above the COM for the upper-trunk conditions.
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Table 4
RMANOVAs for landing kinetic variables (mean =+ standard deviation).
No perturbation Left perturbation Right perturbation p for RMANOVA
Left leg Right leg Ipsilateral leg Contralateral leg  Ipsilateral leg Contralateral leg Location Direction-leg Interaction

Peak vertical GRF during early landing (BW)

Upper trunk 25407 24406 1.4 4+0.79% 3.7+0.6* 1.4 +£0.57% 3.7+ 0.7%* 0295  <0.001 <0.001
Lower trunk 23407 254 0.6 2.0+ 0.9%* 3.24+0.7%* 2.1+0.8%* 3.24+0.7%*

Peak knee extension moment (—) during early landing (BW x BH)
Upper trunk  —0.09 £ 0.02° —0.10 +0.02° —0.04 4+ 0.03%* —0.13 £ 0.03" —0.04 £0.02%*  —0.13 % 0.03" 0.005  <0.001 <0.001
Lower trunk  —0.09 + 0.02¢ —0.10 £ 0.03° —0.05 £ 0.02%* —0.13 £ 0.03" —0.06 £ 0.02%  —0.12 + 0.03"

Peak knee adduction moment during early landing (BW x BH)
Upper trunk  0.017 & 0.010° 0.021 £0.013™¢  0.019 4 0.010°*  0.035 4 0.015>*  0.022 £ 0.010™* 0.033 £ 0.014>* 0.539  <0.001 <0.001

Lower trunk ~ 0.020 + 0.013° 0.019 +£0.014°  0.036 & 0.015"*
Peak knee external rotation moment (—) during early landing (BW x BH)

0.020 +0.013%*  0.037 + 0.014™*  0.019 £ 0.013"*

Upper trunk —0.006 =+ 0.004>>* —0.003 £ 0.004° —0.005 & 0.005"* —0.003 4 0.003°* —0.004 £ 0.003°* —0.006 + 0.004*>* 0.742  <0.001 <0.001
Lower trunk —0.004 # 0.004* —0.004 & 0.003°  —0.002 = 0.002** —0.007 & 0.006™* —0.002 % 0.002* —0.009 % 0.005™*

Note: — means knee abduction angles were negative based on the way we defined the direction of 3D joint angles.

? Was the greatest

° Was the second greatest
¢ Was the third greatest

4 Was the fourth greatest.

¢ Was the least among 6 combinations between perturbation directions and landing legs for each perturbation location. The conditions with the same letter were

not significantly different from each other.

* means significantly different between upper and lower trunks for each combination between perturbation directions and landing legs.Abbreviations: BH = body
height; BW = body weight; GRF = ground reaction force; RMANOVA = repeated-measures analyses of variance.

4.1. Perturbation vs. no-perturbation

The findings supported the hypothesis that mid-flight exter-
nal perturbation would result in increased ACL loading varia-
bles for the leg contralateral to the pushing perturbation
compared to the ipsilateral leg and both legs in the no-pertur-
bation conditions. Both upper-trunk and lower-trunk perturba-
tion demonstrated smaller knee flexion angles at initial
contact, increased peak vertical GRF, and increased knee
extension moments for the contralateral leg compared to the
ipsilateral leg and both legs in the no-perturbation conditions.
Video analyses of ACL injuries have shown that contact with
the trunk and arms comprises more than 80% of indirect con-
tact near the time of ACL injuries in team sports, such as soc-
cer, handball, and basketball.>'*'”"'® Trunk contact prior to
landing might increase lateral trunk bending and apply forces
to the athlete, consequently resulting in increased knee loading
and sub-optimal knee controls.” The increased unilateral ACL
loading variables in the current study are in line with previous
video observations of trunk perturbation in many ACL injury
events™'*'""®27 and support the theory that indirect contact
can result in asymmetrical landing patterns and elevated injury
risk for one leg.

