Computing-In-Memory Neural Network Accelerators for Safety-Critical
Systems: Can Small Device Variations Be Disastrous?

Zheyu Yan Xiaobo Sharon Hu Yiyu Shi
zyan2@nd.edu shu@nd.edu yshi4d@nd.edu
University of Notre Dame University of Notre Dame University of Notre Dame

ABSTRACT

Computing-in-Memory (CiM) architectures based on emerging non-
volatile memory (NVM) devices have demonstrated great potential
for deep neural network (DNN) acceleration thanks to their high
energy efficiency. However, NVM devices suffer from various non-
idealities, especially device-to-device variations due to fabrication
defects and cycle-to-cycle variations due to the stochastic behavior
of devices. As such, the DNN weights actually mapped to NVM
devices could deviate significantly from the expected values, lead-
ing to large performance degradation. To address this issue, most
existing works focus on maximizing average performance under de-
vice variations. This objective would work well for general-purpose
scenarios. But for safety-critical applications, the worst-case perfor-
mance must also be considered. Unfortunately, this has been rarely
explored in the literature. In this work, we formulate the problem of
determining the worst-case performance of CiM DNN accelerators
under the impact of device variations. We further propose a method
to effectively find the specific combination of device variation in the
high-dimensional space that leads to the worst-case performance.
We find that even with very small device variations, the accuracy
of a DNN can drop drastically, causing concerns when deploying
CiM accelerators in safety-critical applications. Finally, we show
that surprisingly none of the existing methods used to enhance
average DNN performance in CiM accelerators are very effective
when extended to enhance the worst-case performance, and further
research down the road is needed to address this problem.

1 INTRODUCTIONS

Deep Neural Networks (DNNs) have reached superhuman perfor-
mance in a variety of perception tasks including speech recognition,
object detection, and image classification [19, 20, 32]. Thus, there
is an obvious trend to use DNNs to empower edge applications in
smart sensors, smartphones, automobiles, and etc. [22, 25, 38] How-
ever, because of the constrained computation resources and limited
power budget of edge platforms, CPUs or GPUs are not always
good candidate computing units for implementing computation-
intensive DNNs on edge devices.

Computing-in-Memory (CiM) DNN accelerators [24] is a great
alternative candidate for edge DNN implementation because they

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICCAD °22, October 30-November 3, 2022, San Diego, CA, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9217-4/22/10...$15.00
https://doi.org/10.1145/3508352.3549360

can reduce data movement by performing in-situ weight data ac-
cess [29]. Furthermore, by employing non-volatile memory (NVM)
devices (e.g., ferroelectric field-effect transistors (FeFETs), resistive
random-access memories (RRAMs), and phase-change memories
(PCMs)), CiM can achieve higher memory density and higher energy
efficiency compared with conventional MOSFET-based designs [3].
However, NVM devices can be unreliable, especially because of
device-to-device variations due to fabrication defects and cycle-to-
cycle variations due to the stochastic behavior of devices. If not
handled properly, the weight values provided by the NVM devices
during computations could deviate significantly from the expected
values, leading to great performance degradation.

To quantify the robustness of CiM DNN accelerators, a Monte
Carol (MC) simulation-based evaluation process is often adopted [23].
A device variation model is extracted from physical measurements.
Then in each MC run, one instance of each device is sampled from
the variation model and DNN performance evaluation is collected.
This process is repeated thousands of times until the collected DNN
performance distribution converges. Following this process, ex-
isting practices [9, 12, 21, 34, 37] generally include up to 10,000
MC runs, which is extremely time-consuming. Other researchers
use Bayesian Neural Networks (BNNs) to evaluate the robustness
against device variations [7], but the variational inference of BNNs
is essentially one form of MC simulation.

Based on these evaluation methods, many works have been
proposed in the literature to improve the average performance of
CiM DNN accelerators under device variations. They fall into two
categories: (1) reducing device variations and (2) enhancing DNN
robustness. To reduce device variations, a popular option is write-
verify [26]. The approach applies iterative write and read (verify)
pulses to make sure that the maximum difference between the
weights eventually programmed into the devices and the desired
values are bounded by a designer-specified threshold. Write-verify
can reduce the weight deviation from the ideal value to less than
3%, thus reducing the average accuracy degradation of deployed
DNN:Ss to less than 0.5% [26]. To enhance DNN robustness, a vari-
ety of approaches exist. For example, neural architecture search
is devised [35, 36] to automatically search through a designated
search space for DNN architectures that are more robust. Variation-
aware training [1, 9, 11], on the other hand, injects device variation-
induced weight perturbations in the training process, so that the
trained DNN weights are more robust against similar types of vari-
ations. Other approaches include on-chip in-situ training [39] that
trains DNNs directly on noisy devices and Bayesian Neural Net-
work (BNN)-based approaches that utilizes the variational training
process of BNNs to improve DNN robustness [7].1

!This project is supported in part by NSF under grants CNS-1822099, CCF-1919167
and CCF-2028879.

ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA

100 BMC ®Actual
80
60

40

Error Rate (%)

20

CIFAR10 - ConvNet CIFAR10 - ResNet-18 Tiny ImageNet -
ResNet-18

0 ""

MNIST - LeNet

Dataset-Model
Figure 1: Comparison of the worst-case (highest) top-1 error

identified by 100K MC runs and our method, based on device
variation model introduced in Section 3.1. Showing results on
four DNNs: LeNet for MNIST, CovNet for CIFAR-10, ResNet-
18 for CIFAR-10, and ResNet-18 for Tiny ImageNet.

One common assumption of all these evaluation and improve-
ment methods is that they focus on the average performance of
a DNN under device variations, which may work well in general-
purpose scenarios. However, for safety-critical applications where
failure could result in loss of life (e.g., medical devices, aircraft flight
control, and nuclear systems), significant property damage, or dam-
age to the environment, only focusing on the average performance
is not enough. The worst-case performance, regardless of its likeli-
hood, must also be considered [13, 31]. Yet this is a very challenging
problem: Given the extremely high dimension of the device vari-
ation space, simply running MC simulations in hope to capture
the worst-case corner during training will not work. As shown in
Fig. 1, for various DNNs for different datasets, even though the MC
simulation has converged with 100K runs, the highest DNN top-1
error rate discovered is still much higher than that identified by our
method to be discussed later in this paper, where the worst-case
error is close to 100%.

