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ABSTRACT

Computing-in-Memory (CiM) architectures based on emerging non-

volatile memory (NVM) devices have demonstrated great potential

for deep neural network (DNN) acceleration thanks to their high

energy efficiency. However, NVM devices suffer from various non-

idealities, especially device-to-device variations due to fabrication

defects and cycle-to-cycle variations due to the stochastic behavior

of devices. As such, the DNN weights actually mapped to NVM

devices could deviate significantly from the expected values, lead-

ing to large performance degradation. To address this issue, most

existing works focus on maximizing average performance under de-

vice variations. This objective would work well for general-purpose

scenarios. But for safety-critical applications, the worst-case perfor-

mance must also be considered. Unfortunately, this has been rarely

explored in the literature. In this work, we formulate the problem of

determining the worst-case performance of CiM DNN accelerators

under the impact of device variations. We further propose a method

to effectively find the specific combination of device variation in the

high-dimensional space that leads to the worst-case performance.

We find that even with very small device variations, the accuracy

of a DNN can drop drastically, causing concerns when deploying

CiM accelerators in safety-critical applications. Finally, we show

that surprisingly none of the existing methods used to enhance

average DNN performance in CiM accelerators are very effective

when extended to enhance the worst-case performance, and further

research down the road is needed to address this problem.

1 INTRODUCTIONS

Deep Neural Networks (DNNs) have reached superhuman perfor-

mance in a variety of perception tasks including speech recognition,

object detection, and image classification [19, 20, 32]. Thus, there

is an obvious trend to use DNNs to empower edge applications in

smart sensors, smartphones, automobiles, and etc. [22, 25, 38] How-

ever, because of the constrained computation resources and limited

power budget of edge platforms, CPUs or GPUs are not always

good candidate computing units for implementing computation-

intensive DNNs on edge devices.

Computing-in-Memory (CiM) DNN accelerators [24] is a great

alternative candidate for edge DNN implementation because they
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can reduce data movement by performing in-situ weight data ac-

cess [29]. Furthermore, by employing non-volatile memory (NVM)

devices (e.g., ferroelectric field-effect transistors (FeFETs), resistive

random-access memories (RRAMs), and phase-change memories

(PCMs)), CiM can achieve highermemory density and higher energy

efficiency compared with conventional MOSFET-based designs [3].

However, NVM devices can be unreliable, especially because of

device-to-device variations due to fabrication defects and cycle-to-

cycle variations due to the stochastic behavior of devices. If not

handled properly, the weight values provided by the NVM devices

during computations could deviate significantly from the expected

values, leading to great performance degradation.

To quantify the robustness of CiM DNN accelerators, a Monte

Carol (MC) simulation-based evaluation process is often adopted [23].

A device variation model is extracted from physical measurements.

Then in each MC run, one instance of each device is sampled from

the variation model and DNN performance evaluation is collected.

This process is repeated thousands of times until the collected DNN

performance distribution converges. Following this process, ex-

isting practices [9, 12, 21, 34, 37] generally include up to 10,000

MC runs, which is extremely time-consuming. Other researchers

use Bayesian Neural Networks (BNNs) to evaluate the robustness

against device variations [7], but the variational inference of BNNs

is essentially one form of MC simulation.

Based on these evaluation methods, many works have been

proposed in the literature to improve the average performance of

CiM DNN accelerators under device variations. They fall into two

categories: (1) reducing device variations and (2) enhancing DNN

robustness. To reduce device variations, a popular option is write-

verify [26]. The approach applies iterative write and read (verify)

pulses to make sure that the maximum difference between the

weights eventually programmed into the devices and the desired

values are bounded by a designer-specified threshold. Write-verify

can reduce the weight deviation from the ideal value to less than

3%, thus reducing the average accuracy degradation of deployed

DNNs to less than 0.5% [26]. To enhance DNN robustness, a vari-

ety of approaches exist. For example, neural architecture search

is devised [35, 36] to automatically search through a designated

search space for DNN architectures that are more robust. Variation-

aware training [1, 9, 11], on the other hand, injects device variation-

induced weight perturbations in the training process, so that the

trained DNN weights are more robust against similar types of vari-

ations. Other approaches include on-chip in-situ training [39] that

trains DNNs directly on noisy devices and Bayesian Neural Net-

work (BNN)-based approaches that utilizes the variational training

process of BNNs to improve DNN robustness [7].1

1This project is supported in part by NSF under grants CNS-1822099, CCF-1919167
and CCF-2028879.
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Figure 1: Comparison of the worst-case (highest) top-1 error

identified by 100K MC runs and our method, based on device

variationmodel introduced in Section 3.1. Showing results on

four DNNs: LeNet for MNIST, CovNet for CIFAR-10, ResNet-

18 for CIFAR-10, and ResNet-18 for Tiny ImageNet.

