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ABSTRACT

Recommendation systems (RecSys) suggest items to users by pre-
dicting their preferences based on historical data. Typical Rec-
Sys handle large embedding tables and many embedding table
related operations. The memory size and bandwidth of the conven-
tional computer architecture restrict the performance of RecSys.
This work proposes an in-memory-computing (IMC) architecture
(iMARS) for accelerating the filtering and ranking stages of deep
neural network-based RecSys. iMARS leverages IMC-friendly em-
bedding tables implemented inside a ferroelectric FET based IMC
fabric. Circuit-level and system-level evaluation show that iMARS
achieves 16.8% (713X) end-to-end latency (energy) improvement
compared to the GPU counterpart for the MovieLens dataset.

1 INTRODUCTION

Recommendation systems (RecSys) have been used in various ap-
plications to suggest items such as movies, music, books, shopping
items, websites, etc. based on a user’s previous behavior, as well as
historical data from other users. The large amount of available data
allows RecSys to leverage deep neural networks (DNN). DNN-based
RecSys have been widely adopted by companies like Facebook [1]
and Google [2] to improve their online services.

The typical DNN-based RecSys inference process [2] includes
two stages: filtering and ranking. In the filtering stage, the system
selects a set of candidate items from a large item database to be
recommended based on a user’s behavior. The ranking stage then
computes the probability of choosing each candidate item. The
items with the highest probability are finally returned to the user.
Both the filtering and ranking stage use embedding tables (ETs) to
capture and store user behaviors and item characteristics. The large
ETs make the operations on them memory-bandwidth limited.

Several algorithm and hardware solutions, e.g., ET compression
[3], have been proposed to alleviate the memory-bandwidth bot-
tleneck. Near-memory computing has also been leveraged to solve
the memory-bandwidth problem by bringing the compute units
closer to the memory [4]. However, these solutions only focus on
the ranking stage and not the filtering stage which are still impeded
by memory bottlenecks due to the huge amount of data transfers.

In-memory-computing (IMC) is a computational paradigm that
can alleviate the data transfer overhead between the memory and
the compute unit by performing logic and arithmetic operations
inside the memory unit itself. Different IMC kernels have been
proposed, such as content addressable memories (CAMs), crossbars,
general purpose computing-in-memory (GPCiM) and configurable
memory arrays (CMAs). CAMs [5] can perform parallel content-
based searches in the memory itself, crossbar arrays [6] can perform
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matrix-vector multiplications, and GPCiM [7] performs Boolean
logic and arithmetic operations in memory. CMAs combine the
functionalities of random access memory (RAM), CAM, GPCiM
and crossbar in a single memory array. Ferroelectric field-effect
transistors (FeFET) based crossbars, CAMS, GPCiM and CMAs have
been designed [8, 9] and have shown that FeFET-based circuits are
denser and faster than CMOS-based and ReRAM-based circuits.
FeFETs can be easily integrated with the CMOS fabrication process
and large-scale FeFET memories have also been fabricated in [10].

In this paper, we propose iMARS, an IMC architecture for Rec-
Sys. iMARS exploits an FeFET-based CMA fabric that combines
the functionalities of RAM, ternary CAMs (TCAMs) and GPCiM.
The FeFET-based CMA (from [9]) can switch its functionality to
implement (i) TCAM-based searches to realize nearest neighbor
search (NNS) in the filtering stage; and (ii) GPCiM-based arithmetic
logic to implement the additions/accumulations in the filtering
and ranking stage. Specific contributions of our work include
(1) an integrated IMC fabric to simultaneously accelerate
the filtering and ranking stages; (2) an IMC-friendly compu-
tation flow to facilitate mapping the RecSys algorithms to
iMARS; (3) support for all ET related operations in memory
by combining TCAM and GPCiM functionality in the CMA
fabric; (4) a two-level memory hierarchy and corresponding
in-memory adder trees to store the large ETs.

