2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS) | 978-1-6654-7177-0/22/$31.00 ©2022 IEEE | DOI: 10.1109/ICDCS54860.2022.00103

2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS)

HARP: Hierarchical Resource Partitioning in Dynamic
Industrial Wireless Networks

Jiachen Wangf*, Tianyu ZhangT, Dawei Shen?, Xiaobo Sharon Hu¥, Song Han'
TDept. of Computer Science and Engineering, University of Connecticut, Storrs, CT, 06269
TEmail: {jc.wang, tianyu.zhang, song.han} @uconn.edu
§School of Computer Science and Engineering, Northeastern University, Shenyang, China
YEmail: 1610547 @stu.neu.edu.cn
TDept. of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, 46556
YEmail: shu@nd.edu

Abstract—Industrial wireless networks (IWNs) are being in-
creasingly deployed in the field to serve as the network fabrics for
various industrial Internet-of-Things (IIoT) applications. Given
that IWNSs typically operate in noisy and harsh environments,
frequently occurring network dynamics post huge challenges for
IWN resource management especially when the network scales
up. Existing centralized and distributed network management
solutions either suffer from large communication overhead and
time delay, or introduce schedule collisions which unnecessarily
degrade the system performance. To address these problems,
this work proposes a novel HierArchical Resource Partitioning
framework (HARP), to provide dynamic resource management
in IWNs. By hierarchically partitioning and allocating resources
for the links in the network, HARP enables distributed collision-
free resource allocation. HARP enables rapid adjustment of the
partitions in the presence of network dynamics with modest
communication overhead. The effectiveness of HARP is validated
and evaluated through both simulation studies and testbed exper-
iments on a 50-node multi-channel multi-hop 6TiSCH network.

Index Terms—Industrial wireless networks, hierarchical re-
source partitioning and reconfiguration, network dynamics

I. INTRODUCTION

Industrial Internet-of-Things (IIoT) systems are gaining
rapid adoption in process control industries including but not
limited to chemical process control, automotive and aerospace
manufacturing. As a key component of the IIoT network
fabric, Industrial Wireless Networks (IWNs) are typically
deployed in noisy and harsh environments where interference
and disturbance may occur throughout the network lifetime.
Interference can cause the network nodes to change their con-
nected nodes to seek for more reliable links, which changes the
network topology. Unexpected disturbance often requires the
system to either modify existing or activate new network func-
tions to react to unexpected events, leading to traffic changes.
To ensure that packet transmissions meet stringent real-time
requirements in IToT applications, IWN resource management,
i.e., determining the communication schedule (which packet
transmission should use which time slot and which channel),
is indispensable. The network dynamics discussed above un-
avoidably introduce instability to the system operation and
make an originally feasible communication schedule no longer

*The first two authors have equal contribution to this work.

acceptable. Thus, it is necessary to reconfigure the communi-
cation schedules to adapt to the updated network topology and
resource requirements in a timely fashion.

IWNSs typically adopt centralized network resource manage-
ment where a single node (e.g., gateway) maintains the global
information of the entire network and decides the resource
allocation for all the links. A number of centralized scheduling
approaches for handling network dynamics have been pro-
posed (e.g., [1]-[6]). Under centralized resource management,
when network dynamics happen, traffic change requests are
sent from the affected node(s) to the gateway through pre-
determined routing path(s). The gateway then constructs an
updated communication schedule to achieve an optimal re-
configuration based on the global network information. Upon
receiving the updated configuration information from the gate-
way, each individual node deploys the updated schedule to
accommodate the network traffic change. Centralized network
management, however, suffers from both large communica-
tion overhead and significant time delay, especially when
the network scales up, since multi-hop network management
packets are required to communicate the updated scheduling
information. Frequent traffic and network topology changes in
harsh industrial environment further aggravate this problem
and hinder centralized network resource management from
being applied in practice.

Many research efforts (e.g., [7]-[9]) have been devoted on
designing distributed managements to overcome the afore-
mentioned drawbacks of centralized managements for more
flexible and faster resource allocation and reconfiguration in
the presence of network changes. [7] proposes a distributed
traffic-aware scheduling algorithm for IEEE 802.15.4e net-
works where the traffic requirements of individual nodes
are collected in a distributed fashion in runtime. To reduce
communication overhead and response time, [8] proposes a
distributed dynamic packet scheduling framework, FD-PaS,
for IWNs to handle network disturbances. However, fully
distributed network management faces severe challenges in
avoiding communication schedule conflicts among individual
nodes. This is caused by the fact that each node only maintains
a portion of the entire network information (e.g., link quality,
task specification) and their communication schedules are
constructed in a local fashion.

2575-8411/22/$31.00 ©2022 IEEE
DOI 10.1109/ICDCS54860.2022.00103

1029

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on January 14,2023 at 20:19:08 UTC from IEEE Xplore. Restrictions apply.

Several works in the literature studied the transmission colli-
sion elimination problem in IWNs. The distributed scheduler
MSF [10] defined in the 6TiSCH standard performs sched-
ule reconfiguration once transmission collisions are detected
through monitoring the packet delivery ratio (PDR) of each
cell. [9] proposes to share the schedule information among the
one-hop neighbor nodes in the broadcasting phase to reduce
transmission collisions. [11] relies on the shared slots in the
slotframe to overhear the schedules distributedly generated
by the neighbor nodes in the network bootstrap phase. AL-
ICE [12] is proposed as a hash-based distributed scheduler,
and it allows the sender and receiver nodes to generate a new
schedule in each slotframe. Distributed HART [13] applies the
distributed vertex coloring approach to generate conflict-free
schedules locally based on the interference information stored
by each node. However, all the aforementioned approaches
cannot guarantee collision-free transmissions during the net-
work operation and may introduce unnecessary communica-
tion overheads to generate consistent schedules among dif-
ferent nodes. Achieving collision-free communications among
nodes in the network is vital to guarantee the performance of
ITWNSs.

From the above discussion, we can observe that neither cen-
tralized nor fully distributed network resource management in
IWNs can handle network changes effectively. To address this
problem, we propose HARP, a novel HierArchical Resource
Partitioning framework for dynamic management of network
resources in IWNs. HARP models the routing topology of
a IWN as a tree structure which is commonly deployed for
industrial control applications'. By hierarchically partitioning
and allocating resource for different subtrees in the network,
HARP provides sufficient and dedicated resource for each link,
and thus provides distributed collision-free resource alloca-
tion. Based on the hierarchical resource management strategy,
HARP can promptly adapt to different traffic scenarios by
adjusting only a limited number of nodes and reconfiguration
messages. The main contributions of this work are as follows:

1) We introduce a novel hierarchical resource partitioning
based resource management framework for IWNs to allo-
cate dedicated resource for each link to support collision-
free distributed scheduling.

2) We design abstraction and composition methods to cap-
ture the resource requirements for IWNs in a hierarchical
fashion. We also design an effective resource negotiation
process to allocate resource partitions based on the pro-
posed resource requirement model.

3) We propose an effective partition adjustment method
to create new or reconfigure existing partitions in the
network to adapt the resource partitions to topology and
traffic changes during runtime.

4) We implement the proposed HARP framework on a 5-
hop 50-node 6TiSCH network [14] (a typical IWN), and

!For non-tree based routing topology, one could decompose the topology
to multiple tree structures and apply HARP in a divide and conquer fashion.
We leave the details of this to future work.