One common assumption of all these evaluation and improve-

ment methods is that they focus on the average performance of

a DNN under device variations, which may work well in general-

purpose scenarios. However, for safety-critical applications where

failure could result in loss of life (e.g., medical devices, aircraft flight

control, and nuclear systems), significant property damage, or dam-

age to the environment, only focusing on the average performance

is not enough. The worst-case performance, regardless of its likeli-

hood, must also be considered [13, 31]. Yet this is a very challenging

problem: Given the extremely high dimension of the device vari-

ation space, simply running MC simulations in hope to capture

the worst-case corner during training will not work. As shown in

Fig. 1, for various DNNs for different datasets, even though the MC

simulation has converged with 100K runs, the highest DNN top-1

error rate discovered is still much higher than that identified by our

method to be discussed later in this paper, where the worst-case

error is close to 100%.

Despite the importance of the problem, very little has been ex-

plored in the literature. The only related work comes from the se-

curity perspective [30], where a weight projected gradient descent

attack (PGD) method is developed to find the weight perturbation

that can lead to mis-classification of inputs. However, the goal is to

generate a successful weight perturbation attack, but not to identify

the worst-case scenario under all possible variations.

To fill the gap, in this work we propose an optimization frame-

work that can efficiently and effectively find the worst-case per-

formance of DNNs in a CiM accelerator with maximum weight

variations bounded by write-verify. We show that the problem can

be formulated as a constrained optimization with non-differentiable

objective, which can be relaxed and solved by gradient-based op-

timization. We then conduct experiments on different networks

and datasets under a practical setting commonly used (i.e., each

device represents 2 bits of data with write-verify and yields a max-

imum weight perturbation magnitude of 0.03). Weight PGD [30],

the only method of relevance in the literature, identifies worst-case

scenarios where the accuracy is similar to that of random guess,

while ours can find ones with close to zero accuracy. We then use

our framework to evaluate the effectiveness of existing solutions

designed to enhance the average accuracy of DNNs under device

variations, and see how they improve the worst-case performance.

We study two types of remedies: reducing device variations and

enhancing DNN robustness. Experimental results suggest that they

either induce significant overhead or are not quite effective, and

further research is needed.

The main contributions of this work are multi-fold:

• This is the first work that formulates the problem of find-

ing worst-case performance in DNN CiM accelerators with

device variations for safety-critical applications.

• An efficient gradient-based framework is proposed to solve

the non-differentiable optimization problem and find the

worst-case scenario.

• Experimental results show that our framework is the only

method that can effectively identify the worst-case perfor-

mance of a DNN.

• We show that even though the maximum weight perturba-

tions are bounded (e.g., by write-verify) to be very small,

significant DNN accuracy drop can still occur. Therefore any

application of CiM accelerators in the safety-critical settings

should use caution.

• We further demonstrate that existing methods to enhance

DNN robustness are either too costly or not quite effective

in improving worst-case performance. New algorithms in

this direction are needed.

The remainder of the paper is organized as follows. In Section 2

we first discuss the background information about CiM DNN ac-

celerators, their robustness issue caused by device variations, and

existing methods targeting this issue. We then formulate the prob-

lem of finding the worst-case performance of DNN under device

variations and propose a framework to solve it in Section 3, along

with experimental results to show its efficacy. Extensive studies on

the effectiveness of extending existing methods to enhance DNN

worst-case performance are carried out in Section 4 and concluding

remarks are given in Section 5.

2 RELATED WORKS

2.1 Crossbar-based Computing Engine

DAC

DAC

DAC

DAC

ADC ADCADC

Mux

Synapse

Figure 2: Illustration of the crossbar architecture. The input

is fed horizontally and multiplied by weights stored in the

NVM devices at each cross point. The multiplication results

are summed up vertically and the sum serves as an output.

The crossbar array is the key computation engine of CiM DNN

accelerators. A crossbar array can perform matrix-vector multipli-

cation in one clock cycle. In a crossbar array, matrix values (e.g.,

weights in DNNs) are stored at the cross point of each vertical and

horizontal line with NVM devices (e.g., RRAMs and FeFETs), and

each vector value (e.g., inputs for DNNs) is fed in through hori-

zontal data lines in the form of voltage. The output then flows out



Computing-In-Memory Neural Network Accelerators for Safety-Critical Systems: Can Small Device Variations Be Disastrous?ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA

through vertical lines in the form of current. The calculation in

the crossbar array is performed in the analog domain according to

the Kirchhoff’s laws but additional peripheral digital circuits are

needed for other key DNN operations (e.g., pooling and non-linear

activation), so digital-to-analog and analog-to-digital converters are

used between different components especially for DACs to transfer

digital input data to voltage levels and ADCs to transfer analog

output currents into digital values.

Resistive crossbar arrays suffer from various sources of varia-

tions and noises. Two major ones include spatial variations and

temporal variations. Spatial variations result from fabrication de-

fects and have both local and global correlations. NVM devices

also suffer from temporal variations due to the stochasticity in the

device material, which causes fluctuations in conductance when

programmed at different times. Temporal variations are typically

independent of the device to device and are irrelevant to the value

to be programmed [6]. In this work, as a proof of concept, we as-

sume the impact of these non-idealities to be independent on each

NVM device. The proposed framework can also be extended to

other sources of variations with modification.