We have evaluated the latency and energy benefits of iMARS
based on two widely used RecSys models: YoutubeDNN [2] on the
MovieLens dataset [11] and Facebook DLRM [1] on the Criteo Kag-
gle dataset. The results show that for the MovieLens dataset, iIMARS
achieves a 16.8x (713x) end-to-end speedup (energy improvement)
against the GPU implementation. For the Criteo Kaggle dataset
which is widely used for the ranking task, the ranking model in
Facebook DLRM is accelerated with iMARS, which leads to 13.2x
(57.8x) improvement in latency (energy) improvement.

2 BACKGROUND

In this section, we review the basics of DNN-based RecSys and
related work on hardware accelerators for RecSys. Furthermore, we
discuss the IMC circuits (TCAMs, GPCiMs, CMAs and crossbars)
and technologies (i.e., CMOS, FeFETs) employed in iMARS.

2.1 Recommendation Systems

RecSys are composed of a filtering and a ranking stage [2]. The
filtering stage (Fig. 1(a)) aims to reduce the number of computations
needed in the ranking stage by determining a set of candidate
items (e.g. 0(100)) from the entire item database (e.g. 0(10°)). The
ranking stage (Fig. 1(b)) aims to find the item with the highest score
for a specific user from the candidate items. The filtering stage uses a
DNN to characterize the user behavior as a single embedding vector.
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Figure 1: Configuration of the (a) filtering and (b) ranking stages. (c)
General DNN model used in the filtering and ranking stages.
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Figure 2: Operation breakdown of the filtering and ranking stages
on the MovieLens dataset.

Based on this user behavior, the candidate items to recommend can
be found by using the NNS on the item ET as shown in Fig. 1(a).
The goal of the ranking stage is to evaluate each user-item pair
and predict the score of each candidate item for a specific user. The
score is defined as the click-through rate (CTR) and indicates the
likelihood that an item will be clicked. Based on the scores, the
top-k items (O(10)) are returned to the user (Fig. 1(b)).

Both DNN models in the filtering and ranking stages follow the
configuration depicted in Fig. 1(c). DNNs are employed to generate
the embedding vector representing the user behavior or predicting
user-item pair scores. The models take advantage of both continu-
ous (dense) and categorical (sparse) features. Dense features can
be directly processed by a DNN while sparse features are captured
by large ETs with sparse lookup and pooling operations. These ET
operations (lookups, NNS) contribute a significant portion of the
run time in RecSys as shown in the operation breakdown of the
MovieLens dataset using the YouTubeDNN RecSys [2] in Fig. 2.

Existing efforts on accelerating RecSys include field programmable
gate array (FPGA)-based accelerators. E.g., FleetRec [12] and Mi-
croRec [13] alleviate the memory-bandwidth bottleneck of the ETs
in RecSys by using FPGAs with high bandwidth memory. Near-
memory computing has also been considered to alleviate the mem-
ory bottleneck. RecNMP [4] uses a dual in-line memory module-
based near-memory computing that can support sparse embedding
models. Most of these existing hardware accelerators only focus
on a single aspect of RecSys, i.e., ranking, filtering, DNNs or ETs.
Though it is possible to simply cascade these accelerators to im-
plement RecSys, such a simple-minded approach results in higher
hardware cost due to duplicated components.
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2.2 In-Memory Computing Circuits

IMC circuits can alleviate the memory bottleneck and provide par-
allelism to RecSys operations. This section discusses different types
of IMC circuits such as TCAMs, crossbars, GPCiMs and CMA.

TCAMs enable parallel searches based on the Hamming dis-
tance for a query against a large stored database in O(1) time [5].
Using the threshold-match mode of the TCAMs, we can retrieve the
row entries in the array nearest to the query under the threshold
distance by parallel searches. In a TCAM array with r rows and c
columns, the TCAM cells in a row are serially connected through
a common matchline. Each TCAM cell, s; s performs an XOR op-
eration between bit j of query Q and the bit j stored at s;;. Each
matchline implements a logic AND of all the cells connected to it.

Crossbars are an IMC structure where every input is connected
to every output through cross-points that consist of memory ele-
ments and selectors. Crossbars can efficiently implement matrix-
vector multiplications, and are thus ideal accelerators for DNN
models such as convolutional neural networks [14].

