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Abstract—With the rapid growth of industrial Internet of
Things (IIoT) applications, real-time wireless networks (RTWNs)
are playing an increasingly important role in providing real-
time, reliable, and secure communication services for these
applications. A key challenge in RTWN management is to ensure
real-time Quality of Services (QoS), especially in the presence
of unexpected external (i.e., application-side) and internal (i.e.,
network-side) disturbances. This paper presents a novel frame-
work, DS-PaS, to determine the packet transmission schedule
for multi-channel multi-hop RTWNs at the data link layer
in a distributed and dynamic fashion. DS-PaS is able to (i)
handle external disturbances, (ii) support spatial reuse, (iii) meet
deadlines of all critical tasks, and (iv) minimize the number of
dropped non-critical packets. To avoid transmission collisions
when using inconsistent information in a distributed framework,
DS-PaS incorporates several key advances in both the data-link
layer protocol and algorithm design so that individual nodes can
build on-line schedules with only local interference information.
Extensive evaluation based on both testbed implementation and
simulation validates the correctness of the DS-PaS design and
demonstrates its effectiveness compared to the state of the art.

Index Terms—Real-time wireless networks, distributed succes-
sive packet scheduling, multi-channel, spatial reuse, disturbance

I. INTRODUCTION

In recent years, we have witnessed growing development

and deployment of real-time wireless networks (RTWNs)

in various industrial applications [1], especially those with

stringent requirements on real-time and reliable information

delivery. Packet scheduling at data link layer plays a key role

in meeting these requirements of RTWNs. Besides meeting

these timing and reliability requirements, several other chal-

lenges must be dealt with when developing packet scheduling

approaches. First, RTWNs often employ multiple channels

along with spatial reuse in order to increase network ca-

pacity. Second, RTWNs often suffer from dynamic workload

perturbations caused by unexpected disturbances, which are

particularly severe in harsh industrial environment.

Unexpected disturbances in general can be classified into

internal disturbances and external disturbances. Internal dis-

turbances are casued by network changes (due to node or link

failure, etc.). External disturbances are caused by unexpected

changes in the environment being monitored and controlled

∗The first two authors have equal contribution to this work.

(due to detection of an emergency, sudden pressure or tem-

perature increase, etc.). Many approaches (e.g., [2]–[4]) have

been proposed to handle internal disturbances in RTWNs.

Few studies address external disturbances in RTWNs. The

focus of this paper is to develop an efficient and scalable

packet scheduling solution for the data link layer to handle

unexpected external disturbances (referred to as disturbances

for brevity) in multi-channel RTWNs with spatial reuse.

Some researchers propose centralized methods to handle

disturbances (e.g., [5]–[7]). For example, OLS [7] relies on

a centralized controller (e.g., gateway) to generate a dynamic

schedule for handling disturbance and broadcast the entire

updated schedule to all the nodes in the network. To reduce

the communication overhead for broadcasting the dynamic

schedule, D2-PaS [5] and RD-PaS [6] let the gateway propa-

gate only a portion of schedule-related information and each

node generates the dynamic schedule locally. However, these

centralized approaches are subjected to single-point (e.g., the

gateway) failure, and do not scale well for large networks.

Some distributed methods (e.g., [8]–[11]) have been pro-

posed for RTWNs to handle external disturbances. In Orches-

tra [8], [10], DiGS [11], and FD-PaS [9], only single-channel

protocols are considered. To the best of our knowledge,

FD-PaS is the state-of-the-art approach to handling external

disturbance for single-channel networks with no spatial reuse.

The main idea of FD-PaS is to generate a dynamic schedule

at each device node locally according to the task set informa-

tion when disturbances happen. Directly extending FD-PaS

to multi-channel RTWNs with spatial reuse, however, can

lead to inconsistent schedules (to be explained in details in

Sec. III) that may cause critical tasks to miss their deadlines.

DistributedHART [12] is the most recent distributed approach

for multi-channel scheduling in RTWNs supporting spatial

reuse. Though DistributedHART can handle some workload

changes (e.g., a node can adjust its own schedule when the

period of a packet at the node is changed but a feasible

schedule can be found for all the packets to be handled), it

cannot handle external disturbances that result in the network

being overloaded. That is, DistributedHART can only work

under the assumption that the network workload is always

schedulable. However, to avoid costly over-design, typically

RTWNs are allowed to be temporarily overloaded when dis-
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turbances happen. Therefore, handling external disturbances in

multi-channel with spatial reuse in a distributed and dynamic

fashion is valuable to explore.

In this paper, we introduce a novel data-link layer packet

scheduling framework called DS-PaS. To our best knowledge,

DS-PaS is the first work that is able to (i) handle exter-

nal disturbances, (ii) support multiple channels and spatial

reuse, and (iii) guarantee to meet the deadlines of all critical

tasks while dropping the minimum number of packets. To

address the scalability issue and unexpected disturbances, DS-

PaS lets individual nodes construct a dynamic schedule in a

distributed way. To ease the memory demand for storing the

complete interference information of a large RTWN, DS-PaS

only requires each node to store limited local interference

information. These setups together with multi-channel and

spatial reuse introduce a number of unique challenges in the

design of DS-PaS.

