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ABSTRACT: General conditions for the Hiyama-Denmark cross-coupling of tetrasubstituted vinyl silanes and aryl halides are reported.
Prior reports of Hiyama-Denmark reactions of tetrasubstituted vinyl silanes have required the use of vinyl silanols or silanolates, which are
challenging to handle, or internally activated vinyl silanes, which lack structural generality. Now, unactivated tetrasubstituted vinyl silanes,
bearing bench-stable tetraorganosilicon centers, and aryl halides can be coupled. The key to this discovery is the identification of dimethyl(S-
methylfuryl)vinylsilanes as bench stable and easily prepared cross-coupling partners that are readily activated under mild conditions in
Hiyama-Denmark couplings. These palladium-catalyzed cross-couplings proceed well with aryl chlorides, though aryl bromides and iodides
are also tolerated, and the reactions display high stereospecificity in the formation of tetrasubstituted alkenes. In addition, only a mild base
(KOSiMe;) and common solvents (THF/DMA) are required, and importantly toxic additives (such as 18-crown-6) are not needed. We also
show that these conditions are equally applicable to Hiyama-Denamrk coupling of trisubstituted vinyl silanes.

Tetrasubstituted alkenes are important scaffolds with wide utility readily form disiloxanes, particularly if exposed to air or water.” The
in a variety of applications, including in commercial drugs, bioac- second method (reported by Shindo, Figure 1A bottom) requires a
tive molecules, natural products, and materials chemistry, and they free carboxylic acid cisto the silane.'®'" This functionality presuma-
have widespread utility as synthetic intermediates.' Although tradi- bly activates the silicon center via the formation of a cyclic silicate,
tional approaches to alkene synthesis (Wittig reactions, alkene me- and thus is not general to other classes of vinyl silanes.'*"* Neither
tathesis, etc.) struggle with stereochemical control in these highly of these published conditions allows for the cross-coupling of unac-
substituted systems, a variety of cross-coupling methods have been tivated tetrasubstituted vinyl silanes. The greater stability of these
reported for their stereoselective synthesis.' The most widely devel- unactivated reagents, compared to silanolates or internally acti-
oped of these is Suzuki-Miyaura cross-coupling,” however there are vated vinyl silanes, has no doubt been responsible for the lack of re-
still limited methods to synthesize the required highly substituted activity in this general class of vinyl silanes.
vinyl boronic acids and esters,* and in general, vinyl boronic acids
and esters pose challenges with respect to isolation and handling.® A. PRIOR WORK

Denmark's Cross-Coupling of Tetrasubstituted Vinyl Silanolates
Thus, the development of new routes for the stereocontrolled syn- Ve
thesis of tetrasubstituted alkenes continues to be in high demand. Me.d..OK [(allsygrl? dCil, Ar - requires preparation of
Ete ___STNOS  _  Ete Me Vinylsilanolate or silanols
. . ive al \H\Me ArCI Me (challanging to
Hlyama-Denmark cross—couphng represents an attractive alterna- Me prepare and handle)

tive to Suzuki-Miyaura reactions, as silicon is earth abundant and Shindo's Cross-Coupling of Activated Vinyl Silanes

non-toxic, and vinyl silanes (particularly those with four organic O SiMes o A
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synthesis.”” However, while we and others have recently described Me  kosiMes . no undesirable
stereocontrolled routes to prepare tetrasubstituted vinyl silanes,” O [(?:IIyI)PdCI]z Ar additives
Hiyama-Denmark couplings of tetrasubstituted vinyl silanes are ex- Me &~ ﬁ: Bt A ~p, " high yields
ceptionally rare. %" In fact, only two methods for Hiyama-Den- Et - - Pr  vinyl silanes easily

. . . . . pr prepared and handled
mark coupling of tetrasubstituted vinyl silanes have been previously Pr
described, and both require activated organosilanes. The first
method, pioneered by Denmark, involves the use of silanolates (or Figure 1. Hiyama-Denmark Cross-Coupling of Tetrasubstituted Vinyl
silanols, Figure 1A, top).® Although the development of this class of Silicon Species

reagents as effective cross-coupling partners represented a major
advance in Hiyama-Denmark-type reactions, the oxygenated
silanes themselves can be challenging to prepare and handle as they



