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ABSTRACT

Experience replay is an essential component in deep reinforcement
learning (DRL), which stores the experiences and generates expe-
riences for the agent to learn in real time. Recently, prioritized
experience replay (PER) has been proven to be powerful and widely
deployed in DRL agents. However, implementing PER on traditional
CPU or GPU architectures incurs significant latency overhead due
to its frequent and irregular memory accesses. This paper proposes
a hardware-software co-design approach to design an associative
memory (AM) based PER, AMPER, with an AM-friendly priority
sampling operation. AMPER replaces the widely-used time-costly
tree-traversal-based priority sampling in PER while preserving the
learning performance. Further, we design an in-memory comput-
ing hardware architecture based on AM to support AMPER by
leveraging parallel in-memory search operations. AMPER shows
comparable learning performance while achieving 55× to 270×
latency improvement when running on the proposed hardware
compared to the state-of-the-art PER running on GPU.

1 INTRODUCTION

Deep reinforcement learning (DRL) combining reinforcement learn-
ing and deep learning is a powerful framework for agents to learn
to make decisions based on trial and error. DRL can be used in
many applications such as gaming, robotics and other automated
systems [6]. Some DRL methods learn offline, while others con-
duct learning online where an agent learns as it interacts with the
environment. Online DRL is preferred when the environment is
complex and changes often. It is highly desirable for Online DRL
to satisfy certain real-time latency constraints. Deep Q-network
(DQN), first introduced by Google DeepMind in [16], is a popular,
model-free, online, off-policy DRL method.

In DQN, an agent learns through past experiences which are
described by state transitions, rewards, and actions. A DQN agent is
comprised of three main components: (1) an action network which
determines the action at each time step for a given input state,
(2) a target network which learns from past experiences, and (3)
an experience replay (ER) memory which stores experiences and
generates specific experiences for the target network as training
input. The structure of target and action networks can be multilayer
perceptrons (MLPs) or convolution neural networks (CNNs) [16].
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For complex environments with many states, the ER memory
can be very large, and it can take a significant amount of time
to update the memory and generate new experiences. Through
detailed profiling of several open-source DQNs running on GPU, we
find that ER operation (sampling experiences) can take more than
55% of the total DQN execution time. Though there is an abundance
of work on accelerating neural networks used in the action/target
network, few works have considered accelerating the ER related
operations. In order to meet real-time latency requirements for
online deployment of DQNs, it is critical to devise techniques to
accelerate the ER operations in DQN, which is our focus.

The key operation supported by ER memory is sampling a small
subset of the stored experiences as the training data for the target
network at each time step. ER memory can be very large (e.g. on

the order of 106 entries) since the experiences at many past time
steps may need to be stored. Hence sampling experiences faces
the memory-wall [7] challenge for CPU and GPU implementations.
Also, sampling techniques involve non-trivial calculations and can
significantly impact the learning performance and speed. Uniform
sampling was used in the earlier DQNs but its performance was not
high. Prioritized experience replay (PER) [19], deploying priority
sampling technique, is widely used in the state-of-the-art DQN
implementations like Rainbow [8] and Agent57 [1]. [8] shows that
without PER, the learning score of a DQN agent may drop around
50%. However, PER requires evenmore frequent and irregular access
to the ER memory, further exacerbating the memory-wall challenge.

In-memory computing, where computation is performed directly
inside the memory array, is an effective computing paradigm for
addressing the memory-wall challenge [10]. Associative memory
(AM), a.k.a. content addressable memory (CAM), is an in-memory
computing primitive that supports parallel search. AM can reduce
the search time from 𝑂 (𝑛) to 𝑂 (1) where 𝑛 is the number of ele-
ments to be sought from. However, straightforward use of AM does
not offer significant gains for PER since the basic tree-traversal
steps for priority sampling are sparse and irregular. Hence, using
hardware-software co-design, we design an AM based PER algo-
rithm, AMPER and an AM based accelerator for AMPER. To the
best of our knowledge, our proposed method is the first work that
targets accelerating ER operations.

We specifically make the following contributions: (i) We inves-
tigate the DQN execution latency distribution under different ER
memory and environment settings and identify that ER operations,
especially the priority sampling process, are bottlenecks for imple-
menting a low-latency DRL agent. (ii)We propose a novel AM-based
prioritized experience replay (AMPER) algorithm with AM-friendly
priority sampling operations, which replace the widely-used time-
costly tree-traversal-based priority sampling in PER with TCAM
searches, while preserving the learning performance. (iii) We pro-
pose two variants of AMPER, AMPER-k and AMPER-fr, using two
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Figure 1: Illustration of a DQN agent interacting with the environ-

ment. The agent has three main components: (1) action network, (2)

target network, and (3) ER memory.

AM-based nearest neighbor search operations: k-Nearest Neigh-
bor and fixed-radius Nearest Neighbor, respectively, to trade off
learning performance and latency. (iv) We design an AM-based in-
memory computing hardware architecture by employing ternary
CAMs (TCAMs) [9] to accelerate the AMPER algorithm. We devise
a prefix-based query strategy to approximate fixed-radius Nearest
Neighbor search with only a single low-latency TCAM search. (v)
We evaluate AMPER on widely used OpenAI gym environments [3].
Our results show that AMPER achieves comparable learning per-
formance as the PER algorithm. Our evaluations based on circuit-
level simulations show that AMPER running on the AM-based
in-memory computing hardware can achieve up to 270× latency
improvement over PER running on GPU.

