
103

RT-ZooKeeper: Taming the Recovery Latency of a
Coordination Service

HAORAN LI, CHENYANG LU, and CHRISTOPHER D. GILL, Cyber-Physical Systems
Laboratory, Washington University in St. Louis, USA

Fault-tolerant coordination services have been widely used in distributed applications in cloud environments.
Recent years have witnessed the emergence of time-sensitive applications deployed in edge computing en-
vironments, which introduces both challenges and opportunities for coordination services. On one hand,
coordination services must recover from failures in a timely manner. On the other hand, edge computing
employs local networked platforms that can be exploited to achieve timely recovery. In this work, we !rst
identify the limitations of the leader election and recovery protocols underlying Apache ZooKeeper, the pre-
vailing open-source coordination service. To reduce recovery latency from leader failures, we then design
RT-Zookeeper with a set of novel features including a fast-convergence election protocol, a quorum channel
noti!cation mechanism, and a distributed epoch persistence protocol. We have implemented RT-Zookeeper
based on ZooKeeper version 3.5.8. Empirical evaluation shows that RT-ZooKeeper achieves 91% reduction in
maximum recovery latency in comparison to ZooKeeper. Furthermore, a case study demonstrates that fast
failure recovery in RT-ZooKeeper can bene!t a common messaging service like Kafka in terms of message
latency.

CCS Concepts: • Computer systems organization → Real-time systems; Dependable and fault-
tolerant systems and networks;

Additional Key Words and Phrases: Real-time fault tolerance, Apache ZooKeeper, response time analysis

ACM Reference format:
Haoran Li, Chenyang Lu, and Christopher D. Gill. 2021. RT-ZooKeeper: Taming the Recovery Latency of a
Coordination Service. ACM Trans. Embedd. Comput. Syst. 20, 5s, Article 103 (September 2021), 22 pages.
https://doi.org/10.1145/3477034

1 INTRODUCTION
Distributed applications require di"erent forms of coordination services (e.g., leader election,
naming, global con!guration, group membership, and synchronization). However, it is tedious
and error-prone to design and implement such coordination features from scratch for a distributed

This article appears as part of the ESWEEK-TECS special issue and was presented in the International Conference on
Embedded Software (EMSOFT), 2021.
This research was sponsored, in part, by NSF through grant 1646579 (CPS), and by the Fullgraf Foundation.
Authors’ address: H. Li, C. Lu, and C. D. Gill, Washington University in St. Louis, Department of Computer Science and
Engineering, 1 Brookings Drive, St. Louis, MO 63130-4899, USA.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro!t or commercial advantage and that copies bear this notice and
the full citation on the !rst page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior speci!c permission and/or a fee. Request permissions from permissions@acm.org.
© 2021 Association for Computing Machinery.
1539-9087/2021/09-ART103 $15.00
https://doi.org/10.1145/3477034

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 103. Publication date: September 2021.

https://doi.org/10.1145/3477034
mailto:permissions@acm.org
https://doi.org/10.1145/3477034
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3477034&domain=pdf&date_stamp=2021-09-22

103:2 H. Li et al.

application, and so reusable fault-tolerant coordination services, like ZooKeeper [12], have been
widely used to develop distributed applications and services in cloud environments [30]: e.g.,
Kafka [20] leverages ZooKeeper for topic creation, electing a broker leader, mapping topic parti-
tion pairs, and monitoring topology changes; and Hadoop [33], Hive [35], Flink [6], and Storm [36]
use ZooKeeper for group management, naming, and global con!guration.

Modern embedded systems such as Internet of Things (IoT) are embracing edge clouds as local
computing platforms to support sophisticated applications. In contrast to centralized clouds, edge
clouds are targeted at time-sensitive applications given their physical proximity to IoT devices.
Industrial edge cloud platforms often reuse mature middleware services well established in cloud
computing. For example, Dell’s Con#uent Platform [8] supports edge analytics for industrial IoT
through a suite of cloud services (e.g., Kafka) that depend on ZooKeeper. Similarly, Microsoft’s
Azure IoT Hubs employs Kafka for streaming telemetry data to downstream applications.

Many time-sensitive IoT applications have soft latency requirements. For example, an edge ana-
lytics application may expect sensor data to be delivered with desired latency to produce analytic
results based on up-to-date states of the physical plant. The application can tolerate delayed mes-
sages by estimating sensor data based on recent readings. However, excessive delays (e.g., while
the underlying services recovery from failures) may lead to degraded accuracy of the analytics due
to outdated state information about the plant. For such applications, hard latency guarantees are
often too costly to be practical in edge clouds due to their complex software stack, commercial-
o"-the-shelf hardware, and open operating environments. Instead, it is usually su$cient to meet
desired latency based on empirical measurements.

We use Apache Zookeeper, the prevailing open-source coordination service, as a representative
example through which to investigate how to achieve coordination with constrained recovery la-
tency in edge computing environments. ZooKeeper comprises a group of replicated servers to pro-
vide fault-tolerant coordination services. It relies on the ZooKeeper Atomic Broadcast (ZAB) [16]
protocol, a state of the art distributed protocol for synchronizing replicas against the leader, man-
aging database update transactions, and recovering from a crashed state to a valid state. However,
although ZooKeeper o"ers fault-tolerance, its service recovery time on a leader failure can be
excessive for many time-sensitive applications, thus hindering their real-time performance.

In this paper, we analyze the ZAB protocol with a focus on its recovery procedures following
leader failure, and identify limitations in leader election and recovery in terms of latency. To re-
duce latency in recovering from failures, we develop RT-ZooKeeper (RTZK), a new coordination
service featuring a set of novel protocols and mechanisms to drastically reduce the recover latency
of ZooKeeper. Speci!cally, this paper makes the following main contributions.
• We identify the problems in the ZooKeeper design that cause excessive recovery delays after

a leader failure;
• We design RT-ZooKeeper, which overcomes ZooKeeper’s limitations and achieves fast

failure recovery through three new features including (1) a Fast-Convergence Election (FCE)
protocol, (2) a Quorum-Channel Noti!cation (QCN) mechanism, and (3) a Distributed Epoch
Persistence (DEP) protocol;
• We implement RT-ZooKeeper based on ZooKeeper version 3.5.8 and present empirical

benchmarks showing RT-ZooKeeper shortens the maximum recovery latency by 91% in
comparison to ZooKeeper;
• We present case studies involving Kafka, a widely used messaging service that relies on

ZooKeeper, which demonstrate that RT-ZooKeeper can signi!cantly shorten recovery
latency, directly bene!ting the messaging service provided by Kafka.

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 103. Publication date: September 2021.

RT-ZooKeeper 103:3

Fig. 1. ZooKeeper: Ensemble, Servers, and Clients.

2 OVERVIEW OF ZOOKEEPER
In this section, we provide an overview of ZooKeeper and its underlying ZooKeeper Atomic Broad-
cast (ZAB) protocol as background for this work.

2.1 ZooKeeper
Figure 1 illustrates the ZooKeeper service, which achieves fault tolerance by duplicating its in-
memory database; each replica is handled by a ZooKeeper server. ZooKeeper maintains data syn-
chronization among its replicas, and distributed applications use ZooKeeper clients to access the
database.
Failure Model. Each ZooKeeper server follows the crash-recovery model [16]: a server can su"er
from a fail-stop failure and crash at an arbitrary time, and then can recover after an additional
interval. A ZooKeeper ensemble comprises N ZooKeeper servers Γ = {p0,p1, . . . ,pN−1}. A quorum
of Γ is a subset Q ⊆ Γ, where |Q | > N

2 . Any two quorums have a non-empty intersection. The
ZooKeeper service is available as long as a quorum (majority) of the ensemble is available. The
number of servers in an ensemble is often an odd number, N = 2f + 1, which means f server
crashes can be tolerated in this N -server ensemble. One of the servers works as the leader in the
quorum, while the others are followers. Designed to handle server failures, ZooKeeper assumes
any two servers can communicate with each other and the network is reliable [9, 16]. In practice,
ZooKeeper usually relies on the underlying TCP protocol and redundant network topology to
provide reliable communication.
Clients Feature Automatic Re-connection. By default, each client knows all the “entrances”,
i.e., the IP addresses and ports, of all ZooKeeper servers. Once a client connects to the ZooKeeper
service, a ZooKeeper server will establish a session for the client and persist the session Id among
all ZooKeeper servers. When a connection fails (due to a ZooKeeper server crash), the session
will remain available for a while; the client will automatically try an alternative entrance for the
ZooKeeper service before the session expires.
Write Requests are Logged as Transactions. A client can read from and write to the database
by sending requests to a ZooKeeper server. Any ZooKeeper server, regardless its role (as a leader
or a follower), can handle read requests locally. However, a write request must be forwarded to the
leader. The leader is responsible for updating and synchronising the database across the ZooKeeper
ensemble. Each change and update is logged as a transaction associated with a transaction identi!er,
z, which is a two-tuple (e, c): e is an epoch number, distinguishing the leader, as a ZooKeeper
ensemble may change its leader during its lifetime; and c is a unique sequence number assigned to
a particular committed transaction during epoch e . Whenever a new leader starts a new epoch, the
sequence number c is reset to 0. Transactions can be ordered by z. Given two di"erent transactions,
z = (e, c) and z ′ = (e ′, c ′), we de!ne z ≺ z ′, if e < e ′, or e = e ′ ∧ c < c ′.