Task Total number

2/1 172 of cells
Layer | Vi =T 6
2000 011 01 11 Vs = Vo 6
Layer2 @ @ Vi —>Va 5

1/0 1/0 0/1 0/1 1/0

L3 (1)
(a)

time slots

1 2 3 4 5 6 7 8 9 10
€73 | €31 | €lg | €2 | €26 | €6,10

€116 | €62 €¢ | €gl | €14

channels

€83 | €31 | Clg | €g2 | €25 | €59

AL~

(b)

Fig. 1. (a) An IWN topology with 12 nodes and 3 layers. There are 3 tasks in
this network. The number of cells required by each uplink and downlink are
shown in the left and right of the slash, respectively. (b) An example schedule
accommodates the task set in this network.

validate HARP’s correctness and effectiveness through
both testbed experiments and simulation studies.

II. NETWORK MODEL AND PROBLEM DESCRIPTION

In this section, we present the IWN model and describe the
problem to be studied in this work.

A. Network Model

We adopt a typical multi-channel multi-hop IWN model, in
which a set of sensors and actuators are wirelessly connected
to a gateway either directly or through one or multiple relay
nodes. Each node in the IWN is equipped with a single omni-
directional antenna operating in the half-duplex mode. To
simplify the HARP design, we model the network topology
as a tree structure which is commonly adopted in represen-
tative IWNs such as 6TiSCH and ZigBee [15]. We denote
a network tree topology as G = (V,E), where the node
set V.= {{V1,V5,---,},Vg} correspond to sensor, actuator
and relay nodes, and the root node V, represents the gateway.
Given the tree topology, each node only has one parent node
but can have multiple child nodes. Link e; ; € E represents
the directed wireless communication between nodes V; and
V;, where V; is the sender and V; is the receiver. Each link
is associated with an attribute layer (I) which equals the child
node’s hop count to the gateway.

A subtree with V; as the root node is denoted by Gy,. If
Gy, C Gy,, we say Gy, is a subtree of Gy,. If V; is a
child node of Vj;, we say Gv; is a direct subtree of Gy,. The
links connecting V; and its children all have the same layer
value, thus we use [(V;) to denote their layers. We define the
layer of subtree Gy;, denoted by {(Gy;), as the largest layer
value among all the links in Gy;,. Fig. 1(a) depicts an example
12-node IWN with the layer values for different links.

In our network model, we employ a multi-channel Time
Division Multiple Access (TDMA) based data link layer
which is the most common setting for IWNs (e.g., Wire-
lessHART [16], ISA100.11a [17] and 6TiSCH), and adopts

1030

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on January 14,2023 at 20:19:08 UTC from IEEE Xplore. Restrictions apply.

a link-based scheduler to allocate the network resource to
individual links. We use the concept of cell to represent the
basic unit of the network resource that can be allocated to
the links and a cell is denoted by a tuple (slot, channel).
Consecutive time slots are grouped into slotframes and the
assignment of cells to individual links in a slotframe defines
the network schedule which repeats every slotframe during the
network operation.

We use the concept of fask to represent the data flow from
sensor(s) to actuator(s). Following real-life IWN settings, we
assume that each task periodically samples the designated
physical entity and sends the sensor readings along a pre-
defined uplink routing path to the gateway for data collection
and control decision-making. The generated control signals at
the gateway are then forwarded along a pre-defined downlink
routing path to an actuator for execution. The information
transmitted for one instance of a task is referred to as a packet.

In link-based scheduling, each cell is allocated to a link by
specifying the sender and receiver to transmit a packet through
the link. Task-level resource requirements can be abstracted
to link-level cell requirements by an existing method (e.g.,
[4], [18]). Thus, in this work we assume that the number of
cells required by each link e; ;, denoted by r(e; ;), is provided
based on the tasks’ routing paths to satisfy their requirements,
and each node only maintains the cell requirements for the
links passing through it. Fig. 1(b) depicts an example schedule
constructed based on an example task set of three tasks. The
corresponding link-level cell requirements of the tasks are
shown on the right side of Fig. 1(a).

B. Problem Description

The objective of this work is to design a network resource
management framework for IWNs to handle network dynamics
in an efficient and effective manner. The goal of the manage-
ment framework is to determine the cells usable by each link
e;,; for data transmission, i.e. the network schedule. To avoid
collision, a cell should not be assigned to more than one link
and the total number of cells allocated to link should be no
smaller than the link’s required number of cells.

To achieve efficiency, the network management framework
should be able to respond to the network dynamics in a timely
manner without introducing unnecessary communication over-
head. As an effective framework, it should guarantee that
no schedule collision occurs among all the links even in the
process of handling network changes. As we have discussed
earlier, centralized management approaches cannot offer the
desired efficiency while fully decentralized management ap-
proaches often lead to ineffective assignments since it cannot
avoid transmission collisions due to the lack of the global
information at individual nodes. In the following sections, we
describe the design of our resource management framework
(HARP) in detail and show how it can satisfy the efficiency
and effectiveness requirements.

1031

III. OVERVIEW OF THE HARP FRAMEWORK

We first present an overview of the HARP framework for
managing network resources in IWNs, and adapt to network
dynamics during runtime. The key idea of HARP is to divide a
slotframe into a hierarchy of partitions and assign the partitions
to specific links of each subtree based on those links’ layer
information. Each partition is associated with a node index and
layer index. Such a layered partition design, i.e., allocating one
partition for a layer of a subtree, improves the efficiency of
cell usage and we will describe the details using a motivational
example in the next section.

The above hierarchical, subtree-based resource management
has two advantages. First, it can achieve network resource
isolation for those links in different subtrees and thus avoid
transmission collisions. Second, network dynamics can be
handled by only adjusting the cell assignment for links in
the relevant subtree instead of the entire network, which
significantly reduces the network management overhead.

Fig. 2 describes the execution model of HARP. Overall,
HARP consists of three phases after the network bootstrap-
ping. In the static partition allocation phase, partitions are first
created for individual subtrees and then cells are allocated for
individual links in the corresponding partitions based on their
resource requirements. Specifically, the resource requirements
of all the links are abstracted and composed in a bottom-up
fashion from the subtrees at the lowest level of the network to
the gateway. Based on those requirements, resource partitions
are then allocated in a top-down fashion from the gateway to
the root node of each subtree. After that, in the distributed
scheduling phase, the root node of each subtree constructs
the communication schedule (i.e., cell assignment) within its
allocated resource partition for all the links between itself
and its child nodes. During the network operation, upon
any traffic change being requested by a certain node V;,
the dynamic partition adjustment phase is triggered. If idle
cells are available within the partition allocated to the subtree
with V; as the root, V; directly assigns more cells within the
partition to accommodate the increased traffic. Otherwise, a
partition adjustment request will be sent to the parent of V;.
This process repeats until the partition of a node is able to
satisfy the traffic change request. Then the updated partition
information is propagated downward to V.

The details of the three phases of HARP will be presented
in the next two sections.

IV. STATIC PARTITION ALLOCATION

In this section, we describe the static partition allocation
phase of HARP. To achieve efficient resource allocation, we
need to first determine how to efficiently capture the resource
requirement of each subtree. Note that, in the following we
do not distinguish between uplink and downlink since they
are handled in the same way in HARP.