2 BACKGROUND AND MOTIVATION

Below we first present the basics of DQN and PER. We then briefly
review the related work on DQN acceleration and AMs, especially
TCAMs. Finally, we compare different existing ER techniques, and
present the profiling data for a typical DQN implementing different
ER techniques (uniform ER and PER) to further illustrate the latency
performance characteristics.

2.1 DQN and Prioritized Experience Replay

DQN is a model-free, off-policy (i.e., using separate learning and
action networks) DRL method which learns through past experi-
ences [16]. Fig. 1 illustrates a typical DQN agent. At every time
step 𝑡 , the agent decides the action 𝑎𝑡 via the action network, and
uses that action to interact with the environment. The environ-
ment then transitions to a new state 𝑠𝑡 and generates a reward 𝑟𝑡 .
At each time step, the state transition, the reward, and the action
form an experience are stored in ER memory. A random batch of
stored experiences are sampled at each time step and fed to the
target network to train the agent. The agent learns from the state
transitions and rewards by maximizing the global return, defined
as the accumulated rewards from the start to the end.

Experience sampling plays an important role in the learning
process. Prioritized experience replay (PER), as the state-of-the-
art ER technique, frequently samples state transitions that lead to
larger reward value change. PER has been empirically shown to
improve the performance of the agent compared to the uniform
ER [19] which samples the past distribution randomly following
a uniform distribution. In PER, the priority sampling technique is
deployed where each experience 𝑒𝑖 is associated with a priority 𝑝𝑖

Figure 2: Illustration of PER implementation. (a) An example with 4

prioritized experiences. (b) The basic idea of sum-based sampling.

(c) The sum-tree based implementation of (b). Leaf nodes contain

the priority values. The search process of 𝑌 = 4 is highlighted in red.

(d) A high-level conceptual view of AMPER for the example in (a).

determined by the relative magnitude of the temporal-difference
error (TD-error). The probability that experience 𝑒𝑖 is sampled is

defined as 𝑃 (𝑖) =
𝑝𝛼𝑖∑
𝑘 𝑝𝛼

𝑘
where 𝑝𝑖 > 0. The exponent 𝛼 determines

how much prioritization is used, with 𝛼 = 0 corresponding to the
uniform case. Also, PER needs to update the priority value of each
sampled experience with a new TD-error after training is done.

Sampling experiences with PER in a large ERM can be very
expensive. A sum-based method is widely used for the priority
sampling and is adopted in PER.We illustrate the method in Fig. 2(b)
using a simple example with 4 experiences as specified in Fig. 2(a).
The sum of the four priorities is 𝑆 = 𝑝1 + 𝑝2 + 𝑝3 + 𝑝4 = 11. A
uniform random number (URN) 𝑌 is generated from the range
[0, 𝑆 − 1]. Then, the sampled priority is the one corresponding to
the region that 𝑌 falls into (e.g., 𝑌 = 4 falls in 𝑝2 in Fig. 2(b) so the
sampled priority is 𝑝2). It is easy to see that the probability that
𝑌 falls into the region of 𝑝2 is 𝑃 (2) = 𝑝2/𝑆 . Therefore, by using
the sum-based representation, priority sampling is transformed
into uniform sampling without knowing the data distribution. The
sum-based method is typically realized with a data structure, sum
tree, as shown in Fig. 2(c) where sampling is done by search on
the sum tree structure. Also, the sum tree is updated when the
priority value (leaf node) is updated. Thus, frequent updates and
sampling operations in the DQN learning process incur many tree
operations which require frequent access to memory and exhibit
irregular memory access patterns, and cause longer latency.

2.2 Hardware Accelerators for DQN

Here we briefly review some representative previous work on DQN
acceleration. An FPGA based accelerator is proposed in [21]. It
focuses on accelerating the training and inference of the action and
target network, and considers a small ERmemory implementing the
uniform sampling technique. Some other papers aim to accelerate
distributed DQN, where multiple DQN agents work in a distributed
fashion. For example, [22] proposes a customized network-on-chip
design to solve the communication problems among the distributed
agents. [15] exploits in-switch acceleration to reduce the network
communication for gradient accumulation. Previous work usually
assumes a small ER memory and ignores its acceleration. However,
for the state-of-the-art DRL agents, a large ER memory is often
needed and can incur long latency (more will be shown in Sec. 2.4).
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Figure 3: (a) Generic AM array structure (4×8 array) based on the

NOR connection. Different match schemes: (b) exact match: the rows

that are same as the input query; (c) best match: the row which has

the shortest distance from input query is the best match. [9]

2.3 In-memory computing and AM

Instead of moving data to the processing unit as in typical von Neu-
mann machines, in-memory computing [20] performs computation
directly inside the memory in order to solve the memory-wall [7]
problem. Associative memories (AMs), also known as content ad-
dressable memory (CAMs), are in-memory-computing fabrics that
support fast and energy efficient search. The two main operations
of AMs are (1) search, where the address of the memory entry that
matches the input query is identified and (2) write, where data
entries are stored in the AM rows. AMs enable parallel searches of
a given query against all data stored in memory in 𝑂 (1) time [9].

The most commonly used AM is a Ternary CAM (TCAM) where
each element of queries and stored data can assume one of three
states: 0, 1, and don’t care (’x’). ’x’ is a wildcard state which matches
with both ’0’ and ’1’. For a TCAM array with 𝑟 rows and 𝑐 columns
(Fig. 3(a) [9]), all cells in a row are connected to a commonmatchline
(ML) and each cell stores 𝐶𝑖 𝑗 . During the search operation, each
cell 𝐶𝑖 𝑗 in row i performs an XNOR operation between its content
and the query element 𝑞 𝑗 . If 𝐶𝑖 𝑗 = 𝑞 𝑗 , 𝐶𝑖 𝑗 matches the input query
(denoted by green), and otherwise there is a mismatch (denoted by
red). Each ML implements a logic OR operation of all the cells in
the row to determine the result for that row.