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 103. Publication date: September 2021.

103:4 H. Li et al.

Fig. 2. ZAB: Phase Transition Diagram.

2.2 ZooKeeper Atomic Broadcast (ZAB) Protocol
ZAB is a crash-recovery atomic broadcast protocol [16] that is the most fundamental part of the
ZooKeeper coordination service. ZAB helps the ensemble to maintain a mutually consistent state,
especially when recovering from crashes. As none of the Apache ZooKeeper implementations
strictly follows the ZAB protocol originally published in [28], in this paper we focus on the lat-
est mainstream protocol ZAB-1.0 [29] and analyse it based on its implementation in ZooKeeper
version 3.5.8.

Figure 2 shows a three-phase transition diagram for each ZooKeeper server. The ultimate goal
of each ZooKeeper server is to reach Phase-3, SERVICE: only a ZooKeeper server in the SERVICE
phase allows connections from clients and processes read and write requests.
Phase-1: ELECTION. When a server starts (or its leader is lost), it enters the ELECTION phase,
running the leader election algorithm, and !nally determining itself as either a follower or the new
leader: the server with the latest (largest) transaction id, z, is elected as the new leader. The elected
leader always starts a new epoch. The new epoch’s value e , is always larger than any older epoch
number. Leader election can converge as long as a quorum of peers is alive.
Phase-2: RECOVERY. After completing the ELECTION phase successfully, the leader executes a
recovery protocol to ensure the followers’ views of the database are synchronized with the leader’s.
When a peer’s database has been synchronized in the RECOVERY phase, it enters the SERVICE
phase and allows clients to connect.

A peer can crash at any arbitrary time in any phase. Usually, a peer’s crash will not a"ect the
availability of the entire service, except in two cases: either the leader crashes, or a follower crashes
resulting in the number of live servers being less than N

2 , such that no quorum can be achieved.
In either case, all live peers transition to the ELECTION phase.

In this paper, we focus on the case where the leader fails and there remain at least N
2 servers

alive that can form a quorum. In the case when a quorum becomes no longer available, the service
recovery latency is usually dominated by the recovery of the crashed servers themselves.

3 LIMITATIONS OF ZOOKEEPER AND SOLUTIONS IN RT-ZOOKEEPER
In this section, we analyze ZooKeeper’s policies and mechanisms for leader election and recovery,
and identify their limitations that lead to prolonged service recovery after a leader failure. For each
of the limitations identi!ed, we propose a solution adopted in RT-ZooKeeper. While the original
ZooKeeper may be deployed in a public cloud with potentially long communication latency, RT-
ZooKeeper is tailored for an edge cloud that comprises a small number of servers connected by
a LAN where communication latency is usually short. RT-ZooKeeper employs new protocols and
mechanisms that exploit the characteristics of edge cloud platforms to reduce recovery latency.

3.1 Phase-1: Leader Election
3.1.1 Limitations of ZooKeeper. The ZAB protocol satis!es a property called Primary Order

that ensures the correct ordering of state changes in systems where the leader may change (e.g.
due to failure of the previous leader). The ZAB protocol achieves Primary Order as follows. The

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 103. Publication date: September 2021.

RT-ZooKeeper 103:5

new-elected leader must ensure it has the latest transaction among the living peers, before it
tries to synchronize the followers with its data. The Fast Leader Election (FLE) algorithm ensures
the elected leader will be the one that persists the most recent transaction. To implement FLE,
ZooKeeper extends a well known distributed algorithm called OptFloodMax [25]. A distributed
algorithm may be designed for a synchronous network or an asynchronous network. In a
synchronous network, peers execute operations in each step simultaneously; in contrast, in
asynchronous networks peers execute operations autonomously according to incoming events
and their own states, as de!ned in [26, 27]. The original OptFloodMax algorithm was intended for
synchronous networks [26]. To handle a realistic asynchronous network, ZooKeeper employs new
mechanisms which however incur additional latency for convergence, as we show in this section.

In ZooKeeper, each server governs an atomic variable l , a logicalclock, to determine the elec-
tion epoch. This variable is initialized by currentEpoch at a server’s restart, and is increased when
a peer goes into the lookForLeader() method for a new election.

Each server maintains a vote, v = (z, i), a tuple consisting of the latest committed transaction
id (z) of the server and the server’s id (i). Given two di"erent votes, v = (z, i) and v ′ = (z ′, i ′), we
determine v ≺ v ′, if z ≺ z ′, or z = z ′ ∧ i > i ′.

Importantly, for an extended OptFloodMax algorithm like FLE to converge on an asynchronous
network, it needs a termination condition [27]. The FLE algorithm leverages a timeout mechanism
for servers to reach the !nal decision on the elected leader. If a server does not receive any new
vote for w ms, it will choose the server with the largest v (e"ectively the one with the largest z)
as the leader. The election termination timeout value, w , is a !xed variable finalizeWait in the
ZooKeeper implementation.

Speci!cally, each server executes the FLE protocol as follows:
Step 1. Broadcast Initial Vote. The server broadcasts its vote v , along with the election epoch l .
Step 2. Election Epoch Validation. Upon receiving a votev ′, the server !rst checks if the election
epoch of the received vote is right: l ′ = l . If l ′ < l , the vote will be ignored; if l ′ > l , the server will
update its election epoch to l ′ and rebroadcast its vote.
Step 3. Flood the Maximum Vote. if v ≺ v ′, the server updates its vote: v ← v ′, then re-
broadcasts the updated vote, v ′. If v = v ′, the server tallies the vote. Otherwise, the server simply
ignores the incoming vote.
Step 4. Deduce the Leader. If the server does not receive any vote forw = finalizeWait ms, the
server tries to determine its role: If the tally of current vote does not reach a quorum, the server
re-broadcasts the current vote v . If the tally of current votes v = (z, i) has reached a quorum, the
server determines server i to be the leader, while the others are followers.

If all the peers enter a phase-1 election simultaneously after the old leader’s failure, the FLE
algorithm only needs one finalizeWait round to converge. However, due to the asynchronous
nature of real-world networks, each server may not enter phase-1 at the same time because of
jitters in detecting the leader failure or in local processing. In such cases, we observe that FLE
may result in signi!cant latency penalties because servers had to wait for multiple rounds of
finalizeWait before termination. We illustrate the delays induced by FLE under the two di"erent
scenarios in Figure 3(a)(b).

In the ideal case (Figure 3(a)), when the old leader fails, the followers transition from phase-3
(SERVICE) to phase-1 (ELECTION) simultaneously, starting a new election epoch with l = 2. As
shown in Figure 3(a): 1© The old leader dies. 2© The two followers start broadcasting their initial
votes. 3© ZkSrv2 receives a vote (5,1) which is greater than (4,2), changing its vote to (5,1) and
broadcasting it again. Both ZkSrv1 and ZkSrv2 reach a quorum for (5,1). 4© After w ms, without
receiving any new message, they both !nish the election and transit to phase-2.

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 103. Publication date: September 2021.

103:6 H. Li et al.

Fig. 3. Leader Elections in ZooKeeper (FLE) vs. RT-ZooKeeper (FCE).