We make the following contributions to tackle the chal-

lenges. (i) We devise a successive scheduling mechanism in

which a scheduling decision made by a node is propagated to

the subsequent nodes along the routing path. This mechanism

ensures that the local schedules generated by different nodes

on the same routing path is always collision-free. (ii) To

satisfy the timing requirements of critical tasks while dropping

fewest non-critical packets when handling the extra workload

caused by disturbances, we introduce an efficient heuristic

to be executed by individual nodes locally to determine a

temporary dynamic schedule. To validate the correctness of the

DS-PaS design, we have implemented the DS-PaS framework

on a 7-node RTWN testbed. We also developed a high-

fidelity simulation tool to evaluate DS-PaS’s effectiveness. Our

extensive experimental studies show that compared to existing

work, DS-PaS not only improves system scalability in terms of

slower degradation in the number of feasible task sets and the

packet drop ratio as the network size grows, but also provides

fast and effective responses to external disturbances.

II. SYSTEM MODEL

This paper considers a typical RTWN system, where mul-

tiple sensors, actuators and relay nodes (all referred to as

device nodes) and a controller (referred to as the gateway)

are wirelessly connected to form a multi-channel multi-hop

RTWN. The network is modeled as a directed graph G =
(V,E), where V = {V0, V1, . . . } is the device node set and

(Vi, Vj) ∈ E represents a reliable link from Vi to Vj . Fig. 1(a)

shows an example RTWN with 7 device nodes and a controller.

We use the concept of tasks to describe packet transmissions

from sensor nodes to actuator nodes. Specifically, the system

runs a fixed set of unicast tasks T = {τ0, τ1, . . . , τN}. Each

task τi (0 ≤ i ≤ N) follows a designated routing path with

Hi hops. It periodically generates a packet which originates at

a sensor node, passes through some relay nodes then reaches

to an actuator. Each task τi consists of an infinite sequence of

packets. The k-th packet of τi, χi,k, is associated with release

time ri,k, deadline di,k and finish time fi,k. The delivery of

Fig. 1. (a) An example RTWN with 3 tasks running on 7 nodes. A black
solid arrow indicates a reliable link from the source node to the destination
node; a black dashed line indicates a reliable link between the controller and
the device node; a red dashed arrow indicates that the destination node is
within the interference range of the source node. (b) Parameters for the three
tasks in Fig. 1(a). (c) Static schedule S (generated by the controller at the
initialization) with a length of 6 time slots and 2 channels. A tuple (i, Vj ,
Vk) represents a transmission of task τi with sender Vj and receiver Vk .

packet χi,k at the h-th hop is referred to as a transmission

denoted as χi,k(h) (1 ≤ h ≤ Hi).

Our system model adopts a multi-channel Time Division

Multiple Access (TDMA)-based data link layer with C chan-

nels. We assume that each node is capable of transmitting

or receiving data on any one channel at a given time slot.

An acknowledgement packet (ACK) is sent upon a successful

transmission reception in the same time slot. To improve

network capacity, spatial reuse is enabled such that concurrent

transmissions involving different node pairs can take place

within the same time slot on the same channel. Since the

wireless medium is essentially shared among nodes, there is a

potential that one transmission may affect another when both

transmissions share the same time slot. We use the following

terms to describe two situations that prevent two transmissions

in the same time slot to be reliably received.

Definition 1 (Transmission conflict). Two transmissions
A and B assigned to the same time slot experience
transmission conflict if the senders/receivers of A/B share a
same node.

Definition 2 (Transmission interference). Two transmissions
A and B assigned to the same time slot and on the same
channel experience transmission interference if A’s (or B’s)
signal interferes with B’s (or A’s) signal at B’s (or A’s)
receiver.

Transmission interference is caused by interference among

nodes in RTWNs (as indicated by the red dashed arrows in

Fig. 1). A set of transmissions on the same channel have

no interference if all receivers are not in the other senders’

interference range. The interference range is determined by

the transmission power and distance. To capture the potential

interference of each node with other nodes in the network, a

local interference table can be built and stored at each node

using existing methods (e.g., [13]) according to the task set

information. Combining the local interference tables of all the

nodes gives the global interference table which contains the
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TABLE I
THRESHOLD VALUES ON SENSED DATA AND RESPONSE PLANS FOR AN UNDERGROUND MINE USE CASE.

Threshold values and response plans

Safe (green) Transient (orange) Unsafe (red)

Sampling period (s) 30 15 5

Temperature (◦C) ≤ 28 (28, 40)
1. Turn the auxiliary
fan(s) on

≥ 40
1. Text a message to all to
evacuate from unsafe place(s)

Humidity (%) ≤ 75 (75, 85)
2. Text a message to
the shift supervisors

≥ 85 2. Next reading

CO2 (ppm) ≤ 2000

1. Next reading

(2000, 5000) 3. Next reading ≥ 5000

entire network’s interference information. Suppose an RTWN

consists of M nodes and it requires b bytes to store the index

of a node. Then the global interference table requires (b ·M)2

bytes in the worst case while a local interference table only

requires b · M bytes. Given that M can be a large number

and a typical RTWN node is memory constrained (e.g., 32KB

RAM for TI CC2538), it is more practical to only store local

interference tables at individual device nodes, which we adopt

in this paper.

Our task model explicitly considers external disturbances.

