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Abstract—Industrial wireless networks (IWNs) are being in-
creasingly deployed in the field to serve as the network fabrics for
various industrial Internet-of-Things (IIoT) applications. Given
that IWNs typically operate in noisy and harsh environments,
frequently occurring network dynamics post huge challenges for
IWN resource management especially when the network scales
up. Existing centralized and distributed network management
solutions either suffer from large communication overhead and
time delay, or introduce schedule collisions which unnecessarily
degrade the system performance. To address these problems,
this work proposes a novel HierArchical Resource Partitioning
framework (HARP), to provide dynamic resource management
in IWNs. By hierarchically partitioning and allocating resources
for the links in the network, HARP enables distributed collision-
free resource allocation. HARP enables rapid adjustment of the
partitions in the presence of network dynamics with modest
communication overhead. The effectiveness of HARP is validated
and evaluated through both simulation studies and testbed exper-
iments on a 50-node multi-channel multi-hop 6TiSCH network.

Index Terms—Industrial wireless networks, hierarchical re-
source partitioning and reconfiguration, network dynamics

I. INTRODUCTION

Industrial Internet-of-Things (IIoT) systems are gaining

rapid adoption in process control industries including but not

limited to chemical process control, automotive and aerospace

manufacturing. As a key component of the IIoT network

fabric, Industrial Wireless Networks (IWNs) are typically

deployed in noisy and harsh environments where interference

and disturbance may occur throughout the network lifetime.

Interference can cause the network nodes to change their con-

nected nodes to seek for more reliable links, which changes the

network topology. Unexpected disturbance often requires the

system to either modify existing or activate new network func-

tions to react to unexpected events, leading to traffic changes.

To ensure that packet transmissions meet stringent real-time

requirements in IIoT applications, IWN resource management,

i.e., determining the communication schedule (which packet

transmission should use which time slot and which channel),

is indispensable. The network dynamics discussed above un-

avoidably introduce instability to the system operation and

make an originally feasible communication schedule no longer

∗The first two authors have equal contribution to this work.

acceptable. Thus, it is necessary to reconfigure the communi-

cation schedules to adapt to the updated network topology and

resource requirements in a timely fashion.

IWNs typically adopt centralized network resource manage-

ment where a single node (e.g., gateway) maintains the global

information of the entire network and decides the resource

allocation for all the links. A number of centralized scheduling

approaches for handling network dynamics have been pro-

posed (e.g., [1]–[6]). Under centralized resource management,

when network dynamics happen, traffic change requests are

sent from the affected node(s) to the gateway through pre-

determined routing path(s). The gateway then constructs an

updated communication schedule to achieve an optimal re-

configuration based on the global network information. Upon

receiving the updated configuration information from the gate-

way, each individual node deploys the updated schedule to

accommodate the network traffic change. Centralized network

management, however, suffers from both large communica-

tion overhead and significant time delay, especially when

the network scales up, since multi-hop network management

packets are required to communicate the updated scheduling

information. Frequent traffic and network topology changes in

harsh industrial environment further aggravate this problem

and hinder centralized network resource management from

being applied in practice.

Many research efforts (e.g., [7]–[9]) have been devoted on

designing distributed managements to overcome the afore-

mentioned drawbacks of centralized managements for more

flexible and faster resource allocation and reconfiguration in

the presence of network changes. [7] proposes a distributed

traffic-aware scheduling algorithm for IEEE 802.15.4e net-

works where the traffic requirements of individual nodes

are collected in a distributed fashion in runtime. To reduce

communication overhead and response time, [8] proposes a

distributed dynamic packet scheduling framework, FD-PaS,

for IWNs to handle network disturbances. However, fully

distributed network management faces severe challenges in

avoiding communication schedule conflicts among individual

nodes. This is caused by the fact that each node only maintains

a portion of the entire network information (e.g., link quality,

task specification) and their communication schedules are

constructed in a local fashion.
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Several works in the literature studied the transmission colli-

sion elimination problem in IWNs. The distributed scheduler

MSF [10] defined in the 6TiSCH standard performs sched-

ule reconfiguration once transmission collisions are detected

through monitoring the packet delivery ratio (PDR) of each

cell. [9] proposes to share the schedule information among the

one-hop neighbor nodes in the broadcasting phase to reduce

transmission collisions. [11] relies on the shared slots in the

slotframe to overhear the schedules distributedly generated

by the neighbor nodes in the network bootstrap phase. AL-

ICE [12] is proposed as a hash-based distributed scheduler,

and it allows the sender and receiver nodes to generate a new

schedule in each slotframe. DistributedHART [13] applies the

distributed vertex coloring approach to generate conflict-free

schedules locally based on the interference information stored

by each node. However, all the aforementioned approaches

cannot guarantee collision-free transmissions during the net-

work operation and may introduce unnecessary communica-

tion overheads to generate consistent schedules among dif-

ferent nodes. Achieving collision-free communications among

nodes in the network is vital to guarantee the performance of

IWNs.

From the above discussion, we can observe that neither cen-

tralized nor fully distributed network resource management in

IWNs can handle network changes effectively. To address this

problem, we propose HARP, a novel HierArchical Resource

Partitioning framework for dynamic management of network

resources in IWNs. HARP models the routing topology of

a IWN as a tree structure which is commonly deployed for

industrial control applications1. By hierarchically partitioning

and allocating resource for different subtrees in the network,

HARP provides sufficient and dedicated resource for each link,

and thus provides distributed collision-free resource alloca-

tion. Based on the hierarchical resource management strategy,

HARP can promptly adapt to different traffic scenarios by

adjusting only a limited number of nodes and reconfiguration

messages. The main contributions of this work are as follows:

1) We introduce a novel hierarchical resource partitioning

based resource management framework for IWNs to allo-

cate dedicated resource for each link to support collision-

free distributed scheduling.