However, the followers do not always detect the leader failure simultaneously. As a result, the
peers may think they are in di"erent election epochs. As shown in Figure 3(b): 1© ZkSrv1 detects
the leader failure earlier than ZkSrv2 and enters phase-1 with new election epoch l = 2. 2© ZkSrv1
broadcasts its initial vote (5,1) to ZkSrv2, along with the l = 2. 3© However, since ZkSrv2 is still in
phase-3, it has just sent a noti!cation and claims it still follows the old leader ZkSrv0 by including
l = 1. 4© However, ZkSrv1 ignores the noti!cation since it has a higher logicalclock value. 5©
After some time, ZkSrv2 detects the failure of the leader, transitions into phase-1, and broadcasts
vote (4,2) with the increased logicalclock (l = 2), but the vote cannot override the initial vote
(5,1) within ZkSrv1. None of the servers can reach a quorum based on their votes. 6© After w ms,
ZkSrv1 decides to re-send its vote after ZkSrv2 changes its mind, waiting another w ms before
phase-1 can be terminated. Thus, phase-1 experiences timeouts twice which enlarges the latency.
Things can be even worse, if ZkSrv2 reaches a timeout faster than ZkSrv1 at stage 5 and re-send
(4,2) again. In that scenario, ZkSrv1’s timeout will be reset since it receives a new message, and
wait an additional w ms.

3.1.2 RT-ZooKeeper: Fast Convergence Election. In order to avoid the delays caused by the mul-
tiple rounds of timeouts, we propose the Fast Convergence Election (FCE) protocol in RT-ZooKeeper.
When a server receives a vote with a lower l logicalclock, it re-sends another noti!cation

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 103. Publication date: September 2021.

RT-ZooKeeper 103:7

(including its current vote), as shown in Figure 3(c) 4©. Such noti!cations will continue until the de-
layed server detects the old leader’s failure (5©). Thus, we can avoid additionalw ms in Figure 3(b).

This mechanism to re-send election noti!cations is particularly suitable for an edge cloud plat-
form. As the servers are connected by the same LAN, the jitter in their failure detection latencies is
usually moderate. The proactive noti!cation re-send mechanism allows the leader election process
to converge quickly at the cost of a small number of re-sends. In our experiments, a single re-send
usually allows the process to converge. In addition, we note that this noti!cation re-send mech-
anism can be generally used to realize the popular OptFloodMax algorithm on an asynchronous
network with fast convergence.

FCE builds on FLE to guarantee correctness. In FLE, the epoch value, which is implemented as
the variable logicalclock, is used for recording how many times the leader has changed. When
an old leader fails, its follower will come back to phase-1 and increase the epoch value, hence
initiating a new round of leader election. Thus, the peers are always trying to elect a leader based
on the highest epoch value. The correctness has been proved for the ZAB protocol (see Section IV
in the ZAB paper [16]). The FCE protocol we proposed maintains building a new leader election
on the highest epoch value. Thus it is still compliant with ZAB protocol’s assumption and hence
preserves the correctness guarantee.

3.2 Pre-Phase-2: Establish !orum Channel
3.2.1 Limitations of ZooKeeper. Due to the di"erent communication patterns and topology on

di"erent phases, ZooKeeper adopts two distinct communication channels: election channel for
phase-1 and the quorum channel for the other phases. Server peers exchange votes in phase-1 via
the election channel (bound to TCP port 3888 by default). During phase-1, each peer should broad-
cast its vote. The election channel establishes a complete graph: each node acts as a TCP server
and accepts connections from other peers. The election server is always active once ZooKeeper has
started. Other operations, including phase-2 recovery and phase-3 service, use the quorum chan-
nel (TCP port 2888 by default). After phase-1, the peers must have a leader. Each follower only
exchanges messages and transactions with the leader, forming a star-topology: the leader accepts
connections (as a server) and the followers connect to it (as clients). Note that the followers need
to switch to the quorum channel after phase-1, since the quorum channel forms a star-topology:
where the leader is in the center, exchanging message with each of the followers. In contrast, the
leader election channel is a complete-graph, where there is no “center” or “leader”.

At the end of phase-1, the leader calls the lead() method, then, calling cnxAcceptor.start()
to bring up a new thread to accept incoming connection requests. Meanwhile, a follower
immediately executes Follower.followLeader() and connects to the leader by calling the
connectToLeader() method. As shown in Figure 4(a), since the new leader has more work to
do, it is very likely that a follower’s !rst connection request is refused. In the vanilla ZooKeeper
implementation, the follower then must wait for a !xed 1000ms interval before the next retry,
which signi!cantly enlarges the overall recovery latency. While the delay may be mitigated by
shortening the timeout threshold, the need to connect twice inevitably increases the time it takes
to establish the quorum channel.

3.2.2 RT-ZooKeeper: !orum Channel Notification. To reduce the latency for establishing quo-
rum channel, RT-ZooKeeper avoids the need to reconnect to the quorum channel. Since the leader
election channel (on TCP port 3888) is already established, RT-ZooKeeper exploits that channel
for Quorum Channel Noti!cation (QCN), letting the leader broadcast a CNX_READY packet to in-
form the follower once the new quorum channel is ready (Figure 4(b)), and thus avoid unnecessary
waiting time and reconnection.

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 103. Publication date: September 2021.

103:8 H. Li et al.

Fig. 4. Follower: Connect to the Lead via TCP Port: 2888.

Fig. 5. Protocol of Phase-2 RECOVERY.

3.3 Phase-2: Recovery
3.3.1 Limitations of ZooKeeper. Figure 5 illustrates ZooKeeper’s protocol in phase-2, RECOV-

ERY. After electing the leader in phase-1, the quorum channel is established. Each follower
then connects to the leader and sends a FOLLOWERINFO packet to the leader, reporting its
acceptedEpoch. When the leader receives a quorum of FOLLOWERINFO packets (including the one
the leader sent to itself), it generates a new acceptedEpoch whose value is greater than any from
the receiving set. The leader then persists the new acceptedEpoch to disk. The leader replies to
each follower with the new acceptedEpoch encapsulated within a LEADERINFO packet. Upon re-
ceiving the packet, the follower updates the acceptedEpoch and persists it to disk. The follower ac-
knowledges the leader with ACKEPOCH and informs the leader of the latest zxid of the follower’s
database. The leader collects a quorum of acknowledgements, then updates its currentEpoch and
persists it to disk. According to the leader election in phase-1, the leader should have the most
recent zxid. As a result, the leader can initiate the database synchronization by sending a DIFF
packet, followed by several COMMIT packets, until each follower is synchronized. Then, the leader
sends a NEWLEADER packet to update the currentEpoch value, to the followers. Followers persist
the currentEpoch on disk, sending an ACK back to the leader. Upon receiving a quorum of ACKs,

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 103. Publication date: September 2021.

RT-ZooKeeper 103:9

Table 1. EpochTable: Structure

Field Type Note
version long the version of this table

numServers int the size of the ensemble
acceptedEpochList long[] acceptedEpoch values of all servers
currentEpochList long[] currentEpoch values of all servers

the leader !nally sends an UPTODATE packet and goes into phase-3, SERVICE. Each follower also
transitions into the SERVICE phase after receiving the UPTODATE packet.

As shown in Figure 5, the phase-2 procedure involves four disk I/O operations for persisting
acceptedEpoch and currentEpoch in both the leader and followers. Our empirical results show
that signi!cant latency is introduced by such disk I/O (see “RTZK-L Phase-2” in Figure 8(d)), es-
pecially because the two variables are stored in distinct !les. Each !le write operation can take as
long as 300ms.

We note that the acceptedEpoch and currentEpoch variables play important roles in recovery:
a server recovering from a crash must know the last epoch it accepted and was in, to deduce its
status when it su"ered a failure, and to take part successfully in leader election. It is therefore
crucial to persist the variables.1

3.3.2 RT-ZooKeeper: Distributed Epoch Persistence. To avoid the excessive latency introduced
by disk I/O, we propose the Distributed Epoch Persistence (DEP) protocol, persisting the epoch val-
ues (i.e. acceptedEpoch and currentEpoch) among a quorum of ZooKeeper servers. Our approach
is based on the observation that, in an edge computing environment with a high-speed LAN, com-
munication latency between local servers is usually smaller than that of disk I/O. To realize DEP,
we conduct holistic modi!cations in both phase-1 and phase-2 of the vanilla ZAB protocol.