GPCiMs [7, 15] perform general-purpose Boolean logic and
arithmetic operations inside RAM. GPCiMs can employ special-
ized memory cells based on emerging technologies to perform
current-based operations inside a memory array (e.g., [7]). Alterna-
tively, customized memory peripherals (such as sense amplifiers)
can be designed to operate with two memory words that are si-
multaneously selected by row decoders. In GPCiMs that employ
customized sensed amplifiers, the voltage (or current flow) through
a column-connected bitline is sensed and compared to one (or mul-
tiple) reference(s) so the results of Boolean logic/arithmetic can be
produced.

CMAs [8, 9, 15] combine multiple IMC functionalities in the
same physical structure. For instance, CMAs can work as either
TCAM or GPCiM units at distinct times. Note that conventional
TCAM:s perform row-wise sensing as matchlines are placed along
the row direction. GPCiMs, on the other hand, require the voltage
drop (or current flow) through the vertically-connected bitlines
to be sensed and compared to one (or more) reference(s) in order
to produce the results needed for general-purpose computation.
Due to this difference in the TCAM and GPCiM arrays, combining
them in a single hardware structure requires additional memory
peripherals to achieve re-configurability [8, 9].

Storing RecSys ETs requires significant amount of memory and
substantial communication between memory and processing units,
which could be alleviated by IMC architectures. The use of CMAs
based on emerging technologies can be beneficial for implementing
IMC-based RecSys compared to standard CMOS CMAs [15] due to
the increased density of memory cells and lower standby power (a
result of the device’s non-volatility).

FeFETs have been used in various IMC based circuits such as
CAMs, GPCiMs and CMAs [16, 17]. Previous work has demon-
strated the benefits of FeFET-based CMAs over other emerging
technologies such as ReRAMs [8, 9]. FeFETs have similar structure
as metal-oxide-semiconductor field-effect transistors (MOSFETs)
used in standard CMOS silicon, except a layer of FE oxide is de-
posited in the transistor’s gate stack. Because of this, FeFETs are
compatible with the CMOS fabrication process [10] and large-scale
FeFET memories have been demonstrated [10]. For these reasons,
we employ a FeFET-based CMA design for accelerating RecSys.
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Figure 3: (a) Proposed iMARS architecture. (b) CMA bank for item embedding table (ItET) and user-item embedding table (UIETs). (c) CMA
structure, which is capable of switching between the CAM/RAM/GPCiM modes. (d) Crossbar array. Labels (1a), ..., (2d*) shows the computation

flow of the ranking and filtering stages as discussed in Sec. 3.3.

3 IMC ACCELERATOR FOR
RECOMMENDATION SYSTEMS

We propose iMARS, an architecture for RecSys that uses an IMC
fabric to accelerate the DNN stack and ET related operations in
both the filtering and ranking stage of RecSys. For the DNN stack,
crossbars can be readily leveraged. For ET related operations, we
leverage CMAs and adder trees placed in the memory periphery.
Since different ETs play different roles depending on the stage, how
to organize these tables inside the IMC fabric must be considered
carefully. We elaborate our proposed architecture in Sec. 3.1 and
computation mapping in Sec. 3.3.

3.1 iMARS Architecture

The iMARS architecture, shown in Fig. 3(a), consists of two types of
IMC arrays: Crossbar arrays for the DNN stack (bottom) and CMA
arrays for the ETs (top). The implementation of the DNN and the
ETs inside iMARS is described below.

3.1.1 Embedding Tables. Some sparse features are used in both
the ranking and filtering stage and hence can share the same ETs.
We employ two different ETs: user-item embedding table (UIET)
and the item embedding table (ItET). The UIET holds user-item
features used by the filtering and ranking stage. Some UIETs are
exclusively used by the filtering or the ranking stage while some
UIETs are shared by the two stages. The item characteristics are
stored in the ItET. To conserve memory space, the ItET can be
accessed by both the filtering and the ranking stage.