2.2 Evaluating DNN Robustness Against Device
Variations

Most existing researches use a Monte Carlo (MC) simulation-based

evaluation process to quantify the robustness of CiM DNN accel-

erators under the impact of device variations. A device variation

model and a circuit model are first extracted from physical measure-

ments. The DNN to be evaluated is then mapped onto the circuit

model and the desired value of each NVM device is calculated. In

each MC run, for each device, one instance of a non-ideal device

is sampled from the variation model, and the actual conductance

value of each NVM device is determined. After that, DNN perfor-

mance (e.g., classification accuracy) can be collected. This process is

repeated thousands of times until the collected DNN performance

distribution converges. Existing practices [9, 12, 21, 34, 36, 37] gen-

erally include close to 10,000 MC runs, which is extremely time-

consuming. Empirical results [36, 37] show that 10k MC runs are

enough for evaluating the average accuracy of DNNs while no

theoretic guarantee is provided.

Several researchers have also looked into the impact of weight

perturbations on neural network security [30, 33]. This line of re-

search, dubbed as “Adversarial Weight Perturbation”, tries to link

the perturbation in weight to the more thoroughly studied adver-

sarial example issue, where the inputs of DNNs are intentionally

perturbed to trigger mis-classifications. One work [33] trains DNNs

on adversarial examples to collect adversarial weight perturbation.

Most recently, [30] tries to find the adversarial weight perturba-

tion through a modified weight Projected Gradient Descent (PGD)

attack. The method can successfully find a small perturbation to

reduce the accuracy of DNNs. The work focuses on the success

of the attack and does not offer a guarantee of worst-case weight

perturbation, as will be demonstrated by our experimental results.

2.3 Addressing Device Variations

Various approaches have been proposed to deal with the issue

of device variations in CiM DNN accelerators. Here we briefly

review the two most common types: enhancing DNN robustness

and reducing device variations.

A common method used to enhance DNN robustness against de-

vice variations is variation-aware training[1, 9, 11, 23]. Also known

as noise-injection training, the method injects variation to DNN

weights in the training process, which can provide a DNN model

that is statistically robust against the impact of device variations.

In each iteration, in addition to traditional gradient descent, an

instance of variation is sampled from a variation distribution and

added to the weights in the forward pass. The backpropagation

pass is noise free. Once the gradients are collected, this variation is

cleared and the variation-free weight is updated according to the

previously collected gradients. Other approaches include designing

more robust DNN architectures [7, 11, 36, 40] and pruning [2, 12].

To reduce device variations, write-verify[26, 39] is commonly

used during the programming process. An NVM device is first

programmed to an initial state using a pre-defined pulse pattern.

Then the value of the device is read out to verify if its conductance

falls within a certain margin from the desired value (i.e., if its value

is precise). If not, an additional update pulse is applied, aiming to

bring the device conductance closer to the desired one. This process

is repeated until the difference between the value programmed

into the device and the desired value is acceptable. The process

typically requires a few iterations. Most recently, researchers have

demonstrated that it is possible to only selectively write-verify a

small number of critical devices to maintain the average accuracy of

a DNN [34]. There are also various circuit design efforts [10, 18, 27]

that try to mitigate the device variations.

3 EVALUATING WORST-CASE PERFORMANCE
OF CIM DNN ACCELERATORS

A major impact of the device variations is that the conductance

of the NVM devices will deviate from the desired value due to the

device-to-device variations and cycle-to-cycle variations during the

programming process, leading to perturbations in the weight values

of a DNN and affecting its accuracy. In Section 3.1, we first model the

impact of NVM device variations on weight perturbation, assuming

write-verify is used to minimize the variations. Then based on the

weight perturbationmodel, in Section 3.2, we formulate the problem

of finding the lowest DNN accuracy under weight perturbation, and

devise a framework to solve it. Experimental results are presented

in Section 3.3.

3.1 Modeling of Weight Perturbation Due to
Device Variations

Here we show how we model the impact of device variations on

DNN weights. In this paper, we are majorly concerned about the

impact of device variations in the programming process, i.e., the

conductance value programmed to NVM devices is different from

the desired value.

For a weight represented by𝑀 bits, let its desired valueW𝑑𝑒𝑠 be

W𝑑𝑒𝑠 =
𝑀−1∑
𝑗=0

𝑚 𝑗 × 2𝑗 (1)
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where 𝑚 𝑗 is the value of the 𝑗𝑡ℎ bit of the desired weight value.

Moreover, each NVM device is capable of representing 𝐾 bits of

data. Thus, each weight value of the DNNs needs𝑀/𝐾 devices to

represent2. This mapping process can be represented as

𝑔𝑖 =
𝐾−1∑
𝑗=0

𝑚𝑖×𝐾+𝑗 × 2𝑗 (2)

where 𝑔𝑖 is the desired conductance of the 𝑖
𝑡ℎ device representing a

weight. Note that negative weights are mapped in a similar manner.

We assume all of the devices use write-verify so that the difference

between the actual conductance of each device and its desired value

is bounded [6]:

𝑔𝑝𝑖 = 𝑔𝑖 + 𝑛𝑖 ,−𝑡ℎ ≤ 𝑛𝑖 ≤ 𝑡ℎ (3)

where 𝑔𝑝𝑖 is the actually programmed conductance and 𝑡ℎ is the

designated write-verify tolerate threshold.