In DEP, each ZooKeeper server maintains an EpochTable, as shown in Table 1, which contains
global information about the acceptedEpoch and currentEpoch of all the servers in the current
ensemble. We change the means to access the two variables.
Phase-1 Modi!cation. Each server needs to get the currentEpoch, to initialize l = logicalclock
before staring leader election. In the ZAB protocol, each server accesses its disk to read the per-
sisted value from a speci!ed !le. In the DEP protocol, before entering the election, each server
runs an OptFloodMax algorithm (with the extensions introduced in FCE) to reach a consensus on
the EpochTable. The servers choose the one with the latest (greatest) version as the consensus
result. Then the servers can retrieve the epoch value from the already synchronized and up to date
EpochTable.
Phase-2 Modi!cation. In phase-2, ZooKeeper servers change and persist their epoch values. In
ZAB, each ZooKeeper simply writes the new value to disk and sends an acknowledgement. When
using DEP, we allow only the leader to modify the contents of its EpochTable, while the followers
can only propose their variable changes to the leader. This can be done via a two-step commit
protocol: (1) the leader accumulates the changes from all the followers (in a quorum). Then, the
leader generates a new EpochTable with corresponding updates, including a new version number,
broadcasting the EpochTable to the followers; and (2) upon receiving a new EpochTable, the fol-
lower commits it, sending an ACK to the leader. Once it has received a quorum of ACKs, the leader
continues the ZAB protocol.

1The early implementation of ZAB, ZAB-Pre-1.0 [15], partially omitted these variables: it only recorded the epoch e in the
latest persisted z , resulting in some “blocking level” bugs [14, 19] that were not completely resolved until ZAB-1.0 [29],
which re-implements the handling of these two variables, in ZooKeeper version 3.4.

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 103. Publication date: September 2021.

103:10 H. Li et al.

Table 2. Symbol Definition for the Timing Model

Symbol De!nition
T Overall recovery latency for RTZK
Te Phase-1 latency for RTZK
To latency for running OptFloodMax algorithm
Tr Phase-2 latency for RTZK
w finalizeWait value
j jitter of leader failure detection latency
d Upper-bound of message transmission latency
h Message processing latency
hr Message processing latency for phase-2 of RTZK
b Disk I/O latency
se , sr Initialization latency for phase-1/phase-2

Persisting Epoch Values. We use the same channel as leader election (TCP port 3888) for de-
livering our EpochTable-related messages, and implement the function handling them within
the FastLeaderElection class, to address the following design considerations: 1. The latest
EpochTable needs to be detected before leader election, so the quorum channel (TCP port 2888),
which is established in pre-phase-2, cannot be used for this. 2. The latest EpochTable detection
is based on the same algorithm as the FCE (OptFloodMax). 3. The application-level packet fram-
ing class, ToSend, has an enumerated type !eld mType, which facilitates message extension and
multiplexing.

We add a lookForLatestEpochTable() method, for detecting and synchronizing the
EpochTable before running leader election. It is similar in structure to the lookForLeader()
method, since they both implement the OptFloodMax algorithm in a similar way. To support
broadcasting the EpochTable via the election TCP channel, we modi!ed WorkSender.process(),
the message sending method, allowing it to frame two di"erent message types: notification
and epochtable, for FLE and EpochTable detection, respectively (based on mType, which is
in the head of the frame). We also modi!ed the message receiver and its forwarding thread
(WorkerReceiver.run()): by parsing the message header, the receiver can forward the mes-
sages to the corresponding processing queue, for polling by lookForLatestEpochTable() or
lookForLeader().

4 RECOVERY TIME ANALYSIS
In this section, we analyze the recovery latency of ZooKeeper and RT-ZooKeeper. As RT-
ZooKeeper is targeted at time-sensitive applications in general instead of strictly hard real-time
applications, the analysis is not intended to provide worst-case bounds or hard guarantees. Instead,
it aims to establish approximate timing models and provide guidance for con!guring the service.

As shown in the phase transition diagram (Figure 2), the overall recovery latency T comprises
two parts, the phase-1 election latency Te and the phase-2 recovery latency Tr :

T = Te +Tr . (1)

We start with the model of phase-1 election latency, revealing how jitter and communication
delay can a"ect the model and then discussing the timing behaviour of OptFloodMax implemented
for FCE. We then model the phase-2 and communication costs for maintaining the EpochTable via
the DEP protocol.

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 103. Publication date: September 2021.

RT-ZooKeeper 103:11

Fig. 6. Timing Model of Leader Election.

4.1 Timing Model for Phase-1
Duration of !nalizeWait. In vanilla ZooKeeper, w has a hard-coded !xed value: 200ms. We ar-
gue that this value is unnecessarily large for a local area network (LAN) environment, where the
transmission latency d can be signi!cantly less than 200ms. However,w cannot be too short either,
or the ensemble may elect the wrong leader, which would signi!cantly increase phase-2 recovery
latency. For example, in Figure 6(a), server ZkSrv0 has the most recent transaction and hence
should be the new leader. However, 1© ZkSrv0’s messages su"er from a long transmission delay.
2© 3© ZkSrv1 and ZkSrv2 can reach a quorum (2 of 3) with the vote (5,1) being the maximum among
them. 4© Afterw time units without receiving new votes, ZkSrv1 and ZkSrv2 will claim ZkSrv1 as
the (false) leader.

It is not su$cient to just have w > d , since the ZooKeeper servers may not start leader election
at exactly the same time. Instead, we can use a value j to represent the jitter in their collective start
times. As shown in Figure 6(b): 1© ZkSrv0 su"ers from both jitter j and long transmission delay d .
2© ZkSrv0 ignores the votes from other two servers. 3© We need a su$ciently large w to ensure
ZkSrv1 and ZkSrv2 receive ZkSrv0’s vote before they start deducing the leader. Hence, we require:

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 103. Publication date: September 2021.

103:12 H. Li et al.

w > j + d, (2)
to avoid the false leader scenario. 4© ZkSrv1 and ZkSrv2 change their votes to (6,0) and rebroadcast
them and everyone reaches a quorum; the procedure converges.
Estimate OptFloodMax Latency. In a public cloud scenario (Figure 6(c)), where the transmission
latency can be signi!cantly larger than the message processing latency (e.g., where d can be more
than 100ms and h can be several ms), the latency,T ′o , for running the OptFloodMax algorithm once
can be modeled as:

To′ = 2d +w . (3)
1© It takes a constant initialization time se before running the actual OptFloodMax algorithm. 2©
In addition, ZkSrv0 su"ers from both the jitter and long transmission delay d . 3© Another trans-
mission delay d is introduced when ZkSrv1 and ZkSrv2 wants to rebroadcast (6, 0). 4© The servers
need to wait w for !nally !nishing the election.

However, in a LAN setting where d is less then 10ms, and usually is less than 1ms, the model in
Equation (3) does not work since the single message processing time h can a"ect the overall leader
election time signi!cantly. Thus, we use a di"erent model (To) for this scenario:

To =
N (N + 1)

2 h +w . (4)

The !rst term indicates the potential message processing time of the leader. In an ensemble of n
servers, the server with nth largest vote can change its mind n−1 times, thus broadcasting at most
n messages to the network. As a result, the leader will receive 1 + 2 + · · · + N messages in leader
election process. Figure 6(d) shows an example: 1© ZkSrv1 broadcast its initial vote (4,2) !rst, but
was ignored by the other two. 2© After a jitter interval j ′, ZkSrv2 broadcasts its vote (5,1), resulting
in a vote change in ZkSrv1. 3© ZkSrv0 broadcasts its vote and causes the other two to change their
votes. 4© ZkSrv0 receives 3 × (3 + 1)/2 = 6 messages from other peers, 5 from other peers plus 1
when ZkSrv0 broadcasts (6,0) to itself. 5© The procedure converges.

RT-ZooKeeper needs to run the OptFloodMax algorithm twice in phase-1, once for EpochTable
Detection, and once for leader election, but we only need to count initialization (including jitter)
once:

Te = se + j + 2To . (5)

4.2 Timing Model for Phase-2
As shown in Figure 5, the ensemble !rst reaches a consensus on a new epoch, which is greater than
any previous epoch and must persist. Though the recovery phase involves several rounds of mes-
sage exchanges, the most time consuming part is to persist the acceptedEpoch and currentEpoch
values to disk: The leader and each of the followers have to write to the disk two times, resulting
in 4x disk I/O latency.