Despite the importance of the problem, very little has been ex-
plored in the literature. The only related work comes from the se-
curity perspective [30], where a weight projected gradient descent
attack (PGD) method is developed to find the weight perturbation
that can lead to mis-classification of inputs. However, the goal is to
generate a successful weight perturbation attack, but not to identify
the worst-case scenario under all possible variations.

To fill the gap, in this work we propose an optimization frame-
work that can efficiently and effectively find the worst-case per-
formance of DNNs in a CiM accelerator with maximum weight
variations bounded by write-verify. We show that the problem can
be formulated as a constrained optimization with non-differentiable
objective, which can be relaxed and solved by gradient-based op-
timization. We then conduct experiments on different networks
and datasets under a practical setting commonly used (i.e., each
device represents 2 bits of data with write-verify and yields a max-
imum weight perturbation magnitude of 0.03). Weight PGD [30],
the only method of relevance in the literature, identifies worst-case
scenarios where the accuracy is similar to that of random guess,
while ours can find ones with close to zero accuracy. We then use
our framework to evaluate the effectiveness of existing solutions
designed to enhance the average accuracy of DNNs under device
variations, and see how they improve the worst-case performance.
We study two types of remedies: reducing device variations and

Zheyu Yan, Xiaobo Sharon Hu, and Yiyu Shi

enhancing DNN robustness. Experimental results suggest that they
either induce significant overhead or are not quite effective, and
further research is needed.

The main contributions of this work are multi-fold:

e This is the first work that formulates the problem of find-
ing worst-case performance in DNN CiM accelerators with
device variations for safety-critical applications.

e An efficient gradient-based framework is proposed to solve
the non-differentiable optimization problem and find the
worst-case scenario.

e Experimental results show that our framework is the only
method that can effectively identify the worst-case perfor-
mance of a DNN.

e We show that even though the maximum weight perturba-
tions are bounded (e.g., by write-verify) to be very small,
significant DNN accuracy drop can still occur. Therefore any
application of CiM accelerators in the safety-critical settings
should use caution.

e We further demonstrate that existing methods to enhance
DNN robustness are either too costly or not quite effective
in improving worst-case performance. New algorithms in
this direction are needed.

The remainder of the paper is organized as follows. In Section 2
we first discuss the background information about CiM DNN ac-
celerators, their robustness issue caused by device variations, and
existing methods targeting this issue. We then formulate the prob-
lem of finding the worst-case performance of DNN under device
variations and propose a framework to solve it in Section 3, along
with experimental results to show its efficacy. Extensive studies on
the effectiveness of extending existing methods to enhance DNN
worst-case performance are carried out in Section 4 and concluding
remarks are given in Section 5.

2 RELATED WORKS
2.1 Crossbar-based Computing Engine

TR
T RN
E R R AR
T]

ADC ADC -=-- ADC
Figure 2: Illustration of the crossbar architecture. The input
is fed horizontally and multiplied by weights stored in the
NVM devices at each cross point. The multiplication results
are summed up vertically and the sum serves as an output.

The crossbar array is the key computation engine of CiM DNN
accelerators. A crossbar array can perform matrix-vector multipli-
cation in one clock cycle. In a crossbar array, matrix values (e.g.,
weights in DNNs) are stored at the cross point of each vertical and
horizontal line with NVM devices (e.g., RRAMs and FeFETs), and
each vector value (e.g., inputs for DNNG) is fed in through hori-
zontal data lines in the form of voltage. The output then flows out

Computing-In-Memory Neural Network Accelerators for Safety-Critical Systems: Can Small Device Variations Bd OGARr@2sOctober 30-November 3, 2022, San Diego, CA, USA

through vertical lines in the form of current. The calculation in
the crossbar array is performed in the analog domain according to
the Kirchhoff’s laws but additional peripheral digital circuits are
needed for other key DNN operations (e.g., pooling and non-linear
activation), so digital-to-analog and analog-to-digital converters are
used between different components especially for DACs to transfer
digital input data to voltage levels and ADCs to transfer analog
output currents into digital values.

Resistive crossbar arrays suffer from various sources of varia-
tions and noises. Two major ones include spatial variations and
temporal variations. Spatial variations result from fabrication de-
fects and have both local and global correlations. NVM devices
also suffer from temporal variations due to the stochasticity in the
device material, which causes fluctuations in conductance when
programmed at different times. Temporal variations are typically
independent of the device to device and are irrelevant to the value
to be programmed [6]. In this work, as a proof of concept, we as-
sume the impact of these non-idealities to be independent on each
NVM device. The proposed framework can also be extended to
other sources of variations with modification.

2.2 Evaluating DNN Robustness Against Device
Variations

Most existing researches use a Monte Carlo (MC) simulation-based
evaluation process to quantify the robustness of CiM DNN accel-
erators under the impact of device variations. A device variation
model and a circuit model are first extracted from physical measure-
ments. The DNN to be evaluated is then mapped onto the circuit
model and the desired value of each NVM device is calculated. In
each MC run, for each device, one instance of a non-ideal device
is sampled from the variation model, and the actual conductance
value of each NVM device is determined. After that, DNN perfor-
mance (e.g., classification accuracy) can be collected. This process is
repeated thousands of times until the collected DNN performance
distribution converges. Existing practices [9, 12, 21, 34, 36, 37] gen-
erally include close to 10,000 MC runs, which is extremely time-
consuming. Empirical results [36, 37] show that 10k MC runs are
enough for evaluating the average accuracy of DNNs while no
theoretic guarantee is provided.

Several researchers have also looked into the impact of weight
perturbations on neural network security [30, 33]. This line of re-
search, dubbed as “Adversarial Weight Perturbation”, tries to link
the perturbation in weight to the more thoroughly studied adver-
sarial example issue, where the inputs of DNNs are intentionally
perturbed to trigger mis-classifications. One work [33] trains DNNs
on adversarial examples to collect adversarial weight perturbation.
Most recently, [30] tries to find the adversarial weight perturba-
tion through a modified weight Projected Gradient Descent (PGD)
attack. The method can successfully find a small perturbation to
reduce the accuracy of DNNs. The work focuses on the success
of the attack and does not offer a guarantee of worst-case weight
perturbation, as will be demonstrated by our experimental results.

2.3 Addressing Device Variations

Various approaches have been proposed to deal with the issue
of device variations in CiM DNN accelerators. Here we briefly

review the two most common types: enhancing DNN robustness
and reducing device variations.