Thus, when aweight is programmed, the actual valueW𝑝 mapped

on the devices would be

W𝑝 =
𝑀/𝐾−1∑
𝑖=0

2𝑖×𝐾𝑔𝑝𝑖

=
𝑀/𝐾−1∑
𝑖=0

2𝑖×𝐾𝑔𝑖 + 𝑛𝑖

= W𝑑𝑒𝑠 +

𝑀/𝐾−1∑
𝑖=0

𝑛𝑖 × 2𝑖×𝐾

W𝑑𝑒𝑠 − 𝑡ℎ𝑔 ≤ W𝑝 ≤ W𝑑𝑒𝑠 + 𝑡ℎ𝑔

(4)

where 𝑡ℎ𝑔 =
∑𝑀/𝐾−1
𝑖=0

(
𝑡ℎ × 2𝑖×𝐾

)
. In this paper, we denote 𝑡ℎ𝑔 as

the weight perturbation bound.

In this paper, we set 𝐾 = 2 as in [11, 34]. Same as the standard

practice discussed in Section 2.3, for each weight, we iteratively

program the difference between the value on the device and the

expected value until it is below 0.1, i.e., 𝑡ℎ = 0.06 [34], resulting

in 𝑡ℎ𝑔 = 0.03 (unless otherwise specified). These numbers are in

line with those reported in [26], which confirms the validity of our

model and parameters.

3.2 Problem Definition

Now that we have the weight perturbation model, we can define

the problem of identifying the worst-case DNN accuracy. Without

loss of generality, in this work, we use {𝑓 ,W} to represent a neural

network, where 𝑓 is its neural architecture and W is its weights.

The forward pass of this neural network is represented by 𝑓 (W, x),
where x is the inputs.

From the model in Section 3.1, we can see that the weight per-

turbation due to device variations is additive and independent. As

such, the forward pass of a neural network under the impact of

device variation can be expressed as 𝑓 (W + ΔW, x), where ΔW is

the weight perturbation caused by device variations. We can define

the perturbed neural network as {𝑓 ,W + ΔW}.

With these annotations, we can have the following problem

definition: Given a neural network {𝑓 ,W} and an evaluation dataset

2Without loss of generality, we assume that M is a multiple of K.

𝐷 , find the perturbation ΔW that the accuracy of perturbed neural

network {𝑓 ,W+ΔW} in dataset 𝐷 is the lowest among all possible

perturbations inside the weight perturbation bound. In the rest of

this paper, this perturbation ΔW is denoted as the worst-case weight

perturbation; the resultant performance(accuracy) is denoted as the

worst-case performance(accuracy); and the corresponding neural

network is denoted as the worst-case neural network.

Under this definition, we can formalize the problem as:

minimize
ΔW

|{𝑓 (W + ΔW, x) == 𝑡 | (𝑥, 𝑡) ∈ 𝐷}|

s.t. L(ΔW) ≤ 𝑡ℎ𝑔
(5)

where 𝑥 and 𝑡 are the input data and classification label in dataset𝐷 ,

respectively. L(ΔW) is the maximum magnitude of weight pertur-

bation, i.e., max(𝑎𝑏𝑠 (ΔW)), 𝑡ℎ𝑔 is the weight perturbation bound

in (4) in Section 3.1, and |𝐴| denotes the cardinality (size) of a set

𝐴. As 𝑓 , W and 𝐷 are fixed, the goal is to find the ΔW that min-

imizes the size of this set of correct classifications, i.e., achieving

the worst-case accuracy.

3.3 Finding the Worst-Case Performance

The optimization problem defined by (5) is extremely difficult to

solve directly due to the non-differentiable objective function. In

this section, we put forward a framework to cast it into an alterna-

tive form that can be solved by existing optimization algorithms.

To start with, we can slightly relax the objective. Consider a

function 𝑝 such that 𝑓 (W + ΔW, x) == 𝑡 if and only if 𝑝 (x, {𝑓 ,W +

ΔW}) ≥ 0. In this case, the optimization objective

|𝑓 (W + ΔW, x) == 𝑡 | (𝑥, 𝑡) ∈ 𝐷}| (6)

can be relaxed to ∑
x∈𝐷

𝑝 (x, {𝑓 ,W + ΔW}) (7)

Intuitively, minimizing (7) can help to minimize (6), and these two

optimization problems become strictly equivalent if all data in 𝐷 is

mis-classified in the presence of ΔW.

There are various choices of 𝑝 (x, {𝑓 ,W + ΔW}) that can meet

the requirement. We show some of the representative ones below.