Different sensing circuits can be designed to realize different
match schemes. One typical match scheme is the exact match as
shown in Fig. 3(b), which reports rows that “exactly match” the
query for every single cell. Exact match search is the fastest search
type due to its simple sensing requirement [9]. Another match
scheme is best match, which reports the row with the least number
of mis-matching cells. For best-match search, the discharge rate of
the ML is proportional to the number of mis-match cells on the ML.
Best match (Fig. 3(c)) search is widely used for nearest neighbor
search [17]. To find the best match, it is possible to use analog-
digital-converters to digitize the the ML voltage [12], which is a
costly approach. Another approach is to use a winner-take-all cir-
cuit to find the row with the highest voltage (lowest discharge) [11].
This approach is more energy and area efficient than using analog-
digital-converters but can be limited to finding best matches only
within a certain number of mis-match cells. In this work, we will
exploit the different match schemes to accelerate AMPER.

As discussed in Sec. 2.1, a tree-based method is employed to
implement PER. Recent work [18] proposed to use AMs to accel-
erate a tree structure by mapping each path from the root node

Figure 4: Latency breakdown for executing the UER-DQN and PER-

DQN algorithm for the CartPole and Atari Pong environment. Size

is the ER memory size and step is the total number of time steps.

to a leaf node to one row of the AM. This kind of mapping can
indeed accelerate the search process, but it exhibits poor latency
performance for update since each update needs to write multiple
rows in the AMs and is thus not desirable for implementing PER.

2.4 DQN Execution Latency Analysis

To accelerate DQNs, it is important to understand the latency distri-
bution of different operations in a DQN. For the DQN agent shown
in Fig. 1, at each time step, the following operations are done: store
(storing a transition to the ER memory), ER operation (sampling a
batch of transitions), train (training the target network), and action
(action network inference to determine the action to take). Note
that PER needs to update the priorities of the sampled transitions,
which is also included in the latency of ER operation. We profile the
DQN agent on the CartPole and Atari Pong environments running
on a NVIDIA GTX 1080 GPU. Two kinds of ER are considered: uni-
form ER (UER) and PER. The network architectures are the same
as in [16], i.e., a 3-layer MLP for the CartPole environment, and a
3-layer CNN for the Atari Pong environment. Usually, the ER mem-
ory size (the number of experiences) for a complex environment is

set to 106 experiences. To study the relationship between the ER
memory size and operation latency breakdown, we vary the size of
ER memory. Furthermore, we consider two different total numbers
of time steps.

Fig. 4 summarizes the profiling results with the corresponding
ER memory size and the number of time steps. We observe several
trends regarding the ER techniques and the ER memory size when
comparing Fig. 4(a) with Fig. 4(b) and Fig. 4(c) with Fig. 4(d). First,
ER operations in PER take much more time than in uniform ER.
The reason is that despite the uniform random number generation
process, sampling operation in PER (discussed in Sec. 2.1) needs to
search on the sum tree structure and the tree needs to be updated
with new priority values, which incur many tree-traversal steps.
Second, a larger ER memory size can result in even longer time
spent in ER over training due to the deeper tree depth. Third, when

the ER memory size increases to 105, the ER operation takes nearly
50% of the total operation time. According to a study on the size
of the ER memory [5], it is necessary to have a large ER memory
to improve the learning performance (i.e., the global return) of the
agent. Thus, in the state-of-the-art DQN, PER is a bottleneck in
accelerating the learning process.
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3 ASSOCIATIVE MEMORY BASED PER

This section presents our hardware-software co-design approach
to accelerate PER. On the software side (Sec. 3.1–3.3), we introduce
a novel algorithm AMPER which leverages AM-friendly priority
sampling operations to approximate the original priority sampling
technique. On the hardware side (Sec. 3.4), we design a AM-based
in-memory computing architecture to support AMPER efficiently
with fast search and update.

3.1 Overview of AMPER

As discussed in Sec. 2.4, PER faces memory access challenges due
to frequent sampling and update operations. We aim to introduce
an alternative PER method such that it can leverage the power
offered by in-memory computing while preserving the learning
performance offered by the original PER. In this subsection, we first
present a high-level idea on approximating the priority sampling
operation, and then give an overview of AMPER.

Intuitively, priority sampling aims to sample a higher-priority
experience with a higher probability. Fig. 2(d) illustrates a straight-
forward way to transform priority sampling to uniform sampling.
Here, we store multiple copies of the same priority, where the num-
ber of copies corresponds to the magnitude of the priority value.
For example, we store three copies of 𝑝1, two copies of 𝑝2, etc., and
a total of 11 entries. Now if we uniformly sample the 11 entries, the
probability of sampling 𝑝1 is 𝑝1/𝑆 . It is easy to see that the sampling
speed of this method should be much faster than the tree-based
solution (Fig. 2(c)). However, the method would require a huge
amount of memory, especially when the priority values are large.

Inspired by the idea shown in Fig. 2(d), we develop AMPER by
using uniform sampling while minimizing memory requirements
for storing priorities. Specifically, we propose to construct a sub-
set of the priorities for uniform sampling such that the count of
large priorities is higher than that of small priorities. The subset
is referred to as the candidate set of priorities (CSP). Now if we
uniformly sample the CSP, the larger priorities will be selected with
higher probabilities. A key question then is how to construct the
CSP so that the final learning performance would not be degraded.