For the UIETs, ET lookups and pooling operations are done
in the filtering and ranking stage, respectively. For the ItET, two
primary operations are required: (i) lookups and pooling on the ET
to transform a sparse input feature into a dense vector; (ii) the NNS
on the ET to return the candidate item IDs in the filtering stage.
The iMARS architecture implements the two types of ETs inside

its IMC fabric. CMAs integrate reads, searches, and in-memory
logic/arithmetic operations in a single array, which makes them a
suitable choice for implementing UIETs and ItETs.

While the circuits inside a CMA are described in [9], we introduce
below the design of a novel, two-level hierarchy based on CMAs
and adder trees to store and efficiently compute on the large number
of items in the ETs as needed by the RecSys.

Hierarchical CMAs: To accomodate the large ETs, B banks of
CMAs are deployed in iMARS. Fig. 3(b) depicts the structure of one
CMA bank, which consists of M mats (labeled as Mat-1, Mat-2, ...,
Mat-M). Each mat is comprised of C CMAs that work independently
as the IMC engines in iMARS for performing lookups, searches and
additions. An individual CMA is depicted in Fig. 3(c). It employs
CAM sense amplifiers (SAs) based on a preset threshold, as well as
searchline (SL) drivers and priority encoders to perform threshold
based NNS. We chose to implement threshold based matching in
the CAM based on a reference current generated by a dummy
1T+1FeFET cell, which can be adjusted to compensate for process
variations or to change the sensitivity of the Hamming distance in
the NNS operation. The RAM SAs, wordline (WL) and bitline (BL)
drivers are used during lookups. Pooling operations are performed
with in-memory additions (through an accumulator placed next
to the RAM SA). More details on the CMA structure can be found
in [9]. FeFET-based CMAs [9] are utilized to implement the ETs.
When compared to CMOS-based counterparts, FeFET-based CMAs
have higher density [8].

Adder trees: To support the accumulation of a large number of
parameters, we develop a hierarchical, adder tree structure. Specifi-
cally, iMARS uses in-memory addition to sum, in a single memory
array, embeddings comprised of 32 dimensions with int-8 quanti-
zation. To accumulate (sum up) the outputs of the CMAs for each
mat, iMARS sums up C 256-bit (i.e., 32x8)-bit numbers leveraging
a near-memory, 256-bit intra-mat adder tree placed in each mat.
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Different mats can perform intra-mat additions in parallel. Once the
intra-mat additions are completed, their results are accumulated
across the K mats to produce a single 256-bit result (one output per
memory bank). iMARS supports the addition of four 256-bit inputs
inside a near-memory “Intra-bank Adder Tree" in one shot (bottom
right of Fig. 3(b)). In other words, we design an “Intra-bank Adder
Tree" with a fan-in of 4, a design choice made as a compromise
between area footprint of the iMARS banks and performance of
the intra-bank addition. In cases where more inputs need to be
accumulated (i.e., when K > 4), multiple rounds of addition are
needed using the same “Intra-bank Adder Tree".

The aforementioned design parameters B, M and C largely im-
pact the area, capacity and the performance of iMARS. First, area
footprint increases proportionally to B, M and C. Larger B, M and
C increase the capacity of iMARS for storing embeddings. High
capacity enables iMARS to accomodate big workloads. However,
a large C implies a large fan-in for the “Intra-mat Adder Tree" in-
side each mat, which leads to parasitic effects that increases the
delay for aggregating the outputs of multiple CMAs. A large K, in
turn, implies that more mats are connected to (and sharing) the
same communication bus, which increases the overall latency of
the RecSys (to be discussed in Sec. 3.1.3).

3.1.2 DNN Stack. The DNN stack requires matrix-vector mul-
tiplications which can be implemented using crossbar arrays in
iMARS (Fig. 3(a)). Two dedicated crossbar banks are employed to
execute the ranking and the filtering DNN stack composed of fully
connected layers. Each crossbar bank contains multiple crossbar
arrays (Fig. 3(d)) in order to accomodate the respective DNN model.
These crossbar banks both hold the DNN Stack to obtain dense fea-
tures and the DNN stack that returns a user embedding during the
filtering stage or a user item-score for the ranking stage. Crossbar
arrays can leverage the FEFET technology [18].