Table I gives an example use case of an underground mine

monitoring system [14] to illustrate the actions required by

RTWNs upon detecting such disturbances. In the RTWN,

hundreds of sensor nodes are mounted in working areas to

sense environment attributes (e.g., temperature, humidity and

gas concentration), and the working environment is assessed

in three conditions including safe (green), transient (orange)

and unsafe (red) according to the sensor reading values. From

Table I, we can observe that (i) upon detecting a disturbance,

RTWN applications would require more frequent sampling and

control actions for the disturbance affected task(s), and (ii)

the task(s) in transient or unsafe conditions are granted higher

criticality since they need to deliver emergency information.

To capture the abrupt increase in network resource demand

caused by disturbance, we adopt the rhythmic task model [15].

Since the workload change of a disturbed task in RTWNs

generally takes the form of sampling rate variation, we let

each unicast task τi to have two states with different period and

deadline patterns. In the nominal state, τi follows the given

nominal period Pi and nominal relative deadline Di (Di ≤
Pi). When a disturbance occurs, τi enters the rhythmic state
in which its period and relative deadline are first reduced in

order to respond to the disturbance, and then gradually return

to their nominal values by following some monotonically non-

decreasing pattern. We use vectors
−→
Pi = [Pi,x, x = 1, . . . , R]T

and
−→
Di = [Di,x, x = 1, . . . , R]T to represent the periods and

relative deadlines of τi when it is in the rhythmic state. As

soon as τi enters the rhythmic state, its period and relative

deadline adopt sequentially the values specified by
−→
Pi and

−→
Di,

respectively. τi returns to the nominal state when it starts using

Pi and Di again. Note that our DS-PaS framework is not

limited to the rhythmic task model and is applicable to any task

model that provides workload changing patterns for handling

disturbances.

In this work, we assume that at most one task1 can be in

the rhythmic state at any time during the network operation.

To simplify terminology, we refer to any task currently in the

rhythmic state as rhythmic task and denote it as τ0, and refer

to task τi (1 ≤ i ≤ N) currently not in the rhythmic state as

periodic task. When task τ0 enters the rhythmic state, we refer

to the nodes on τ0’s routing path as rhythmic nodes. The set

of rhythmic nodes is denoted by Vrhy . When τ0 enters the

rhythmic state, we say that the system switches to the rhythmic
mode. The system returns to the nominal mode when the

disturbance has been completely handled, typically some time

after τ0 returns to the nominal state. As observation (ii) from

the use case, disturbances may have catastrophic effects, and

the rhythmic task is granted higher criticality in the rhythmic

mode. Therefore, when the system enters the rhythmic mode,

the deadlines of the rhythmic task are considered to be hard

while periodic tasks can tolerate occasional deadline misses.

Without loss of generality, we assume that τ0 enters the

rhythmic state at time slot r0,m+1 (denoted as tn→r) and

returns to the nominal state at r0,m+R+1 (denoted as tr→n).

Thus, τ0 stays in the rhythmic state during [tn→r, tr→n). The

system returns to the nominal mode at a time referred to as end

point tep when the disturbance has been completely handled.

Any packet of τ0 released in the system rhythmic mode is

referred to as a rhythmic packet while the packets of task

τi (1 ≤ i ≤ N) are periodic packets.

At a high level, the disturbance handling problem we aim

to solve can be described as follows. Consider a multi-channel

TDMA-based RTWN supporting spatial reuse. Each node

stores its local interference table and follows a pre-determined

static schedule to transmit periodic packets in the nominal

mode. When there is no disturbance, the system is schedulable.

Upon detecting a disturbance at t∗ (some release time2 of the

rhythmic task τ0), the system needs a fast, distributed and

effective dynamic packet scheduling strategy to handle the

disturbance. As a fast strategy, the system should start handling

the disturbance within a short time (e.g., one nominal period of

the rhythmic task). As a distributed strategy, nodes must make

local decisions to handle the disturbance without the aid of any

centralized controller. As an effective strategy, deadlines of all

rhythmic packets should be met while a minimum number of

periodic packets should be dropped.

1Handling multiple concurrent rhythmic tasks is left for future work.
2We assume that disturbances can be detected only at the time when the

sensor samples the environment data, i.e., the release time of a certain packet.
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Fig. 2. An overview of the execution model of DS-PaS. DRT and DHT denote disturbance response time and disturbance handling time, respectively.

III. OVERALL FRAMEWORK OF DS-PAS

In this section, we present an overview of the proposed

distributed successive packet scheduling framework, DS-PaS.

One key challenge to solve the disturbance handling problem

is how to generate consistent transmissions among all rhythmic

nodes when a disturbance is detected. We first give the

following schedule-related definitions below.

Definition 3 (Consistent Transmission). If the sender and
the receiver of a transmission assign the same slot offset t
and channel offset c to the transmission in their own local
schedules, this transmission is a consistent transmission.

Definition 4 (Static/Dynamic Schedule). A static/dynamic
schedule S/S̃ is a set of slot assignment to be used in the
system nominal/rhythmic mode. Each slot is either idle or
allocated to one or multiple transmissions.