A common method used to enhance DNN robustness against de-
vice variations is variation-aware training[1, 9, 11, 23]. Also known
as noise-injection training, the method injects variation to DNN
weights in the training process, which can provide a DNN model
that is statistically robust against the impact of device variations.
In each iteration, in addition to traditional gradient descent, an
instance of variation is sampled from a variation distribution and
added to the weights in the forward pass. The backpropagation
pass is noise free. Once the gradients are collected, this variation is
cleared and the variation-free weight is updated according to the
previously collected gradients. Other approaches include designing
more robust DNN architectures [7, 11, 36, 40] and pruning [2, 12].

To reduce device variations, write-verify[26, 39] is commonly
used during the programming process. An NVM device is first
programmed to an initial state using a pre-defined pulse pattern.
Then the value of the device is read out to verify if its conductance
falls within a certain margin from the desired value (i.e., if its value
is precise). If not, an additional update pulse is applied, aiming to
bring the device conductance closer to the desired one. This process
is repeated until the difference between the value programmed
into the device and the desired value is acceptable. The process
typically requires a few iterations. Most recently, researchers have
demonstrated that it is possible to only selectively write-verify a
small number of critical devices to maintain the average accuracy of
a DNN [34]. There are also various circuit design efforts [10, 18, 27]
that try to mitigate the device variations.

3 EVALUATING WORST-CASE PERFORMANCE
OF CIM DNN ACCELERATORS

A major impact of the device variations is that the conductance
of the NVM devices will deviate from the desired value due to the
device-to-device variations and cycle-to-cycle variations during the
programming process, leading to perturbations in the weight values
of a DNN and affecting its accuracy. In Section 3.1, we first model the
impact of NVM device variations on weight perturbation, assuming
write-verify is used to minimize the variations. Then based on the
weight perturbation model, in Section 3.2, we formulate the problem
of finding the lowest DNN accuracy under weight perturbation, and
devise a framework to solve it. Experimental results are presented
in Section 3.3.

3.1 Modeling of Weight Perturbation Due to
Device Variations

Here we show how we model the impact of device variations on
DNN weights. In this paper, we are majorly concerned about the
impact of device variations in the programming process, i.e., the
conductance value programmed to NVM devices is different from
the desired value.

For a weight represented by M bits, let its desired value Wy, be

M-1

Wies = ». mjx2/ (1)
7=0

ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA

where m;j is the value of the j h bit of the desired weight value.
Moreover, each NVM device is capable of representing K bits of
data. Thus, each weight value of the DNNs needs M/K devices to
represent?. This mapping process can be represented as

K-1

gi = Z MixK+j X 2 (2)
Jj=0

where g; is the desired conductance of the ith device representing a
weight. Note that negative weights are mapped in a similar manner.
We assume all of the devices use write-verify so that the difference
between the actual conductance of each device and its desired value
is bounded [6]:

gpi = gi +ni, —th < n; < th (3)

where gp; is the actually programmed conductance and th is the
designated write-verify tolerate threshold.

Thus, when a weight is programmed, the actual value ‘W), mapped
on the devices would be

M/K-1
W, = 27K gp;
i=0
M/K-1
= Z ZLXKgi +n;
— 4
M/K-1
= Wyes + Z n;j X XK

i=0
Wies —thg < Wp < Wyes +thy
where thy = Z?i(/)K_l (th X ZiXK). In this paper, we denote thy as
the weight perturbation bound.

In this paper, we set K = 2 as in [11, 34]. Same as the standard
practice discussed in Section 2.3, for each weight, we iteratively
program the difference between the value on the device and the
expected value until it is below 0.1, i.e., th = 0.06 [34], resulting
in thy = 0.03 (unless otherwise specified). These numbers are in
line with those reported in [26], which confirms the validity of our
model and parameters.

3.2 Problem Definition

Now that we have the weight perturbation model, we can define
the problem of identifying the worst-case DNN accuracy. Without
loss of generality, in this work, we use {f, W} to represent a neural
network, where f is its neural architecture and W is its weights.
The forward pass of this neural network is represented by (W, x),
where x is the inputs.

From the model in Section 3.1, we can see that the weight per-
turbation due to device variations is additive and independent. As
such, the forward pass of a neural network under the impact of
device variation can be expressed as f(W + AW, x), where AW is
the weight perturbation caused by device variations. We can define
the perturbed neural network as {f, W + AW }.

With these annotations, we can have the following problem
definition: Given a neural network { f, W} and an evaluation dataset

2Without loss of generality, we assume that M is a multiple of K.

Zheyu Yan, Xiaobo Sharon Hu, and Yiyu Shi

D, find the perturbation AW that the accuracy of perturbed neural
network {f, W+ AW} in dataset D is the lowest among all possible
perturbations inside the weight perturbation bound. In the rest of
this paper, this perturbation AW is denoted as the worst-case weight
perturbation; the resultant performance(accuracy) is denoted as the
worst-case performance(accuracy); and the corresponding neural
network is denoted as the worst-case neural network.
Under this definition, we can formalize the problem as:

mirii‘r’vnize {f(W + AW, x) == t|(x,t) € D}|
©)
st. L(AW) < thy
where x and ¢ are the input data and classification label in dataset D,
respectively. L(AW) is the maximum magnitude of weight pertur-
bation, i.e., max(abs(AW)), thy is the weight perturbation bound
in (4) in Section 3.1, and |A| denotes the cardinality (size) of a set
A. As f, W and D are fixed, the goal is to find the AW that min-
imizes the size of this set of correct classifications, i.e., achieving
the worst-case accuracy.

3.3 Finding the Worst-Case Performance

The optimization problem defined by (5) is extremely difficult to
solve directly due to the non-differentiable objective function. In
this section, we put forward a framework to cast it into an alterna-
tive form that can be solved by existing optimization algorithms.

To start with, we can slightly relax the objective. Consider a
function p such that f(W + AW, x) == t if and only if p(x, {f, W +
AW}) > 0. In this case, the optimization objective

|f(W+ AW, x) == t|(x,t) € D}| (6)
can be relaxed to
D pAf, W+ AWY) 7)
xeD

Intuitively, minimizing (7) can help to minimize (6), and these two
optimization problems become strictly equivalent if all data in D is
mis-classified in the presence of AW.

There are various choices of p(x, {f, W + AW}) that can meet
the requirement. We show some of the representative ones below.