2) We design abstraction and composition methods to cap-

ture the resource requirements for IWNs in a hierarchical

fashion. We also design an effective resource negotiation

process to allocate resource partitions based on the pro-

posed resource requirement model.

3) We propose an effective partition adjustment method

to create new or reconfigure existing partitions in the

network to adapt the resource partitions to topology and

traffic changes during runtime.

4) We implement the proposed HARP framework on a 5-

hop 50-node 6TiSCH network [14] (a typical IWN), and

1For non-tree based routing topology, one could decompose the topology
to multiple tree structures and apply HARP in a divide and conquer fashion.
We leave the details of this to future work.

Fig. 1. (a) An IWN topology with 12 nodes and 3 layers. There are 3 tasks in
this network. The number of cells required by each uplink and downlink are
shown in the left and right of the slash, respectively. (b) An example schedule
accommodates the task set in this network.

validate HARP’s correctness and effectiveness through

both testbed experiments and simulation studies.

II. NETWORK MODEL AND PROBLEM DESCRIPTION

In this section, we present the IWN model and describe the

problem to be studied in this work.

A. Network Model

We adopt a typical multi-channel multi-hop IWN model, in

which a set of sensors and actuators are wirelessly connected

to a gateway either directly or through one or multiple relay

nodes. Each node in the IWN is equipped with a single omni-

directional antenna operating in the half-duplex mode. To

simplify the HARP design, we model the network topology

as a tree structure which is commonly adopted in represen-

tative IWNs such as 6TiSCH and ZigBee [15]. We denote

a network tree topology as G = (V,E), where the node

set V = {{V1, V2, · · · , }, Vg} correspond to sensor, actuator

and relay nodes, and the root node Vg represents the gateway.

Given the tree topology, each node only has one parent node

but can have multiple child nodes. Link ei,j ∈ E represents

the directed wireless communication between nodes Vi and

Vj , where Vi is the sender and Vj is the receiver. Each link

is associated with an attribute layer (l) which equals the child

node’s hop count to the gateway.

A subtree with Vi as the root node is denoted by GVi
. If

GVi
⊂ GVj

, we say GVi
is a subtree of GVj

. If Vi is a

child node of Vj , we say GVi is a direct subtree of GVj . The

links connecting Vi and its children all have the same layer

value, thus we use l(Vi) to denote their layers. We define the

layer of subtree GVi
, denoted by l(GVi

), as the largest layer

value among all the links in GVi
. Fig. 1(a) depicts an example

12-node IWN with the layer values for different links.

In our network model, we employ a multi-channel Time

Division Multiple Access (TDMA) based data link layer

which is the most common setting for IWNs (e.g., Wire-

lessHART [16], ISA100.11a [17] and 6TiSCH), and adopts
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a link-based scheduler to allocate the network resource to

individual links. We use the concept of cell to represent the

basic unit of the network resource that can be allocated to

the links and a cell is denoted by a tuple (slot, channel).

Consecutive time slots are grouped into slotframes and the

assignment of cells to individual links in a slotframe defines

the network schedule which repeats every slotframe during the

network operation.

We use the concept of task to represent the data flow from

sensor(s) to actuator(s). Following real-life IWN settings, we

assume that each task periodically samples the designated

physical entity and sends the sensor readings along a pre-

defined uplink routing path to the gateway for data collection

and control decision-making. The generated control signals at

the gateway are then forwarded along a pre-defined downlink

routing path to an actuator for execution. The information

transmitted for one instance of a task is referred to as a packet.

In link-based scheduling, each cell is allocated to a link by

specifying the sender and receiver to transmit a packet through

the link. Task-level resource requirements can be abstracted

to link-level cell requirements by an existing method (e.g.,

[4], [18]). Thus, in this work we assume that the number of

cells required by each link ei,j , denoted by r(ei,j), is provided

based on the tasks’ routing paths to satisfy their requirements,

and each node only maintains the cell requirements for the

links passing through it. Fig. 1(b) depicts an example schedule

constructed based on an example task set of three tasks. The

corresponding link-level cell requirements of the tasks are

shown on the right side of Fig. 1(a).

B. Problem Description

The objective of this work is to design a network resource

management framework for IWNs to handle network dynamics

in an efficient and effective manner. The goal of the manage-

ment framework is to determine the cells usable by each link

ei,j for data transmission, i.e. the network schedule. To avoid

collision, a cell should not be assigned to more than one link

and the total number of cells allocated to link should be no

smaller than the link’s required number of cells.

To achieve efficiency, the network management framework

should be able to respond to the network dynamics in a timely

manner without introducing unnecessary communication over-

head. As an effective framework, it should guarantee that

no schedule collision occurs among all the links even in the

process of handling network changes. As we have discussed

earlier, centralized management approaches cannot offer the

desired efficiency while fully decentralized management ap-

proaches often lead to ineffective assignments since it cannot

avoid transmission collisions due to the lack of the global

information at individual nodes. In the following sections, we

describe the design of our resource management framework

(HARP) in detail and show how it can satisfy the efficiency

and effectiveness requirements.

III. OVERVIEW OF THE HARP FRAMEWORK

We first present an overview of the HARP framework for

managing network resources in IWNs, and adapt to network

dynamics during runtime. The key idea of HARP is to divide a

slotframe into a hierarchy of partitions and assign the partitions

to specific links of each subtree based on those links’ layer

information. Each partition is associated with a node index and

layer index. Such a layered partition design, i.e., allocating one

partition for a layer of a subtree, improves the efficiency of

cell usage and we will describe the details using a motivational

example in the next section.

The above hierarchical, subtree-based resource management

has two advantages. First, it can achieve network resource

isolation for those links in different subtrees and thus avoid

transmission collisions. Second, network dynamics can be

handled by only adjusting the cell assignment for links in

the relevant subtree instead of the entire network, which

significantly reduces the network management overhead.