The main reason that FD-PaS [9] cannot handle disturbance

in multi-channel RTWNs with spatial reuse is that each node in

Vrhy determines the dynamic schedule independently. Thus,

the dynamic schedule generated by each node is not known by

other nodes. Such an approach works if all nodes maintain the

same information to generate the dynamic schedule. However,

as discussed in the system model, it is more realistic for each

node to only store a local interference table in which the

interference information may differ among different nodes. To

eliminate the inconsistency when nodes in Vrhy handle distur-

bance, we propose a distributed successive packet scheduling

framework, referred to as DS-PaS.

The key idea of DS-PaS is to let each node in Vrhy only

determine the slot and channel assignments for the rhythmic

transmissions sent by itself in S̃, and we refer to such

assignment for each transmission as a transmission update.

Then, each node propagates the information related to these

transmission updates to its subsequent node (receiver of these

updated transmissions) along the rhythmic task’s routing path.

In this way, nodes in Vrhy are able to generate dynamic

schedules in a successive fashion without inconsistency. We

use s̃0,k(h) (1 ≤ h ≤ H0) to denote the transmission update

for χ0,k(h) generated by its sender Vh. By successively (i.e.,
in the order of the sending and receiving nodes along the

rhythmic task’s routing path) generating and propagating the

transmission updates s̃0,k(h), DS-PaS can avoid inconsistent

dynamic schedule3. The execution model of DS-PaS is sum-

marized below:

• In the system initialization phase (un-shaded part in Fig. 2),

the controller generates a static schedule S (e.g., Fig. 1(c))

using the global interference table4 according to a certain

scheduling policy (we use the earliest deadline first (EDF)

scheduling policy in this paper). S contains the schedule of

all the packets within one hyper-period and is propagated to

all the nodes in the network. After receiving S, each node

stores it locally and follows S (repeated every hyper-period)

to transmit packets when no disturbance occurs.

• When a disturbance is detected at t∗ (some release time of

the rhythmic task τ0), each sender node Vh ∈Vrhy (1 ≤
h ≤ H0) along τ0’s routing path locally and successively

determines the transmission updates in the dynamic schedule

S̃ for the rhythmic transmissions sent by itself in the first

p periods5, denoted as s̃0,m+1(h), . . . , s̃0,m+p(h) (1 ≤ p ≤
R), after the system enters the rhythmic mode at tn→r. This

phase is shown in the green shaded region in Fig. 2. After

the transmission updates are determined, Vh propagates the

key information of s̃0,m+1(h), . . . , s̃0,m+p(h) to the next

node Vh+1 along τ0’s routing path. Note that all nodes still

follow the static schedule S to transmit packets during the

time from the disturbance is detected (i.e., t∗) to the time

that τ0 enters its rhythmic state (i.e., r0,m+1).

• After the information of transmission updates {s̃0,k(h)|(m+
1 ≤ k ≤ m + p)} is received by all receiver nodes

Vh+1(1 ≤ h ≤ H0), τ0 enters its rhythmic state at

r0,m+1. During [r0,m+1, r0,m+p+1), each node Vh ∈ Vrhy

follows {s̃0,k(h)|(m + 1 ≤ k ≤ m + p)} to transmit

χ0,m+1(h), . . . , χ0,m+p(h) and all other nodes not in Vrhy

keep following static schedule S (see the red shaded region

in Fig. 2). Furthermore, during [r0,m+1, r0,m+p+1), Vh

generates transmission updates {s̃0,k(h)|(m+ p+ 1 ≤ k ≤
m + 2p)} for the transmissions in the next p periods and

propagates the corresponding information to Vh+1 in a sim-

ilar successive fashion. This pattern of (i) successively gen-

erating and propagating {s̃0,k(h)|(m+p+1 ≤ k ≤ m+2p)}

3Note that the inconsistency between the static and dynamic schedules can
be handled by the MP-MAC protocol [9] where more critical rhythmic packets
can always be successfully transmitted.

4We assume that the controller can collect the local interference table of
each device node to build the global interference table.

5We will discuss the significance and impact of p in Sec. V-B.
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in the current p rhythmic periods along the routing path of

τ0, and (ii) following {s̃0,k(h)|(m+p+1 ≤ k ≤ m+2p)} in

the next p rhythmic periods, is repeated until all the rhythmic

packets are processed.

For ease of discussion, in the rest of the paper, we refer

to the time duration from the time when the disturbance is

detected (t∗) to the start time of the system rhythmic mode

(tn→r = r0,m+1) as disturbance response time (DRT), and the

time duration of the system rhythmic mode as disturbance
handling time (DHT).

Given the execution model of DS-PaS, one critical ques-

tion to answer is how DS-PaS ensures successful avoidance

of inconsistent transmissions when constructing the dynamic

schedule by each node only based on their local interference

information. Furthermore, according to the problem definition

at the end of Sec. II, DS-PaS should be able to generate

the dynamic schedule that results in the minimum number of

dropped periodic packets when disturbances cause the system

to be overloaded. Finally, DS-PaS should be light-weight so

it can be easily implemented on resource-constrained RTWN

nodes. In the follow sections, we will present the details on

how we resolve these issues in the DS-PaS design.

IV. AVOIDING INCONSISTENT TRANSMISSIONS

DS-PaS aims to eliminate inconsistent transmissions in

the constructed dynamic schedule S̃. The key to achieve

this goal is to ensure that the sender and the receiver of

a transmission allocate the same time slot and channel to

the transmission. DS-PaS achieves this by performing the

successive packet scheduling process (as outlined in Sec. III)

obeying the following rules.