3.1.3 Communication inside iIMARS. Data among the differ-
ent hardware components of iMARS need to be communicated. To
ensure such communication does not incur too much overhead, we
carefully design communication channels inside iMARS. There are
two types of communication in iMARS: (1) communication among
the different functional blocks and (2) communication between the
mats in each CMA bank. While (1) leverages the RecSys communi-
cation (RSC) bus, (2) occurs through the intra-bank communication
(IBC) network. The RSC bus and the IBC network are depicted in
Fig. 3(a) and (b), respectively.

The RSC bus enables the exchange of inputs/outputs through
the different hardware blocks in iMARS. While data traffic between
the different hardware blocks is essential to the system’s overall
functionality, the data traffic through the RSC bus is not as intense
as the traffic inside the memory banks that store the ETs. Data
communication on the IBC network and the RSC bus is serialized to
minimize the wiring overhead (thus, reducing the area of iMARS).
iMARS is designed for a RSC bus with 256-bit capacity. The IBC, on
the other hand, supports the transmission of 128 bytes of data (i.e.,
four 256-bit inputs) to be added up inside the intra-bank adder tree
(bottom right of Fig. 3(b)) in one shot. Data communication on the
IBC network is serialized when K >4 (the fan-in of the “Intra-bank
Adder Tree"). The IBC network capacity and the number of “Intra-
bank Adder Tree" fan-ins are design choices that must take into
consideration the impact on area footprint, delay and energy. For
instance, extremely wide buses may be impractical as they require
too much area to be implemented. On the other hand, a narrow IBC
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would require many data fetches through the bus across K mats.
The overhead of communication with the RSC bus/IBC network is
accounted for in the results reported in Sec. 4.

Data traffic inside the RSC and the IBC is orchestrated by a
controller circuit (indicated by the box labeled CTRL in Fig. 3(a)).
The controller circuit consists of a clock generator and two counters
that keep track of (i) the activated bank, and (ii) the mats inside
the bank that are sending outputs for accumulation with the “Intra-
bank Adder Tree" circuit. Data packets always travel through the
IBC in a predetermined order, as defined by the counters (i.e., in
Bank B, from Mat-1, Mat-2, ..., Mat-M in groups of four outputs,
i.e., 128 bytes). The pre-defined communication pattern reduces
conflicting accesses and eliminates the need for routers.

3.2 Embedding Table Mapping

The iMARS architecture uses CMAs to store ETs., which have vary-
ing number of entries (typically 3-30,000 entries). Each row on the
CMA represents an entry of an ET. Designing CMAs with varying
sizes is not practical. We determined the optimal array-level CMA
to be the size of 256 X 256 based on circuit-level simulations. Some
of the ETs can fit in a single CMA and some require multiple CMAs.
The number of CMAs needed to store an ET is n/R where n is the
number of entries in the ET and R is the number of rows in the
CMA.If n/R < C, we only need one mat, otherwise the number of
mats needed to be activated is equal to n/(RC). Each sparse feature
is mapped to a separate bank. Hence, the number of activated banks
depends on the number of sparse features.

We quantize all ETs to 8-bit integer precision to reduce the mem-
ory requirement. We also replace the cosine-distance based NNS
in the original filtering stage with the IMC-friendly Hamming-
distance based NNS. To facilitate the Hamming distance search, we
employ a locality-sensitive hashing (LSH) technique on the ItET [5].
Each row of the ItET includes the additional bits for storing the cor-
responding LSH values. Finally, a fixed-radius near neighbor search
instead of top-k search is employed. The fixed-radius near neighbor
search is amenable to the threshold-based match offered by the
TCAM implementation, and reduces the total number of required
operations. Algorithm-level evaluation will be presented in Sec. 4 to
study the effects of the adjustment on accuracy. We use a 256 LSH
signature length which requires 2 CMAs to store a single entry.