To constructs CSP in AMPER we first divide all priorities into𝑚
groups, where𝑚 is a hyper parameter and bears some similarity to
quantization level. Given the range of priority values as [0,𝑉𝑚𝑎𝑥 ],

group 𝑔𝑖 represents the value range [
𝑉𝑚𝑎𝑥 ∗𝑖

𝑚 ,
𝑉𝑚𝑎𝑥 ∗(𝑖+1)

𝑚 ], where
𝑔0∪𝑔1∪· · ·∪𝑔𝑚−1 = [0,𝑉𝑚𝑎𝑥 ]. For group 𝑔𝑖 , the count of priorities
in 𝑔𝑖 is denoted by 𝐶 (𝑔𝑖 ).

Consider the simplest case that we set𝑚 equal to the number
of distinct priority values. Then, all the priorities within the same
group have the same priority value. Fig. 5(a) depicts a representative
distribution of priorities in a DQN, where each vertical bar corre-
sponds to one group. Since the probability to sample the priorities
in the same group should be equal, we can simply choose a subset
of priorities from every group to form the CSP. If we let the size of
the subset for 𝑔𝑖 to be proportional to 𝐶 (𝑔𝑖 ) ·𝑉 (𝑔𝑖 ), where 𝑉 (𝑔𝑖 )
denotes the priority value for group 𝑔𝑖 , for a larger priority value
𝑉 (𝑔𝑖 ), more priorities are included in the CSP.

The key idea behind AMPER is thus to approximate priority
sampling with uniform sampling by constructing a representative
CSP. However, several challenges still exist: (1) though the simplest
method of setting𝑚 is straightforward and incurs little learning
performance loss, the CSP can still be very large since the range

Figure 5: Key AMPER concepts: (a) Distribution of all priorities. X-

axis is the priority value. Y-axis is the count corresponding to each

distinct priority value. (b) Example of kNN based AMPER. 5 (𝑚 = 5)

groups are used (separated by thick black lines), and the priorities

in the red-dashed blocks are selected. (c) Example of frNN based

AMPER. One group is shown as other groups follow the same idea.

of priority values is usually large. (2) Selecting priorities based on
the value magnitude in run-time requires the priority list always
sorted, which is costly to implement in CPU/GPU.

3.2 Nearest Neighbor AMPER

In this section, we present a k-Nearest Neighbor(kNN) based prior-
ity sampling method to tackle the two challenges discussed above.
This method would be able to exploit efficient search provided in
AM. First, we set hyper parameter𝑚 much smaller than the num-
ber of distinct priority values to reduce the CSP size. In group 𝑔𝑖
(for 0 ≤ 𝑖 ≤ 𝑚 − 1), the priority values are within the range of

[
𝑉𝑚𝑎𝑥 ∗𝑖

𝑚 ,
𝑉𝑚𝑎𝑥 ∗(𝑖+1)

𝑚 ] and the number of all the priorities with values
within this range is 𝐶 (𝑔𝑖 ). Following the idea discussed in Sec. 3.1,
we need to determine the representative priority 𝑉 (𝑔𝑖 ) and the
subset size of 𝑔𝑖 to construct CSP. For representative priority value

𝑉 (𝑔𝑖 ), we randomly select a priority value in [
𝑉𝑚𝑎𝑥 ∗𝑖

𝑚 ,
𝑉𝑚𝑎𝑥 ∗(𝑖+1)

𝑚 ],
which preserves the randomness requirement in PER. We denote
the subset size of 𝑔𝑖 as 𝑁𝑖 and set it as

𝑁𝑖 = 𝜆 ·𝑉 (𝑔𝑖 ) ·𝐶 (𝑔𝑖 ), 𝑖 ∈ [0,𝑚 − 1], (1)

where 𝜆 is a scaling factor that scales the subset size and linearly
correlates with the CSP size. 𝜆 is another hyper parameter which
can be tuned to trade off learning performance and hardware cost.
(The impacts of 𝜆 and𝑚 will be studied in Sec. 4.1).

Second, a kNN search process is employed to construct CSP
with a few search steps without keeping the priority list sorted.
Specifically, to obtain the subset of 𝑔𝑖 , we choose 𝑁𝑖 priorities
with values closest to 𝑉 (𝑔𝑖 ), which can leverage efficient search
supported by AM. The rationale is that these priority values are
good representatives for 𝑔𝑖 . Note that simply randomly picking 𝑁𝑖
values from 𝑔𝑖 would be more expensive to implement in hardware
and is thus avoided. The CSP is the union of the subset of each group
as illustrated in Fig. 5(b). We uniformly sample from the resulting
CSP to get the sampling result. Algorithm 1 (ignoring Line 9–12 for
now) summarizes the AMPER method described above, which is
referred to asAMPER-k. It can be seen that kNN search is the main
operation in this AMPER implementation to find all 𝑁𝑖 candidates.
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3.3 Approximate Nearest Neighbor AMPER

As shown in Algorithm 1, the main operation in AMPER-k is kNN
search. But two facts may limit the adoption of the method in an
AM based architecture. First, the search function in AM requires
a different sensing circuit than traditional AMs [9]. Typically, the
sensing circuit for NN search incurs additional latency and area
cost [13]. Also, several (k) search operations are needed to find all
(k) neighbors. Second, to ensure we obtain 𝑁𝑖 priorities for each
group 𝑔𝑖 , we need to keep track of the total priority count in each
group, which requires additional circuitry. Below we introduce
another variant of AMPER, which approximates kNN search with
fixed-radius Nearest Neighbor search (frNN), AMPER-fr.