A. Resource Requirement Representation Design

The representation of a subtree’s resource requirement
should possess the following two desirable properties. First,

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on January 14,2023 at 20:19:08 UTC from IEEE Xplore. Restrictions apply.

Network Bootstraping
Bottom-up Resource
v Component Composition .
-4
— 1 ,
) A |
_______ @D
— o : G ¢ C |
N A 7
@?@ﬁw w]
3 1
A Ic N LS
V-V ——1 iV~ = AN !
@ A g '
Q\ 1 / \ l N !
= — / \ ' . 1
) / \ \ \ 1
<4 5 II |‘ N I
5 o = ! 1 LY
DN D--- D i !
}*{ \‘D \(5/ \ & N Cis Cy3 Cia (&%) I
) : |
=) oo~ 7 |
_ | N
@ - ; N |
ML i . AN |
1 1 1
: |
1 1 1
1 :
1
1
. 1
Vig<Vi) :

Static Partition Allocation

Distributed
Scheduling

Dynamic Partition
Adjustment
Top-down Resource
Patition Allocation

P |L’ P,

82

Py3
[EEE) [(Fa]
slotframe P2 ;)2
1 22
L
Py
P :: ::
— slotframe
[
C | P
[1]
7 (] (B
slotframe ‘m
(©) (d) (©

Fig. 2. Overview of the HARP execution model. (a) Network topology with all the subtrees highlighted in different colors. (b) Resource components generated
for different subtrees. (c) Partitions allocated to subtrees. (d) Distributed cell assignments determined by the root node of all the subtrees. (¢) An example

dynamic partition adjustment.

it should capture the requirements of all the links in the
subtree correctly. Although the resource requirement (i.e.,
the number of cells) needed by each link is assumed to be
given, we cannot simply accumulate the number of cells. This
is because each node operates in a half-duplex mode and
links sharing a common node cannot be assigned to cells
within a same time slot. Thus, the resource requirement of
a subtree needs to not only specify the number of cells but
also the number of time slots and channels satisfying the
half-duplex constraint. Second, the data structure should be
compact to reduce the storage and communication overhead,
given that this information needs to be propagated to the
gateway through multiple nodes at multiple layers. Keeping
these two properties in mind, we use number of time slots and
number of channels to capture the resource requirement of a
subtree. Pictorially this can be represented as a rectangular
resource block, where the length of the rectangle indicates the
number of time slots and the height of the rectangle indicates
the number of channels.

According to the analysis in [19], a routing-path compliant
schedule (i.e., the sequence of the cells allocated to the links
of a packet at different layers follows the packet’s routing
path) can significantly reduce the end-to-end latency of the
packet. Therefore, the cells allocated to all the links within a
subtree in one rectangular resource block should follow the
order of the packet’s routing path. In this case, using one
rectangle block to abstract the resource requirements of all the
links within a subtree can cause resource waste and reduce the
cell usage. For example, consider two subtrees Gy, and Gy,
with V; and V; as root nodes, respectively, and each subtree
contains links located at two layers. As shown in Fig. 3(a),
resource allocated to the links at different layers is separated
by a dashed line in the corresponding rectangular resource
block for Gy, and Gy,. We can observe that the resource in
the white area within each rectangle is wasted. To improve

Subtree Gy, Layer I(Gy,v,)+1 Layer I(Gyw,)

ol

(b) One interface for each
layer of a subtree.

Subtree Gy,

Wi

(a) One interface for the
whole subtree.

Fig. 3. An motivating example for layered interface design.

the cell usage, we propose a layered resource interface design
to capture the resource requirement of a subtree at each layer
separately (as shown in Fig. 3(b)). Then, the resource interface
of a subtree contains a set of rectangular resource blocks each
of which captures the resource requirements of links at a
particular layer.

Below, we give the definitions of resource component of
a subtree at a particular layer (i.e., the rectangular resource
block) and resource interface of a subtree representing a
collection of resource components.

Definition 1 (Resource Component). The resource component
of subtree Gy, at layer I, denoted as C;; = [ng;,ng],
specifies the set of consecutive cells required by all the links
at layer 1 in Gy;. n;, and ni, represent the number of cells
in the time and channel dimensions, respectively.

Definition 2 (Resource Interface). The resource interface of
subtree Gy, denoted as I; = {C; |l = (V;),..l(Gv,)}, is
the collection of resource components of G, at all the layers.

With the above definitions, the static partition allocation
phase of HARP consists of two major operations. (1) Resource
interface generation: Here starting from the non-leaf nodes
that are farthest from the gateway, each non-leaf node V;
generates the resource interface of subtree G,. Then resource
interface I; is sent from V; to its parent node. This process

1032

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on January 14,2023 at 20:19:08 UTC from IEEE Xplore. Restrictions apply.

repeats until root node Vj receives the resource interfaces of
all its child nodes after which V, generates its own resource
interface I,. (2) Partition allocation: Here V, determines the
partitions (i.e., the placement of each resource component in I,
within the slotframe) to satisfy each resource component in I,
and propagates the partition information to all its child nodes.
Upon receiving the partition allocation from the parent node,
each node V; allocates partitions for its subtrees at different
layers within the partitions received from V;’s parent.

B. Generating Resource Interface

Resource interface generation is accomplished in the
bottom-up fashion. According to Definition 1&2, in order to
generate resource interface I;, each non-leaf node V; needs
to derive the resource components of subtree Gy, at layers
Il = 1(V;),..1(Gy,), ie. computing C;;,l € {{(V;),l(V;) +
1,...,1(Gv;)}. There are two cases for the computation of C; ;.

Case 1: Computation of C; ;(v,). C; (v, specifies the cells
required by all the links e;, ;, €4, .4, ..., €, ,; connecting V; and
its k child nodes V;,,V;,, ..., V;, to satisfy their requirements,
ie., 7(€,),..., (€4 i) Since links sharing a common node
cannot be assigned to cells within a same time slot according
to the constraint posted by the half-duplex mode of the radio,
we can directly compute nf,l(m) as the accumulation of the

number of cells required by all the links (i.e., an:l r(ei,, i)
and let n;) = 1. That is, Cj(v;) = [an:l r(ei,, i), 1].

Case 2: Computation of C;; where I(V;) +1 < | <
[(Gv;). Since V; does not directly have the cell requirement
information of links in its subtrees, V; needs to generate
the resource component C;; by composing the resource
interfaces of V;’s direct subtrees. Specifically, suppose V;
receives resource components Cj,, Cj,, ..., C;, from its child
nodes V;,,Vi,, ..., Vi,. Each resource components C; (m €
{1,...,k}) specifies the resource components of Gy, —at
layers I(Vi)+1,1(V;)+2,..1(Gy;,). Then V; needs to compose
k resource components Cj, ;,Cs, i, ..., Cs, 1 into one C;; for
each layer [€ {{(V}) + 1,...,l(Gv,)}. Below, we describe in
detail how V; performs the resource component composition.

Given that the total number of cells in a slotframe is limited,
it is desirable to generate the resource component as compact
as possible, i.e., minimizing the number of slots n;, and
the number of channels n{; of C;,;. For the followinlg two
reasons, we give a higher pﬁority to minimizing the number
of slots than the number of channels. First, reducing the
number of time slots leads to shorter packet transmission
latency. Second, time slots are more valuable than channels in
the half-duplex mode because links sharing a common node
cannot be assigned to cells within a same time slot. Therefore,
we formulate the following resource component composition
problem.