O = 𝑓 (W + ΔW, x)

Z = Softmax(𝑓 (W + ΔW, x))

𝑝1 (x, {𝑓 ,W + ΔW}) = − 𝑙𝑜𝑠𝑠 (O, 𝑡) + 1

𝑝2 (x, {𝑓 ,W + ΔW}) =max{max
𝑖≠𝑡

(𝑂𝑖 ) −𝑂𝑡 , 0}

𝑝3 (x, {𝑓 ,W + ΔW}) = softplus(max
𝑖≠𝑡

(𝑂𝑖 ) −𝑂𝑡 ) − log(2)

𝑝4 (x, {𝑓 ,W + ΔW}) =max{0.5 −𝑂𝑡 , 0}

𝑝5 (x, {𝑓 ,W + ΔW}) = − log(2 ·𝑂𝑡 − 2)

𝑝6 (x, {𝑓 ,W + ΔW}) =max{max
𝑖≠𝑡

(𝑍𝑖 ) − 𝑍𝑡 , 0}

𝑝7 (x, {𝑓 ,W + ΔW}) = softplus(max
𝑖≠𝑡

(𝑍𝑖 ) − 𝑍𝑡 ) − log(2)

(8)

where 𝑥 and 𝑡 are the input data and classification label, respectively.
softplus(𝑥) = log(1 + exp(𝑥)) and 𝑙𝑜𝑠𝑠 (O, 𝑡) is cross entropy loss.

According to the empirical results, in this paper we choose

O = 𝑓 (W + ΔW, x)

𝑝 (x, {𝑓 ,W + ΔW}) =max{max
𝑖≠𝑡

(𝑂𝑖 ) −𝑂𝑡 , 0}
(9)
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We now have the relaxed optimization problem

minimize
∑
x∈𝐷

𝑝 (x, {𝑓 ,W + ΔW})

s.t. L(ΔW) ≤ 𝑡ℎ𝑔

(10)

For this relaxed problem, we can utilize Lagrange multiplier to

provide an alternative formulation

minimize

(
𝑐 ·

∑
x∈𝐷

𝑝 (x, {𝑓 ,W + ΔW}) + (L(ΔW) − 𝑡ℎ𝑔)

)
(11)

where 𝑐 > 0 is a suitably chosen constant, if optimal solution exists.

This objective is equivalent to the relaxed problem, in the sense

that there exists 𝑐 > 0 such that the optimal solution to the latter

matches the optimal solution to the former.

Thus, we use the optimization objective (11) as the relaxed alter-

native objective of the defined objective (5). Because the objective

(11) is differentiable w.r.t. ΔW, we use gradient descent as the opti-

mization algorithm to solve this problem.

The choice of constant 𝑐.
Qualitatively speaking, observing objective (11) with larger 𝑐 val-

ues means more focus on lower accuracy and less focus on L(ΔW),

which would result in lower final accuracy and greater L(ΔW).

The empirical results shown in Fig. 3 also prove this observation,

where we plot how the worst-case error rate and L(ΔW) varies

with the choice of c using LeNet for MNIST.

Because the empirical result show that L(ΔW) is monotonic

w.r.t. 𝑐 , to find the 𝑐 value that leads to the lowest performance under

the weight perturbation bound 𝑡ℎ𝑔 , we use binary search to find

the largest 𝑐 value that ensures L(ΔW) ≤ 𝑡ℎ𝑔 . The corresponding
accuracy obtained with this 𝑐 is then the worst-case performance

of this DNN model under weight perturbations bounded by 𝑡ℎ𝑔 .
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Figure 3: Choice of the constant 𝑐. We plot two different

relations: (1) Worst-case error rate (left) w.r.t. 𝑐 value and

(2) perturbation magnitude L(ΔW) (right) w.r.t. 𝑐 value. The
DNN model used is LeNet for MNIST.

Finally, since the optimization problem stated in (11) can be

solved via gradient descent, the time and memory complexity of

our algorithm is comparable to that needed to train the DNN.

3.4 Experimental Evaluation

In this section, we use experiments to demonstrate the effectiveness

of the proposed method in finding the worst-case performance of

different DNN models. Six different DNN models for four different

datasets are used: (1) LeNet [17] for MNIST [5], (2) ConvNet [23]

for CIFAR-10 [15], (3) ResNet-18 [8] for CIFAR-10, (4) ResNet-18 for

Tiny ImageNet [16], (5) ResNet-18 for ImageNet [4] and (6) VGG-

16 [28] for ImageNet. LeNet and ConvNet are quantized to 4 bits

Table 1: Hyper-parameter setups to perform the proposed

method on differentmodels for different datasets. The 𝑐 value
in (11) identified by binary search, the learning rate (lr) and

the number of iterations used for gradient descent are speci-

fied.

Dataset Model c lr # of runs

MNIST LeNet 1E-3 1E-5 500

CIFAR-10 ConvNet 1E-5 1E-5 100

CIFAR-10 ResNet-18 1E-9 1E-4 20

Tiny ImgNet ResNet-18 1E-10 1E-4 20

ImageNet ResNet-18 1E-3 1E-3 10

ImageNet VGG-16 1E-3 1E-3 10

while ResNet-18 and VGG-16 are quantized to 8 bits. As discussed

in Section 3.1, we use 𝑡ℎ𝑔 = 0.03 as the weight perturbation bound,

i.e., each weight is perturbed by at most ±0.03.
As there is no existing work on identifying the worst-case per-

formance of a DNN under device variations to compare with other

than the naive MC simulations, we slightly modify the weight

PGD attack method [30], which tries to find the smallest weight

perturbation that can lead to a successful attack, as an additional

baseline. Experiments are conducted on Titan-XP GPUs in the Py-

Torch framework. For MC simulation baseline, 100,000 runs are

used. We use Adam [14] as the gradient descent optimizer. The

detailed setup for the proposed method is shown in Table 1.