Rule 1. Each sender node along the routing path of the
rhythmic task, τ0, determines the transmission updates for the
packets in the subsequent periods instead of the current period.

Rule 2. Each sender node Vh of χ0,k(h) generates trans-
mission update s̃0,k(h) in the system rhythmic mode, and
propagates s̃0,k(h) to its receiver Vh+1 on τ0’s routing path
in a sequential manner. Each receiver node does not modify
the assigned time slots and channels of the transmissions
determined by the sender node.

Rule 1 ensures that the newly generated transmission update

can be propagated from the first node to the last node along

τ0’s routing path before the update is used in the subsequent

periods. Rule 2 guarantees that any pair of sender and receiver

nodes always use the same time slot and channel assignment

for its transmissions.

There are two key questions to be answered to enforce

Rule 1 and Rule 2. (i) What information should be passed

from each sender node to its receiver node? The answer to

this question fulfills the design requirement of our successive

scheduling mechanism. (ii) When should the transmission

update be generated within the current period of τ0? The

answer to this question impacts the response time of the system

to handle disturbance (i.e., DRT).

Fig. 3. Illustration of key time points for generating dynamic schedule.

For the first question, we consider node Vh as the receiver

of transmission χ0,k(h − 1) and the sender of transmission

χ0,k(h), and we discuss what information should be piggy-

backed in transmission χ0,k−1(h − 1) received by Vh (see

Fig. 3). To determine the transmission update s̃0,k(h) for

χ0,k(h) in the next period, Vh (as the receiver) needs the

following information from the sender (Vh−1) through trans-

mission χ0,k−1(h−1) in the current period. (i) To successfully

receive χ0,k(h)’s preceding transmission χ0,k(h− 1), the slot

index and the channel index of s̃0,k(h− 1) are necessary for

Vh because our successive scheduling mechanism requires that

each receiver must follow the transmission updates generated

by the sender. (ii) To determine s̃0,k(h), Vh needs to know

which periodic packets are dropped when scheduling the

previous rhythmic transmissions before χ0,k(h) such that Vh

can utilize these released time slots from the dropped periodic

packets. Therefore, the information to be passed along with

χ0,k−1(h−1) from the sender (Vh−1) to the receiver (Vh) con-

sists of slot index and channel index of transmission χ0,k(h−
1), and task/packet IDs of the dropped periodic packets6

determined by the previous transmission updates. Note that,

according to the successive scheduling mechanism, each node

Vh can only receive information from all the predecessor nodes

along the routing path, i.e., V1, . . . , Vh−1. Hence, previous

transmission updates include all s̃0,{1,...,k}({1, . . . , h− 1}).
Now we analyze and demonstrate that the payload overhead

for propagating the above information is acceptable. When

p = 1, it requires 2 bytes to store the slot index (12 bits) and

channel index (4 bits) for one transmission. Similarly, 2 bytes

are needed to store the task ID (7 bits) and packet ID (9 bits)

for one dropped periodic packet. The Maximum Transmission

Unit (MTU) in the IEEE 802.15.4 physical layer equals 127

bytes including 29 bytes for MAC header/footer and 2 bytes

for slot and channel offsets. Thus, 96 bytes are available for

representing 48 dropped periodic packets, which are sufficient

in most cases to store the information needed for one rhythmic

transmission to determine a feasible cell to transmit. Moreover,

our simulation results show that the average packet drop rate

under DS-PaS is within 2% (see details in Sec. VI). That is, 2

out of 100 periodic packets on average need to be dropped in

the system rhythmic mode, which is far smaller than the 48

dropped packets allowed.

The second question is when transmission update s̃0,k(h)
should be generated by Vh after Vh receives the information

6The task/packet IDs of dropped periodic packets determined by each hop
is incrementally added into the packet.
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stated above from previous node Vh−1. As shown in Fig. 3,

suppose in the (k− 1)-th period, Vh receives the transmission

update information from Vh−1 (or detects the disturbance if

Vh is the sensor node) at time slot t1 and the transmission

update s̃0,k−1(h − 1) (or the static schedule) assigns time

slot t2 to transmission χ0,k−1(h) in the (k − 1)-th period.

If the transmission update s̃0,k(h) for χ0,k(h) sent by Vh can

be generated before transmitting χ0,k−1(h) in t2, s̃0,k(h) can

be piggybacked to the receiver node Vh+1 in χ0,k−1(h) and

followed by Vh and Vh+1 in the k-th period. In this case, the

transmission updates for all the transmissions χ0,m+1 in the

first rhythmic period can be generated and received by all the

nodes along the routing path in the period during which the

disturbance is detected. Therefore, DRT = P0, one nominal

period. Otherwise, if s̃0,k(h) is generated after transmitting

χ0,k−1(h) in the (k−1)-th period, Vh has to propagate s̃0,k(h)
to Vh+1 in the k-th period. That is, each node requires one

period to generate the transmission update plus one additional

period to propagate it. Since the propagation of s̃0,k(h)
followed by the generation of s̃0,k(h+1) can be accomplished

within one period, the entire transmission updates for a packet

χ0,k require a total of (H0 + 1) × P0 periods in order to

be received by all H0 + 1 nodes along the routing path, i.e.,
DRT = (H0 + 1)× P0.