Problem 1 (Resource Component Composition). Given k
resource components C;, 1, Cs, 1, ..., Cs, 1 at layer l, determine
a composite resource component C;; = [n?,,n¢,| such that

(i) C;, contain all the k components, i.e., C;; 2 U’;’n:lC’i

mb

1033

Ci Ciy
Ci,
Ci_;,l CiJJ
Cil Cis.l
[(<]
Input Output
Fig. 4. An example resource component composition. Each light blue

rectangle represents a resource component of subtree Gy, = at layer [.
J

(i) ng; is minimized, and (iii) ng ; is minimized among all the
components with the minimum n; ;.
,

Problem 1 can be mapped to a two-dimensional (2D) Strip
Packing Problem (SPP) [20] as shown in Fig 4. SPP is a
2D geometric minimization problem. Specifically, given a set
of axis-aligned rectangles and a strip with fixed width and
infinite height, the objective is to determine an overlapping-
free packing of the rectangles into the strip with the minimum
height. To map Problem 1 to SPP, each resource component
C;,.. is mapped to a rectangle in SPP and the composite
component C;; is mapped to the strip. However, Problem 1
and SPP have a key difference. That is, the former aims
to minimize both the number of slots (rectangle width) and
the number of channels (rectangle height), while SPP only
minimizes the height of the strip. Thus, directly applying an
algorithm for solving SPP can cause the optimization goals
(either the number of slots or channels) not being achieved.

We tackle this issue by performing the mapping twice.
Since the total number of channels M in IWNs is fixed (e.g.,
typically 16 channels for IEEE 802.15.4 in the 2.4GHz Band),
we first map M channels and the number of slots to the width
and the height of the strip, respectively. By employing an
SPP solver, a composite component with minimum number
of slots n™™ is achieved. This generated component may use
more channels than necessary since the width of the strip is
not minimized. Therefore, we perform the second mapping
where n™" time slots and the number of channels are mapped
to the width and the height of the strip, respectively. After
solving this problem, the minimized strip is returned as the
composite component C;;. Note that the generated packing
of the rectangles which forms the layout of all the resource
components is stored, and will be used by the partition
allocation operation discussed in the next subsection.

SPP is a well-known NP-hard problem, and a large number
of exact and approximation solvers exist in the literature
(e.g. [21]-[23]). Considering that for our problem such a
solver needs to be implemented in resource-constrained [IWNs
devices (e.g., TI CC2650), we opt to deploy an efficient
heuristic. Among the various constructive heuristic candidates,
the best-fit skyline based heuristic [24] is one of the state-of-
the-art algorithms and achieves good balance between solution
quality and efficiency (with time complexity of O(nlogn)
where n is the number of rectangles). Alg. 1 summarizes the
algorithm for solving Problem 1.

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on January 14,2023 at 20:19:08 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Resource Component Composition

Input: Components C;, ;,C;, 1, ..., C;, 1, and M channels.

Output: Composite component C;; and composition lay-

out.
1:

Set M channels as the fixed width, and let the number of time

slots be the height in SPP;

Run the best-fit skyline heuristic and generate a component C7,

with nZ”” slots and n°-°'°* channels;

: Set n"*™ as the fixed width, and let the number of channels be
the height in SPP;

: Run the best-fit skyline heuristic and generate a component C} ;
with n™" slots and n®™";

: return C;; and the composition layout;

2:

C. Partition Allocation

Given the resource interfaces generated at each non-leaf
node in the IWN as described above, partition allocation
determines the locations of these interfaces in the slotframe.
We use P;; = [C;.t;, ¢i,] to denote the partition allocated
to subtree Gy, at layer [to satisfy its resource component
Ci,1, where t; ; and c; ; represent the starting time slot and the
lowest channel index of component C;; in the slotframe.

In HARP, partition allocation is done in the top-down
fashion starting from the root node V,. Upon generating the
resource components C; 1, C; y(v;) 41, "'7Ci,l(GVi) of subtrees
at all the corresponding layers, each node V; sends the
collected resource interface I; to its parent node to request
resource allocation. After the root node (i.e., gateway V)
generates the resource interface I, including the components
Cgu1,l € {1,2,...,1(Gy,)}, Vg performs the partition alloca-
tion to satisfy each component Cy ;.

To ensure higher quality of service to the application tasks,
a key objective in partition allocation is to place the interfaces
such that they lead to low packet transmission latency. As
stated in Sec. IV-A, the partition allocation at V; follows the
compliant schedule property introduced in [19]. This property
requires that cells are allocated to links following the sequence
of a task’s routing path. Specifically, the slotframe is divided
into two super-partitions in the time dimension. The left and
right super-partitions are allocated to the interfaces for uplinks
and downlinks, respectively. Within the uplink (downlink)
super-partition, any interface with a larger (smaller) layer value
is placed before interfaces with smaller (larger) layer values.
(see Fig. 2(c)).

According to the component composition layout of each
Cy, generated by Alg. 1, V, can readily determine the
partitions for all its direct subtrees at each layer [(i.e.,
Py 1, Py, 1, ...) within partition Py ;. (See the upper sub-figure
in Fig. 2(c) for an example partition allocation at V;.) Then, V,
propagates the partitions information for all its direct subtrees
to Vy’s child nodes. When each node V; receives the partitions
from its parent, V; repeats the partition allocation process and
propagates the partitions to all its children. See the middle and
bottom sub-figures in Fig. 2(c) for example partition allocation
at subtree root nodes.

1034

From Fig. 2(c), we can observe that after performing
partition allocation, HARP achieves resource isolation between
links that have different parent nodes. For example, links
es;1 and ey are assigned to cells in partition P; o and
P 3, respectively. Links e7 3 and eg 5 are assigned to cells
in partition P33 and Ps 3, respectively. Generally, for any
two links at layer [; and [y, the assigned cells are within
partition P ;, and P, ;,, so they are isolated from one another.
Furthermore, for any two links in different subtrees at a same
layer, the assigned cells are located in the partitions allocated
to different subtrees.

D. Distributed Schedule Generation

The static partition allocation phase discussed above de-
termines the actual cells usable by each node. In the dis-
tributed scheduling phase, each node needs to handle traffic
initiated by all its connected links in a distributed manner
and the cells at each node needs to be further assigned to
the links. To accomplish this, after receiving partition P; ;(v;)
from the parent, each node V; performs schedule generation
to determine the cell assignment C(4,j) for each link e; ;
connecting V; and its children at layer [(V;) within the cells
in le(Vl) = [[nf7l(vi), 1]7ti,l(Vi)7Ci,l(Vi)]- Based on the task
set requirement, any scheduling policy can be deployed at V;
to determine the particular schedule. In this work we apply
Rate Monotonic (RM) [25], a well-known real-time scheduler,
where the parent node selects cells from P; ;v according to
the tasks’ specifications and informs the cell assignment to
corresponding child nodes. Since nj;) > an:l (€ i)
a feasible schedule can be constructed to satisfy the cell
requirements of all the links e; , ;(m € {1,2,...,k}).