3.3 RecSys Operation Mapping

Given the iMARS architecture, careful mapping of the computation,
how in Fig. 1 to iMARS is required in order to design the control
sequence properly. The crossbars stored the trained weights of the
DNN stack and the ItETs and UIETs store the trained ETs for the
sparse feature vectors. Fig. 3 illustrates such a mapping where the
labels (1a)-(2d*) indicates. We first discuss the operations in the fil-
tering stage. (1a) The sparse features are sent to the corresponding
ETs, i.e., UIETs and ItET for lookups and pooling. The embedding
vectors of the features are obtained by looking up the stored ETs in
the ItET CMAs and UIET CMAs using the RAM mode of the CMA.
The retrieved embeddings are then aggregated (indicated by (1b*)
in Fig. 3) by the in-memory adder, intra-mat and intra-bank adder
trees. (1b) the dense features are sent to the pre-trained filtering
sparse feature DNN stack which is implemented with the crossbar
arrays. (1c) All features are then sent to the filtering DNN. The
output of the filtering DNN is a user embedding vector (u; in Fig. 3).
(1d) The user embedding vector is then sent to the ItET to retrieve
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the N nearest neighbors as candidate items inside the ItET CMAs.
The indices of these retrieved (i.e., candidate) item embeddings are
then stored in the item buffer (See (1d*) inf Fig. 3).

We now discuss the operations in the ranking stage. (2a) Each
candidate item in the item buffer is then analyzed with respect to
the user’s preferences. (2b) The corresponding item embeddings are
retrieved from the stored ET in the ItET and the ranking embeddings
are retrieved in the stored ET in the ranking UIETs using the RAM
mode. Note that some UIETs used in the filtering mode can be
shared with the ranking stage. The item embeddings are pooled
with the ranking embeddings either by concatenation or by an ADD
operation using the in-memory adder, intra-bank and inter-bank
adder trees. (See (2b”) in Fig. 3) The output forms a new set of
embedding features. Together with the dense features are fed to
the ranking DNN stack implemented in crossbars. (2c) the dense
features are again obtained from the trained ranking DNN stack.
(2d) The remaining crossbar arrays implement the ranking DNN
with the pooled feature embeddings as input and return the click-
through-rate (CTR) to the CTR buffer. The CTR buffer is a CMA
that stores the CTR for each candidate item and the item index
which are used for selecting the final top-k items. (2e) The CTR
buffer then performs a top-k operation using the threshold match
mode of the CMA by searching a vector of all 1’s (the maximum
allowable CMA input).

4 EVALUATION

We evaluated the RecSys implementations with two RecSys in-
stances: (1) YoutubeDNN model [2] on the MovieLens 1M dataset,
which includes both the filtering and ranking stage; (2) DLRM
model [1] targeting at the ranking stage on the Criteo Kaggle dataset.
The configurations of the two RecSys shown in Table 1 were imple-
mented on Nvidia RTX 1080 GPU. We used the tools Nvidia-smi
and lineprofiler to obtain energy and latency, respectively. We only
compared with the GPU evaluation as other accelerators use older
RecSys models and datasets.

We dimension B, M and C based on the largest dataset used
in our evaluation (i.e., the Criteo Kaggle) with the configuration
shown in Table. 1. Each ET have different number of entries. In this
configuration, the maximum size of the ETs in the Criteo Kaggle
is 30,000 entries. Since each CMA has 256 rows, 118 CMAs are
required to store the embedding table. The number of arrays is
rounded up to the nearest power-of-two value, i.e., 128. We choose
C=32, which corresponds to 4 mats (M=4) working in parallel inside
each bank, to have a balance between storing small and large ETs.
The outputs from the 4 mats are accumulated at the bank level.
Finally, the Criteo Kaggle dataset has 26 sparse features for ranking.
Hence, we dimension iMARS with 32 banks (B=32) to accomodate
all these features. The other features are also mapped accordingly,
with some mats and CMAs deactivated in a bank according to the
size of the ET. We use 26 activated banks, 104 activated mats and
2860 activated CMAs for the Criteo Kaggle dataset.