Next we analyze whether it is possible to generate the

transmission update for each transmission before transmitting

the packet in the current period, i.e., achieving DRT = P0.

As shown in Fig. 3, packet transmission of Vh happens in

the Tx Packet within time slot t2. Thus, any sufficiently

long idle time duration before Tx Packet can be used by

Vh to generate the dynamic schedule. Apparently, an idle

slot7 (15ms) for Vh is eligible for generating the transmission

update. If such an idle slot does not exist before Vh sending the

packet in the (k−1)-th period at t2, the time duration TxOffset
before Tx Packet (see Fig. 3) can be another candidate for

Vh to generate the transmission update. Through extensive

experimental evaluation, we demonstrate that the length of

TxOffset (3180μs) is sufficient for a typical RTWN device

(TI CC2538) to generate the transmission update for the

transmission in the following rhythmic period, thus achieving

DRT = P0.

Theorem 1. DS-PaS guarantees that all rhythmic transmis-
sions are consistent transmissions.

Proof. According to the definition of consistent transmission

in Def. 3, we only need to show that for any rhythmic

transmission χ0,k(h), its sender Vh and receiver Vh−1 both

allocate χ0,k(h) to slot offset t and channel offset c at time t.

According to Rule 1 in DS-PaS, sender Vh determines

χ0,k(h)’s transmission update s̃0,k(h) (i.e., slot offset t and

channel offset c) in a preceding period of packet χ0,k. Suppose

Vh determines s̃0,k(h) at t′ in the (k− q)-th period. Then we

have t′ < t. According to Rule 2, receiver Vh−1 receives

7Any slot within which Vh is not sending or receiving a packet is an idle
slot for Vh.

s̃0,k(h) from sender Vh at time t′′ and does not modify

slot offset t and channel offset c for χ0,k(h). Based on our

previous analysis, Vh is able to complete the generation of

s̃0,k(h) before transmitting the packet in the same period either

through an idle slot or a TxOffset duration. That is, Vh−1

receives s̃0,k(h) in the (k−q)-th period. Thus, we have t′′ < t.
Since t′ < t and t′′ < t, sender Vh and receiver Vh−1 both

transmit and receive χ0,k(h) in slot t and channel c. Therefore,

χ0,k(h) is a consistent transmission.

V. CONSTRUCTING DYNAMIC SCHEDULE

Under the successive scheduling mechanism discussed in

the previous sections, once a disturbance is detected, each

node in Vrhy determines a transmission update locally and

propagates it along the routing path of the rhythmic task.

The construction of the transmission update, i.e., the dy-

namic schedule in the system rhythmic mode must guarantee

that (i) rhythmic transmission assignment made by preceding

nodes remain unchanged, (ii) all rhythmic packets meet their

deadlines, (iii) a minimum number of periodic packets are

dropped, and (iv) the system can reuse the static schedule after

the rhythmic mode ends and all packets meet their nominal

deadlines. Below, we elaborate how DS-PaS determines the

transmission updates at each node in Vrhy .

A. Problem Formulation

In DS-PaS, the network starts operation by following the

static schedule S which guarantees that all tasks meet their

nominal deadlines if no disturbance occurs. Schedule S is

generated by the controller node (i.e., gateway) which has the

global interference information. We denote the static schedule

S as a set of tuples, i.e. S = {(t, c, i, h)}, which represents

that channel c at time slot t is assigned to task τi’s h-th

hop. For brevity, we refer to a pair of given time slot t
and channel c as a cell, and denote the above assignment as

a[t, c] = {(i, h)}. If two transmissions (i, hi) and (j, hj) have

no shared node and no interference, these two transmissions

can be scheduled in the same cell without impacting each

other, i.e., a[t, c] = {(i, hi), (j, hj)}. If no transmissions

are assigned to a cell, the cell is idle and is denoted as

a[t, c] = {(−1,−1)}.

As shown in Fig. 2, when disturbance is detected at t∗,

τ0 enters its rhythmic state at r0,m+1, i.e., tn→r = r0,m+1.

A dynamic schedule S̃ consisting of transmission updates

s̃0,m+l(h) (1 ≤ l ≤ R, 1 ≤ h ≤ H0) is thus needed for each

node Vh (1 ≤ h ≤ H0 + 1) to handle the increased rhythmic

packets before the system switches back to the nominal mode

and resumes the use of S. The system rhythmic mode starts

from tn→r and ends at a carefully chosen end point tep to

achieve guaranteed disturbance handling time (DHT).

When a disturbance occurs, the increased rhythmic work-

load needs more resource to guarantee the deadlines of all

rhythmic packets. Hence, some periodic transmissions have

to be dropped. Since any node V /∈ Vrhy keeps following

static schedule S to transmit periodic packets, we choose not

to adjust the assignment of periodic transmissions in S̃. Thus,
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if any periodic transmission χi,j(hi) in S is dropped due to

an updated rhythmic transmission in S̃ (we will discuss what

conditions cause a dropped periodic transmission in Sec. V-B),

we say periodic packet χi,j is dropped. Then, the question is

which periodic transmissions should be dropped to achieve the

desired dynamic schedule S̃ consisting of transmission updates

s̃0,m+l(h) (1 ≤ l ≤ R, 1 ≤ h ≤ H0). Formally, to satisfy the

four requirements listed at the beginning of this section, we

aim to solve the following problem.