Fig. 2 describes the execution model of HARP. Overall,

HARP consists of three phases after the network bootstrap-

ping. In the static partition allocation phase, partitions are first

created for individual subtrees and then cells are allocated for

individual links in the corresponding partitions based on their

resource requirements. Specifically, the resource requirements

of all the links are abstracted and composed in a bottom-up

fashion from the subtrees at the lowest level of the network to

the gateway. Based on those requirements, resource partitions

are then allocated in a top-down fashion from the gateway to

the root node of each subtree. After that, in the distributed
scheduling phase, the root node of each subtree constructs

the communication schedule (i.e., cell assignment) within its

allocated resource partition for all the links between itself

and its child nodes. During the network operation, upon

any traffic change being requested by a certain node Vi,

the dynamic partition adjustment phase is triggered. If idle

cells are available within the partition allocated to the subtree

with Vi as the root, Vi directly assigns more cells within the

partition to accommodate the increased traffic. Otherwise, a

partition adjustment request will be sent to the parent of Vi.

This process repeats until the partition of a node is able to

satisfy the traffic change request. Then the updated partition

information is propagated downward to Vi.

The details of the three phases of HARP will be presented

in the next two sections.

IV. STATIC PARTITION ALLOCATION

In this section, we describe the static partition allocation

phase of HARP. To achieve efficient resource allocation, we

need to first determine how to efficiently capture the resource

requirement of each subtree. Note that, in the following we

do not distinguish between uplink and downlink since they

are handled in the same way in HARP.

A. Resource Requirement Representation Design

The representation of a subtree’s resource requirement

should possess the following two desirable properties. First,

1031

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on January 14,2023 at 20:19:08 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 2. Overview of the HARP execution model. (a) Network topology with all the subtrees highlighted in different colors. (b) Resource components generated
for different subtrees. (c) Partitions allocated to subtrees. (d) Distributed cell assignments determined by the root node of all the subtrees. (e) An example
dynamic partition adjustment.

it should capture the requirements of all the links in the

subtree correctly. Although the resource requirement (i.e.,

the number of cells) needed by each link is assumed to be

given, we cannot simply accumulate the number of cells. This

is because each node operates in a half-duplex mode and

links sharing a common node cannot be assigned to cells

within a same time slot. Thus, the resource requirement of

a subtree needs to not only specify the number of cells but

also the number of time slots and channels satisfying the

half-duplex constraint. Second, the data structure should be

compact to reduce the storage and communication overhead,

given that this information needs to be propagated to the

gateway through multiple nodes at multiple layers. Keeping

these two properties in mind, we use number of time slots and

number of channels to capture the resource requirement of a

subtree. Pictorially this can be represented as a rectangular
resource block, where the length of the rectangle indicates the

number of time slots and the height of the rectangle indicates

the number of channels.

According to the analysis in [19], a routing-path compliant

schedule (i.e., the sequence of the cells allocated to the links

of a packet at different layers follows the packet’s routing

path) can significantly reduce the end-to-end latency of the

packet. Therefore, the cells allocated to all the links within a

subtree in one rectangular resource block should follow the

order of the packet’s routing path. In this case, using one

rectangle block to abstract the resource requirements of all the

links within a subtree can cause resource waste and reduce the

cell usage. For example, consider two subtrees GVi and GVj

with Vi and Vj as root nodes, respectively, and each subtree

contains links located at two layers. As shown in Fig. 3(a),

resource allocated to the links at different layers is separated

by a dashed line in the corresponding rectangular resource

block for GVi and GVj . We can observe that the resource in

the white area within each rectangle is wasted. To improve

Fig. 3. An motivating example for layered interface design.

the cell usage, we propose a layered resource interface design

to capture the resource requirement of a subtree at each layer

separately (as shown in Fig. 3(b)). Then, the resource interface

of a subtree contains a set of rectangular resource blocks each

of which captures the resource requirements of links at a

particular layer.

Below, we give the definitions of resource component of

a subtree at a particular layer (i.e., the rectangular resource

block) and resource interface of a subtree representing a

collection of resource components.

Definition 1 (Resource Component). The resource component
of subtree GVi

at layer l, denoted as Ci,l = [ns
i,l, n

c
i,l],

specifies the set of consecutive cells required by all the links
at layer l in GVi

. ns
i,l and nc

i,l represent the number of cells
in the time and channel dimensions, respectively.

Definition 2 (Resource Interface). The resource interface of
subtree GVi , denoted as Ii = {Ci,l|l = l(Vi), ...l(GVi)}, is
the collection of resource components of GVi

at all the layers.

With the above definitions, the static partition allocation

phase of HARP consists of two major operations. (1) Resource
interface generation: Here starting from the non-leaf nodes

that are farthest from the gateway, each non-leaf node Vi

generates the resource interface of subtree GVi . Then resource

interface Ii is sent from Vi to its parent node. This process
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repeats until root node Vg receives the resource interfaces of

all its child nodes after which Vg generates its own resource

interface Ig . (2) Partition allocation: Here Vg determines the

partitions (i.e., the placement of each resource component in Ig
within the slotframe) to satisfy each resource component in Ig
and propagates the partition information to all its child nodes.

Upon receiving the partition allocation from the parent node,

each node Vi allocates partitions for its subtrees at different

layers within the partitions received from Vi’s parent.

B. Generating Resource Interface

Resource interface generation is accomplished in the

bottom-up fashion. According to Definition 1&2, in order to

generate resource interface Ii, each non-leaf node Vi needs

to derive the resource components of subtree GVi at layers

l = l(Vi), ...l(GVi
), i.e. computing Ci,l, l ∈ {l(Vi), l(Vi) +

1, ..., l(GVi
)}. There are two cases for the computation of Ci,l.