For the MovieLens dataset (also used in our evaluation), due to
the much smaller number of rows per ET, we are still able to use
the same architecture while keeping idle arrays deactivated. The
MovieLens dataset uses 5 UIET for the filtering stage and 6 UIET
for the ranking stage (Table 1), 5 of which are shared between the
filtering and ranking stages. ETs have a maximum of 6040 entries
and a minimum of 3 entries. We use 7 active banks, 8 active mat
and 54 active CMA in the MovieLens dataset.
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Table 1: RecSys configurations and memory mapping on iMARS

Movielens Criteo Kaggle
Model Youtube | Youtube DLRM
Stage Filtering | Ranking Ranking
DNN Network | 128-64-32 | 128-1 B2° ;;?SSM-:J,IEP Z(s)g.gf
# UIET (Shared) 5(5) 6 (5) 26
# ItET 1 /
# Row per ET 3000 28000
# Bank 7 26
# Mat 8 104
# CMA 54 2860

Table 2: Array-level evaluation of CMA, adder-trees and crossbars.

Component Operation | Energy (p]) | Latency (ns)

Write 49.1 10.0

256X256 Read 3.2 0.3

CMA Addition 108.0 8.1

Search 13.8 0.2

Intra-mat adder tree | 256-bit Add 137.0 14.7
Intra-bank adder tree | 256-bit Add 956.0 44.2
256x128 Crossbar MatMul 13.8 225.0

4.1 Array-level Evaluation

We have designed the complete circuit of a 256x256 FeFET-based
CMA, and simulated it in HSPICE by employing a Preisach based
model for FeFETs [19] along with the CMOS Predictive Technology
Model (PTM) from [20] with a 45nm technology node. In our evalu-
ation, besides the memory cells inside each CMA, we also consider
all the peripherals depicted in Fig. 3(c). The adder trees and com-
munication network are implemented in Verilog and synthesized
with Cadence Encounter RTL Compiler v14.10, with the NanGate
45nm open-cell library [21]. The crossbars are evaluated by the Neu-
rosim tool [22] using a 45nm FeFET model. Table 2 summarizes the
array-level figures-of-merit (FoM) for the different types of accesses
supported by the CMA. Table 2 also includes the FoM for a 256x128
crossbar. These values are used for higher-level evaluations.

4.2 Accuracy Evaluation

We examined the algorithm-level performance (i.e., accuracy) of
RecSys when using quantized data representation and when us-
ing different distance functions. We implemented a YoutubeDNN
filtering model [2] on the MovieLens 1M dataset [11], where a
FAISS-based distance search is used. We use the hit rate (HR), the
# of hits (i.e., correct predictions) divided by the # of test users,
as the accuracy metric. Three configurations are tested: (1) 32-bit
floating-point (FP32) representation and cosine distance (2)8-bit Int
and cosine distance (3) 8-bit Int and LSH-based Hamming distance
and achieve HR to be 26.8% / 26.2% /20.8%, respectively. iMARS
incurs around 5.4% accuracy degradation, which indicates that the
distance function plays an important role in the accuracy. How-
ever, since the filtering stage only provides a coarse selection of the
candidate items, such accuracy loss is tolerable as the accuracy is
retained by the ranking stage.

4.3 Energy and Latency Evaluation

We estimated the energy and latency of iMARS based on the map-
ping and the simulated array-level FoOM. As the latency and energy
improvement of TCAM arrays and crossbars are well studied in pre-
vious work [5] [22], in this section we mainly focus on our findings
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Table 3: ET operation comparison between the GPU and iMARS

Dataset MovieLens Kaggle

Stage Filtering | Ranking | Ranking

GPU 9.27us 9.60 s 14.97 us

Latency iMARS 0.21 ps 0.21 ps 0.24 ps
Speedup 43.61% 45.17% 61.83%

GPU 203.97 pJ | 211.26 pJ | 329.34 4]

Energy iMARS 0.40 pJ 0.46 uJ 6.88 uJ
Reduction | 516.05% 458.12X 47.90%

on ET lookup operations, which is also a bottleneck of the RecSys.
We compare the latency and energy of TCAM-based LSH search
with the LSH search on GPU as well as the original cosine search
on GPU. Finally we report the end-to-end system comparison.