Fixed-radius nearest neighbor search, also known as C-Nearest
Neighbor search, finds neighbors of the query within distance 𝐶 .
Fig. 5(c) illustrates the concept of AMPER-fr. The key idea is to
employ parameter Δ𝑖 representing the distance from value 𝑉 (𝑔𝑖 ).
Then, we use frNN search, find all the neighbors of 𝑉 (𝑔𝑖 ) within
distance Δ𝑖 , and obtain a subset of 𝑔𝑖 . Similar to AMPER-k, AMPER-
fr constructs the CSP by taking the union of the subsets of all 𝑔𝑖 ’s.
Now, if we apply uniform sampling on the resulting CSP, we expect
the sampled priority to be similar to that obtained by PER.

To ensure such a similarity holds, the key is determining an
appropriate Δ𝑖 . We derive the appropriate Δ𝑖 according to Eqns. (2)-
(4). Given distance Δ𝑖 , the number of all priorities inside the range
is 𝐶Δ𝑖 , which is expected to be an approximation of 𝑁𝑖 in (1). Thus,
the average number of all the distinct priority values within Δ𝑖 is

𝐶Δ𝑖 =
𝐶Δ𝑖
Δ𝑖

≈
𝑁𝑖
Δ𝑖

, (2)

where Δ𝑖 can be determined by𝐶Δ𝑖 and 𝑁𝑖 . However, the challenge
with this approach is that it is difficult to obtain the exact value

of 𝐶Δ𝑖 because the distribution of the priorities changes from time
to time as new experiences are put into ER memory. To address
this issue, we propose to use the average number of all the distinct

priority values within group 𝑔𝑖 , 𝐶𝑖 , to approximate 𝐶Δ𝑖 as

𝐶Δ𝑖 ≈ 𝐶𝑖 = 𝐶 (𝑔𝑖 )/𝑟 , (3)

where 𝑟 is the group range size. From Eqn. (1), (2), and (3), we have

Δ𝑖 ≈
𝑁𝑖 · 𝑟

𝐶 (𝑔𝑖 )
=
𝜆 ·𝑉 (𝑔𝑖 ) ·𝐶 (𝑔𝑖 ) · 𝑟

𝐶 (𝑔𝑖 )
= 𝜆 ·𝑉 (𝑔𝑖 ) ·

𝑉𝑚𝑎𝑥

𝑚
=
𝜆
′

𝑚
·𝑉 (𝑔𝑖 ).

(4)
Based on Eqn. 4, we can calculate Δ𝑖 for each group to be used

in the frNN search by only knowing 𝑉 (𝑔𝑖 ), since 𝜆
′
& 𝑘 are hyper

parameters. Thus, in AMPER-fr, for the 𝑖-th group, we search for
neighbors of𝑉 (𝑔𝑖 )withinΔ𝑖 distance (Fig. 5(c)) to construct the CSP.
Algorithm 1 (ignoring lines 4–8) summarizes the sampling process
in AMPER-fr. This design enables a faster AM search process and
avoids the overhead of tracking priority counts in each group.

3.4 Hardware Support for AMPER

Here we present a hardware design to support AMPER. We elab-
orate on the high-level architecture and the operation flow, and
provide details of the search methodology and additional circuits.

The AM-based AMPER accelerator architecture is shown in
Fig. 6(a). The design supports parallel search with multiple TCAM
arrays and contains a uniform random number generator (URNG),
a query generator, and a candidate set buffer. The architecture

Algorithm 1: AMPER. (The if condition at lines 4–8 are
for kNN variant and lines 9–12 describe the frNN variant.)

Input: All priorities 𝑝 , group number𝑚, scaling factors 𝜆,

𝜆
′
, maximum priority value 𝑉𝑚𝑎𝑥 , batch size 𝑏

Output: Sampled priority set in 𝑠𝑝
// Construct the CSP.

1 𝐶𝑆𝑃 = [];

2 for 𝑖 in range(𝑚) do

3 𝑉 (𝑔𝑖 ) = random.uniform(𝑉𝑚𝑎𝑥
𝑚 · 𝑖 , 𝑉𝑚𝑎𝑥

𝑚 · (𝑖 + 1)) ;

4 if kNN then

5 𝐶 (𝑔𝑖 ) = count(𝑝𝑖 ) in range(𝑉𝑚𝑎𝑥
𝑚 · 𝑖 , 𝑉𝑚𝑎𝑥

𝑚 · (𝑖 + 1));

6 𝑁𝑖 = round(𝜆 ·𝑉 (𝑔𝑖 ) ·𝐶 (𝑔𝑖 ));

// Add 𝑁𝑖 neighbors of 𝑉 (𝑔𝑖 ) to CSP.

7 𝐶𝑆𝑃 .add(kNN(𝑉 (𝑔𝑖 ),𝑁𝑖 ));

8 end

9 else if frNN then

10 Δ𝑖 = round(𝜆
′
/𝑚 ·𝑉 (𝑔𝑖 ));

// Add 𝑉 (𝑔𝑖 )’s neighbors in distance Δ𝑖.

11 𝐶𝑆𝑃 .add(frNN(𝑉 (𝑔𝑖 ),Δ𝑖 )) ;

12 end

13 end

// Sample the CSP uniformly.