In phase-3, ZooKeeper keeps the transaction synchronous among all peers. As a result, when
a leader failure occurs, the unsynchronized transactions can be bounded. Thus, the timing model
for phase-2 of vanilla ZooKeeper can be relatively simple:

Tr ′ = sr + 4b . (6)
Note that b stands for the I/O latency when writing either acceptedEpoch or currentEpoch to
disk, while initialization and other !xed message communication and processing latency can be
combined into a single constant sr .

The DEP protocol leverages a two-phase-commit to update the EpochTable. Note that we remove
the latency term 4b from Equation (6) by avoiding disk I/O. The relationship between the size of

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 103. Publication date: September 2021.

RT-ZooKeeper 103:13

the ensemble and additional epoch messages to be processed is linear. Thus, the phase-2 timing
model for RT-ZooKeeper is:

Tr = sr + Nhr . (7)
From Equation (8), (5), (4), and (7), we have:

T = se + j + 2
(
N (N + 1)

2 h +w

)
+ sr + Nhr . (8)

5 LIMITATIONS
RT-ZooKeeper is not designed to provide hard latency guarantees. The nature of ZooKeeper –
running on JVM, complicated multi-thread synchronization, and standard TCP/IP protocol stack
and network technologies – makes it far from being a hard real-time coordination solution. RT-
ZooKeeper, while signi!cantly reducing failure recovery latency, remains a service suitable for
applications with soft latency requirements that can be satis!ed through empirical measurements.
Consequently, the timing model we established is intended as an estimation of recovery latency
rather than a hard bound for timeliness guarantees. The timing model can provide guidance for
con!guring RT-ZooKeeper to help developers achieve desired recovery latency empirically.

RT-ZooKeeper focuses on reducing failure recovery latency. It is not designed to improve latency
during normal, fail-free operations. As an in-memory datastore, ZooKeeper has a millisecond-level
latency when dealing with regular transactional operations during phase-3. In contrast, the recov-
ery latency observed in our evaluation was second-level. Hence, recovery latency is signi!cantly
larger than the latency during regular operations. Therefore, this paper focuses on shortening the
recovery latency, which dominates the maximum latency experienced by the application.

6 EMPIRICAL EVALUATION
In this section, we use a micro-benchmark on a real testbed to measure and evaluate the recovery
latency for three ZooKeeper variants:
• Vanilla ZooKeeper. The original ZooKeeper 3.5.8 without any patch (whose finalizeWait,
w = 200ms).
• RT-ZooKeeper Lite (RTZK-L). ZooKeeper with partial features of RT-ZooKeeper: only

FCE and QCN are enabled.
• RT-ZooKeeper (RTZK). The full-#edged RT-ZooKeeper with all three features (FCE, QCN,

and DEP) enabled.
RTZK-L is con!gured for evaluation purposes: to di"erentiate the performance gains from di"er-
ent features. We only enable FCE and QCN in RTZK-L since those two protocols and modi!cations
are well-isolated and independent: their performance gains can be easily di"erentiated by compar-
ing to the phase-1 and phase-2 latency from vanilla ZooKeeper, respectively. Using RTZK-L as a
baseline, we can then evaluate pros and cons for DEP, which involves modi!cations in both phases.
We also evaluate whether the empirical maximum latency results for RTZK are bounded by the
estimations from Equation (8).

We conducted experiments on a testbed with three physical machines working as edge hosts.
Each host has one Intel E5-2680v4 8-core CPU, 64 GB memory, and 1TB 7200 RPM-HDD. We
disabled hyper-threading and power saving features and !xed the CPU frequency at 2.1 GHz to
improve predictability, as in [18, 39, 40]. As virtualization is often used in edge computing envi-
ronments to facilitate deployment and other practical considerations, each physical host runs a
Xen 4.12.0 hypervisor to consolidate multiple virtual machines (VMs). As shown in Figure 7, each
ZooKeeper server (or Kafka broker) is encapsulated with a Linux VM (kernel version 5.4.0) and

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 103. Publication date: September 2021.

103:14 H. Li et al.

Fig. 7. Testbed for ZooKeeper Recovery Evaluation.

Table 3. Parameters for Latency Estimation

Parameter se j w h sr hr
Value(ms) 35 13 20 3 55 25

consolidated on one of the physical hosts. Each VM has one VCPU which is pinned on a dedi-
cated PCPU. The administrative VM of Xen, Dom 0, has one VCPU which is pinned onto PCPU0.
The physical hosts are connected to a 1Gbps switch, and all the VMs are in the same LAN. All
ZooKeeper variants we evaluated are based on version 3.5.8.

As shown in Figure 7, each ZooKeeper ensemble in our evaluations consists of up to seven
ZooKeeper servers, whose ids range from 0 to 6 (ZkSrv0 to ZkSrv6), which we allocate to physi-
cal hosts in a round-robin fashion. We bring up a ZooKeeper ensemble, kill the leader to trigger
the ZooKeeper recovery procedure, and then measure the recovery latency: for each of the three
ZooKeeper variants, we repeat that measurement procedure 100 times.

We measured the maximum transmission latency at d = 3ms, and the maximum jitter at j =
13ms for failure detection. Thus we choose the finalizeWait, w = 20ms following Equation (2)
and using the other parameters shown in Table 3.

We ran the same experiments using ensembles consisting of 3, 5, or 7 ZooKeeper servers: al-
though it is possible to have more servers, running a ZooKeeper ensemble with more than seven
servers is rare in production settings, even in a public cloud environment. For example, Cloud-
Karafka allows up to seven ZooKeeper servers [37] and Solr recommends no more than !ve
ZooKeeper servers [24]. Moreover, a seven-server-ensemble can easily serve more than 1, 000
nodes which is beyond the scale of a normal edge cloud: we argue that especially since the num-
ber of compute nodes in an edge cloud is much less than in a public production environment, it is
reasonable to test against those commonplace settings.

Figures 8(a) to 8(c) show the overall latency distributions for the three ZooKeeper variants
(vanilla ZooKeeper, RTZK-L, and RTZK) with a 3, 5, or 7 server ensemble. We observe that RTZK-L
outperforms vanilla ZooKeeper and that among the three variants RTZK has the best performance,
signi!cantly reducing maximum latency from 2031ms to less than 178ms, i.e., RTZK shortens la-
tency by 92%.

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 103. Publication date: September 2021.

RT-ZooKeeper 103:15

Fig. 8. ZooKeeper Recovery Latency Distribution.

We further analyse the results by breaking down the overall latency for each ZooKeeper variant
into two parts: phase-1 leader election latency and phase-2 database recovery latency, as shown
in Figures 8(d) to 8(f). We make three observations based on those results: 1. The phase-1 leader
election latency samples for vanilla ZooKeeper (VZK_P1) are clustered into three levels: 250ms,
450ms, and 650ms. This phenomenon is due to the unnecessaryw = finalizeWait rounds, which
we explained in Section 3.1. Our corresponding FCE protocol !xes this problem and reduces the
w value, as we can see in RTZK-L_P1. 2. The phase-2 database recovery latency dominates the
overall latency for vanilla ZooKeeper. RTZK-L improves phase-2 recovery latency (RTZK-L_P2) by
avoiding the unnecessary one-second re-connection wait via the QCN mechanism, as we discussed
in Section 3.2. However, even that optimized latency is still relatively long and has signi!cant
outliers due to disk operations. 3. RTZK avoids those disk operations by persisting those values
among the quorum via the DEP protocol. RTZK thus signi!cantly shortens the phase-2 recovery
latency and achieves the best overall results among the three variants.

Given the parameters in Table 3, we calculate an estimated maximum overall (T), phase-1 (Te),
and phase-2 (Tr) latency, for RTZK based on Equation (8), (5), and (7), respectively. Note that since
a server has crashed, the number of servers taking part in recovery is one less than the ensemble
size. We show the estimated maximum latency (Te ,Tr , andT) in Figures 9(a) to 9(c), which provide
estimated bounds for gauging RTZK’s empirical results.

We note that RTZK achieves the best performance by avoiding disk operation latency
(Figure 9(c)) but at a cost of more network operations. Hence the phase-1 leader election latency
of RTZK is larger than the one for RTZK-L (Figure 9(a)). Speci!cally, RTZK-L only needs to run
the OptFloodMax algorithm once for electing a leader, but RTZK needs to run it twice, once for
synchronizing the EpochTable, and again for leader election. However, it is not a major concern
in light of real-world ZooKeeper ensemble sizes, which are rarely greater than seven even in pro-
duction [24, 37].