3.4.1 Worst-case DNN Accuracy Obtained by Different Methods.

As shown in Table 2, compared with weight PGD attack and MC

simulations, the proposed framework is more effective in finding

the worst-case performance. It identifies worst-case weight pertur-

bations that can lead to below 10% accuracy for LeNet and ConvNet,

and almost 0% accuracy for ResNet-18 and VGG-16. On the other

hand, the weight PGD attack can only find perturbations that lead

to DNN accuracy close to random guessing (i.e., 1/N for N classes,

which is 10% for CIFAR-10, 0.5% for Tiny ImageNet, and 0.1% for

ImageNet). MC simulations perform the worst. With 100,000 runs

it fails to find any perturbation that can result in accuracy drop

similar to those of the other two methods. This is quite expected

given the high dimensional exploration space spanned by the large

number of weights. Our framework takes slightly longer time to

run than the weight PGD attack method, mainly due to the number

of epochs the gradient descent takes to converge. Yet both methods

are much faster than the MC simulations.

The results from the table suggest that DNNs are extremely

vulnerable to device variations, even though write-verify is used

and the maximumweight perturbation is only 0.03. Considering the
fact that even converged 100,000 MC simulations cannot get close

to the actual worst-case accuracy, For safety-critical applications,

it may be necessary to screen each programmed CiM accelerator

and test its accuracy to avoid disastrous consequences. Random

sampling based quality control may not be an option.

In addition, comparing the results obtained by our framework

on ConvNet and ResNet-18 for CIFAR-10 (as well as ResNet-18

and VGG-16 for ImageNet) we can see that deeper networks are

more susceptible to weight perturbations. This is expected as more

perturbation can be accumulated in the forward propagation.
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Table 2: Comparison between MC simulation (MC), weight PGD attack (PGD) and the proposed framework in obtaining the

worst-case accuracy of various DNN models for different dataset using weight perturbation bound 𝑡ℎ𝑔 = 0.03. The accuracy
of the original model without perturbation (Ori. Acc) is also provided. The proposed method finds perturbations that lead to

much lower accuracy than those found by other methods, using slightly longer time than the weight PGD attack method but

much shorter time than the MC simulation.

Dataset Model Ori. Acc.
Worst-case Accuracy (%) Time (Minutes)

MC PGD Proposed MC PGD Proposed

MNIST LeNet 99.12 97.34 13.44 7.35 900 3.3 5.5

CIFAR-10 ConvNet 85.31 60.12 10.00 4.27 2700 4.2 6.0

CIFAR-10 ResNet-18 95.14 88.77 10.00 0.00 5400 13.3 20.0

Tiny ImageNet ResNet-18 65.23 25.33 0.50 0.00 14400 40.0 60.0

ImageNet ResNet-18 69.75 43.98 0.10 0.00 231000 1980 2880

ImageNet VGG-16 71.59 66.43 0.10 0.06 313800 2530 3820

Finally, the experimental results also show that quantization

in both weights and activations is not an effective method to im-

prove worst-case DNN performance, because all the models in these

experiments are quantized as explained in the experimental setup.

3.4.2 Analysis of Classification Results.

Figure 4: Distribution of classification confidence among

correct/wrong cases from the worst-case LeNet for MNIST.

The model is more confident in the wrong cases than in the

correct ones.

We now take a closer look at the classification results of the

worst-case LeNet for MNIST identified by our framework. We first

examine the classification confidence, the distribution of which is

shown in Fig. 4. Same as the common practice, the classification

confidence of a DNN on an input is calculated by a Softmax function

on its output vector. The element having the highest confidence is

considered the classification result. Contrary to our intuition, from

the figure we can see that the worst-case LeNet is highly confident

in the inputs it mis-classifies, with an average confidence of 0.90

on all the inputs that are classified wrong. On the other hand, the

DNN model is not confident in the inputs it classifies correctly,

having an average confidence of only 0.47 on these inputs. This is

significantly different from the original LeNet without perturbation,

whose confidence is always close to 1.

We also observe how the classification results are distributed

among different classes, which are reported in Table. 3. From the

table we can see that most of the errors are due to images being

wrongly classified to the same class (class 1), while many of the

images that truly belong to this class are being classified to other

classes (class 2 and class 3).

We hope that these observations can potentially shed light on

the development of new algorithms to boost the worst-case perfor-

mance of DNNs in the future.

Table 3: Normalized classification results of the worst-case

LeNet for MNIST. The number in row 𝑖 and column 𝑗 indi-
cates how many cases with class 𝑖 as ground truth are being

classified as 𝑗 , normalized over the total number of cases in

class 𝑖. Most inputs are mis-classified to one class (class 1).