14 for 𝑗 in range(𝑏) do
15 𝑖𝑑 = random.uniform(len(𝐶𝑆𝑃 ));

16 𝑠𝑝 .add(𝐶𝑆𝑃[𝑖𝑑]);

17 end

18 return 𝑠𝑝

works as follows: (1) The URNG generates a random search query
𝑉 (𝑔𝑖 ) for each group (line 3 in Algorithm 1). (2) The query genera-
tor generates the corresponding search query for each group, and
the query is sent to all TCAM arrays (lines 6&10 in Algorithm 1).
(3) Multiple TCAM arrays work in parallel to find all matching
entries, which are sent to the candidate set buffer (lines 7&11 in
Algorithm 1). (4) In the last step, the URNG generates a batch of
random numbers, and the corresponding entries in the candidate
set buffer are accessed and used as the final output (lines 15&16 in
Algorithm 1). For both the AMPER variants, the same dataflow can
be deployed with minor differences in the query generator and the
sensing circuit of the TCAM array, which are introduced below.

3.4.1 AMPER-k Search. The query generator for the kNN variant
shown in Fig. 6(b1), implements Equ. 1 to calculate the expected
CSP size 𝑁𝑖 by using a 𝑄-bit multiplier. The 𝑄-bit input 𝑉 (𝑔𝑖 ) will
be output as the search query multiple times. The search time is
controlled by 𝑁𝑖 . As reviewed in Sec. 2.3, TCAM supports search-
ing all the data stored in the TCAM array in one step. To realize
the kNN search in AM, TCAM arrays with best match sensing
circuit [4] can be deployed (red dotted block in Fig. 6(c)). For each
search operation, the neighbor nearest to 𝑉 (𝑔𝑖 ) is output, and mul-
tiple search operations are needed to find 𝑁𝑖 nearest neighbors.
Besides the multiple search steps needed, there are other challenges
with the kNN implementation. Best match search requires more
sophisticated sensing circuitry since an accurate comparison of the
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Figure 6: (a) Overview of the AM based architecture for supporting

AMPER. Each blue-shaded box represents a TCAM array. (b1) Query

generator design for AMPER-k. (b2) Query generator design for

AMPER-fr with the prefix-based query generation. Query generation

examples (Q=8 bits) are shown in (b1)(b2). (c) TCAMarraywith prefix-

based query strategy and exact match sensing used for AMPER-fr.

number of matching cells is needed. Furthermore, the search accu-
racy can suffer significantly when the number of cells in a row is
large and there are non-negligible device variations and noises [14].

3.4.2 AMPER-fr Search. For AMPER-fr search, we devise a prefix-
based query strategy, an efficient querymapping technique, which
approximates the search radius by using the bit properties of fixed-
point values. This approach only requires exact-match TCAMs
which employ very simple sensing circuitry since only match or
mismatch need to be differentiated. Furthermore, only one search
operation is needed to get all candidates. The prefix-based query
strategy follows the steps below to select all neighbors within Δ𝑖
distance of 𝑉 (𝑔𝑖 ).

First, the query generator is designed as shown in Fig. 6(b2),
which consists of a 𝑄-bit multiplier, a mask generator, and 𝑄 OR
gates. A three-step prefix generation works as follows: 1) The mul-
tiplier generates search range Δ𝑖 following Equ. 4. 2) The mask
generator finds the position of the leftmost ‘1’ in Δ𝑖 , called ‘p’,
which determines the position of prefix bits and don’t care bits in
the mask vector. In the mask vector, all bits to the left of ‘p’ are set
to ‘0’ and all bits to the right of ‘p’ (including ‘p’) are set to ‘1’. The
mask generator is implemented using OR gates. 3) Given the input
𝑉𝑔𝑖 and mask vector of Δ𝑖 , the OR gates generate a query composed
of prefix bits and don’t care bits. An 8-bit (Q=8) prefix query genera-
tion example is shown in Fig. 6(b2) where ‘p’ is 4. By employing the
TCAMs, all the rows that match the query are identified. For the
example in Fig. 6(c), query 10xx will match with the entries within
the range (1000,1011). Thus, the number of don’t care bits in the
query corresponds with the size of the search range. Note that this
prefix-based mapping does introduce some approximation error
when 𝑉 (𝑔𝑖 ) and Δ𝑖 are not powers of 2 since the accepted range
can only be powers of 2. Detailed latency comparison between the
two variants’ implementation will be presented in Sec. 4.2.

3.4.3 Update in AMPER. As we mentioned in Sec. 2.1, the sum tree
in original PER implementation is updated when updating the pri-
ority value (leaf node), which also incurs lots of tree-traversal steps.
However, the priority update operation in the proposed AMPER is
relatively simple because each priority has only one copy in the ER
memory. To update the priority, we write the new priority value
in AM directly using the write port of TCAM arrays, which is also
much faster than the original PER.

4 EVALUATION

We evaluate the proposed AMPER design with respect to algorithm-
level performance and execution latency.We first present the algorithm-
level performance study in Sec. 4.1. Then array-level and end-to-end
latency study is discussed in Sec. 4.2.

4.1 Algorithm-level Performance Study

4.1.1 Sampling Error Study. Since AMPER adopts a novel AM-
friendly priority sampling concept, it is important to compare AM-
PER and PER regarding the sampling performance. Specifically,
we compare the sampling results from PER and AMPER. First, we
generate a random data list with size 10000 from an uniform distri-
bution within the range [0,1] and sample it with PER and AMPER,
respectively. The sampling is repeated with batch size 64 for 100
runs. The sampling results distribution is visualized in Fig. 7(a),
where two variants of AMPER both generate similar results as the
standard PER with the curve mostly overlapped.