In addition, Yom et al.”” reported that the mid-flight lateral
pulling perturbation of the upper trunk resulted in decreased
knee flexion angles, increased GRF, and increased knee
moments for the dominant leg (ipsilateral leg). From a
mechanical perspective, a lateral pulling force on one side of
the trunk has the same effect on the COM trajectory and
whole-body rotation as a lateral pushing force on the other
side. Therefore, the findings of increased ACL loading varia-
bles for the contralateral leg associated with pushing perturba-
tion were consistent with increased ACL loading variables for

the ipsilateral leg associated with pulling perturbation in the
previous study.”” The current study utilized the pushing mech-
anism, as it is more likely to occur in real-life sports situations
than the pulling mechanism because a collision between ath-
letes results in a pushing perturbation. Both external pushing
and pulling forces could increase the whole-body lateral veloc-
ity prior to landing. A study showed that individuals preferred
to use the lateral leg to decelerate the horizontal velocity of
the COM during a lateral jump landing, potentially due to
stronger hip abductors than hip adductors.”” As such, the
mechanical consequence of an increased horizontal velocity,
along with the preference for one leg in the lateral landing,
was likely a cause of the increased unilateral ACL loading var-
iables for both trunk perturbation locations in this study.

4.2. Upper-trunk vs. lower-trunk perturbation

The findings also support the hypothesis that the upper-
trunk perturbation would result in greater increases in unilat-
eral ACL loading variables compared to the lower-trunk per-
turbation. In addition to the increased horizontal ball velocity,
the external perturbation could also increase the whole-body
angular momentum when the pushing force was acting away
from the COM. For the lower-trunk perturbation conditions, as
the perturbation was applied close to the COM, the perturba-
tion effect was mainly related to the horizontal velocity of the
COM. Due to a lack of changes in rotation, there was no signif-
icant trunk bending towards the contralateral leg. Furthermore,
the COM had a similar distance to each ankle, and the landing
time differences at initial contact were small for the lower-
trunk perturbation conditions.

On the other hand, the perturbation was applied superior to
the COM for the upper-trunk perturbation conditions, causing
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whole-body angular momentum in the frontal plane to rotate
towards the contralateral side.” Participants, therefore, mostly
rotated the trunk and the ipsilateral leg as a function of the
increased angular momentum. Consequently, trunk bending
angles were greater, and the COM was located much closer to
the contralateral leg in the medial-lateral direction at initial
ground contact. Also, the ipsilateral leg was likely placed fur-
ther away from the ground in the vertical direction due to its
rotation compared to the contralateral leg. This asymmetrical
landing posture at initial ground contact subsequently resulted
in greater landing time differences, with the contralateral leg
demonstrating the smallest knee flexion and greatest knee
abduction angles compared to other conditions. While increas-
ing ACL loading variables for the contralateral leg, this asym-
metric landing pattern allowed participants to land with the leg
that had a short moment arm between the point of GRF appli-
cation and the COM, making it less likely they would fall lat-
erally to the ground. For several participants’ upper-trunk
perturbation trials, the landing time differences were so signifi-
cant that they almost demonstrated a single-leg landing, as the
ipsilateral leg was still lifted from the ground when the contra-
lateral leg landed. A previous study found that self-initiated
lateral trunk bending resulted in the upper-body COM moving
to the bending direction while the lower-body COM shifted to
the opposite direction, leading the leg in the trunk bending
direction to land earlier and experience greater loading.”' The
current findings are consistent with those of this previous study
and suggest that asymmetric landing postures at initial ground
contact could increase unilateral ACL loading during early
landing. Despite being instructed to land with both legs, per-
formance demands such as self-initiated trunk motion and
external trunk perturbation could have caused individuals to
land mostly on a single leg.

In addition to the greatest loading in the sagittal plane, the
contralateral leg in the upper-trunk conditions also demonstrated
the greatest knee abduction angles and internal knee adduction
moments, which were not observed for the lower-trunk condi-
tions. Previous studies have suggested that limited knee flexion,
greater impact GRF, and greater external knee abduction
moments all contribute to greater ACL loadings.”**®*’ The
increased frontal-plane loading was likely due to increased lat-
eral movement of the whole-body COM relative to the contra-
lateral knee, creating an external knee abduction moment to
move the knee into a more abducted position. These findings of
increased knee abduction angles and internal knee adduction
moments as a function of a more laterally placed whole-body
COM were consistent with previous findings related to self-initi-
ated trunk motion.”' The findings were also in line with video
analyses showing that the trunk was more likely to bend toward
the injured leg when ACL injuries occurred.’