Case 1: Computation of Ci,l(Vi). Ci,l(Vi) specifies the cells

required by all the links ei1,i, ei2,i, ..., eik,i connecting Vi and

its k child nodes Vi1 , Vi2 , ..., Vik to satisfy their requirements,

i.e., r(ei1,i), ..., r(eik,i). Since links sharing a common node

cannot be assigned to cells within a same time slot according

to the constraint posted by the half-duplex mode of the radio,

we can directly compute ns
i,l(Vi)

as the accumulation of the

number of cells required by all the links (i.e.,
∑k

m=1 r(eim,i))

and let nc
i,l(Vi)

= 1. That is, Ci,l(Vi) = [
∑k

m=1 r(eim,i), 1].

Case 2: Computation of Ci,l where l(Vi) + 1 ≤ l ≤
l(GVi). Since Vi does not directly have the cell requirement

information of links in its subtrees, Vi needs to generate

the resource component Ci,l by composing the resource

interfaces of Vi’s direct subtrees. Specifically, suppose Vi

receives resource components Ci1 , Ci2 , ..., Cik from its child

nodes Vi1 , Vi2 , ..., Vik . Each resource components Cim(m ∈
{1, ..., k}) specifies the resource components of GVim

at

layers l(Vi)+1, l(Vi)+2, ...l(GVik
). Then Vi needs to compose

k resource components Ci1,l, Ci2,l, ..., Cik,l into one Ci,l for

each layer l ∈ {l(Vi) + 1, ..., l(GVi
)}. Below, we describe in

detail how Vi performs the resource component composition.

Given that the total number of cells in a slotframe is limited,

it is desirable to generate the resource component as compact

as possible, i.e., minimizing the number of slots ns
i,l and

the number of channels nc
i,l of Ci,l. For the following two

reasons, we give a higher priority to minimizing the number

of slots than the number of channels. First, reducing the

number of time slots leads to shorter packet transmission

latency. Second, time slots are more valuable than channels in

the half-duplex mode because links sharing a common node

cannot be assigned to cells within a same time slot. Therefore,

we formulate the following resource component composition

problem.

Problem 1 (Resource Component Composition). Given k
resource components Ci1,l, Ci2,l, ..., Cik,l at layer l, determine
a composite resource component Ci,l = [ns

i,l, n
c
i,l] such that

(i) Ci,l contain all the k components, i.e., Ci,l ⊇ ∪k
m=1Cim,l,

Fig. 4. An example resource component composition. Each light blue
rectangle represents a resource component of subtree GVij

at layer l.

(ii) ns
i,l is minimized, and (iii) nc

i,l is minimized among all the
components with the minimum ns

i,l.

Problem 1 can be mapped to a two-dimensional (2D) Strip

Packing Problem (SPP) [20] as shown in Fig 4. SPP is a

2D geometric minimization problem. Specifically, given a set

of axis-aligned rectangles and a strip with fixed width and

infinite height, the objective is to determine an overlapping-

free packing of the rectangles into the strip with the minimum

height. To map Problem 1 to SPP, each resource component

Cim,l is mapped to a rectangle in SPP and the composite

component Ci,l is mapped to the strip. However, Problem 1

and SPP have a key difference. That is, the former aims

to minimize both the number of slots (rectangle width) and

the number of channels (rectangle height), while SPP only

minimizes the height of the strip. Thus, directly applying an

algorithm for solving SPP can cause the optimization goals

(either the number of slots or channels) not being achieved.

We tackle this issue by performing the mapping twice.

Since the total number of channels M in IWNs is fixed (e.g.,

typically 16 channels for IEEE 802.15.4 in the 2.4GHz Band),

we first map M channels and the number of slots to the width

and the height of the strip, respectively. By employing an

SPP solver, a composite component with minimum number

of slots nmin
s is achieved. This generated component may use

more channels than necessary since the width of the strip is

not minimized. Therefore, we perform the second mapping

where nmin
s time slots and the number of channels are mapped

to the width and the height of the strip, respectively. After

solving this problem, the minimized strip is returned as the

composite component Ci,l. Note that the generated packing

of the rectangles which forms the layout of all the resource

components is stored, and will be used by the partition

allocation operation discussed in the next subsection.

SPP is a well-known NP-hard problem, and a large number

of exact and approximation solvers exist in the literature

(e.g. [21]–[23]). Considering that for our problem such a

solver needs to be implemented in resource-constrained IWNs

devices (e.g., TI CC2650), we opt to deploy an efficient

heuristic. Among the various constructive heuristic candidates,

the best-fit skyline based heuristic [24] is one of the state-of-

the-art algorithms and achieves good balance between solution

quality and efficiency (with time complexity of O(n log n)
where n is the number of rectangles). Alg. 1 summarizes the

algorithm for solving Problem 1.
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Algorithm 1 Resource Component Composition

Input: Components Ci1,l, Ci2,l, ..., Cik,l, and M channels.

Output: Composite component Ci,l and composition lay-

out.

1: Set M channels as the fixed width, and let the number of time
slots be the height in SPP;

2: Run the best-fit skyline heuristic and generate a component C∗
i,l

with nmin
s slots and nc slot channels;

3: Set nmin
s as the fixed width, and let the number of channels be

the height in SPP;
4: Run the best-fit skyline heuristic and generate a component Ci,l

with nmin
s slots and nc min;

5: return Ci,l and the composition layout;

C. Partition Allocation

Given the resource interfaces generated at each non-leaf

node in the IWN as described above, partition allocation

determines the locations of these interfaces in the slotframe.

We use Pi,l = [Ci,l, ti,l, ci,l] to denote the partition allocated

to subtree GVi at layer l to satisfy its resource component

Ci,l, where ti,l and ci,l represent the starting time slot and the

lowest channel index of component Ci,l in the slotframe.

In HARP, partition allocation is done in the top-down

fashion starting from the root node Vg . Upon generating the

resource components Ci,l, Ci,l(Vi)+1, ..., Ci,l(GVi
) of subtrees

at all the corresponding layers, each node Vi sends the

collected resource interface Ii to its parent node to request

resource allocation. After the root node (i.e., gateway Vg)

generates the resource interface Ig including the components

Cg,l, l ∈ {1, 2, ..., l(GVg
)}, Vg performs the partition alloca-

tion to satisfy each component Cg,l.