Classification Result

0 1 2 3 4 5 6 7 8 9

G
ro
u
n
d
T
ru
th

0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1 0.0 0.4 0.5 0.1 0.0 0.0 0.0 0.0 0.0 0.0

2 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

3 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

4 0.0 0.9 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0

5 0.0 0.9 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0

6 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

7 0.0 0.6 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0

8 0.0 0.8 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0

9 0.0 0.9 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0

3.4.3 Distribution of Worst-Case Weight Perturbation.

Here we show how the perturbation is distributed among the

weights in the worst-case LeNet for MNIST. As can be seen in Fig. 5,

most of the weights are either not perturbed or perturbed to the

maximum magnitude (i.e., 𝑡ℎ𝑔 = 0.03).

Figure 5: The distribution of the weight perturbation mag-

nitude in the worst-case LeNet for MNIST. Most weights are

either not perturbed or perturbed to 𝑡ℎ𝑔.
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We then show the number of weights that are perturbed in each

layer in Fig. 6. We can observe that the weights in convolutional

layers and the final FC layer are more likely to be perturbed. This

is probably due to the fact that they in general have more impact

on the accuracy of a DNN.
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Figure 6: The percentage of weights being perturbed in each

layer of the worst-case LeNet for MNIST. Weights in convo-

lutional layers and the last FC layer are more likely to be

perturbed.

4 ENHANCING WORST-CASE PERFORMANCE
OF CIM DNN ACCELERATORS

Several works exist in the literature to improve the average perfor-

mance of a DNN under device variations. In this section, we try to

extend them to improve the worst-case performance of a DNN, and

evaluate their effectiveness. Specifically, we will include two types

of methods: (1) confining the device variations and (2) training DNN

models that are more robust against device variations. As discussed

in Section 2, one of the most popular practices of the former is

write-verify and the latter includes variation-aware training.

In addition to these, we also modify adversarial training [30],

a method commonly used to combat adversarial input, to address

weight perturbation caused by device variations. The algorithm is

summarized in Alg. 1. Similar to how adversarial training handles

input perturbations, in DNN training process we inject worst-case

perturbations to the weights of a DNN, in hope that they perform

better under the impact of device variations. Specifically, in each

iteration of training, we first conduct the proposed method to find

the perturbations of the current weights tha can lead to worst-case

accuracy of the model. We then add them to the weights and collect

the gradient 𝐺 .

If not specified explicitly, all accuracy results shown in this sec-

tion are collected by training one DNN architecture using the same

specification but with three different initializations. The accuracy

(error rate) number is shown in percentage and presented in [aver-

age ± standard deviation] for these three runs.

4.1 Stronger Write-Verify

As shown in Table 2, using the standard write-verify setting in

the literature to confine the maximum weight perturbation to 0.03

(𝑡ℎ𝑔 = 0.03 in (4)) cannot significantly improve the worst-case

performance of DNN models. If we set a smaller 𝑡ℎ𝑔 in write-verify,

the write time would become longer but can potentially help to

boost the worst-case performance.

To see the relationship between 𝑡ℎ𝑔 and worst-case DNN ac-

curacy, we use three models, i.e., LeNet for MNIST, ConvNet for

CIFAR-10, and ResNet-18 for CIFAR-10, and plot the results as

Algorithm 1 Adversarial Training (𝑓 , 𝐷 , V, 𝐸𝑝 , 𝑙 , 𝜂, C)

1: // INPUT: A DNN architecture 𝑓 , training dataset D, validation
dataset V, the total number of training epochs 𝐸𝑝 , loss function
𝑙 , learning rate 𝜂;

2: Initialize weight W for 𝑓 ;
3: Initialize 𝑎𝑐𝑐𝐹 = 0, W𝐹 = W;

4: for (𝑖 = 0; 𝑖 < 𝐸𝑝; 𝑖 + +) do

5: for mini-batches B in D do

6: Divide B into input I and label L;

7: Find weight perturbations N that lead to worst-case accu-

racy using the framework discussed in Section 3.3;

8: O = 𝑓 (W + N, I);
9: 𝑙𝑜𝑠𝑠 = 𝑙 (O, L);
10: G = 𝜕𝑙𝑜𝑠𝑠

𝜕W ;

11: W = W − 𝜂 × G

12: end for

13: Evaluate W on V and get 𝑎𝑐𝑐;
14: if 𝑎𝑐𝑐 > 𝑎𝑐𝑐𝐹 then

15: 𝑎𝑐𝑐𝐹 = 𝑎𝑐𝑐 ;
16: WF = W

17: end if

18: end for

19: Return W𝐹

Table 4: Worst-case accuracy (%) of various DNNmodels from

regular training (Regular), variation-aware training (VA) and

adversarial training (ADV). Write-verify with weight pertur-

bation bound 𝑡ℎ𝑔 = 0.03. Compared with regular training,

adversarial training is effective in LeNet for MNIST, but both

methods are not effective in other more complex models.