4.3. Clinical implications

First, the findings may help us better understand the mecha-
nisms of indirect-contact ACL injuries. Indirect contact does
not apply a force to directly rupture the ACL, but it can
increase ACL loading and injury risk by changing landing

Y. Song et al.

postures and loading distributions among segments and joints.
Indirect contact not only applies an external force to the ath-
lete, but can change an athlete’s movement velocities, joint
angles, whole-body rotation, whole-body COM and segment
COM distribution, and self-selected strategies for landing
under the constraints of their specific sports environment.
While more studies have begun documenting indirect contact
as a key characteristic of ACL injuries, future video-analysis
studies are encouraged to provide more information, such as
the estimated magnitudes, time, and location of the perturba-
tion, as well as its potential effect on whole-body motion dur-
ing ACL injuries.

Second, the current ACL injury risk screening generally
uses pre-planned and controlled double-leg or single-leg tasks
to assess landing biomechanics. Future studies might consider
incorporating jump-landing tasks with external perturbation to
better simulate single-leg landing patterns imposed by sports
performance, particularly for sports that have a high injury
rate of indirect-contact ACL injuries. For instance, athletes’
lateral trunk bending angles, bilateral landing time differences,
and knee flexion may be practically assessed during catching
and passing ball maneuvers while external pulling or pushing
perturbation is applied to the athlete’s upper trunk by a coach
or trainer. For research studies, similar dynamic screening
tasks with external perturbation and close-to-play sports sce-
narios may be considered for improving the limited ACL
injury screening tools.””

Third, athletes and practitioners need to be aware of the
increased unilateral ACL loading associated with external per-
turbation, particularly on the upper trunk. To promote athletes’
awareness of how mid-flight external pushing or pulling per-
turbation might increase knee loading for a specific leg,
educational videos can be made to explain the mechanical con-
nection between trunk perturbation and landing mechanics.
Practically, athletes could perform sports-specific jump-land-
ing tasks with unanticipated trunk perturbation provided man-
ually or through a resistance band by teammates or coaches.™
Athletes should be encouraged to land softly with increased
knee flexion angles if the mid-flight external perturbation
results in one-leg landing much earlier than the other leg.
When the sports environment allows, athletes may be trained
to decrease ACL loading variables by using safe and effective
falling strategies that increase the joint range of motion and
utilize other parts of the body, as well as eliminate the con-
straint between the COM and base of support.”* New educa-
tional and training strategies may help athletes better prepare
for high-risk scenarios with significant external trunk perturba-
tion in sports competitions.

4.4. Limitations

First, the perturbation was limited to a single magnitude in
the frontal plane. Participants with lower body weight might
experience greater perturbation compared to those with greater
body weight. Participants with different sports backgrounds
might also interpret the magnitude of the perturbations differ-
ently. Future studies could consider varying the perturbation
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magnitudes and including perturbation in other planes. Second,
participants knew the perturbation location prior to the jump-
landing task; this could be incorporated as an unanticipated fac-
tor in the future. Third, the current study only included jump-
landing tasks. The effect of trunk perturbation on cutting and
other direction-changing task mechanics warrants further inves-
tigation. Fourth, participants were constrained to land bilaterally
with each foot on a force platform. A larger data collection area
with more force platforms may allow participants to utilize
landing techniques more similar to those they perform in real
sports situations. Last, participants utilized their self-selected
landing techniques in all jump-landing conditions. A worthy
investigation would be to evaluate how different landing techni-
ques might help reduce the elevated ACL loading variables
associated with mid-flight trunk perturbation.

5. Conclusion

Mid-flight external pushing perturbation of the upper and
lower trunk resulted in increased ACL loading variables for
the leg contralateral to the pushing perturbation. The increased
COM horizontal velocity likely contributed to increased knee
extension moment for both upper-trunk and lower-trunk condi-
tions. The upper-trunk perturbation further resulted in greater
increases in unilateral ACL loading variables, with decreased
knee flexion angle at initial contact, increased knee abduction
angle at initial contact, increased peak knee abduction angle,
and increased peak knee extension and adduction moments
compared to the lower-trunk perturbation. The upper-trunk
perturbation resulted in greater changes in ACL loading varia-
bles compared to the lower-trunk perturbation, likely due to
the trunk and ipsilateral leg rotation imposed by the increased
whole-body angular momentum and the more laterally located
COM relative to the contralateral leg. These findings may help
us better understand the mechanisms of indirect-contact ACL
injuries and develop effective jump-landing screening and
training strategies under mid-flight trunk perturbation to pre-
vent ACL injury.
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