Development of general conditions for the cross-coupling of
highly substituted, unactivated vinyl silanes would greatly expand
the utility of the Hiyama-Denmark reaction. In turn, this would also
increase access to highly substituted, stereo-defined alkenes.
Herein we report such conditions. Specifically, we have identified
dimethyl(S-methylfuryl)vinyl silanes to be uniquely reactive in
Hiyama-Denmark cross-coupling reactions. We report conditions
that allow tetrasubstituted vinyl silanes of this type to undergo fac-
ile coupling with a range of aryl halides to give tetrasubstituted al-
kenes with excellent functional group tolerance and high levels of
stereochemical control (Figure 1B). The reaction proceeds in high
yield and in a single operation under mild conditions. Importantly,
it does not require the use of exogenous additives beyond the cata-
lyst, common solvents, and a mild base. These conditions can also
be applied to the cross-coupling of trisubstituted vinyl silanes with
equal effectiveness. Finally, using modifications of previously re-
ported methods, the required 5-methylfurylsilanes are easily pre-
pared from 2-methylfuran (a biomass-derived feedstock)."*

Scheme 1. Single Example of a Cross-Coupling of an Unacti-
vated Vinyl Silane Using Two-Step Procedure and 18-C-6 Addi-
tive

1) 2 equiv KOSiMe3 Me

2 equiv 18-C-6
THF, 65 °C,0.5h

Me Me
Me.J..Ph
Et\%\Pr + 2)25mol % [(ally)PdCll, gy

X 5 mol % SPhos Pr
Pr 1 °
a THF, 65°C, 18 h Pr 2
required two steps and toxic additive, low yielding X =1,50%
X =Br, 62%

In our previous report describing the synthesis of tetrasubstituted
vinyl silanes,” we confronted the lack of Hiyama-Denmark tech-
nology for cross-coupling such highly substituted vinyl silanes. No
previously reported conditions were able to cross-couple such
silanes to aryl halides. At the time, with dimethylphenylsilane 1a as
a model substrate, we found that the use of 18-crown-6 (18-C-6, an
additive for the Hiyama-Denmark coupling of trisubstituted vinyl
silanes reported by Anderson)"* and Buchwald’s SPhos ligand'
(previously used by Denmark in Hiyama-Denmark reactions of si-
lanolates)® with KOSiMe; as the base'” delivered the desired cross-
coupling product 2, albeit in only modest yields (Scheme 1). Alt-
hough this was an advance in the field, these conditions required
super-stochiometric amounts of 18-C-6 (which has a high molecu-
lar weight, is expensive and toxic," and can be challenging to sepa-
rate from the desired products). In addition, the method was tedi-
ous as it required two separate operations (a pre-stir step to activate
the vinyl silane, followed by a separate addition of the palladium
catalyst and aryl halide). As such, we chose not to develop those
conditions beyond the initial demonstration reaction. Instead, we
focused on the development of more practical conditions for a
Hiyama-Denmark coupling of highly substituted vinyl silanes, with
the goal of developing single operation conditions that did not re-
quire the use of expensive or highly toxic additives.

Preliminary mechanistic analysis of the 18-C-6 conditions sug-
gested that the reaction proceeded via a vinylsilanolate intermedi-
ate resulting from the protodearylation of the Ph-Si bond of 1a.”
We postulated that this was likely the most challenging step in the
overall process, and that identification of suitable substituents that
more readily underwent protodesilylation would result in improved
cross-coupling conditions. As such, we investigated the Hiyama-

Denmark coupling of a series of vinyl silanes bearing different sub-
stituents on silicon

Table 1. Effect of Silicon Substitution

Me
Me\ ) 2 equiv KOSiMe3
"YH 65 G, 05 _
Etj/k 2)2.5mol % [(ally)PdCll,  Et_
5 mol % SPhos Pr
THF, 65 °C, 18 h Pr 2
Entry Substrate R Yield of 2 (%)*
1 la Ph 0
2 1b 4-Me-CsHas 0
3 lc Me 0
4 1d Bn 4
S le 1-naphthyl 0
Me
6 1f

g_@ 328

“Yield determined by GC using nonane as an internal standard. *Iso-
lated yield.