To ensure higher quality of service to the application tasks,

a key objective in partition allocation is to place the interfaces

such that they lead to low packet transmission latency. As

stated in Sec. IV-A, the partition allocation at Vg follows the

compliant schedule property introduced in [19]. This property

requires that cells are allocated to links following the sequence

of a task’s routing path. Specifically, the slotframe is divided

into two super-partitions in the time dimension. The left and

right super-partitions are allocated to the interfaces for uplinks

and downlinks, respectively. Within the uplink (downlink)

super-partition, any interface with a larger (smaller) layer value

is placed before interfaces with smaller (larger) layer values.

(see Fig. 2(c)).

According to the component composition layout of each

Cg,l generated by Alg. 1, Vg can readily determine the

partitions for all its direct subtrees at each layer l (i.e.,

Pg1,l, Pg2,l, ...) within partition Pg,l. (See the upper sub-figure

in Fig. 2(c) for an example partition allocation at Vg .) Then, Vg

propagates the partitions information for all its direct subtrees

to Vg’s child nodes. When each node Vi receives the partitions

from its parent, Vi repeats the partition allocation process and

propagates the partitions to all its children. See the middle and

bottom sub-figures in Fig. 2(c) for example partition allocation

at subtree root nodes.

From Fig. 2(c), we can observe that after performing

partition allocation, HARP achieves resource isolation between

links that have different parent nodes. For example, links

e4,1 and e7,3 are assigned to cells in partition P1,2 and

P1,3, respectively. Links e7,3 and e9,5 are assigned to cells

in partition P3,3 and P5,3, respectively. Generally, for any

two links at layer l1 and l2, the assigned cells are within

partition Pg,l1 and Pg,l2 , so they are isolated from one another.

Furthermore, for any two links in different subtrees at a same

layer, the assigned cells are located in the partitions allocated

to different subtrees.

D. Distributed Schedule Generation

The static partition allocation phase discussed above de-

termines the actual cells usable by each node. In the dis-

tributed scheduling phase, each node needs to handle traffic

initiated by all its connected links in a distributed manner

and the cells at each node needs to be further assigned to

the links. To accomplish this, after receiving partition Pi,l(Vi)

from the parent, each node Vi performs schedule generation

to determine the cell assignment C(i, j) for each link ei,j
connecting Vi and its children at layer l(Vi) within the cells

in Pi,l(Vi) = [[ns
i,l(Vi)

, 1], ti,l(Vi), ci,l(Vi)]. Based on the task

set requirement, any scheduling policy can be deployed at Vi

to determine the particular schedule. In this work we apply

Rate Monotonic (RM) [25], a well-known real-time scheduler,

where the parent node selects cells from Pi,l(Vi) according to

the tasks’ specifications and informs the cell assignment to

corresponding child nodes. Since ns
i,l(Vi)

≥ ∑k
m=1 r(eim,i),

a feasible schedule can be constructed to satisfy the cell

requirements of all the links eim,i(m ∈ {1, 2, ..., k}).
V. DYNAMIC PARTITION ADJUSTMENT

Network dynamics can vary due to various online events

in harsh and noisy industrial environments, e.g., topology

changes and traffic changes. From the network resource

management’s viewpoint, any type of changes may cause

fluctuation in the cell requirements of certain links. If a node

leaves the network or a task decreases the sampling rate, the

number of cells required by some link may decrease. In this

case, the parent node of the affected link readily releases

the corresponding cells in the slotframe and the partitions

of the subtree do not need to be adjusted. Therefore, in the

following we focus on the network change scenario where cell

requirements of certain links increase.

As discussed in Sec. IV-C, since HARP achieves resource

isolation between links connecting to different parents, nodes

are able to perform partition adjustment in a distributed man-

ner. Thus we only need to consider how to perform partition

adjustment at the parent node of a link requesting an increased

number of cells. There are two cases.

Case 1: Schedule update. Parent node Vq determines

that the increased requirement can be satisfied in the current

partition Pq,l(Vq). That is, the total number of cells required

by all the links connecting Vq and its child nodes after the

network change is not larger than ns
q,l(Vq)

. Fig. 5(a) is an
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Fig. 5. Examples of partition adjustment under HARP: (a) local schedule
adjustment; (b) partition adjustment finished within one layer; (c) partition
adjustment crossed multiple layers.

example of this case. For this case, Vq only needs to update the

schedule within partition Pq,l(Vq) and propagate the updates to

the affected children.

Case 2: Partition update. Pq,l(Vq) cannot satisfy the in-

creased cell requirement. That is, the total number of cells

required by all the links connecting Vq and its child nodes

after the network change is larger than ns
q,l(Vq)

. Fig. 5(b) and

(c) are examples of this case.

Handling network changes in Case 2 is more complicated

since Vq must send its parent, say Vp, a request to increase

partition Pq,l(Vq) at layer l(Vq) (i.e., an increased resource

component Cq,l(Vq)). When Vp receives the request, it checks

if Cq,l(Vq) can be satisfied within the allocated partition of

subtree GVp
with Vp as root at layer l(Vq). If so, Vp accom-

modates the updated Cq,l(Vq) by adjusting the partitions of

subtrees with all Vp’s children (i.e., Vq’s siblings) as root nodes

and sends the updated partition information to all the affected

children. Otherwise, a partition update request is sent from

Vp to its parent, Vpp, following a similar process. Below, we

describe i) how to check the feasibility of satisfying Cq,l(Vq)

and ii) how to perform partition adjustment to satisfy Cq,l(Vq).

A. Feasibility Test

Feasibility test is for a node to check whether it can satisfy

within its own partition the increased resource requirement

from one of its children. Formally, we have the following.