0 = f(W+ AW, x)

Z = Softmax(f(W + AW, x))
p1(xA{f, W+ AW}) = —loss(O,t) + 1
pa(x {f W + AW}) =max{max(0;) - Oy, 0}

p3(x {f, W+ AW}) = softplus(max(0:) — Or) —log(2) (4,

pa(x,{f, W+ AW}) =max{0.5 — O, 0}
p5(x{f,W+AW}) = —log(2- O - 2)
Pox (f, W+ AW)) =max{max(Z) - Z,0)

p1(xA{fL,W+AW}) = softplus(mfg((Zi) - Z;) —log(2)

where x and t are the input data and classification label, respectively.
softplus(x) = log(1 + exp(x)) and loss(O, t) is cross entropy loss.
According to the empirical results, in this paper we choose

0 = f(W + AW, x)
p(x{f,W+AW}) = max{mftx(Oi) - 04,0} ©)

Computing-In-Memory Neural Network Accelerators for Safety-Critical Systems: Can Small Device Variations Bd OGARr@2sOctober 30-November 3, 2022, San Diego, CA, USA

We now have the relaxed optimization problem

minimize Z p(x{f.W+AW})
xeD (10)
st. L(AW) < thy

For this relaxed problem, we can utilize Lagrange multiplier to
provide an alternative formulation

minimize | c - Z P Af, W+ AW)) + (L(AW) — thy) | (1)
xeD
where ¢ > 0 is a suitably chosen constant, if optimal solution exists.
This objective is equivalent to the relaxed problem, in the sense
that there exists ¢ > 0 such that the optimal solution to the latter
matches the optimal solution to the former.

Thus, we use the optimization objective (11) as the relaxed alter-
native objective of the defined objective (5). Because the objective
(11) is differentiable w.r.t. AW, we use gradient descent as the opti-
mization algorithm to solve this problem.

The choice of constant c.

Qualitatively speaking, observing objective (11) with larger ¢ val-
ues means more focus on lower accuracy and less focus on L(AW),
which would result in lower final accuracy and greater £(AW).
The empirical results shown in Fig. 3 also prove this observation,
where we plot how the worst-case error rate and £L(AW) varies
with the choice of ¢ using LeNet for MNIST.

Because the empirical result show that £(AW) is monotonic
w.r.t c, to find the ¢ value that leads to the lowest performance under
the weight perturbation bound thg, we use binary search to find
the largest ¢ value that ensures £(AW) < thy. The corresponding
accuracy obtained with this ¢ is then the worst-case performance
of this DNN model under weight perturbations bounded by thy.

0.04

1 N
0.035
°
0.8 003 2
- g
& 06 0.025 é"
@ 0.
k] 002 =
x5 S
g o4 0015 §
w 5
001 2
0.2 5
0.005
0 0

1.00E-12 1.00E-11 1.00E-10 1.00E-09 1.00E-08 1.00E-07
cvalue

-o-Error Rate B-Perturbation Magnitude

Figure 3: Choice of the constant c. We plot two different
relations: (1) Worst-case error rate (left) w.r.t. ¢ value and
(2) perturbation magnitude L(AW) (right) w.r.t. ¢ value. The
DNN model used is LeNet for MNIST.

Finally, since the optimization problem stated in (11) can be
solved via gradient descent, the time and memory complexity of
our algorithm is comparable to that needed to train the DNN.

3.4 Experimental Evaluation

In this section, we use experiments to demonstrate the effectiveness
of the proposed method in finding the worst-case performance of
different DNN models. Six different DNN models for four different
datasets are used: (1) LeNet [17] for MNIST [5], (2) ConvNet [23]
for CIFAR-10 [15], (3) ResNet-18 [8] for CIFAR-10, (4) ResNet-18 for
Tiny ImageNet [16], (5) ResNet-18 for ImageNet [4] and (6) VGG-
16 [28] for ImageNet. LeNet and ConvNet are quantized to 4 bits

Table 1: Hyper-parameter setups to perform the proposed
method on different models for different datasets. The c value
in (11) identified by binary search, the learning rate (Ir) and
the number of iterations used for gradient descent are speci-
fied.

Dataset Model c Ir # of runs

MNIST LeNet 1E-3 1E-5 500
CIFAR-10 ConvNet 1E-5 1E-5 100
CIFAR-10 ResNet-18 1E-9 1E-4 20

Tiny ImgNet ResNet-18 1E-10 1E-4 20
ImageNet ResNet-18 1E-3 1E-3 10
ImageNet VGG-16 1E-3 1E-3 10

while ResNet-18 and VGG-16 are quantized to 8 bits. As discussed
in Section 3.1, we use thg = 0.03 as the weight perturbation bound,
i.e., each weight is perturbed by at most +0.03.

As there is no existing work on identifying the worst-case per-
formance of a DNN under device variations to compare with other
than the naive MC simulations, we slightly modify the weight
PGD attack method [30], which tries to find the smallest weight
perturbation that can lead to a successful attack, as an additional
baseline. Experiments are conducted on Titan-XP GPUs in the Py-
Torch framework. For MC simulation baseline, 100,000 runs are
used. We use Adam [14] as the gradient descent optimizer. The
detailed setup for the proposed method is shown in Table 1.

3.4.1 Worst-case DNN Accuracy Obtained by Different Methods.
As shown in Table 2, compared with weight PGD attack and MC
simulations, the proposed framework is more effective in finding
the worst-case performance. It identifies worst-case weight pertur-
bations that can lead to below 10% accuracy for LeNet and ConvNet,
and almost 0% accuracy for ResNet-18 and VGG-16. On the other
hand, the weight PGD attack can only find perturbations that lead
to DNN accuracy close to random guessing (i.e., 1/N for N classes,
which is 10% for CIFAR-10, 0.5% for Tiny ImageNet, and 0.1% for
ImageNet). MC simulations perform the worst. With 100,000 runs
it fails to find any perturbation that can result in accuracy drop
similar to those of the other two methods. This is quite expected
given the high dimensional exploration space spanned by the large
number of weights. Our framework takes slightly longer time to
run than the weight PGD attack method, mainly due to the number
of epochs the gradient descent takes to converge. Yet both methods
are much faster than the MC simulations.