Problem 1 – Dynamic Schedule Generation: Determine trans-

mission updates s̃0,m+l(h)(1 ≤ l ≤ R, 1 ≤ h ≤ H0) at each

sender node Vh on τ0’s routing path such that the total number

of dropped periodic packets in the system rhythmic mode,

denoted as ρ[tn→r, tep), is minimized and the following two

constraints are satisfied.

Constraint 1. f0,k(h) ≤ d0,k(h).

Constraint 2. In the dynamic schedule S̃, any periodic
transmission χi,j(hi)(1 ≤ i ≤ N) originally occupying cell
a[t, c] in S, i.e., a[t, c] = {(i, hi)}, can be (i) replaced
by a rhythmic transmission, i.e., a[t, c] = {(0, h0)}, (ii)
transmitted in parallel with a rhythmic transmission, i.e.,
a[t, c] = {(i, hi), (0, h0)}, if they do not interfere with
each other, (iii) removed due to transmission conflict with a
rhythmic transmission, i.e., a[t, c] = {(−1,−1)}, or (iv) kept
unchanged.

The choice of tep in Problem 1 directly impacts the

disturbance handling time, DHT. According to [9], each actual

release time of τ0 after f0,m+R can be a feasible end point

candidate. To ensure a short DHT, we select the first release

time of τ0 after f0,m+R as the end point, i.e., tep = r0,m+R+1.

B. Dynamic Schedule Generation

Generating transmission updates at each rhythmic sender

node Vh(1 ≤ h ≤ H0) in a successive manner while

guaranteeing minimum number of dropped periodic packets is

challenging, especially given that each node Vh only maintains

a local interference table. The key issue is how to let each

node select a valid cell in the static schedule to transmit the

rhythmic transmission so as to (i) guarantee the deadline of

the rhythmic packet and (ii) drop the minimum number of

periodic packets. To determine transmission update s̃0,k(h) for

rhythmic transmission χ0,k(h), Vh needs to select a certain

cell in S within [r0,k, d0,k) to transmit χ0,k(h). Below, we

introduce a greedy heuristic running at each node Vh to

perform such cell selection. The key idea of the heuristic is to

select the cell resulting in the minimum number of dropped

periodic packets according to the local interference table. The

heuristic is efficient and can be readily implemented on a

typical RTWN device.

To solve Problem 1, at the highest level, Vh needs to (i)

determine a feasible time duration for allocating χ0,k(h) in

the dynamic schedule to satisfy the deadline of χ0,k, and (ii)

select a cell within the time duration to minimize the number

of dropped periodic packets. According to Sec. IV, Vh receives

the slot index and channel index assigned to transmission

χ0,k(h − 1) by Vh−1, denoted as cell a[th−1, ch−1]), in the

transmission update s̃0,k(h − 1). Since transmission χ0,k(h)
cannot be transmitted before receiving χ0,k(h − 1), χ0,k(h)
can only be scheduled after time slot th−1

8. On the other hand,

to meet the deadline of χ0,k, χ0,k(h) cannot be transmitted

later than d0,k−(H0−h) since each subsequent transmissions

χ0,k(h + 1), . . . , χ0,k(H0) requires at least one time slot

to be transmitted. Therefore, any cell within time duration

(th−1, d0,k−(H0−h)] can be a candidate to schedule rhythmic

transmission χ0,k(h).
Next, we describe how to select a cell leading to the

minimum number of dropped periodic packets in time duration

(th−1, d0,k − (H0 − h)]. From the definitions of transmis-

sion conflict and transmission interference, we know that

any periodic transmission having transmission conflict (resp.,
interference) with χ0,k(h) cannot be scheduled within a same

time slot (resp., a same cell). Hence, according to Constraint

P 1.2 in Problem 1, if Vh selects cell a[t, c] to transmit rhyth-

mic transmission χ0,k(h), any periodic transmission χi,j(hi)
meeting one or both of the following two conditions needs to

be dropped.

Condition 1: χi,j(hi) is scheduled in a cell with slot index

t, and has transmission conflict with rhythmic transmission

χ0,k(h).
Condition 2: χi,j(hi) is scheduled in cell a[t, c], and has

transmission interference with rhythmic transmission χ0,k(h)
according to Vh’s local interference table.

According to Sec. V-A, if any periodic transmission χi,j(hi)
is dropped, periodic packet χi,j is dropped. Note that each

packet can only have one transmission in one time slot.

Thus, the number of dropped periodic packets equals to the

number of dropped periodic transmissions caused by the cell

selection of χ0,k(h) according to the above two conditions.

Further, the subsequent periodic transmissions of χi,j (i.e.,
χi,j(hi + 1), . . . , χi,j(Hi)) are also dropped such that their

assigned cells in the static schedule can be used by the

subsequent nodes Vh+1, . . . , VH0
to transmit rhythmic trans-

missions χ0,k(h+1), . . . , χ0,k(H0). Generally, more dropped

packets at Vh indicate that more cells in the static schedule

are released by the dropped periodic packets and can be used

to transmit rhythmic packet χ0,k(h + 1). Hence, intuitively

a larger p (i.e., the number of periods that each node Vh

uses to determine the transmission updates and propagate

the dropped packet information to Vh+1) can lead to better

performance in terms of fewer dropped packets. However,

our simulations show that increasing p does not significantly

decrease the total number of dropped periodic packets in the

system rhythmic mode. The reason is that the cells released

by the dropped packets determined by Vh may not be used by

Vh+1 to transmit χ0,k(h+1) due to transmission interference

within these cells according to Vh+1’s local interference table.