To further analyze the sampling difference between AMPER and
PER, we quantify the difference using the metric Kullback-Leibler
(KL) Divergence, a measure of how one probability distribution is
different from another reference probability distribution with the
unit ‘nat’. Smaller KL Divergence values indicate more similar dis-
tributions. Given two discrete distributions 𝑃 ,𝑄 , the KL divergence
is defined as 𝐾𝐿(𝑃 ,𝑄) := 𝑆𝑈𝑀 (𝑃 [𝑖] ∗ 𝑙𝑜𝑔(𝑃 [𝑖]/𝑄 [𝑖]), 𝑖).

As we discussed in Sec. 3.2, the scaling factor 𝜆 and group number
𝑚 are two key hyper parameters in CSP construction. We vary the
values of 𝜆 and𝑚 and repeat the sampling process with batch size
64 for 100 runs to generate different sampling results. Fig. 7(b)(c)
shows the KL divergence values between the AMPER and the PER
sampling results under different hyper parameter combinations.
Group number𝑚 is shown along the y-axis for the two figures, in-
creasing from 2 to 12. X-axis depicts the scaling factor 𝜆/ 𝜆′ which
linearly correlates with the size of the CSP. As shown in Fig. 7(b)
and (c), for both AMPER variants, increasing group number 𝑚
and scaling factor 𝜆/ 𝜆′ decreases the KL Divergence value, which
means less sampling error. AMPER introduces a large sampling
error when the group number and scaling factor are very small
(upper left corner), say𝑚 = 2, 𝜆 = 0.05. However, at the bottom
right corner that AMPER has less than 300 nats KL divergence,
which is quite similar to the original PER. For reference, the KL
Divergence value between uniform sampling and PER sampling is
around 9000 nats, and the KL Divergence value between different
runs of PER is around 140 nats. Thus, by choosing proper hyper
parameters, AMPER can achieve a similar sampling performance
as PER. Comparing Fig. 7(b) and (c), AMPER-fr also achieves com-
parable performance as AMPER-k. Later in Sec. 4.2, we will further
discuss the impact of hyper parameters on execution latency.

Fig. 7(d) studies the sampling error under different ER memory
size. We vary the ER memory size from 5000 to 20000 for AMPER-k.
For each ER memory size, the group number is set to 4/8/12, and
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Figure 7: Sampling error study. (a)Visualization of the sampling re-

sults from Uniform, AMPER-k, AMPER-fr and PER methods. KL Di-

vergence study of (b) AMPER-k (c) AMPER-fr under different group

numbers and scaling factors. (d) KL Divergence study of AMPER-k

for different ER memory sizes (5000, 10000, 20000).

the x-axis is CSP ratio (CSP size / ER memory size). Fig. 7(d) shows
that the findings in Fig. 7(b)(c) still hold for different ER memory
sizes. Also, under the same𝑚 and the CSP ratio, AMPER achieves
better sampling performance when the ER memory size becomes
larger. The same trends hold for AMPER-fr.

4.1.2 DQN Learning Performance Study. To study the performance
of AMPER in DQN learning, we implemented AMPER using Py-
Torch and tested it on the learning environments CartPole, Acrobot,
and LunarLander provided by OpenAI Gym [3]. The action/target
networks and their basic hyper parameters are set as [8]. We fix
the number of steps for each environment. If the ER memory is full,
it discards the oldest experience. The training score is the return of
each training episode, and the test score is the average return of 10
episodes. The return is defined as the accumulated reward over an
episode. Each environment defines its own rewards. For Cartpole,
+1 reward is given at a timestep if the pole remains upright. The
Acrobot environment gives a reward of -1 at each time step before
the problem is solved. For LunarLander, the environment gives
either positive or negative rewards at each step. The higher the
score, the better the agent learning performance.

We first evaluate the relationship between the sampling error
and DQN learning performance. We choose three sets of <𝑚, 𝜆>
combination: <4, 0.05> / <4, 0.25> / <8, 0.05>, which correspond
to KL divergence value of 724.8 / 516.9 /534.3 nats, respectively.
Fig. 8(a)(b) show the training score and test score curves of the
DQN agent on the Acrobot environment with ER memory size
10000. It can be seen that the <4, 0.05> (blue curve) combination,
which has the largest sampling error, learns slowest and has the

Figure 8: (a) train scores and (b) test scores when training with dif-

ferent hyper parameters for AMPER-k on the Acrobot environment.

Group size and scaling factor are set to <4, 0.05>, <4, 0.25>, <8, 0.05>,

respectively. Training scores of the DQN agent using PER, AMPER-k,

and AMPER-fr with different ER memory sizes: (c) CartPole with

size 2000; (d) CartPole with size 5000; (e) Acrobot with size 10000; (e)

LunarLander with size 20000. The scores are averaged over 3 runs.

most unstable training curve compared with the other two that
exhibit similar learning performance. However, the three settings
still reaches to similar final score (Fig. 8(b)) and AMPER works well
in DQN learning even with large sampling error (around 700 nats).

Fig. 8(c)-(e) show the learning curves of the DQN agent using
PER and the proposed AMPER on the three environments. AMPER-
fr and AMPER-k exhibit comparable learning speed and final score
as PER. Table 1 summarizes the test scores for the different tasks
and ERM sizes. AMPER achieves little score degradation compared
with PER. Moreover, AMPER-k achieves even better performance
in some cases (CartPole-2000, Acrobot, LunarLander).