(Table 1). We continued to employ the two-step procedure but
omitted the 18-C-6 additive. We also chose to focus initially on the
use of aryl chloride coupling partners due to their wide commercial
availability. Under these conditions, even with the use of electron-
donating alkyl substitution on the aromatic ring, none of the de-
sired product was observed (entry 2). Alkyl substituents, including
benzyl, which had previously been shown to be effective in proto-
desilyation reactions and Hiyama-Denmark couplings of less sub-
stituted vinyl silanes,” also lead to minimal product (entries 3-4).
We also studied the reaction of 1-napthyl substituted vinyl silane
(entry S), as protonation would likely be easier as a result of weak-
ened aromaticity. However, as in the other cases, no desired prod-
uct was observed.

2 equiv KOSiMes Me
Me 7.5 mol % [(allyl)PdCI],
15 mol % ligand
Et THF, 65 °C, 18 h Et ~ Pr
Pr 1f 2

nBu
Q Q @
Bu (iPr)O. O(lPr)

tBu

NMez
‘ IP'
PtBu)z

pcy2 P(Cy)2
MeO. OMe

- Yield of 2 Mass Balance (sum of starting material and other byproducts)

Figure 2. High Throughput Ligand Screen



In an effort to further promote protodesilylation, we turned to
heteroaromatic substituents. This area has seen prior development.
For example, Hiyama, Denmark, and others have reported the cou-
pling of di- and tri-substituted thienyl vinyl silanes,”*' however,
our attempts to prepare tetrasubstituted thienyl vinyl silanes were
not successful. Likewise, Hiyama-Denmark reactions of pyridyl
silanes have also been reported,” however, Itamo and Yoshida
have previously shown that tetrasubstituted systems do not
undergo cross-coupling.” We were thus drawn to furyl groups, as
they are more electronic rich than pyridyl groups. Furyl- or 5-
methylfuryl-substituted silanes have been previously used in photo-
chemical or oxidation reactions; ** however, they have not been ex-
plored in cross-coupling. ***>** Gratifyingly, S-methylfuryl substi-
tuted vinyl silane 1f resulted in product 2 in 32 % yield (entry 6),
marking the first successful Hiyama-Denmark reaction of this type
without need for added 18-C-6. Importantly, vinyl silane 1f can be
easily synthesized from 2-methylfuran using a slight modification of

our previously reported carbosilylation reaction.”*"

With a promising substrate class in hand, we turned to High-
Throughput Experimentation (HTE) to identify better catalytic
conditions (Figure 2). For simplicity of the method, we also de-
cided to pursue reaction conditions wherein vinyl silane activation
and cross-coupling could be achieved in a single operation and
without need for a pre-activation step. In these experiments, we ex-
amined a variety of ligands noted for promoting difficult cross-cou-
pling reactions, as well as several palladium sources.'” The most effi-
cient catalysts derived from [ (allyl)PdCl]> and several dicyclo-
hexyl-substituted phosphine ligands provided significant amounts
of the desired product 2. Among these, CyAPhos” provided the
best results and was selected for further study.

Table 2. Additional Reaction Optimization of Single-Operation
Procedure.

o KOSiMe; Me
MeT N\ Me 7.5 mol % [(allyl)PdCl],

~Si . 15 mol % ligand
Ets additive Et
ﬁ)\Pr cl THF, 65 °C, 24 h 7 pr
Pr af Pr
KOSiMe; ” . . a
Entry (equiv) Additive (equiv) Yield of 2 (%)
1 2 none 62
2 4 none 80
3 4 DMPU (2) 99
4 4 DMPU (1) 93
S 4 DMA (2) 90
6 4 DMA (1) 98
7 4 DMF (1) 74

“Yield determined by GC using nonane as an internal standard.

On larger (1 mmol) scale, these initial conditions provided prod-
uct 2 in 62 % yield using a single-operation reaction setup (Table 2,
entry 1). We also found that increasing the amount of KOSiMes; led
to an increased yield (entry 2). (We note that the source of
KOSiMe; was extremely important for the success of this reaction.
These observations correlate directly with the purity of the
commercial reagent.)* We next sought to investigate the role of the
potassium cation in the reaction. Our suspicion was that the role of