The results from the table suggest that DNNs are extremely
vulnerable to device variations, even though write-verify is used
and the maximum weight perturbation is only 0.03. Considering the
fact that even converged 100,000 MC simulations cannot get close
to the actual worst-case accuracy, For safety-critical applications,
it may be necessary to screen each programmed CiM accelerator
and test its accuracy to avoid disastrous consequences. Random
sampling based quality control may not be an option.

In addition, comparing the results obtained by our framework
on ConvNet and ResNet-18 for CIFAR-10 (as well as ResNet-18
and VGG-16 for ImageNet) we can see that deeper networks are
more susceptible to weight perturbations. This is expected as more
perturbation can be accumulated in the forward propagation.

ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA

Zheyu Yan, Xiaobo Sharon Hu, and Yiyu Shi

Table 2: Comparison between MC simulation (MC), weight PGD attack (PGD) and the proposed framework in obtaining the
worst-case accuracy of various DNN models for different dataset using weight perturbation bound th,; = 0.03. The accuracy
of the original model without perturbation (Ori. Acc) is also provided. The proposed method finds perturbations that lead to
much lower accuracy than those found by other methods, using slightly longer time than the weight PGD attack method but

much shorter time than the MC simulation.

Worst-case Accuracy (%)

Time (Minutes)

Dataset Model Ori. Ace. MC PGD Proposed MC PGD Proposed
MNIST LeNet 99.12 97.34 13.44 7.35 900 3.3 5.5
CIFAR-10 ConvNet 85.31 60.12 10.00 4.27 2700 4.2 6.0
CIFAR-10 ResNet-18 95.14 88.77 10.00 0.00 5400 133 20.0
Tiny ImageNet ResNet-18 65.23 25.33 0.50 0.00 14400 40.0 60.0
ImageNet ResNet-18 69.75 43.98 0.10 0.00 231000 1980 2880
ImageNet VGG-16 71.59 66.43 0.10 0.06 313800 2530 3820

Finally, the experimental results also show that quantization
in both weights and activations is not an effective method to im-
prove worst-case DNN performance, because all the models in these
experiments are quantized as explained in the experimental setup.

3.4.2 Analysis of Classification Results.

| EEm Correct
mm Wrong

Percentage of Inputs (%)
N oW R G o N ®
o o o o o o o

-
5]

0.2 0.4 0.6 0.8 1.0
Confidence

Figure 4: Distribution of classification confidence among
correct/wrong cases from the worst-case LeNet for MNIST.
The model is more confident in the wrong cases than in the
correct ones.

We now take a closer look at the classification results of the
worst-case LeNet for MNIST identified by our framework. We first
examine the classification confidence, the distribution of which is
shown in Fig. 4. Same as the common practice, the classification
confidence of a DNN on an input is calculated by a Softmax function
on its output vector. The element having the highest confidence is
considered the classification result. Contrary to our intuition, from
the figure we can see that the worst-case LeNet is highly confident
in the inputs it mis-classifies, with an average confidence of 0.90
on all the inputs that are classified wrong. On the other hand, the
DNN model is not confident in the inputs it classifies correctly,
having an average confidence of only 0.47 on these inputs. This is
significantly different from the original LeNet without perturbation,
whose confidence is always close to 1.

We also observe how the classification results are distributed
among different classes, which are reported in Table. 3. From the
table we can see that most of the errors are due to images being
wrongly classified to the same class (class 1), while many of the
images that truly belong to this class are being classified to other
classes (class 2 and class 3).

We hope that these observations can potentially shed light on
the development of new algorithms to boost the worst-case perfor-
mance of DNNs in the future.

Table 3: Normalized classification results of the worst-case
LeNet for MNIST. The number in row i and column j indi-
cates how many cases with class i as ground truth are being
classified as j, normalized over the total number of cases in
class i. Most inputs are mis-classified to one class (class 1).

Classification Result
0 1 2 3 4 5 6 7 8 9

00 10 00 00 00 00 00 00 0.0 0.0
00 04 05 0.1 00 00 00 00 00 0.0
00 10 00 00 00 00 0.0 00 0.0 0.0
00 10 00 00 00 00 00 00 0.0 0.0
00 09 00 00 00 00 00 0.1 00 0.0
00 09 00 01 00 00 00 00 0.0 0.0
00 10 00 00 00 00 00 00 0.0 0.0
00 06 00 04 00 00 00 00 00 0.0
00 08 00 02 00 00 00 00 0.0 0.0
00 09 00 01 00 00 00 00 0.0 0.0

Ground Truth

O 00 N N U R W N = O

3.4.3 Distribution of Worst-Case Weight Perturbation.

Here we show how the perturbation is distributed among the
weights in the worst-case LeNet for MNIST. As can be seen in Fig. 5,
most of the weights are either not perturbed or perturbed to the
maximum magnitude (i.e., thy = 0.03).

60

5
=3
L

IS
S
L

Weight
perturbation bound

N
o
!

Percentage of Weights (%)
. w
s 8

0.000

o
'

T g T T
0.010 0.015 0.020 0.025

Perturbation Magnitude
Figure 5: The distribution of the weight perturbation mag-
nitude in the worst-case LeNet for MNIST. Most weights are
either not perturbed or perturbed to thy.

T
0.005 0.030

Computing-In-Memory Neural Network Accelerators for Safety-Critical Systems: Can Small Device Variations Bd OGARr@2sOctober 30-November 3, 2022, San Diego, CA, USA

We then show the number of weights that are perturbed in each
layer in Fig. 6. We can observe that the weights in convolutional
layers and the final FC layer are more likely to be perturbed. This
is probably due to the fact that they in general have more impact
on the accuracy of a DNN.

N w B o
(=] =] [=) =]

=
o

Portion of weight perturbed (%)

0 %
Convl Conv2 FC1 FC2 FC3

Layers
Figure 6: The percentage of weights being perturbed in each
layer of the worst-case LeNet for MNIST. Weights in convo-
lutional layers and the last FC layer are more likely to be
perturbed.

4 ENHANCING WORST-CASE PERFORMANCE
OF CIM DNN ACCELERATORS

Several works exist in the literature to improve the average perfor-
mance of a DNN under device variations. In this section, we try to
extend them to improve the worst-case performance of a DNN, and
evaluate their effectiveness. Specifically, we will include two types
of methods: (1) confining the device variations and (2) training DNN
models that are more robust against device variations. As discussed
in Section 2, one of the most popular practices of the former is
write-verify and the latter includes variation-aware training.