Comparing AMPER-k and AMPER-fr, the kNN variant has a
more stable learning process and better final score than the frNN
variant. The reason is that Eqn. (3) incurs approximation errors in
the frNN implementation. If the average count of the selected subset

(i.e., 𝐶Δ𝑖 ) is quite different from the average group count (𝐶𝑖 ), an
error is introduced when calculating Δ𝑖 . However, AMPER-fr still
exhibits similar performance as PER in most cases, and provides
much faster speed to be shown in Sec. 4.2.

4.2 Hardware Performance Study

4.2.1 Experimental Setup. To evaluate the proposed hardware ac-
celerator for AMPER, we developed RTL-level Verilog models for
URNG circuits and the query generator (QG) and synthesized them

with Cadence Encounter for a CMOS 45nm library1. Each prior-
ity entry is represented with INT-32 bits. The bit-width Q is set

1We used 45nm CMOS technology library in order to be consistent with the TCAM
data reported in [17].
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Table 1: Test score comparison of PER, AMPER-k and AMPER-fr on

the OpenAI environments (CartPole, Acrobot, LunarLander).

Env Size PER AMPER-k AMPER-fr

CartPole 2000 162.20 180.13 154.18

CartPole 5000 177.32 173.20 173.25

Acrobot 10000 -89.39 -88.89 -93.69

LunarLander 20000 185.33 200.10 161.50

Table 2: Latency of AMPER hardware components.

Component TCAM Array
(Exact [17])

TCAM Array
(Best [4])

CSB
(0.03MB)

Operation Search/Write Search/Write Read / Write

Delay (ns) 0.58 / 2.0 1.0 / 2.0 0.78 / 0.78

Component URNG QG (kNN) QG (frNN)

Delay (ns) 1.71 3.57 2.02

to 32 for each component. The URNG is implemented with the
32-bit linear feedback shift register. The latency consumed by the
candidate set buffer are calculated using CACTI [2]. A candidate
set buffer (CSB) with a size of 0.3MB is used, which can hold 8000
entries in total. We employ the CMOS-based 16T TCAM design
with the best match [4] and exact match sensing circuits [17] for
the proposed hardware accelerator. Each TCAM array is 64 rows ×
64 columns, where each row stores a priority entry. Multiple arrays
(e.g. 128 arrays for ER memory size 8,192) are needed to store all
the priorities. Table. 2 summarizes the latency of each component.
The latency of PER is measured on the system with Intel i5-8600k
CPU and Nvidia RTX 1080 GPU. Sampling is done in batches of 64,
that is, 64 priorities are returned after each sampling.

4.2.2 Latency Evaluations. We first compare the performance of
the proposed accelerator with the GPU implementation. The latency
is measured for per batch sampling. To ensure the best learning
performance, we set 𝑚 to 20 and the CSP ratio to 15%. Fig. 9(a)
summarizes the comparison for ER memory sizes 5000, 10000, and
20000. AMPER-k and AMPER-fr are 55×–170× and 118×–270×
faster than the GPU implementation, respectively. Note that AM-
PER runs slower on GPU/CPU than the original PER because the
nearest neighbor search operation is time-consuming on GPU/CPU.
However, our hardware-software co-design approach achieves sig-
nificant latency improvements over PER. Moreover, based on the
data shown in Fig. 9(a), AMPER-frNN achieves ~2× latency im-
provement compared to AMPER-k. Although the parallel TCAM
search ability is exploited in both variants, AMPER-fr achieves
better performance due to the simple sensing circuit design. Ac-
cording to the data in Table 2, for each search operation, the TCAM
array with best match sensing incurs 1.7× latency compared with
the exact match one due to the more complicated sensing circuit.
Furthermore, the number of search operations is reduced by using
frNN search compared with kNN search.

Fig. 9(b) investigates the end-to-end latency of AMPER-fr and
AMPER-k with different group numbers, where the CSP size ratio is
fixed to 0.15. The ER memory size is set to 10000 for both implemen-
tations. For both implementations, increasing group number has a
small impact on the latency. This is because the TCAM array search
is done in parallel, which is much faster than other components

Figure 9: End-to-end latency for AMPER-fr and AMPER-k. (a) Com-

parison with GPU implementation. (b) With CSP ratio at 0.15. Vary-

ing group number𝑚 from 4 to 20. (c) With group number𝑚 at 20.

Varying CSP ratio from 0.03 to 0.15.

(Table 2), especially the candidate set buffer write operations. Thus
the additional search operations introduced by increasing group
number has little impact on the end-to-end latency.

The end-to-end latency for AMPER-fr and AMPER-k for dif-
ferent CSP sizes is studied in Fig. 9(c), where the group number
is fixed to 20. Fig. 9(c) shows that the latency of both AMPER-fr
and AMPER-k increases linearly with the CSP size as the latency
is now dominated by the candidate set buffer throughput. As dis-
cussed in Fig. 7, increasing both the group number and the CSP size
helps improve the algorithm-level performance of the two variants.
However, according to the data in Fig. 9(b)(c), increasing the group
number is a better option as it incurs limited additional latency to
get better sampling performance.

5 CONCLUSION

In this paper, we propose a hardware-software codesign approach
AMPER to accelerate PER in the state-of-the-art DRL agent. AM-
PER employs the AM-based search operation to approximate PER.
An in-memory-computing hardware architecture based on AM is
designed to support AMPER. AMPER shows comparable learning
performance as the PER and achieves 55×~270× latency improve-
ment compared with PER implemented on GPU.
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