Problem 2 (Feasibility Test). Given the updated component
Cq,l(Vq), the components Cpm,l(Vq)(m ∈ {1, 2, ..., k, q}) where
Vpm

is a sibling of Vq , and the current partition Pp,l(Vq),
determine whether Pp,l(Vq) can satisfy all the components.

Problem 2 can be mapped to a classical Rectangle Packing

Problem (RPP) [26] where the objective is to determine

whether a given set of small rectangles can be packed inside

a given large rectangle without any overlap. The mapping

is straightforward where the components and the partition

Pp,l(Vq) are mapped to the small rectangles and the large

rectangle, respectively. Then the best-fit skyline heuristic [24]

can be applied to solve Problem 2 since both strip packing and

rectangle packing are 2-dimensional geometric minimization

problems sharing some similarities.

B. Cost-aware Partition Adjustment

When node Vp has to adjust its partition layout in the

slotframe to accommodate a child’s increased resource re-

quirement, Vp must send messages to all the children whose

Fig. 6. Examples of partition adjustment. (a) Original partition layout. To
accommodate an increased partition P ′

4,l, (b) shows an adjusted partition

layout with three updated partitions (P ′
4,l, P5,l and P6,l), and (c) shows an

adjust partition layer with only one updated partition (P ′
4,l).

partitions are updated. Furthermore, when a child node re-

ceives the updated partition, it needs to propagate the schedule

updates messages to all the descendants. This is because that

when a particular partition Pi,l is changed in the slotframe,

all the partitions inside Pi,l are also changed. Propagating

all the adjusted partitions can be quite costly. To reduce

this communication overhead, i.e. the number of propagation

messages, we formulate the following partition adjustment

problem to minimize the number of adjusted partitions.

Problem 3 (Partition Adjustment). Given n resource compo-
nents Ci,l(i = 1..n) at layer l, the corresponding partitions
Pi,l, the composite component Cp,l and the corresponding
partition Pp,l, assume that the j-th component Cj,l(j ≤ n)
increases to C ′

j,l in either time slot or channel or both dimen-
sions. Determine an updated partition P ′

p,l that satisfies C ′
j,l

together with the unchanged component Cp,l and minimizes
the number of adjusted partitions Pi,l(i = 1..n).

Fig. 6 gives an example of the partition adjustment. Fig. 6(a)

shows the original layout of partition Pp,l. Suppose that

component C4,l increases in the time dimension and an

updated partition P ′
4,l is needed to accommodate the increased

component C ′
4,l. Fig. 6(b) and Fig. 6(c) illustrates two feasible

partitions which both satisfy all the components. However, the

partition in Fig. 6(c) is apparently a better solution since all

other partitions Pi,l(i = 1..n, i �= j) are not changed. While

two additional partitions P5,l and P6,l are moved in Fig. 6(b)

which incurs higher communication overhead.

We design an efficient heuristic to solve Problem 3. The

heuristic is built on an intuitive observation that it tends to

be easier for a consecutive area of idle cells to accommodate

a set of partitions. Following this observation, the heuristic

performs adjustment starting from the neighboring partitions

of P ′
j,l then moving on to the more distant partitions.

Alg. 2 summarizes the partition adjustment algorithm for

Problem 3. Specifically, we first replace Cj,l with C ′
j,l and

check whether the updated composite component can still fit

in the given partition Pj,l without adjusting any other partition

Pi,l(i = 1..n, i �= j) (Line 1–4). If not, a randomly selected

neighboring partition of P ′
j,l is removed from partition Pp,l,

and we check whether P ′
j,l and the removed neighboring

partition can be accommodated by using all idle rectangular

areas in Pp,l (Line 11, 12, 4). If yes, the new partition

layout with only two adjusted partitions is returned. If not,
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Algorithm 2 Partition Adjustment Heuristic

Input: Components Ci,l(i = 1, ..., n), partitions Pi,l, the

composite Cp,l and partition Pp,l, the increased component

C ′
j,l(j ≤ n).

Output: Updated partition P ′
p,l.

1: S ← {C′
j,l};

2: Remove Pj,l from Pp,l;
3: while True do
4: if All the components in S can be packed in Pp,l then
5: P ′

p,l ← updated Pp,l;
6: return P ′

p,l;
7: else
8: if Pp,l is empty then
9: Break;

10: end if
11: S ← S⋃{Cv,l} where Pv,l is a partition closest to Pj,l

in Pp,l;
12: Remove Pv,l from Pp,l;
13: end if
14: end while
15: Run the best-fit skyline heuristic for all the partitions;
16: return P ′

p,l;

this process repeats until all the partitions Pi,l(i = 1..n) are

removed. Then, packing all the partitions into Pp,l becomes

the RPP discussed in Sec. V-A and the best-fit skyline heuristic

can be applied to obtain the updated partition layout (Line 15).

VI. TESTBED IMPLEMENTATION AND VALIDATION

In this section, we present the implementation detail of the

HARP framework on our 6TiSCH testbed and validate the

functions of HARP in both static partition allocation phase

and dynamic partition adjustment phase.

A. Testbed Implementation and Experimental Setup

We implement HARP on a 5-hop 16-channel 6TiSCH

network testbed with 50 devices. 6TiSCH is a representative

multi-channel multi-hop IWN technology. It integrates the

IEEE 802.15.4e data link layer with an IP-enabled upper

stack (using 6LowPAN) to achieve both deterministic real-time

performance with ultra-low power consumption and seam-

less integration with Internet services. The network layer of

6TiSCH uses RPL routing protocol [27] to form tree topology.

We use TI CC2650 SensorTag as the device nodes and a

RaspberryPi 4B device attached with a TI CC2652 board to

serve as the gateway. The 6TiSCH full stack is implemented

on TI-RTOS [28] and deployed on both device nodes and the

gateway. Fig. 7(a) shows the hardware used in our testbed

and Fig. 7(b) gives a snapshot of the testbed deployment in

labs and hallway. Fig. 7(c) depicts the logical topology of our

network which is subject to change in our experiments. We set

the slotframe length to 199 in the experiments and enable all

the 16 IEEE 802.15.4e channels for communications. Fig. 7(d)

shows the network schedule and partitioned slotframe.