In addition to these, we also modify adversarial training [30],
a method commonly used to combat adversarial input, to address
weight perturbation caused by device variations. The algorithm is
summarized in Alg. 1. Similar to how adversarial training handles
input perturbations, in DNN training process we inject worst-case
perturbations to the weights of a DNN, in hope that they perform
better under the impact of device variations. Specifically, in each
iteration of training, we first conduct the proposed method to find
the perturbations of the current weights tha can lead to worst-case
accuracy of the model. We then add them to the weights and collect
the gradient G.

If not specified explicitly, all accuracy results shown in this sec-
tion are collected by training one DNN architecture using the same
specification but with three different initializations. The accuracy
(error rate) number is shown in percentage and presented in [aver-
age =+ standard deviation] for these three runs.

4.1 Stronger Write-Verify

As shown in Table 2, using the standard write-verify setting in
the literature to confine the maximum weight perturbation to 0.03
(thg = 0.03 in (4)) cannot significantly improve the worst-case
performance of DNN models. If we set a smaller thy in write-verify,
the write time would become longer but can potentially help to
boost the worst-case performance.

To see the relationship between th; and worst-case DNN ac-
curacy, we use three models, i.e., LeNet for MNIST, ConvNet for
CIFAR-10, and ResNet-18 for CIFAR-10, and plot the results as

Algorithm 1 Adversarial Training (f, D, V, Ep, [, n, C)

1: //INPUT: A DNN architecture f, training dataset D, validation
dataset V, the total number of training epochs Ep, loss function
[, learning rate 1;
: Initialize weight W for f;
: Initialize accp = 0, Wp = W;
: for (i=0;i < Ep;i++) do
for mini-batches B in D do
Divide B into input I and label L;
Find weight perturbations N that lead to worst-case accu-
racy using the framework discussed in Section 3.3;

8: O =f(W+N,I);

N U W

9: loss = 1(O,L);
_ dloss.,
10: G= a%f,s,
11: W=W-3nxG

12z end for
13: Evaluate W on V and get acc;
14: if acc > accp then

15: accg = acc;
16: Wrp=W
17: end if

18: end for

19: Return Wp

Table 4: Worst-case accuracy (%) of various DNN models from
regular training (Regular), variation-aware training (VA) and
adversarial training (ADV). Write-verify with weight pertur-
bation bound th; = 0.03. Compared with regular training,
adversarial training is effective in LeNet for MNIST, but both
methods are not effective in other more complex models.

Model Regular VA ADV

MNIST LeNet 7.35+03.70 18.58+00.80 98.26+01.05
CIFAR10 ConvNet 4.27+00.33 63.71+03.76 67.09+03.85
CIFAR10 ResNet18 0.00+00.00 32.84+17.20 34.84+13.20
Tiny IN ResNet18 0.00+00.00 3.57+03.48 7.41+08.10

Dataset

shown in Fig. 7(a)-(c), where we also include the model accuracy
without any device variation (thy = 0). From the figures we can see
that a lower thy can indeed increase the worst-case accuracy. Yet
to ensure the models have acceptable accuracy in worst-case (e.g.,
no more than 5% accuracy drop from DNNs without the impact of
device variations and marked with star in each figure), we need to
set thg = 0.009 for LeNet, thg =0.003 for ConvNet and thg =0.005
for ResNet-18, which would take extremely long write time. The
experimental result of ResNet-18 for Tiny ImageNet is not shown
here because its worst-case accuracy is lower than 20% even when
thg = 0.001 and further reducing thy is not practical.

4.2 Variation-aware and Adversarial Training

Here we study the effectiveness of variation-aware training and
adversarial training on four models: LeNet for MNIST, ConvNet
for CIFAR-10, ResNet-18 for CIFAR-10, and ResNet-18 for Tiny
ImageNet. We assume that standard write-verify with weight per-
turbation bound thy = 003 is used for all the models.

As shown in Table 4, both variation-aware training and adversar-
ial training can offer some improvements in most cases compared

ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA

Zheyu Yan, Xiaobo Sharon Hu, and Yiyu Shi

100 4 100 100 A
99.12
97.31
95.60 92.11
_ 80 . 80186.47 = 89
E\i E\i 82.01 E\i
3 60 Z 60 3 60
© © ©
e g I
=] =) =}
S a0 S a0 g 40
< < <
20 20 201
0 T T T T T T T T 0 T T T T T 0 T T T T T
0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.000 0.002 0.004 0.006 0.008 0.000 0.002 0.004 0.006 0.008
Weight perturbation bound Weight perturbation bound Weight perturbation bound
(a) LeNet for MNIST w/ reg. training. (b) ConvNet for CIFAR-10 w/ reg. training. (c) ResNet18 for CIFAR-10 w/ reg. training.
1001 @—= * 100 1 100 4
99.12
98.26 93’,1_'_.—'_\'“*——-\.
__ 80 _ 80 __ 80 90.40
X X 83.00 80.71 X
3 60 S 60 3 60
© © ©
o o o
=) > =]
O 404 o 404 o 40
< < <
204 204 204
0 T T T T T T T T 0 T T T T 0 T T T T T T
0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.000 0.002 0.006 0.008 0.000 0.002 0.004 0.006 0.008 0.010

Weight perturbation bound
(d) LeNet for MNIST w/ adv. training.

Weight perturbation bound
(e) ConvNet for CIFAR-10 w/ adv. training,.

Weight perturbation bound
(f) ResNet-18 for CIFAR-10 w/ adv. training.

Figure 7: Effectiveness of write-verify with regular training (a)-(c), and with adversarial training (d)-(f). Figures represent
the relationship between weight perturbation bound in write-verify th, (X-axis) and the worst-case DNN accuracy (Y-axis) in
different models: (a)(e) LeNet for MNIST, (b)(d) ConvNet for CIFAR-10, and (c)(f) ResNet-18 for CIFAR-10. For each data point,
three experiments of the same setting but different random initialization are conducted. The solid lines show the averaged
results over the three experiments and the shadows represent the standard deviations. In each figure, the circle marks the
model without perturbation (thy = 0) and the star marks the model with highest th; and no more than 5% accuracy degradation.

with the regular training. Adversarial training is slightly more ef-
fective than variation-aware training. However, compared with the
accuracy that can be obtained by these networks without device
variations (third column in Table 2), the accuracy drop is still sig-
nificant in the worst case. The only exception is the case of LeNet
for MNIST, where adversarial training can almost fully recover the
accuracy loss even in the worst case, thanks to its simplicity. In
addition, we can observe that as the network gets deeper, the worst-
case accuracy improvement brought by these two training methods
starts to diminish (e.g. 7.41% for ResNet-18 for Tiny ImageNet).