4.3.1 ET lookup operation. Table 3 shows the latency and en-
ergy consumption of the ET lookup operation in the two RecSys
instances as well as on GPU. All the data are obtained for one item
input. The ET lookup operation in iMARS includes the multiple
lookups of CMAs, the intra-mat addition and intra-bank addition.
To estimate the latency and energy on iMARS, we consider the
worst case that all lookups for one ET happen in the same array.
Multiple lookups in one array requires multiple read, write and
in-memory add operations, incurring higher latency and energy.
We also include the latency/energy overhead of communication due
to wiring and serialization with the RSC bus/IBC network. Thus,
under the aforesaid worst case, the iMARS takes 0.24 ps latency
and 6.88 pJ energy for a single input on the Criteo Kaggle dataset
and achieves 61.83% latency and 47.9X energy improvement. For
the MovieLens dataset, the iMARS achieves 43.1x/45.6X speedup
and 516.05%/458.12x energy reduction over the GPU counterpart
on the filtering/ranking stages.

From Table 3, it can be seen that on both GPU and iMARS, the
ranking stage takes more time and energy than the filtering stage
for MovieLens because the ranking stage deploys one more ET
than the filtering stage as the memory mapping shown in Table 1.
Also, the latency and energy for the MovieLens dataset is smaller
than another dataset because of the relatively small ET size. These
improvements are attributed to the fact that iMARS reduces the
data movement between the processor and memory by using in-
memory ET lookup. Also the adoption of the FEFET technology
contributes to part of the improvement.

4.3.2 NNS operation. NN Search operations are needed in the
filtering stage, and are realized by configuring CMAs to the CAM
mode in iMARS. The utilization of the CAM search mode enables
the NNS operation to be implemented in O(1) time instead of O(n).
For the filtering stage on the MovieLens dataset with O(10°) items,
the search latency using the original cosine distance on the GPU is
around 13.6 ps and it consumes 0.34 mJ for one input. With LSH
search with 256 signature length, the GPU spends 6.97 us and 0.15
m]. The latency and energy improvement over the GPU counterpart
(LSH search) is 3.8e4X and 2.8e4X as shown in Table 2.

4.3.3 End-to-End. We compare the end-to-end improvements
of iMARS over GPU in this section. For the GPU data, we only
count DNN stack, ET lookup and NNS operation in the algorithm.
For iMARS, the ET lookup operation and NNS operation are eval-
uated as we discussed before. The DNN stack is evaluated using
Neurosim [22] (FoM shown in Table 2), which brings around 2.69%
latency improvement compared to the GPU counterpart.

M.Li and A.Laguna, et al.

For the ranking model on the Criteo Kaggle dataset, iMARS
achieves 13.2X latency improvement and 57.8X energy improve-
ment over GPU. For the filtering and ranking stage together, iIMARS
achieves 16.8x and 713X latency/energy end-to-end improvement
on the MovieLens dataset. That is, it can achieve 22025 queries/second
compared with the 1311 queries/second on the GPU. The end-to-
end improvement is dominated by the ranking stage because each
user only goes through the filtering stage once in iMARS. However,
for each user, the CTR needs to be calculated for each candidate
item during the ranking stage.

5 CONCLUSION

We present iMARS, an IMC-based accelerator for recommendation
systems. iMARS uses hierarchical IMC fabric consisting of both
crossbars and CMAs to accelerate both the filtering and ranking
stages of RecSys. We introduce an IMC-friendly embedding table
organization and judicious computation mapping to maximize the
benefit offered by IMC. iMARS achieves 22025 queries/second over
1311 queries/second on the GPU (16.8X speedup for the MovieLens
dataset). Also, 713X end-to-end energy reduction compared with
GPU is achieved by iMARS.
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