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 103. Publication date: September 2021.

103:16 H. Li et al.

Fig. 9. Latency on di!erent Variant/Ensemble. Fig. 10. RTZK-Lite on SSD.

RTZK-Lite on SSD. To further evaluate the DEP protocol used by RT-ZooKeeper, we replaced the
HDD disk for RTZK-Lite with an SSD disk.

Figure 10 shows the latency distribution of three di"erent con!gurations on a seven-server-
ensemble: RTZK-Lite on HDD (RTZK-L-H), RTZK-Lite on SSD (RTZK-L-S), and RTZK (which does
not need disk I/O for accessing epoch values). RTZK-L-S shortens phase-2 latency in most cases
(L-S_P2 in Figure 10(b)), compared to its HDD variant. However, it still su"ers from excessive
latency occasionally. Hence the maximum latency performance of RTZK-Lite, even when equipped
with an SSD, may be too large. RTZK, in contrast yields much more consistent results, without
outliers that signi!cantly deviate from the majority of latency values.

7 CASE STUDY WITH KAFKA
In this section, we present case studies involving a distributed real-time messaging service, Kafka,
on the same testbed shown in Figure 7, with Kafka version 2.6.0. The Kafka brokers are ZooKeeper
clients, using ZooKeeper for topic creation, leader election for brokers and topic partition pairs,
and monitoring topology changes for the Kafka cluster.

We built a Kafka cluster with two Kafka Brokers (KfBro0 and KfBro1) distributed on two phys-
ical hosts. We also use other VMs for a Kafka message producer and consumer. We conducted
three case studies of increasing complexity, to evaluate the bene!ts of low recovery latency using
RT-ZooKeeper: 1. a Kafka re-connection latency test, 2. a Kafka topic creation latency test, and
3. a Kafka message end-to-end latency test. In each case study, we measure the corresponding
operation’s latency following ZooKeeper leader failure.

7.1 Kafka Re-connection
As shown in Figure 11(a), we use a ZooKeeper ensemble consisting of three servers, and a Kafka
broker, which knows all the entry points of the ZooKeeper ensemble.

We conduct an experiment to measure the Kafka re-connection latency following ZooKeeper
leader failure. In each run, we !rst kill the ZooKeeper leader. The ZooKeeper service then becomes

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 103. Publication date: September 2021.

RT-ZooKeeper 103:17

Fig. 11. System Architecture for each Case Study.

Fig. 12. Kafka Re-connection Overall Latency. Fig. 13. Kafka Topic Creation Overall Latency.

temporarily unavailable and the Kafka broker loses its connection to the ensemble. After some
time, the ZooKeeper service recovers. Meanwhile, the Kafka broker, as a ZooKeeper client, will
keep trying to reconnect. The re-connection request cannot succeed until the ZooKeeper ensemble
completes its recovery. We then measure the elapsed time from Kafka’s lost connection, to its
re-connection.
ZooKeeper Client Re-connection Strategy. First, we highlight that the client re-connection
strategy is a signi!cant factor for re-connection latency, due to two di"erent innate strategies in the
vanilla ZooKeeper client library. First, after failure of the client’s connection to a ZooKeeper server,
the client will wait for a randomized interval, ranging from 0 to 1000ms, before retrying. Second,
vanilla ZooKeeper has a “delayed server redirection” mechanism: if a client tries to reconnect to
a recovered ZooKeeper ensemble, but picks up the failed server to try to connect with, the client
will incur an additional one second delay before it can try another server.
Aggressive Re-connection Strategy. Unfortunately, these re-connection delays introduced by
the vanilla ZooKeeper client library can even eclipse the bene!ts of RTZK. Therefore, we patched
the ZooKeeper client library to use signi!cantly more responsive settings: the client will retry
every 50ms, and will immediately try another entry point if it accidentally picks up a failed server.

We ran our experiments 100 times for each of six di"erent ZooKeeper con!gurations: vanilla
ZooKeeper, RTZK-L, and RTZK, each with either the original ZooKeeper client library or with the
one patched to use our aggressive re-connection strategy.

Figure 12 shows the Kafka re-connection latency distributions for the di"erent ZooKeeper con-
!gurations. We make four observations: 1. RTZK always outperforms the corresponding vanilla
ZooKeeper and RTZK-L con!gurations in terms of both median and maximum latency, regardless
of the re-connection strategy. 2. When using the original conservative re-connection strategy (la-
beled *_O), the Kafka broker is likely to take more time to reestablish the connection, hindering the
potential bene!t from using optimized versions of ZooKeeper (RTZK-L or RTZK). 3. The aggressive
re-connection strategy (labeled as *_A) can e$ciently alleviate the latency penalty introduced by
the client, hence making the overall results close to what we report in Figure 8. Moreover, by com-
bining the aggressive connection strategy with RT-ZooKeeper, we achieve the best performance

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 103. Publication date: September 2021.

103:18 H. Li et al.

and signi!cantly reduce latency. 4. Similarly low latency is not achieved by only applying an ag-
gressive re-connection strategy with vanilla ZooKeeper, nor by only using RT-ZooKeeper without
adopting the aggressive re-connection strategy.

7.2 Kafka Topic Creation
In this case study, we add a Kafka producer to create a new topic (Figure 11(b)). The topic’s meta-
data is stored in ZooKeeper. Thus, ZooKeeper is on the critical path for topic creation.

We measure the topic creation latency under the following conditions: we !rst test the la-
tency distribution in normal conditions, where no failure occurs; then, we intentionally kill the
ZooKeeper leader during topic creation, to evaluate the impact of ZooKeeper recovery. We repeat
the experiments for the three ZooKeeper variants: vanilla Zookeeper, RTZK-L, and RTZK, using
the aggressive re-connection strategy.

Based on the results in Figure 13, we make two observations: 1. ZooKeeper failure does have
negative impact on the Kafka topic creation latency: none of the con!gurations (with a ZooKeeper
failure) achieves the optimal topic creation latency distribution seen without a ZooKeeper fail-
ure. 2. By combining the aggressive connection strategy with RTZK, we can alleviate such a
negative impact to the greatest extent, signi!cantly reducing latency when compared to other
con!gurations.

7.3 Kafka Message End-to-End Latency
In this case study, we explore how ZooKeeper leader and Kafka leader failure a"ect message end-
to-end latency.

As shown in Figure 11(c), we create a three-server ZooKeeper ensemble for a Kafka cluster con-
sisting of two Kafka brokers. We create a topic “mytopic” with a replication factor of 2, i.e., Kafka
is responsible to duplicate the message log on both Kafka brokers. After initialization, Kafka bro-
ker 0 and ZooKeeper server 0 are the leaders for the Kafka cluster and the ZooKeeper ensemble,
respectively. A producer publishes a message to “mytopic” every 100ms (periodically), and a con-
sumer subscribes to the same topic. We measure the end-to-end message latency under di"erent
circumstances.
Only The ZooKeeper Leader Fails. Kafka leverages the ZooKeeper service for topic creation,
electing a new leader whenever a previous leader fails. However, for regular message routing,
Kafka does not need to consult ZooKeeper for delivering messages. Hence, a failure of the
ZooKeeper service will not a"ect the message end-to-end latency.
Only The Kafka Leader Fails. If the Kafka topic leader fails, the Kafka broker cannot deliver
messages until the Kafka replica recognizes the failure of the old leader and establishes a new
one. Kafka failure detection is handled by ZooKeeper: ZooKeeper establishes an entity called a
Session to represent the existence of a living Kafka broker. The Kafka broker sends heartbeats to
the ZooKeeper, indicating its existence. If the session times out, ZooKeeper treats the broker as
failed and then noti!es the other corresponding brokers.
The tickTime setting a"ects latency. Clearly, zookeeper.session.timeout.ms, the session
timeout value in the Kafka broker con!guration can signi!cantly a"ect the failure detection la-
tency: the lower that value, the faster ZooKeeper can detect the Kafka broker failure. The minimal
session timeout value is gauged by the ZooKeeper tickTime, and can be at least twice that value.
In the following experiment, we always set zookeeper.session.timeout.ms to be two times the
value of the ZooKeeper tickTime.