18-C-6 in Anderson’s conditions was to sequester the cation and
render the trimethylsilanolate more nucleophilic. This line of think-
ing lead us to investigate the use of added N, N*dimethylpropyl-
eneurea (DMPU) as a more easily removed (and possibly less
toxic) additive compared to 18-C-6. We were pleased to see that
addition of 2 equivalents of DMPU to the reaction conditions re-
sulted in a quantitative yield of the model compound (entry 3).
However, less DMPU resulted in lower yields (entry 4). More ex-
citingly, however, we found that use of the simple amide solvent di-
methylacetamide (DMA) as an additive (in place of DMPU) also
provided a significant increased yield of product 2 (entry 5). We
were particularly drawn to the use of DMA in the reaction because
it is cheap, widely available, less toxic, and easy to remove during
the purification of products. Further investigation revealed that, un-
like DMPU, the use of a single equivalent of DMA was optimal, re-
sulting in a nearly quantitative yield of tetrasubstituted alkene prod-
uct and greater than 95:5 E/Z selectivity (entry 6).% Interestingly,
when DMF was used in place of DMA, lower yield was observed as
compared to without the additive (entry 7 vs. entry 2). This indi-
cates a more complex role for DMA in the reaction, see below.

Scheme 2. Scope of Aryl Halides®

Me 4 equiv KOSiMe3
0 7.5 mol % [(ally)PdCI], Ar
Me Ve ~ 15 mol % CyAPhos
Si + ArCl Et Pr
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Pr
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Et Et Et Et
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2 4,R=CF3 92%
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18, 66% (w/ ArBr)
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21 25%
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22, 62% w/ ArBr)?

0,
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“Isolated yields, 1 mmol scale. Reactions were run with 0.2 M THF, 1.5
equiv ArCl, and 1 equiv DMA relative to the vinyl silane. Unless noted,
E/Zratios were >95:5. Ratios were determined by NMR or GC analy-
sis of the crude material. “Without DMA additive.



With this optimized, mixed-solvent system in hand, the scope of
the reaction was explored. We began by investigating the aryl halide
cross-coupling partner (Scheme 2). We were pleased to find that in
addition to aryl chlorides, aryl bromides and iodides were also
highly competent in the reaction and resulted in 2 in similar yields.
Aryl triflates, however, did not couple, most likely due to unproduc-
tive cleavage of the S—O bond.* The scope, with respect to aryl
chlorides, is broad, and in general very high levels of stereochemical
retention with respect to the alkene geometry is observed. Elec-
tron-withdrawing substitution (3-5) and electron-donating substi-
tution (6, 10-11) on the aryl chlorides also led to product for-
mation with good to excellent yields. The reaction was tolerant of a
variety of functional groups, such as ethers (3), trifluoromethyl
groups (4), nitroarenes (), amines (6), alkyl chlorides (7), and ke-
tones (12). Although ortho-methyl substitution was only tolerated
to a limited extent (8-9), aryl halides with smaller ortho substitu-
ents were excellent substrates (10-11). Ethyl esters were not toler-
ated (13, due to a background reaction with KOSiMes), but tert-
butyl esters (14) were compatible. Similarly, TBS-protected alco-
hols were incompatible (15), but larger TIPS ethers were tolerated
(16). Finally, both oxygen and nitrogen containing heterocycles
could be incorporated into tetrasubstituted alkene products using
this method (17-22).

Scheme 3. Scope of Vinyl Silanes®

Me 4 equiv KOSiMe;
o~ 7.5 mol % [(ally)PdCl], Ar
Me e 15 mol % CyAPhos

&+ Al Et\%\Pr
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“Isolated yields, 1 mmol scale. Reactions were run with 0.2 M THF, 1.5
equiv ArCl, and 1 equiv DMA relative to the vinyl silane. Unless noted,

E/Zratios were >95:5. Ratios were determined by NMR or GC analy-
sis of the crude material “Without DMA additive.