When the network bootstraps, the slotframe is divided into

two sub-frames: the Data sub-frame and the Management sub-

frame. The Data sub-frame is the portion of the slotframe

TABLE I
COAP HANDLERS FOR HARP MESSAGES

URI Method Param Description

intf
POST Resource interface Receive child’s interface
PUT Updated interface Receive child’s updated interface

part
POST

Partitions
at all layers

Receive allocated partitions

PUT
New partition
at one layer

Receive updated partition

to be hierarchically partitioned and scheduled for real-time

tasks deployed in the network. The Management sub-frame is

the remaining portion of the slotframe used for scheduling

network management traffic (e.g., Enhanced Beacon, RPL

control messages, keep-alive packets). When a node joins the

network, it will be first scheduled with two collision-free cells

(one for uplink and the other for downlink) in the Management

sub-frame. HARP messages are also transmitted in those cells.

Since HARP is an application layer protocol, we implement

HARP messages and handlers on top of CoAP [29], which is a

specialized HTTP-like web transfer protocol for resource con-

strained devices and used as the application layer of 6TiSCH.

The defined CoAP handlers are summarized in Table I.

Fig. 8 depicts the flowchart of the HARP partition allocation

and adjustment process. In the static partition allocation phase,

the child nodes report their interfaces to their corresponding

parent nodes by sending POST-intf messages. Once the parent

node receives the interface information from all its child nodes,

for each components in the interfaces, it runs the Resource

Component Composition algorithm and reports the composite

component to its own parent. This process repeats in a bottom-

up fashion until reaches the gateway. Based on the received

interface information from its child nodes, the gateway al-

locates partitions from the Data sub-frame and disseminates

the partition information to its child nodes through the POST-
part messages. Each child node stores the partition information

of its own layer and further allocates partitions for its child

nodes. Finally each individual non-leaf node is allocated with

a dedicated partition, and any distributed scheduler can be

employed to schedule the cells in this partition to satisfy the

resource requirement without causing schedule collision. In the

dynamic partition adjustment phase, a node that requires extra

resources will send a partition adjustment request through a

PUT-intf message to its parent node by specifying the new

resource interface. The parent node then responds with the

new partition by sending back a PUT-part message if it can

satisfy the new request. Otherwise, it will forward the request

to its parent in an iterative fashion until the request is satisfied.

To validate the functional correctness of HARP, we perform

experiments in both static and dynamic network settings.

B. Functional Validation on Static Partition Allocation

In the first set of experiments, we validate the functions of

HARP to compose the resource interfaces in a hierarchical

fashion and create dedicated partitions for individual subtrees

to ensure deterministic communications.
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Fig. 7. (a) Hardware for the device nodes (CC2650) and gateway (RPi4B+CC2652); (b) an overview of the testbed deployed in the labs and hallways of an
academic building; (c) the logical network topology with 5 layers; (d) an example slotframe with Data sub-frame and Management sub-frame.

Fig. 8. HARP partition allocation and adjustment flowchart: (a) partition al-
location; (b) one-hop partition adjustment; (c) multi-hop partition adjustment.

In the experiments, we configure the 50 device nodes into

a 5-hop tree topology as shown in Fig. 7(c). We deploy an

end-to-end (e2e) task with a period of 2 seconds on each

individual node in the network. Each task transmits packets

periodically to the gateway which echoes the packets back to

the source device through the same routing path. Since the

packet generation rates for all the device nodes are the same,

the data rates of both uplink and downlink of individual nodes

equal to the size of their subtrees, due to the fact that the parent

nodes need to forward packets on behalf of their child nodes.

Under this experimental setting, the created partitions for

individual subtrees are depicted in Fig. 7(d). The results are

identical with those generated through simulation. This vali-

dates the correctness of HARP to compose resource interfaces

and create partitions. We let the experiment run for 30 minutes,

and collect the timing information of end-to-end packets from

all the device nodes. The average end-to-end latency of each

node are shown in Fig. 9 and the nodes are sorted according

to the ascending order of their layers. From the results, we can

Fig. 9. End-to-end latency for all 50 nodes in the static network setup.

observe that resources are dedicated for individual links based

on their requirements and the measured end-to-end latency

are almost bounded in one slotframe (1.99 seconds) with

minimum queuing delay. However, it is worth noting that in

the experiments we experienced some packet loss due to the

environmental interference. This affects the latency for those

nodes that are multiple hops away from the gateway.

C. Functional Validation on Dynamic Partition Adjustment

In the second set of experiments, we validate the functions

of HARP to perform partition adjustment in the presence of

traffic changes. For this aim, during the network operation,

we increase the data rates (in terms of packets per slotframe)

of a selected set of nodes at different layers and monitor

how their end-to-end Latency vary and what the associated

communication overhead are. Fig. 10 summarizes the results.

Taking Node 15 as an exmaple, when the network starts,

its data rate is first set at 1 packet/slotframe. This is the same

for all the nodes in the network. The static partition allocation

phase guarantees that Node 15’s bandwidth requirement can

be satisfied. There is no queuing delay and the transmissions

can be finished within 1 slotframe (1.99 seconds). In the

experiment, we increase the data rate of Node 15 to 1.5

packet/slotframe at time 02:25:00. This increases the queuing
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Fig. 10. End-to-end latency of Node 15 in the dynamic network setup, with
the data rate increased from 1 packet/slotframe to 3 packets/slotframe.