We !rst ran the experiment with only a Kafka leader failure, but without a ZooKeeper leader
failure. We measured the worst message end-to-end latency in each run. We performed 100 runs
for each of the following ZooKeeper tickTime settings: {300, 500, 1000, or 2000} milliseconds. As

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 103. Publication date: September 2021.

RT-ZooKeeper 103:19

Fig. 14. E2E Latency: Only Kafka Leader Fails. Fig. 15. E2E Latency: Both Kafka and ZK Leader Fail.

Fig. 16. Timeline for Measured Kafka End-to-End Message Latency with Kafka and ZooKeeper Leader
Failures.

shown in Figure 14, even without ZooKeeper undergoing a recovery, the tickTime a"ects the
latency signi!cantly: the larger the tickTime, the worse the end-to-end latency.
Both the Kafka Leader and the ZooKeeper Leader Fail. In this case, ZooKeeper is on the crit-
ical path of the service: the other Kafka broker relies on ZooKeeper for the failure noti!cation.
Figure 16 shows the timeline for such a case: 1© The Kafka leader (KfBro0) and the ZooKeeper
leader (ZkSrv0) fail simultaneously. The other two ZooKeeper servers lose their leader, closing
all connections of the client (KfBro1) and starting leader election. The other Kafka broker (Kf-
Bro1) loses its connection to ZooKeeper, and immediately tries to re-connect to the ZooKeeper
ensemble (we assume the client adopts the “aggressive re-connection” strategy). 2© The remaining
ZooKeeper establishes a new ensemble consisting of two servers, elects a new leader, and starts
phase-2 recovery. 3© The ZooKeeper ensemble recovery completes and resets the session timeout
deadline. 4© KfBro1 !nally reconnects to the recovered ZooKeeper service, avoiding a session time-
out. 5© The KfBro0 session in the ZooKeeper ensemble must expire later, since KfBro0 had been
dead. As a result, the ZooKeeper ensemble can send the noti!cation for KfBro1. 6© KfBro1 !nishes
its recovery, including Kafka cluster leader election and data recovery, and can then process the
pending messages.

The producer, regardless of the temporarily unavailable Kafka service, sends messages periodi-
cally. These messages cannot be routed until the Kafka cluster recovers. As a result, the messages
sent just after the failure occurring su"er the longest latency. We record that for each run.

We set the ZooKeeper tickTime to 300ms, and the Kafka session timeout to 600ms. We made
100 runs for each ZooKeeper variant and show the distribution of the worst end-to-end latency in
Figure 15. We make the following observations: 1. The only-Kafka-leader-failure case represents

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 103. Publication date: September 2021.

103:20 H. Li et al.

the optimal lower bound for this experiment. The experiment results involving both Kafka and
ZooKeeper failures can never outperform the one without ZooKeeper failure. 2. RT-ZooKeeper still
achieves the best performance, by combining rapid recovery with the “aggressive re-connection”
strategy.

Based on the micro benchmark and the three di"erent real-world case studies presented in this
section, we can draw the following conclusions: 1. FCE and QCN e"ectively shorten ZooKeeper
recovery latency. 2. DEP further improves recovery latency by avoiding disk I/O. 3. The combina-
tion of RT-ZooKeeper with an aggressive client reconnection strategy is e"ective in constraining
latency for services such as Kafka, which depend on ZooKeeper.

8 RELATED WORK
The research community has addressed fault tolerance of distributed systems in di"erent ways.
Protocols like Paxos [21] are widely used for building replicated state machines (RSMs) [22]: e.g.,
Gaios [4], S-Paxos [3], and Chubby [5]. ZooKeeper [12] and its ZAB [16] protocol address con-
sistency issues for Paxos-based protocols: the primary fault can result in conditions that violate
causal ordering, e.g., per the example found in the introduction of the ZAB paper [16]. The ZAB
protocol resolves this issue by ful!lling the Primary Order property, which is necessary for data-
base consistency while allowing primary failure.

Fault tolerance has also been investigated extensively for real-time systems. Earlier work ad-
dressed real-time performance in the presence of crash failures [1, 2]. DeCoRAM [1] provides a
task allocation algorithm for replicated systems to meet real-time and fault-tolerance requirements.
FLARe [2] maintains real-time performance through adaptive failover of real-time tasks to repli-
cated servers. Fault-tolerance approaches for real-time systems involving transient and Byzantine
faults have also been widely studied and developed [7, 10, 11, 23, 31, 32, 34]. These approaches
are targeted at traditional real-time systems instead of distributed coordination services in edge
clouds. Furthermore, none of the existing fault-tolerant approaches for real-time systems dealt
with recovery latency associated with leader election.

With the emergence of edge computing, there has been recent e"ort to develop time-sensitive
and fault-tolerant services in the edge cloud environment. FRAME [38] is a fault-tolerant real-time
messaging service that exploits the tradeo" between message loss and soft latency requirements
in an edge cloud environment. FRAME is a messaging service based on a standard primary-backup
architecture. It does not address leader election and the associated recovery latency that can dom-
inate the maximum latency experienced by edge applications.

ZooKeeper has received signi!cant attention in the research community as a representative
distributed coordination service. However, most existing research on ZooKeeper have focused on
throughput and latency performance during normal operations (phase-3) [9, 13, 17], leaving recov-
ery latency unaddressed. In contrast, RT-Zookeeper focuses on reducing the recovery latency of
ZooKeeper for time-sensitive edge applications, with novel contributions addressing phase-1 and
phase-2 that can greatly reduce recovery latency.

9 CONCLUSIONS
We have studied the recovery latency of fault-tolerant coordination services in edge computing
environments, with a speci!c focus on ZooKeeper, the prevailing reliable coordination service.
We focus on improving recovery latency following leader failure for ZooKeeper and identify bot-
tlenecks that impede recovery. We then propose new protocols to alleviate those limitations. We
implement those advances in RT-ZooKeeper based on ZooKeeper 3.5.8. Results of our empirical
evaluations, including case studies using Kafka, demonstrate that our analyses and the improve-
ments that arose from them can signi!cantly reduce recovery latency. RT-ZooKeeper provides

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 103. Publication date: September 2021.

RT-ZooKeeper 103:21

appropriate support for latency-sensitive distributed applications running in edge computing en-
vironments. Targeting ZooKeeper as a representative system, this work highlights the importance
of revisiting the fundamental design of cloud services from a latency perspective to support time-
sensitive applications on edge computing platforms.

REFERENCES
[1] Jaiganesh Balasubramanian, Aniruddha Gokhale, Abhishek Dubey, Friedhelm Wolf, Chenyang Lu, Chris Gill, and

Douglas Schmidt. 2010. Middleware for resource-aware deployment and con!guration of fault-tolerant real-time sys-
tems. In 2010 16th IEEE Real-Time and Embedded Technology and Applications Symposium. IEEE, Stockholm, Sweden,
69–78.

[2] Jaiganesh Balasubramanian, Sumant Tambe, Chenyang Lu, and Aniruddha Gokhale. 2009. Adaptive failover for real-
time middleware with passive replication. In IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS’09). IEEE, San Francisco, 118–127.

[3] Martin Biely, Zarko Milosevic, Nuno Santos, and Andre Schiper. 2012. S-paxos: O%oading the leader for high through-
put state machine replication. In 2012 IEEE 31st Symposium on Reliable Distributed Systems. IEEE, Irvine, 111–120.

[4] William J. Bolosky, Dexter Bradshaw, Randolph B. Haagens, Norbert P. Kusters, and Peng Li. 2011. Paxos replicated
state machines as the basis of a high-performance data store. In Proc. NSDI’11, USENIX Conference on Networked
Systems Design and Implementation. ACM, Boston, 141–154.

[5] Mike Burrows. 2006. The Chubby lock service for loosely-coupled distributed systems. In Proceedings of the 7th sym-
posium on Operating systems design and implementation. ACM, Seattle, 335–350.

[6] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi, and Kostas Tzoumas. 2015. Apache
#ink: Stream and batch processing in a single engine. Bulletin of the IEEE Computer Society Technical Committee on
Data Engineering 36, 4 (2015), 1–1.

[7] Minyu Cui, Angeliki Kritikakou, Lei Mo, and Emmanuel Casseau. 2021. Fault-tolerant mapping of real-time parallel
applications under multiple DVFS schemes. In IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS’21). IEEE, Nashville, 387–399.