V. DYNAMIC PARTITION ADJUSTMENT

Network dynamics can vary due to various online events
in harsh and noisy industrial environments, e.g., topology
changes and traffic changes. From the network resource
management’s viewpoint, any type of changes may cause
fluctuation in the cell requirements of certain links. If a node
leaves the network or a task decreases the sampling rate, the
number of cells required by some link may decrease. In this
case, the parent node of the affected link readily releases
the corresponding cells in the slotframe and the partitions
of the subtree do not need to be adjusted. Therefore, in the
following we focus on the network change scenario where cell
requirements of certain links increase.

As discussed in Sec. IV-C, since HARP achieves resource
isolation between links connecting to different parents, nodes
are able to perform partition adjustment in a distributed man-
ner. Thus we only need to consider how to perform partition
adjustment at the parent node of a link requesting an increased
number of cells. There are two cases.

Case 1: Schedule update. Parent node V, determines
that the increased requirement can be satisfied in the current
partition P ;(v,). That is, the total number of cells required
by all the links connecting V; and its child nodes after the
network change is not larger than ”271(\/(,)- Fig. 5(a) is an

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on January 14,2023 at 20:19:08 UTC from IEEE Xplore. Restrictions apply.

l . Pq,[Pq,[Pp‘, Ppp,l
& O
. . . Fo l Pia (o I Po | Poi| v

(a) (b) (c)

Fig. 5. Examples of partition adjustment under HARP: (a) local schedule
adjustment; (b) partition adjustment finished within one layer; (c) partition
adjustment crossed multiple layers.

example of this case. For this case, V;, only needs to update the
schedule within partition P, ;(v,) and propagate the updates to
the affected children.

Case 2: Partition update. P ;) cannot satisfy the in-
creased cell requirement. That is, the total number of cells
required by all the links connecting V, and its child nodes
after the network change is larger than "Z,l(vq)' Fig. 5(b) and
(c) are examples of this case.

Handling network changes in Case 2 is more complicated
since V, must send its parent, say V,,, a request to increase
partition P, v,y at layer I(V,) (i.e., an increased resource
component Cq,l(Vq)) When V,, receives the request, it checks
if Cyq(v,) can be satisfied within the allocated partition of
subtree Gy, with V), as root at layer I(V,). If so, V, accom-
modates the updated C, ;(v,) by adjusting the partitions of
subtrees with all V},’s children (i.e., V;’s siblings) as root nodes
and sends the updated partition information to all the affected
children. Otherwise, a partition update request is sent from
V}, to its parent, V,,, following a similar process. Below, we
describe i) how to check the feasibility of satisfying C ;(v,)
and ii) how to perform partition adjustment to satisfy Cy (v,)-

A. Feasibility Test

Feasibility test is for a node to check whether it can satisfy
within its own partition the increased resource requirement
from one of its children. Formally, we have the following.

Problem 2 (Feasibility Test). Given the updated component
Cq,i(v,)> the components Cy, (v, (m € {1,2,..., k, q}) where
Vo, is a sibling of V,, and the current partition P, v,
determine whether P, (v, can satisfy all the components.

Problem 2 can be mapped to a classical Rectangle Packing
Problem (RPP) [26] where the objective is to determine
whether a given set of small rectangles can be packed inside
a given large rectangle without any overlap. The mapping
is straightforward where the components and the partition
Py, i(v,) are mapped to the small rectangles and the large
rectangle, respectively. Then the best-fit skyline heuristic [24]
can be applied to solve Problem 2 since both strip packing and
rectangle packing are 2-dimensional geometric minimization
problems sharing some similarities.

B. Cost-aware Partition Adjustment

When node V,, has to adjust its partition layout in the
slotframe to accommodate a child’s increased resource re-
quirement, V,, must send messages to all the children whose

1035

P, Pl P, j2 P, pl
I Py l I Py l [Py l [Py l Py P
'
I Py, l l Py] l Py I

(a) (W] (©)

Fig. 6. Examples of partition adjustment (a) Original partition layout. To
accommodate an increased partition P, 4 ;» (b) shows an adjusted partition
layout with three updated partitions (P4 1» P51 and Pg, l), and (c) shows an
adjust partition layer with only one updated partition (P})

partitions are updated. Furthermore, when a child node re-
ceives the updated partition, it needs to propagate the schedule
updates messages to all the descendants. This is because that
when a particular partition P;; is changed in the slotframe,
all the partitions inside P;; are also changed. Propagating
all the adjusted partitions can be quite costly. To reduce
this communication overhead, i.e. the number of propagation
messages, we formulate the following partition adjustment
problem to minimize the number of adjusted partitions.

Problem 3 (Partition Adjustment). Given n resource compo-
nents C; (i = 1..n) at layer |, the corresponding partitions
P;;, the composite component Cy,; and the corresponding
partition P, ;, assume that the j-th component C;;(j < n)
increases to C” in either time slot or channel or both dimen-
sions. Determme an updated partition P’ | that satisfies C’
together with the unchanged component Cp,l and mmzmzzes
the number of adjusted partitions P; (i = 1..n).

Fig. 6 gives an example of the partition adjustment. Fig. 6(a)
shows the original layout of partition F,;. Suppose that
component Cj; increases in the time dimension and an
updated partition P, 1,1 1s needed to accommodate the increased
component C’jl .- F1g 6(b) and Fig. 6(c) illustrates two feasible
partitions which both satisfy all the components. However, the
partition in Fig. 6(c) is apparently a better solution since all
other partitions P; ;(¢ = 1..n,i # j) are not changed. While
two additional partitions P5; and Ps; are moved in Fig. 6(b)
which incurs higher communication overhead.

We design an efficient heuristic to solve Problem 3. The
heuristic is built on an intuitive observation that it tends to
be easier for a consecutive area of idle cells to accommodate
a set of partitions. Following this observation, the heuristic
performs adjustment starting from the neighboring partitions
of P’ then moving on to the more distant partitions.

Alg 2 summarizes the partition adjustment algorithm for
Problem 3. Specifically, we first replace C;; with Cé’l and
check whether the updated composite component can still fit
in the given partition P;; without adjusting any other partition
P;i(i = 1.n,i # j) (Line 1-4). If not, a randomly selected
neighboring partition of P]’ ; 1s removed from partition P, ;
and we check whether P’ , and the removed nelghbormg
partition can be accomrnodated by using all idle rectangular
areas in P,; (Line 11, 12, 4). If yes, the new partition
layout with only two adjusted partitions is returned. If not,

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on January 14,2023 at 20:19:08 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2 Partition Adjustment Heuristic

Input: Components C;;(¢ = 1,...,n), partitions P;;, the
composite C),; and partition P, ;, the increased component
¢l <n).
Output: Updated partition P ;.
.S {C]{’l};
: Remove P;; from P, ;;
while True do
if All the components in S can be packed in P, ; then
P | < updated P, ;
return P} ;;
else
if P,; is empty then
Break;
end if
S <+ SU{Cy,} where P, is a partition closest to Pj;
in Pp;
Remove P,; from P, ;
end if
: end while
: Run the best-fit skyline heuristic for all the partitions;
: return P, ;;

this process repeats until all the partitions P;;(i = 1..n) are
removed. Then, packing all the partitions into P,; becomes
the RPP discussed in Sec. V-A and the best-fit skyline heuristic
can be applied to obtain the updated partition layout (Line 15).