4.3 Combining Adversarial Training with
Write-Verify

Finally, using the same three models and datasets, we show whether
the models trained by the adversarial training method can reduce
the requirement on write-verify to achieve the same worst-case
accuracy. The results are shown in Fig. 7(d)-(f). Comparing with
the results of the models from regular training in Fig. 7(a)-(c), with
adversarial training, the weight perturbation bound thy needed to
achieve the same accuracy increases. As discussed in Section 4.2,
with adversarial training, the worst-case accuracy of LeNet for
MNIST using the standard write-verify (thy = 0.03) is already very
close to that of the original model without device variations. Thus,
Fig. 7 (d) is almost flat. For the other two models, to ensure no more
than 5% worst-case accuracy degradation from the original model
without device variations, we now need thg = 0.005 for ConvNet for
CIFAR-10, and thg = 0.008 for ResNet-18 for CIFAR-10, as marked
by the star in each figure. Comparing with the weight perturbation

bound needed to attain the same worst-case accuracy in Fig 7(b)-(c),
we can see that using adversarial training instead of regular train-
ing can increase it by around 1.7X, indicating faster programming
process. However, these bounds are still much smaller than the com-
monly used 0.03 [11, 26] and take considerably more programming
time. Therefore, more effective methods to address the worst-case
accuracy are still needed, and calls for future research.

5 CONCLUSIONS

In this work, contrary to the existing methods that evaluate the
average performance of DNNs under device variations in CiM ac-
celerators, we proposed an efficient framework to examine their
worst-case performance, which is important for safety-critical ap-
plications. With the proposed framework, we show that even with
bounded small weight perturbations after write-verify, the accu-
racy of a well-trained DNN can drop drastically to almost zero. As
such, we should use caution when applying CiM accelerators to
safety-critical applications. For example, we may need to screen
the accuracy of each chip rather than random sampling in quality
control. We further show that the existing methods used to en-
hance average DNN performance in CiM accelerators are either too
costly (for stronger write-verify) or ineffective (for training-based
methods) when extended to enhance the worst-case performance.
Further research from the community is needed to address this
problem.

Computing-In-Memory Neural Network Accelerators for Safety-Critical Systems: Can Small Device Variations Bd OGARr@2sOctober 30-November 3, 2022, San Diego, CA, USA

REFERENCES

[1] Chih-Cheng Chang, Ming-Hung Wu, Jia-Wei Lin, Chun-Hsien Li, Vivek Parmar,

[10

(11

[12

[19

[20

(21

=

]

]

[22]

[23]

[24

Heng-Yuan Lee, Jeng-Hua Wei, Shyh-Shyuan Sheu, Manan Suri, Tian-Sheuan
Chang, et al. 2019. NV-BNN: An accurate deep convolutional neural network
based on binary STT-MRAM for adaptive Al edge. In 2019 56th ACM/IEEE Design
Automation Conference (DAC). IEEE, 1-6.

Ching-Yuan Chen and Krishnendu Chakrabarty. 2021. Pruning of Deep Neu-
ral Networks for Fault-Tolerant Memristor-based Accelerators. In 2021 58th
ACM/IEEE Design Automation Conference (DAC). IEEE, 889-894.

Yu-Hsin Chen, Joel Emer, and Vivienne Sze. 2016. Eyeriss: A spatial architecture
for energy-efficient dataflow for convolutional neural networks. ACM SIGARCH
computer architecture news 44, 3 (2016), 367-379.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition. leee, 248-255.

Li Deng. 2012. The mnist database of handwritten digit images for machine
learning research. IEEE Signal Processing Magazine 29, 6 (2012), 141-142.

Ben Feinberg, Shibo Wang, and Engin Ipek. 2018. Making memristive neural
network accelerators reliable. In 2018 IEEE International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 52-65.

Di Gao, Qingrong Huang, Grace Li Zhang, Xunzhao Yin, Bing Li, Ulf Schlicht-
mann, and Cheng Zhuo. 2021. Bayesian inference based robust computing on
memristor crossbar. In 2021 58th ACM/IEEE Design Automation Conference (DAC).
IEEE, 121-126.

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770-778.

Zhezhi He, Jie Lin, Rickard Ewetz, Jiann-Shiun Yuan, and Deliang Fan. 2019.
Noise injection adaption: End-to-end ReRAM crossbar non-ideal effect adaption
for neural network mapping. In Proceedings of the 56th Annual Design Automation
Conference 2019. 1-6.

Soyoun Jeong, Jaerok Kim, Minhyeok Jeong, and Yoonmyung Lee. 2022. Variation-
Tolerant and Low R-Ratio Compute-in-Memory ReRAM Macro With Capacitive
Ternary MAC Operation. IEEE Transactions on Circuits and Systems I: Regular
Papers (2022).

Weiwen Jiang, Qiuwen Lou, Zheyu Yan, Lei Yang, Jingtong Hu, Xiaobo Sharon
Hu, and Yiyu Shi. 2020. Device-circuit-architecture co-exploration for computing-
in-memory neural accelerators. IEEE Trans. Comput. 70, 4 (2020), 595-605.
Song Jin, Songwei Pei, and Yu Wang. 2020. On improving fault tolerance of
memristor crossbar based neural network designs by target sparsifying. In 2020
Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 91-96.
Brendan Juba and Hengxuan Li. 2020. More Accurate Learning of k-DNF Ref-
erence Classes. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 34. 4385-4393.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features
from tiny images. (2009).

Ya Le and Xuan Yang. 2015. Tiny imagenet visual recognition challenge. CS 231N
7,7 (2015), 3.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-
based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278—
2324.

Wantong Li, Xiaoyu Sun, Hongwu Jiang, Shanshi Huang, and Shimeng Yu. 2021.
A 40nm RRAM Compute-in-Memory Macro Featuring On-Chip Write-Verify and
Offset-Cancelling ADC References. In ESSCIRC 2021-IEEE 47th European Solid
State Circuits Conference (ESSCIRC). IEEE, 79-82.