[8] Dell. Inc. 2020. Edge Analytics for Industry 4.0 with Con#uent Platform. https://www.delltechnologies.com/asset/en-
us/products/ready-solutions/technical-support/h18352-da-edge-iiot-con#uent-dellencinfra-ra.pdf. Accessed: 2021-
06-04.

[9] Ibrahim EL-Sanosi and Paul Ezhilchelvan. 2018. Improving zookeeper atomic broadcast performance when a server
quorum never crashes. EAI Endorsed Transactions on Energy Web 5, 17 (2018), 1–1.

[10] Neeraj Gandhi, Edo Roth, Robert Gi"ord, Linh Thi Xuan Phan, and Andreas Haeberlen. 2020. Bounded-time recov-
ery for distributed real-time systems. In 2020 IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS). IEEE, Sydney, 110–123.

[11] Arpan Gujarati, Sergey Bozhko, and Björn B. Brandenburg. 2020. Real-time replica consistency over ethernet with
reliability bounds. In 2020 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS). IEEE, Sydney,
376–389.

[12] Patrick Hunt, Mahadev Konar, Flavio Paiva Junqueira, and Benjamin Reed. 2010. ZooKeeper: Wait-free coordination
for internet-scale systems. In USENIX annual technical conference, Vol. 8. ACM, Boston, 1–1.

[13] EL-Sanosi Ibrahim and Paul Ezhilchelvan. 2017. Improving zookeeper atomic broadcast performance by coin tossing.
In European Workshop on Performance Engineering. Springer, Berlin, 249–265.

[14] Flavio Junqueira. 2010. Last processed zxid set prematurely while establishing leadership. https://issues.apache.org/
jira/browse/ZOOKEEPER-790. Accessed: 2020-10-01.

[15] Flavio Junqueira. 2013. Zab Pre 1.0. https://cwiki.apache.org/con#uence/display/ZOOKEEPER/ Zab+Pre+1.0. Ac-
cessed: 2020-10-01.

[16] Flavio P. Junqueira, Benjamin C. Reed, and Marco Sera!ni. 2011. Zab: High-performance broadcast for primary-backup
systems. In 2011 IEEE/IFIP 41st International Conference on Dependable Systems & Networks (DSN). IEEE, Hong Kong,
245–256.

[17] Babak Kalantari and André Schiper. 2013. Addressing the ZooKeeper synchronization ine$ciency. In International
Conference on Distributed Computing and Networking. Springer, Mumbai, 434–438.

[18] Hyoseung Kim and Ragunathan Rajkumar. 2016. Real-time cache management for multi-core virtualization. In 2016
International Conference on Embedded Software (EMSOFT). IEEE, Pittsburgh, 1–10.

[19] Mahadev Konar. 2011. Zookeeper servers should commit the new leader txn to their logs. https://issues.apache.org/
jira/browse/ZOOKEEPER-335. Accessed: 2020-10-01.

[20] Jay Kreps, Neha Narkhede, Jun Rao, et al. 2011. Kafka: A distributed messaging system for log processing. In Proceed-
ings of the NetDB, Vol. 11. IEEE, Athens, 1–7.

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 103. Publication date: September 2021.

https://www.delltechnologies.com/asset/en-us/products/ready-solutions/technical-support/h18352-da-edge-iiot-confluent-dellencinfra-ra.pdf
https://issues.apache.org/jira/browse/ZOOKEEPER-790
https://cwiki.apache.org/confluence/display/ZOOKEEPER/
Zab+Pre+1.0
https://issues.apache.org/jira/browse/ZOOKEEPER-335

103:22 H. Li et al.

[21] Leslie Lamport. 1998. The part-time parliament. ACM Transactions on Computer Systems (TOCS) 16, 2 (1998), 133–169.
[22] Leslie Lamport et al. 2001. Paxos made simple. ACM Sigact News 32, 4 (2001), 18–25.
[23] Andrew Loveless, Ronald Dreslinski, Baris Kasikci, and Linh Thi Xuan Phan. 2021. IGOR: Accelerating byzantine fault

tolerance for real-time systems with eager execution. In IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS’21). IEEE, Nashville, 360–373.

[24] Lucidworks. 2018. Setting Up an External ZooKeeper Ensemble. https://doc.lucidworks.com/fusion-server/4.2/
reference/solr-reference-guide/7.5.0/setting-up-an-external-zookeeper-ensemble.html. Accessed: 2020-10-01.

[25] Nancy A. Lynch. 1996. Distributed algorithms. Elsevier, San Francisco.
[26] Nancy A. Lynch. 1996. Distributed algorithms. Elsevier, San Francisco, Chapter Algorithms in General Synchronous

Networks, 51–80.
[27] Nancy A. Lynch. 1996. Distributed algorithms. Elsevier, San Francisco, Chapter Leader Election in an Arbitrary Net-

work, 495–496.
[28] André Medeiros. 2012. ZooKeeper’s atomic broadcast protocol: Theory and practice. Technical Report. Technical report.
[29] Benjamin Reed. 2016. Zab 1.0. https://cwiki.apache.org/con#uence/display/ZOOKEEPER/ Zab1.0. Accessed: 2020-10-

01.
[30] Benjamin Reed and Norbert Kalmar. 2019. Applications Powered by ZooKeeper. https://cwiki.apache.org/con#uence/

display/ZOOKEEPER/PoweredBy.
[31] Edo Roth and Andreas Haeberlen. 2021. Do not overpay for fault tolerance! In IEEE Real-Time and Embedded Technol-

ogy and Applications Symposium (RTAS’21). IEEE, Nashville, 151–160.
[32] Maurice Sebastian, Philip Axer, and Rolf Ernst. 2011. Utilizing hidden markov models for formal reliability analysis of

real-time communication systems with errors. In 2011 IEEE 17th Paci!c Rim International Symposium on Dependable
Computing. IEEE, Pasadena, 79–88.

[33] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. 2010. The hadoop distributed !le system.
In 2010 IEEE 26th symposium on mass storage systems and technologies (MSST). IEEE, Incline Village, 1–10.

[34] Jiguo Song, John Wittrock, and Gabriel Parmer. 2013. Predictable, e$cient system-level fault tolerance in Cˆ 3. In 2013
IEEE 34th Real-Time Systems Symposium. IEEE, Vancouver, 21–32.

[35] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka, Suresh Anthony, Hao Liu, Pete Wycko",
and Raghotham Murthy. 2009. Hive: A warehousing solution over a map-reduce framework. Proceedings of the VLDB
Endowment 2, 2 (2009), 1626–1629.

[36] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy, Jignesh M. Patel, Sanjeev Kulkarni, Jason Jack-
son, Krishna Gade, Maosong Fu, Jake Donham, et al. 2014. Storm@ twitter. In Proceedings of the 2014 ACM SIGMOD
international conference on Management of data. ACM, Snowbird, 147–156.

[37] Elin Vinka. 2018. How many Zookeepers in a cluster? https://www.cloudkarafka.com/blog/2018-07-04-cloudkarafka-
how-many-zookeepers-in-a-cluster.html. Accessed: 2020-10-01.

[38] Chao Wang, Christopher Gill, and Chenyang Lu. 2019. Frame: Fault tolerant and real-time messaging for edge com-
puting. In 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS). IEEE, Dallas, 976–985.

[39] Sisu Xi, Meng Xu, Chenyang Lu, Linh T. X. Phan, Christopher Gill, Oleg Sokolsky, and Insup Lee. 2014. Real-time multi-
core virtual machine scheduling in Xen. In 2014 International Conference on Embedded Software (EMSOFT). ACM, New
Delhi, 1–1.

[40] Meng Xu, Linh Thi, Xuan Phan, Hyon-Young Choi, and Insup Lee. 2017. vCAT: Dynamic cache management using
CAT virtualization. In 2017 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS). IEEE, Pitts-
burgh, 211–222.

Received April 2021; revised June 2021; accepted July 2021

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 103. Publication date: September 2021.

https://doc.lucidworks.com/fusion-server/4.2/reference/solr-reference-guide/7.5.0/setting-up-an-external-zookeeper-ensemble.html
https://cwiki.apache.org/confluence/display/ZOOKEEPER/
Zab1.0
https://cwiki.apache.org/confluence/display/ZOOKEEPER/PoweredBy
https://www.cloudkarafka.com/blog/2018-07-04-cloudkarafka-how-many-zookeepers-in-a-cluster.html