VI. TESTBED IMPLEMENTATION AND VALIDATION

In this section, we present the implementation detail of the
HARP framework on our 6TiSCH testbed and validate the
functions of HARP in both static partition allocation phase
and dynamic partition adjustment phase.

A. Testbed Implementation and Experimental Setup

We implement HARP on a 5-hop 16-channel 6TiSCH
network testbed with 50 devices. 6TiSCH is a representative
multi-channel multi-hop IWN technology. It integrates the
IEEE 802.15.4e data link layer with an IP-enabled upper
stack (using 6LowPAN) to achieve both deterministic real-time
performance with ultra-low power consumption and seam-
less integration with Internet services. The network layer of
6TiSCH uses RPL routing protocol [27] to form tree topology.

We use TI CC2650 SensorTag as the device nodes and a
RaspberryPi 4B device attached with a TI CC2652 board to
serve as the gateway. The 6TiSCH full stack is implemented
on TI-RTOS [28] and deployed on both device nodes and the
gateway. Fig. 7(a) shows the hardware used in our testbed
and Fig. 7(b) gives a snapshot of the testbed deployment in
labs and hallway. Fig. 7(c) depicts the logical topology of our
network which is subject to change in our experiments. We set
the slotframe length to 199 in the experiments and enable all
the 16 IEEE 802.15.4e channels for communications. Fig. 7(d)
shows the network schedule and partitioned slotframe.

When the network bootstraps, the slotframe is divided into
two sub-frames: the Data sub-frame and the Management sub-
frame. The Data sub-frame is the portion of the slotframe

1036

TABLE I
COAP HANDLERS FOR HARP MESSAGES

URI | Method Param Description
POST Resource interface Receive child’s interface
intf PUT Updated interface | Receive child’s updated interface
POST . P'artmons . Receive allocated partitions
part at all la)fgrs
PUT New partition Receive updated partition
at one layer

to be hierarchically partitioned and scheduled for real-time
tasks deployed in the network. The Management sub-frame is
the remaining portion of the slotframe used for scheduling
network management traffic (e.g., Enhanced Beacon, RPL
control messages, keep-alive packets). When a node joins the
network, it will be first scheduled with two collision-free cells
(one for uplink and the other for downlink) in the Management
sub-frame. HARP messages are also transmitted in those cells.

Since HARP is an application layer protocol, we implement
HARP messages and handlers on top of CoAP [29], which is a
specialized HTTP-like web transfer protocol for resource con-
strained devices and used as the application layer of 6TiSCH.
The defined CoAP handlers are summarized in Table I.

Fig. 8 depicts the flowchart of the HARP partition allocation
and adjustment process. In the static partition allocation phase,
the child nodes report their interfaces to their corresponding
parent nodes by sending POST-intf messages. Once the parent
node receives the interface information from all its child nodes,
for each components in the interfaces, it runs the Resource
Component Composition algorithm and reports the composite
component to its own parent. This process repeats in a bottom-
up fashion until reaches the gateway. Based on the received
interface information from its child nodes, the gateway al-
locates partitions from the Data sub-frame and disseminates
the partition information to its child nodes through the POST-
part messages. Each child node stores the partition information
of its own layer and further allocates partitions for its child
nodes. Finally each individual non-leaf node is allocated with
a dedicated partition, and any distributed scheduler can be
employed to schedule the cells in this partition to satisfy the
resource requirement without causing schedule collision. In the
dynamic partition adjustment phase, a node that requires extra
resources will send a partition adjustment request through a
PUT-intf message to its parent node by specifying the new
resource interface. The parent node then responds with the
new partition by sending back a PUT-part message if it can
satisfy the new request. Otherwise, it will forward the request
to its parent in an iterative fashion until the request is satisfied.

To validate the functional correctness of HARP, we perform
experiments in both static and dynamic network settings.

B. Functional Validation on Static Partition Allocation

In the first set of experiments, we validate the functions of
HARP to compose the resource interfaces in a hierarchical
fashion and create dedicated partitions for individual subtrees
to ensure deterministic communications.

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on January 14,2023 at 20:19:08 UTC from IEEE Xplore. Restrictions apply.

Slot Offset

95 10

1
- ? | u
g T
£, B
3 e l'.
Eﬂ .'.'- L
51 i --.f
:j ""aam

® e 6 © o ® ® o

® 0 6 ® ©® @ ® ® 6 o @

0 68 @ 00 & © 9 0 @ ©8® @

® ® 60 00 @ ® @

o

@B Beacon @ Uplink @B Downlink
0 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195
i

®@® ®

n -.':-1

i b il
i i

SHARED DATA-UPLINK

MANAGEMENT

d

DATA-DOWNLINK

Fig. 7. (a) Hardware for the device nodes (CC2650) and gateway (RPi4B+CC2652); (b) an overview of the testbed deployed in the labs and hallways of an
academic building; (c) the logical network topology with 5 layers; (d) an example slotframe with Data sub-frame and Management sub-frame.

Gateway

[Child#l] {Child#Z] [Node } [Parent]

POST-intf

POST-intf

POST-intf

POST-intf

POST-part

POST-part

POST-part
POST-part

_____________________ 12}

PUT-part
PUT-part

___________________________ ®

PUT-intf
PUT-part

PUT-part
PUT-part

_eeeesmeesee | DU DESEREEN ©

Fig. 8. HARP partition allocation and adjustment flowchart: (a) partition al-
location; (b) one-hop partition adjustment; (c) multi-hop partition adjustment.

In the experiments, we configure the 50 device nodes into
a 5-hop tree topology as shown in Fig. 7(c). We deploy an
end-to-end (e2e) task with a period of 2 seconds on each
individual node in the network. Each task transmits packets
periodically to the gateway which echoes the packets back to
the source device through the same routing path. Since the
packet generation rates for all the device nodes are the same,
the data rates of both uplink and downlink of individual nodes
equal to the size of their subtrees, due to the fact that the parent
nodes need to forward packets on behalf of their child nodes.

Under this experimental setting, the created partitions for
individual subtrees are depicted in Fig. 7(d). The results are
identical with those generated through simulation. This vali-
dates the correctness of HARP to compose resource interfaces
and create partitions. We let the experiment run for 30 minutes,
and collect the timing information of end-to-end packets from
all the device nodes. The average end-to-end latency of each
node are shown in Fig. 9 and the nodes are sorted according
to the ascending order of their layers. From the results, we can

1037

E2E Latency (s)
2.4+

224

fOOOOoo

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51
Node ID

Fig. 9. End-to-end latency for all 50 nodes in the static network setup.

observe that resources are dedicated for individual links based
on their requirements and the measured end-to-end latency
are almost bounded in one slotframe (1.99 seconds) with
minimum queuing delay. However, it is worth noting that in
the experiments we experienced some packet loss due to the
environmental interference. This affects the latency for those
nodes that are multiple hops away from the gateway.

C. Functional Validation on Dynamic Partition Adjustment

In the second set of experiments, we validate the functions
of HARP to perform partition adjustment in the presence of
traffic changes. For this aim, during the network operation,
we increase the data rates (in terms of packets per slotframe)
of a selected set of nodes at different layers and monitor
how their end-to-end Latency vary and what the associated
communication overhead are. Fig. 10 summarizes the results.