Dataset Model Regular VA ADV

MNIST LeNet 7.35±03.70 18.58±00.80 98.26±01.05

CIFAR10 ConvNet 4.27±00.33 63.71±03.76 67.09±03.85

CIFAR10 ResNet18 0.00±00.00 32.84±17.20 34.84±13.20

Tiny IN ResNet18 0.00±00.00 3.57±03.48 7.41±08.10

shown in Fig. 7(a)-(c), where we also include the model accuracy

without any device variation (𝑡ℎ𝑔 = 0). From the figures we can see

that a lower 𝑡ℎ𝑔 can indeed increase the worst-case accuracy. Yet

to ensure the models have acceptable accuracy in worst-case (e.g.,

no more than 5% accuracy drop from DNNs without the impact of

device variations and marked with star in each figure), we need to

set 𝑡ℎ𝑔 = 0.009 for LeNet, 𝑡ℎ𝑔 = 0.003 for ConvNet and 𝑡ℎ𝑔 = 0.005
for ResNet-18, which would take extremely long write time. The

experimental result of ResNet-18 for Tiny ImageNet is not shown

here because its worst-case accuracy is lower than 20% even when

𝑡ℎ𝑔 = 0.001 and further reducing 𝑡ℎ𝑔 is not practical.

4.2 Variation-aware and Adversarial Training

Here we study the effectiveness of variation-aware training and

adversarial training on four models: LeNet for MNIST, ConvNet

for CIFAR-10, ResNet-18 for CIFAR-10, and ResNet-18 for Tiny

ImageNet. We assume that standard write-verify with weight per-

turbation bound 𝑡ℎ𝑔 = 003 is used for all the models.

As shown in Table 4, both variation-aware training and adversar-

ial training can offer some improvements in most cases compared
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(a) LeNet for MNIST w/ reg. training. (b) ConvNet for CIFAR-10 w/ reg. training. (c) ResNet18 for CIFAR-10 w/ reg. training.

(d) LeNet for MNIST w/ adv. training. (e) ConvNet for CIFAR-10 w/ adv. training. (f) ResNet-18 for CIFAR-10 w/ adv. training.

Figure 7: Effectiveness of write-verify with regular training (a)-(c), and with adversarial training (d)-(f). Figures represent

the relationship between weight perturbation bound in write-verify 𝑡ℎ𝑔 (X-axis) and the worst-case DNN accuracy (Y-axis) in

different models: (a)(e) LeNet for MNIST, (b)(d) ConvNet for CIFAR-10, and (c)(f) ResNet-18 for CIFAR-10. For each data point,

three experiments of the same setting but different random initialization are conducted. The solid lines show the averaged

results over the three experiments and the shadows represent the standard deviations. In each figure, the circle marks the

model without perturbation (𝑡ℎ𝑔 = 0) and the star marks the model with highest 𝑡ℎ𝑔 and no more than 5% accuracy degradation.

with the regular training. Adversarial training is slightly more ef-

fective than variation-aware training. However, compared with the

accuracy that can be obtained by these networks without device

variations (third column in Table 2), the accuracy drop is still sig-

nificant in the worst case. The only exception is the case of LeNet

for MNIST, where adversarial training can almost fully recover the

accuracy loss even in the worst case, thanks to its simplicity. In

addition, we can observe that as the network gets deeper, the worst-

case accuracy improvement brought by these two training methods

starts to diminish (e.g. 7.41% for ResNet-18 for Tiny ImageNet).

4.3 Combining Adversarial Training with
Write-Verify

Finally, using the same three models and datasets, we showwhether

the models trained by the adversarial training method can reduce

the requirement on write-verify to achieve the same worst-case

accuracy. The results are shown in Fig. 7(d)-(f). Comparing with

the results of the models from regular training in Fig. 7(a)-(c), with

adversarial training, the weight perturbation bound 𝑡ℎ𝑔 needed to

achieve the same accuracy increases. As discussed in Section 4.2,

with adversarial training, the worst-case accuracy of LeNet for

MNIST using the standard write-verify (𝑡ℎ𝑔 = 0.03) is already very

close to that of the original model without device variations. Thus,

Fig. 7 (d) is almost flat. For the other two models, to ensure no more

than 5% worst-case accuracy degradation from the original model

without device variations, we now need 𝑡ℎ𝑔 = 0.005 for ConvNet for
CIFAR-10, and 𝑡ℎ𝑔 = 0.008 for ResNet-18 for CIFAR-10, as marked

by the star in each figure. Comparing with the weight perturbation

bound needed to attain the same worst-case accuracy in Fig 7(b)-(c),

we can see that using adversarial training instead of regular train-

ing can increase it by around 1.7×, indicating faster programming

process. However, these bounds are still much smaller than the com-

monly used 0.03 [11, 26] and take considerably more programming

time. Therefore, more effective methods to address the worst-case

accuracy are still needed, and calls for future research.

5 CONCLUSIONS

In this work, contrary to the existing methods that evaluate the

average performance of DNNs under device variations in CiM ac-

celerators, we proposed an efficient framework to examine their

worst-case performance, which is important for safety-critical ap-

plications. With the proposed framework, we show that even with

bounded small weight perturbations after write-verify, the accu-

racy of a well-trained DNN can drop drastically to almost zero. As

such, we should use caution when applying CiM accelerators to

safety-critical applications. For example, we may need to screen

the accuracy of each chip rather than random sampling in quality

control. We further show that the existing methods used to en-

hance average DNN performance in CiM accelerators are either too

costly (for stronger write-verify) or ineffective (for training-based

methods) when extended to enhance the worst-case performance.

Further research from the community is needed to address this

problem.
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