The scope of the alkene substitution on the vinyl silane was next
explored (Scheme 3). We found that in addition to tetrasubstituted
vinyl silanes, trisubstituted vinyl silanes (prepared using
modifications of known procedures)* could participate in the reac-
tion, allowing for the formation of both tri- and tetrasubstituted al-
kenes in good yields. Similar to the scope of aryl chlorides, high al-
kene stereospecificity was generally observed. As with the prior ex-
amples, good functional group tolerance was observed, and in-
cluded alkenes (23), aromatic groups (26, 33-37), amines (27),
fluorinated compounds (34-35), silylethers (24), ethers (36, 37),
carbamates (38), saturated heterocycles (38), and heteroaromatics
(39). A few limitations were noted. First, alkyl pivalates were not
compatible (25). In addition, tetrasubstituted vinyl silanes bearing
aromatic groups beta to the silicon center proceeded with limited
yield (32). However, the related trisubstituted substrates reacted
well (31). In addition, the electronic property of the vinyl silane
can affect the outcome of the reaction, with strongly electron-defi-
cient vinyl silanes being poor substates. This effect is highlighted by
the series of fluorinated products 33-35, where the yield is strongly
correlated to the electron density of the aromatic substituents. In a
few cases (noted in the scheme), reactions proceeded better with-
out addition of DMA. Most often, this occurred with aryl bromides
(Scheme 2), or with vinyl silanes bearing aromatic substitution
(Scheme 3). As Hiyama-Denmark coupling of di- and mono-sub-
stituted vinyl silanes have already been previously reported,® we did
not study those substrates in this study.

With regard to mechanism, initial studies indicate that the dime-
thyl(S-methylfuryl)vinyl silanes 40 are converted to the corre-
sponding dimethylsilolate 42 by action of KOSiMe; (Eq 1)." This
is no doubt due to the electron-richness of the methylfuryl group,
which allows it to protodesilylate faster than the vinyl group. We
then propose that the mechanism proceeds to alkene 43, as has
been rigorously established by Denmark’s elegant studies.” A quiz-
zical feature of this proposed pathway, however, is the source of the
proton required for initial protodesilyation. Labeling studies with
added D,O demonstrated that water could be a viable source of
proton in the reaction.'” However, after careful titration of the rea-
gents and solvents used in this study, we were unable to account for
sufficient adventitious water to satisfy the stoichiometry required
for it to be the sole proton source. Moreover, when we investigate
water as an additive to the reaction, severely diminished yields were
observed when more than 0.5 equiv of water were added to the re-
action.” Combined, these results indicate that adventitious water is
not the primary source of protons in the reaction.



Me 2 KOSiMe;

Me /= H,0 catA F)'(d/L Ar
Me~di-\\ r
e s — > [RANR| Eqt
R¥F R (Me3Si);0, KOH Ref 28 R 43
R 40 He O~ Me
W
cat. Pd/L
ArX meeeennees e .

1 equiv KOSiMeg

Ar: O _Me
U i Eq. 2

1 0.5 equiv (Me3Si);0 i to 10% yield)
0.5equivH,O TR
cat. Pd/L
ArX H
o 2equivKOH | Ar Me
M ve : N H
Me™ "N H Ar  Me : Eq.3

Me equiv H,O i 45 (observed in up

to 25% yield)

Perplexed by these observations, we then carefully analyzed the
reaction for minor byproducts that might account for the protons
needed in the reaction; two such byproducts were observed. First,
small amounts of aryl furan 44 (Eq 2) were observed in many of the
reactions. Control reactions with added ethyl furan indicate that
this product arises from a palladium-catalyzed Heck-type mecha-
nism of the liberated 2-methylfuran 41 with excess aryl halide in the
reaction.'”** This off-cycle pathway liberates water as a byproduct,
and accounts for up to 5-10% of the required proton (Eq 2). In ad-
dition, we observed the double arylation of DMA (4S5) as a byprod-
uct in up to 25% yield, which no doubt arises via a palladium-cata-
lyzed at-arylation mechanism.* The formation of this byproduct re-
leases two equiv of water, and accounts for an additional 50% of the
required proton (Eq 3). When combined with traces of water
found in the KOSiMe; and other reagents, these side products fully
account for the protons needed in the proposed pathway. Notably,
this pathway indicated also that there are possibly two roles for
DMA in the reaction — both as a potential mild activating agent for
KOSiMe; andas a source for the slow release of proton during the
course of the reaction. As c-arylation is not possible with DMF,
this pathway also helps to explain why DMF was not a successful
additive in the reaction.

In conclusion, we have developed a method for the cross-coupling
of highly substituted vinyl silanes with aryl halides to form valuable
tetrasubstituted alkene compounds. The conditions for the reac-
tion are general, mild, and tolerate a wide range of functional
groups. In addition, this method utilizes easily prepared and bench-
stable 2-methylfuryl-substituted vinyl silanes and does not require
toxic or expensive stoichiometric additives for the activation of the
silane.
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- aromatic and heteroaromatic halides
- vinyl silanes easily prepared and handled