Taking Node 15 as an exmaple, when the network starts,
its data rate is first set at 1 packet/slotframe. This is the same
for all the nodes in the network. The static partition allocation
phase guarantees that Node 15’s bandwidth requirement can
be satisfied. There is no queuing delay and the transmissions
can be finished within 1 slotframe (1.99 seconds). In the
experiment, we increase the data rate of Node 15 to 1.5
packet/slotframe at time 02:25:00. This increases the queuing

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on January 14,2023 at 20:19:08 UTC from IEEE Xplore. Restrictions apply.

Trigger partition and

schedule update Data,Rate

[35

E2E Latency (s)

A
1 \
6 1 — 3
Trigger schedule update { H
® commee- . ! :
: . 1 1 2
4 too00! 1 ooo ao
3 ' + i i
1 : ! [
2 0 0GOOO0OOCOTO0O v X
f f
1 1 H
H H i 1
0. | gy o J | e J 0
R & 9 S o S Py & ®
@ g @ @ @ @ @ @ @ P

Fig. 10. End-to-end latency of Node 15 in the dynamic network setup, with
the data rate increased from 1 packet/slotframe to 3 packets/slotframe.

TABLE II
COMPARISON OF THE PARTITION ADJUSTMENT OVERHEAD FOR A
SELECTED SET OF NODES WITH DIFFERENT LAYERS

Event Nodes | Layers | Msg. | Time(s) | SF
Cs,2: [1,1] — [3,1] 2 1 2 1.59 1
Caa3: [3,1] — [5,1] 2 1 2 1.86 1
C3,0: [7,1] — [10,1] 4 1 4 4.06 3
C10,3:(2,2] — [3,3] 6 2 6 6.13 4
Cyo,5: [1,1] — [1,2] 5 5 8 8.11 5
C30,4:[1,1] — [3,1] 7 3 9 9.89 5

delay on Node 15 and its parent as well, and triggers them
to allocate more cells from the allocated partition to increase
the bandwidth. Since there are two idle cells available in the
allocated partition, this traffic demand change can be resolved
locally. At time 02:25:33, the task rate of Node 15 is further
increased to 3 packets/slotframe. However, this time there is
no idle cells left in the allocated partition. This triggers the
parent node to send a partition adjustment request to its parent
to ask for more resources. After extra resource is granted, it
updates the schedule between itself and Node 15 to meet the
latest traffic requirement. This process takes longer time to
adapt to the second traffic demand change, and thus cause
longer queuing delay and increase the end-to-end latency.

Table. II summarizes the interface update requests made by
other nodes in the experiments, and their associated overheads
in terms of involved nodes and layers, exchanged HARP
messages and consumed time for partition adjustment. Due
to the page limit, the detailed discussion is omitted.

VII. SIMULATION-BASED PERFORMANCE EVALUATION

In this section, we present our simulation studies to evaluate
the performance of HARP on avoiding schedule collisions
and reducing schedule adjustment overhead when compared
to the state-of-the-art distributed schedulers and centralized
scheduler for 6TiSCH networks, respectively.

A. Performance comparison on schedule collision avoidance

In the first set of experiments, we compare HARP with
three distributed schedulers: random scheduler, MSF [10] and
LDSF [30] deployed in 6TiSCH network, to evaluate their
performance on providing collision-free communications. The
random scheduler lets each node randomly select cell(s) in the
slotframe for transmissions, while MSF allows the nodes to
determine cell assignment based on a hash function of unique
device IDs. LDSF divides the slotframes into small blocks

5 0.301 —=— Random
£0.25{ -5~ MSF
£0.20 LDSF
70,15 —A— HARP

e, pany pany
1 2 3 4 5 6 7 8
Data rate

(a) Fixed number of channel, varying data rate

20.6{ —=— Random
€0.5{ B MSF

<04 LDSF
20.3] =& HARP
20. A
90.2
g0.1
2001 & - ~ — — -

16 14 12 10 8 6 4 2

Number of channels
(b) Fixed data rate, varying number of channels

Fig. 11. Comparison of schedule collision avoidance among the random

scheduler, MSF, LDSF and HARP.

and assign blocks to the links based on their layers to reduce
latency, but the cell assignment within each block is random.
We set the slotframe length to 199 time slots and enable all the
16 channels. We randomly generate 100 network topologies
with 5 layers and 50 nodes.

We first compare the average collision probability among
the random scheduler, MSF, LDSF and HARP by varying
the data rates from 1 to 8 packet/slotframe, and the total
number of cells required by all the nodes in a slotframe ranges
from 150 to 700 in this setup. As shown in Fig. 11(a), the
schedule collision probabilities of the random scheduler, MSF
and LDSF increase linearly along with the increase of the data
rates. This is due to the fact that more schedule collisions will
occur when more cells are being assigned in the slotframe. On
the other hand, HARP can always avoid transmission collisions
in regardless of the data rate under these settings.

In the second comparison, we gradually reduce the number
of available channels in the network from 16 to 2 while
fixing the data rate at 3 packet/slotframe for all the nodes. As
shown in Fig. 11(b), along with the decrease of the number of
channels, the collision probabilities of the random scheduler,
MSF and LDSF increase significantly. By contrast, benefiting
from the efficient resource management, HARP is able to avoid
collision when the number of channels is larger than 4. After
that, its collision probability slightly increases but HARP still
dominates the other three methods.

B. Performance comparison on schedule adjustment overhead

In the second set of experiments, we compare the parti-
tion/schedule adjustment overheads between HARP and APaS
[19] which is a centralized scheduler for 6TiSCH networks. In
the experiments, we generate a series of network topologies
with 81 nodes and 10 layers. After the static scheduling
phase in APaS (static partition allocation phase in HARP),
we increase the data rate of each node to trigger dynamic
schedule update and partition adjustment phases in APaS and
HARP, respectively, and measure the total number of packets
incurred to complete the schedule/partition adjustment. Fig. 12
summarizes the results for the nodes at each layer.

1038

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on January 14,2023 at 20:19:08 UTC from IEEE Xplore. Restrictions apply.

w
o

5 o5) ™ APas — B

£, | m-_Hare ~ B

5

=80 0 B B

£ | I |

B s | 0

0
Layers
Fig. 12. Comparison of dynamic schedule/partition adjustment overhead

between APaS and HARP

From the results, we can observe that the incurred adjust-
ment overhead in APaS increases proportionally along with
the increase of the layers. On the other hand, the adjustment
overhead in HARP is relatively more stable. This is because
in APaS, a node requesting for more resources needs to send
the request to the root through multiple hops; the root then
schedules new cells for this node and its parent node as well by
sending back two schedule update messages through multiple
hops as well. Thus for nodes at layer [, the total number of
packets incurred in the dynamic schedule adjustment process
is 3] — 1. On the other hand, the dynamic partition adjustment
request in HARP is first sent to the parent of the requesting
node. Only if the parent does not have sufficient resource to
accommodate the request, the adjustment request is propagated
upwards. Meanwhile, with the help of the partition adjustment
heuristic (Alg. 2), the number of other affected branches
is minimized. For these reasons, only a small portion of
nodes in the network is involved in the partition adjustment
phase, making HARP less sensitive to the size of the network
compared to APaS.