Zhiding Liang, Hanrui Wang, Jinglei Cheng, Yongshan Ding, Hang Ren, Xuehai
Qian, Song Han, Weiwen Jiang, and Yiyu Shi. 2022. Variational quantum pulse
learning. arXiv preprint arXiv:2203.17267 (2022).

Zhiding Liang, Zhepeng Wang, Junhuan Yang, Lei Yang, Yiyu Shi, and Weiwen
Jiang. 2021. Can noise on qubits be learned in quantum neural network? a case
study on quantumflow. In 2021 IEEE/ACM International Conference On Computer
Aided Design (ICCAD). IEEE, 1-7.

Tao Liu, Wujie Wen, Lei Jiang, Yanzhi Wang, Chengmo Yang, and Gang Quan.
2019. A fault-tolerant neural network architecture. In 2019 56th ACM/IEEE Design
Automation Conference (DAC). IEEE, 1-6.

Bingqian Lu, Zheyu Yan, Yiyu Shi, and Shaolei Ren. 2022. A Semi-Decoupled Ap-
proach to Fast and Optimal Hardware-Software Co-Design of Neural Accelerators.
arXiv preprint arXiv:2203.13921 (2022).

Xiaochen Peng, Shanshi Huang, Yandong Luo, Xiaoyu Sun, and Shimeng Yu.
2019. DNN+ NeuroSim: An end-to-end benchmarking framework for compute-in-
memory accelerators with versatile device technologies. In 2019 IEEE international
electron devices meeting (IEDM). IEEE, 32-5.

Ali Shafiee, Anirban Nag, Naveen Muralimanohar, Rajeev Balasubramonian,
John Paul Strachan, Miao Hu, R Stanley Williams, and Vivek Srikumar. 2016.
ISAAC: A convolutional neural network accelerator with in-situ analog arithmetic

[25

[26

[31

[32

@
=

[34

[35]

[36]

[38

[39

[40

in crossbars. ACM SIGARCH Computer Architecture News 44, 3 (2016), 14-26.

Yi Sheng, Junhuan Yang, Yawen Wu, Kevin Mao, Yiyu Shi, Jingtong Hu, Weiwen
Jiang, and Lei Yang. 2022. The Larger The Fairer? Small Neural Networks Can
Achieve Fairness for Edge Devices. (2022).

Wonbo Shim, Jae-sun Seo, and Shimeng Yu. 2020. Two-step write-verify scheme
and impact of the read noise in multilevel RRAM-based inference engine. Semi-
conductor Science and Technology 35, 11 (2020), 115026.

Hyein Shin, Myeonggu Kang, and Lee-Sup Kim. 2021. Fault-free: A Fault-resilient
Deep Neural Network Accelerator based on Realistic ReRAM Devices. In 2021
58th ACM/IEEE Design Automation Conference (DAC). IEEE, 1039-1044.

Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).
Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S Emer. 2017. Efficient
processing of deep neural networks: A tutorial and survey. Proc. IEEE 105, 12
(2017), 2295-2329.

Yu-Lin Tsai, Chia-Yi Hsu, Chia-Mu Yu, and Pin-Yu Chen. 2021. Formalizing
Generalization and Adversarial Robustness of Neural Networks to Weight Per-
turbations. Advances in Neural Information Processing Systems 34 (2021).

Zhilu Wang, Chao Huang, and Qi Zhu. 2022. Efficient Global Robustness Cer-
tification of Neural Networks via Interleaving Twin-Network Encoding. arXiv
preprint arXiv:2203.14141 (2022).

Zhepeng Wang, Zhiding Liang, Shanglin Zhou, Caiwen Ding, Yiyu Shi, and
Weiwen Jiang. 2021. Exploration of quantum neural architecture by mixing
quantum neuron designs. In 2021 IEEE/ACM International Conference On Computer
Aided Design (ICCAD). IEEE, 1-7.

Dongxian Wu, Shu-Tao Xia, and Yisen Wang. 2020. Adversarial weight pertur-
bation helps robust generalization. Advances in Neural Information Processing
Systems 33 (2020), 2958-2969.

Zheyu Yan, Xiaobo Sharon Hu, and Yiyu Shi. 2022. SWIM: Selective Write-Verify
for Computing-in-Memory Neural Accelerators. In 2022 59th ACM/IEEE Design
Automation Conference (DAC). IEEE.

Zheyu Yan, Weiwen Jiang, Xiaobo Sharon Hu, and Yiyu Shi. 2022. RADARS:
Memory Efficient Reinforcement Learning Aided Differentiable Neural Architec-
ture Search. In 2022 27th Asia and South Pacific Design Automation Conference
(ASP-DAC). IEEE, 128-133.

Zheyu Yan, Da-Cheng Juan, Xiaobo Sharon Hu, and Yiyu Shi. 2021. Uncertainty
Modeling of Emerging Device based Computing-in-Memory Neural Accelerators
with Application to Neural Architecture Search. In 2021 26th Asia and South
Pacific Design Automation Conference (ASP-DAC). IEEE, 859-864.

Zheyu Yan, Yiyu Shi, Wang Liao, Masanori Hashimoto, Xichuan Zhou, and Cheng
Zhuo. 2020. When single event upset meets deep neural networks: Observations,
explorations, and remedies. In 2020 25th Asia and South Pacific Design Automation
Conference (ASP-DAC). IEEE, 163-168.

Lei Yang, Zheyu Yan, Meng Li, Hyoukjun Kwon, Liangzhen Lai, Tushar Krishna,
Vikas Chandra, Weiwen Jiang, and Yiyu Shi. 2020. Co-exploration of neural
architectures and heterogeneous asic accelerator designs targeting multiple tasks.
In 2020 57th ACM/IEEE Design Automation Conference (DAC). IEEE, 1-6.

Peng Yao, Huaqiang Wu, Bin Gao, Jianshi Tang, Qingtian Zhang, Wenqiang
Zhang,] Joshua Yang, and He Qian. 2020. Fully hardware-implemented memristor
convolutional neural network. Nature 577, 7792 (2020), 641-646.

Nanyang Ye, Jingbiao Mei, Zhicheng Fang, Yuwen Zhang, Ziqing Zhang, Huaying
Wu, and Xiaoyao Liang. 2021. BayesFT: Bayesian Optimization for Fault Tol-
erant Neural Network Architecture. In 2021 58th ACM/IEEE Design Automation
Conference (DAC). IEEE, 487-492.