TABLE II
COMPARISON OF THE PARTITION ADJUSTMENT OVERHEAD FOR A

SELECTED SET OF NODES WITH DIFFERENT LAYERS

Event Nodes Layers Msg. Time(s) SF
C5,2: [1, 1] → [3, 1] 2 1 2 1.59 1
C22,3: [3, 1] → [5, 1] 2 1 2 1.86 1
C3,2: [7, 1] → [10, 1] 4 1 4 4.06 3
C10,3:[2, 2] → [3, 3] 6 2 6 6.13 4
C40,5: [1, 1] → [1, 2] 5 5 8 8.11 5
C30,4:[1, 1] → [3, 1] 7 3 9 9.89 5

delay on Node 15 and its parent as well, and triggers them

to allocate more cells from the allocated partition to increase

the bandwidth. Since there are two idle cells available in the

allocated partition, this traffic demand change can be resolved

locally. At time 02:25:33, the task rate of Node 15 is further

increased to 3 packets/slotframe. However, this time there is

no idle cells left in the allocated partition. This triggers the

parent node to send a partition adjustment request to its parent

to ask for more resources. After extra resource is granted, it

updates the schedule between itself and Node 15 to meet the

latest traffic requirement. This process takes longer time to

adapt to the second traffic demand change, and thus cause

longer queuing delay and increase the end-to-end latency.

Table. II summarizes the interface update requests made by

other nodes in the experiments, and their associated overheads

in terms of involved nodes and layers, exchanged HARP

messages and consumed time for partition adjustment. Due

to the page limit, the detailed discussion is omitted.

VII. SIMULATION-BASED PERFORMANCE EVALUATION

In this section, we present our simulation studies to evaluate

the performance of HARP on avoiding schedule collisions

and reducing schedule adjustment overhead when compared

to the state-of-the-art distributed schedulers and centralized

scheduler for 6TiSCH networks, respectively.

A. Performance comparison on schedule collision avoidance

In the first set of experiments, we compare HARP with

three distributed schedulers: random scheduler, MSF [10] and

LDSF [30] deployed in 6TiSCH network, to evaluate their

performance on providing collision-free communications. The

random scheduler lets each node randomly select cell(s) in the

slotframe for transmissions, while MSF allows the nodes to

determine cell assignment based on a hash function of unique

device IDs. LDSF divides the slotframes into small blocks

(a) Fixed number of channel, varying data rate

(b) Fixed data rate, varying number of channels

Fig. 11. Comparison of schedule collision avoidance among the random
scheduler, MSF, LDSF and HARP.

and assign blocks to the links based on their layers to reduce

latency, but the cell assignment within each block is random.

We set the slotframe length to 199 time slots and enable all the

16 channels. We randomly generate 100 network topologies

with 5 layers and 50 nodes.

We first compare the average collision probability among

the random scheduler, MSF, LDSF and HARP by varying

the data rates from 1 to 8 packet/slotframe, and the total

number of cells required by all the nodes in a slotframe ranges

from 150 to 700 in this setup. As shown in Fig. 11(a), the

schedule collision probabilities of the random scheduler, MSF

and LDSF increase linearly along with the increase of the data

rates. This is due to the fact that more schedule collisions will

occur when more cells are being assigned in the slotframe. On

the other hand, HARP can always avoid transmission collisions

in regardless of the data rate under these settings.

In the second comparison, we gradually reduce the number

of available channels in the network from 16 to 2 while

fixing the data rate at 3 packet/slotframe for all the nodes. As

shown in Fig. 11(b), along with the decrease of the number of

channels, the collision probabilities of the random scheduler,

MSF and LDSF increase significantly. By contrast, benefiting

from the efficient resource management, HARP is able to avoid

collision when the number of channels is larger than 4. After

that, its collision probability slightly increases but HARP still

dominates the other three methods.

B. Performance comparison on schedule adjustment overhead

In the second set of experiments, we compare the parti-

tion/schedule adjustment overheads between HARP and APaS

[19] which is a centralized scheduler for 6TiSCH networks. In

the experiments, we generate a series of network topologies

with 81 nodes and 10 layers. After the static scheduling

phase in APaS (static partition allocation phase in HARP),

we increase the data rate of each node to trigger dynamic

schedule update and partition adjustment phases in APaS and

HARP, respectively, and measure the total number of packets

incurred to complete the schedule/partition adjustment. Fig. 12

summarizes the results for the nodes at each layer.
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Fig. 12. Comparison of dynamic schedule/partition adjustment overhead
between APaS and HARP

From the results, we can observe that the incurred adjust-

ment overhead in APaS increases proportionally along with

the increase of the layers. On the other hand, the adjustment

overhead in HARP is relatively more stable. This is because

in APaS, a node requesting for more resources needs to send

the request to the root through multiple hops; the root then

schedules new cells for this node and its parent node as well by

sending back two schedule update messages through multiple

hops as well. Thus for nodes at layer l, the total number of

packets incurred in the dynamic schedule adjustment process

is 3l−1. On the other hand, the dynamic partition adjustment

request in HARP is first sent to the parent of the requesting

node. Only if the parent does not have sufficient resource to

accommodate the request, the adjustment request is propagated

upwards. Meanwhile, with the help of the partition adjustment

heuristic (Alg. 2), the number of other affected branches

is minimized. For these reasons, only a small portion of

nodes in the network is involved in the partition adjustment

phase, making HARP less sensitive to the size of the network

compared to APaS.

VIII. CONCLUSION AND FUTURE WORK

In this work, we propose HARP, a hierarchical resource

partitioning framework for dynamic resource management in

IWNs. HARP achieves resource isolation between links by

allocating dedicated cells for each link to support collision-

free distributed scheduling. An efficient partition adjustment

method is also proposed to adapt to network changes during

runtime without introducing large communication overhead

and time delay. We implement HARP on a 5-hop 50-node

6TiSCH network and validate its effectiveness through both

simulation and testbed experiments. As future work, we will

extend HARP to support non-tree based network topologies

and real-time tasks with diverse end-to-end deadlines. We will

also extend HARP to support dynamic resource management

among co-existing heterogeneous IWNs.
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