VIII. CONCLUSION AND FUTURE WORK

In this work, we propose HARP, a hierarchical resource
partitioning framework for dynamic resource management in
IWNs. HARP achieves resource isolation between links by
allocating dedicated cells for each link to support collision-
free distributed scheduling. An efficient partition adjustment
method is also proposed to adapt to network changes during
runtime without introducing large communication overhead
and time delay. We implement HARP on a 5-hop 50-node
6TiSCH network and validate its effectiveness through both
simulation and testbed experiments. As future work, we will
extend HARP to support non-tree based network topologies
and real-time tasks with diverse end-to-end deadlines. We will
also extend HARP to support dynamic resource management
among co-existing heterogeneous IWNs.

REFERENCES

[1] W. Shen, T. Zhang, M. Gidlund, and F. Dobslaw, “SAS-TDMA: a source
aware scheduling algorithm for real-time communication in industrial
wireless sensor networks,” Wirel. Netw., 2013.

T. Gong, T. Zhang, X. S. Hu, Q. Deng, M. Lemmon, and S. Han, “Reli-
able dynamic packet scheduling over lossy real-time wireless networks,”
in ECRTS. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.
C. Lu, A. Saifullah, B. Li, M. Sha, H. Gonzalez, D. Gunatilaka, C. Wu,
L. Nie, and Y. Chen, “Real-time wireless sensor-actuator networks for
industrial cyber-physical systems,” Proc. IEEE, vol. 104, no. 5, pp.
1013-1024, 2015.

M. R. Palattella, N. Accettura, M. Dohler, L. A. Grieco, and G. Boggia,
“Traffic aware scheduling algorithm for reliable low-power multi-hop
IEEE 802.15.4e networks,” in PIMRC. 1EEE, 2012, pp. 327-332.

[2]

[3]

[4]

1039

[5]

[10]
[11]

[12]

[13]

[14]

[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
[28]
[29]
[30]

T. Zhang, T. Gong, C. Gu, H. Ji, S. Han, Q. Deng, and X. S. Hu,
“Distributed dynamic packet scheduling for handling disturbances in
real-time wireless networks,” in RTAS. IEEE, 2017, pp. 261-272.

T. Zhang, T. Gong, S. Han, Q. Deng, and X. S. Hu, “Distributed
dynamic packet scheduling framework for handling disturbances in real-
time wireless networks,” IEEE Trans Mob Comput, vol. 18, no. 11, pp.
2502-2517, 2018.

N. Accettura, M. R. Palattella, G. Boggia, L. A. Grieco, and M. Dohler,
“Decentralized traffic aware scheduling for multi-hop low power lossy
networks in the internet of things,” in /4th IEEE Int. Symp. World Wirel.
Mob. Multimed. Netw. WoWMoM. 1EEE, 2013, pp. 1-6.

T. Zhang, T. Gong, Z. Yun, S. Han, Q. Deng, and X. S. Hu, “FD-PaS: A
fully distributed packet scheduling framework for handling disturbances
in real-time wireless networks,” in RTAS. IEEE, 2018, pp. 1-12.

E. Municio, K. Spaey, and S. Latré, “A distributed density optimized
scheduling function for IEEE 802.15. 4e TSCH networks,” ETT, vol. 29,
no. 7, p. 3420, 2018.

“6TiSCH Minimal Scheduling Function
https://datatracker.ietf.org/doc/rfc9033/.

A. J. Fahs, R. Bertolini, O. Alphand, F. Rousseau, K. Altisen, and
S. Devismes, “Collision prevention in distributed 6TiSCH networks,”
in WiMob. 1EEE, 2017, pp. 1-6.

S. Kim, H.-S. Kim, and C. Kim, “ALICE: Autonomous link-based cell
scheduling for TSCH,” in IPSN, 2019, pp. 121-132.

V. P. Modekurthy, A. Saifullah, and S. Madria, “Distributed HART: A
distributed real-time scheduling system for wirelesshart networks,” in
RTAS. IEEE, 2019, pp. 216-227.

D. Dujovne, T. Watteyne, X. Vilajosana, and P. Thubert, “6TiSCH:
deterministic IP-enabled industrial internet (of things),” IEEE Commu-
nications Magazine, vol. 52, no. 12, pp. 3641, 2014.

S. C. Ergen, “ZigBee/IEEE 802.15. 4 Summary,” UC Berkeley, Septem-
ber, vol. 10, no. 17, p. 11, 2004.

J. Song, S. Han, A. Mok, D. Chen, M. Lucas, M. Nixon, and W. Pratt,
“WirelessHART: Applying wireless technology in real-time industrial
process control,” in RTAS. 1EEE, 2008, pp. 377-386.

I. Standard, “Wireless systems for industrial automation: process control
and related applications,” ISA-100.11 a-2009, p. 30, 2009.

P. Djukic and S. Valaee, “Delay aware link scheduling for multi-hop
tdma wireless networks,” IEEE ACM Trans Netw, vol. 17, no. 3, pp.
870-883, 2008.

J. Wang, T. Zhang, D. Shen, X. S. Hu, and S. Han, “APaS: An Adaptive
Partition-based Scheduling Framework for 6TiSCH Networks,” in RTAS.
IEEE, 2021, pp. 320-332.

B. S. Baker, E. G. Coffman, Jr, and R. L. Rivest, “Orthogonal packings
in two dimensions,” SIAM J. Comput., vol. 9, no. 4, pp. 846-855, 1980.
M. Kenmochi, T. Imamichi, K. Nonobe, M. Yagiura, and H. Nagamochi,
“Exact algorithms for the two-dimensional strip packing problem with
and without rotations,” Eur. J. Oper. Res., vol. 198, no. 1, pp. 73-83,
2009.

K. Jansen and M. Rau, “Closing the gap for pseudo-polynomial strip
packing,” arXiv preprint arXiv:1712.04922, 2017.

J. F. Oliveira, A. Neuenfeldt, E. Silva, and M. A. Carravilla, “A survey
on heuristics for the two-dimensional rectangular strip packing problem,”
Pesquisa Operacional, vol. 36, pp. 197-226, 2016.

L. Wei, Q. Hu, S. C. Leung, and N. Zhang, “An improved skyline
based heuristic for the 2D strip packing problem and its efficient
implementation,” Comput Oper Res, vol. 80, pp. 113-127, 2017.

C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,” JACM, vol. 20, no. 1, pp. 46-61,
1973.

Y.-L. Wu, W. Huang, S.-c. Lau, C. Wong, and G. H. Young, “An effective
quasi-human based heuristic for solving the rectangle packing problem,”
Eur. J. Oper. Res., vol. 141, no. 2, pp. 341-358, 2002.

“RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks,”
https://datatracker.ietf.org/doc/html/rfc6550.

(MSF) RFC9033,”

Texas Instruments, TI-RTOS 2.20 User’s Guide, 2016. [Online].
Available: http://www.ti.com/lit/ug/spruhd4m/spruhd4m.pdf
“The Constrained Application Protocol (CoAP) RFC7252,

https://datatracker.ietf.org/doc/html/rfc7252.

V. Kotsiou, G. Z. Papadopoulos, P. Chatzimisios, and F. Theoleyre,
“LDSF: Low-Latency Distributed Scheduling Function for Industrial
Internet of Things,” IEEE Internet Things J., vol. 7, no. 9, pp. 8688—
8699, 2020.

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on January 14,2023 at 20:19:08 UTC from IEEE Xplore. Restrictions apply.