That is, due to different interference information stored at each

8If Vh is the source node (i.e., h = 1), th−1 = r0,m+1.
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Algorithm 1 Heuristic for Cell Selection

Input: χ0,k(h), static schedule S, dropped periodic packets

Output: a[t, c]
1: a, b ← 0, Nd min ← N ; //N is the total number of periodic

tasks in the system
2: Update S within (th−1, d0,k−(H0−h)] according to the dropped

periodic packets;
3: for t ∈ (th−1, d0,k − (H0 − h)] do
4: a ← the number of periodic transmissions having conflict

with χ0,k(h) at slot t;
5: for c ∈ [1, C] do
6: b ← the number of periodic transmissions having interfer-

ence with χ0,k(h) in cell a[t, c];
7: Nd(Vh, a[t, c]) ← a+ b;
8: if Nd(Vh, a[t, c]) = 0 then
9: // no transmission conflict and interference

10: return a[t, c];
11: end if
12: if Nd(Vh, a[t, c]) < Nd min then
13: //update the cell assignment with the minimum number

of dropped packets
14: Nd min ← Nd(Vh, a[t, c]);
15: amin ← a[t, c];
16: end if
17: end for
18: end for
19: return amin;

node, Vh does not necessarily need to consider transmission

updates determined by its subsequent nodes Vh+1, . . . , VH0

when it determines s̃0,k(h). Therefore, we design a greedy

cell selection heuristic running at each node as follows.

We use Nd(Vh, a[t, c]) to denote the number of dropped

periodic packets if Vh selects cell a[t, c] to transmit χ0,k(h).
Our greedy heuristic selects the cell with the minimum number

of dropped periodic packets, denoted as Nd min, in time

duration (th−1, d0,k − (H0 − h)]. Alg. 1 gives the pseudo

code of the heuristic. The time complexity of the cell selection

algorithm is O(P0 ·C) where P0 is the period of the rhythmic

task and C is the number of channels.

VI. PERFORMANCE EVALUATION

In this section, we present key results obtained from both

testbed and simulation experiments to evaluate the perfor-

mance of DS-PaS framework in RTWNs.

A. Testbed Implementation and Evaluation

We implemented DS-PaS on a RTWN testbed to validate

its correctness in achieving prompt response to unexpected

external disturbances. Our RTWN testbed consists of 7 wire-

less devices9 (TI CC2538 SoC + SmartRF evaluation board)

running the OpenWSN stack. OpenWSN is an open source

implementation of the 6TiSCH protocol. A typical OpenWSN

network consists of an OpenWSN Root and several OpenWSN

devices, as well as an optional OpenLBR (Open Low-Power

Border Router) to connect to IPv6 Internet. In our testbed

9Our Logic Sniffer only has 16 available channels, and 2 channels are
needed to display the slot information. Thus, we only have 14 remaining
channels which can support at most 7 nodes in a 2-channels RTWN.

setup, one device is configured as the root (functioning as

the controller) and the rest are configured as device nodes to

form a multi-hop RTWN. We set the slotframe length to 30
time slots (15ms for each slot) and enable two channels in

IEEE 802.15.4e. The transmission power of the devices is set

to be -25 dbm to support spatial reuse even when devices are

deployed in a small area. The testbed topology and interference

information are given in Fig. 4(a).

Our proposed DS-PaS was implemented by enhancing the

data link layer of the OpenWSN stack. In the testbed, an

external disturbance is emulated by the user pressing a button

on a sender node device. This will trigger a random task

originated at this device to enter the rhythmic state. The

devices along the routing path of this task follow DS-PaS to

generate the dynamic schedule for all rhythmic packets. A

16-channel Open bench Logic Sniffer is used to record device

radio activities by GPIO pins, in order to accurately measure

the timing information among different devices. As shown in

Fig. 4(b), each node has two rows showing their radio activities

on two different channels. We deploy three tasks in the testbed:

τ0 = {{V0, V1, V3, V5, V6}, 10}, τ1 = {{V1, V3, V5, V6}, 6}
and τ3 = {{V1, V2, V4}, 6}. For each task, the first element

denotes the routing path and the second element gives the

nominal period (relative deadline) of the task. We further

assume that τ0 is the rhythmic task and
−→
P0(

−→
D0) = [6, 7, 8, 9].

Fig. 4(b) shows the slot information and radio activities for

two slotframes when the system switches from its nominal

mode (1st slotframe) to the rhythmic mode (2nd slotframe).

Here, a falling edge or a rising edge in the top most waveform

marks the start of a new slotframe. The second waveform from

the top represents time slot, and the fourteen waveforms below

show the radio activities (either transmitting or receiving) of

the respective seven nodes on two different IEEE 802.15.4e

channels, as indicated in the left panel.

In this experiment, we let V0 enter the rhythmic mode,

and thus τ0’s period reduces from 10 to 6. In the rhythmic

mode (2nd slotframe), τ0 has to handle 4 packets while it

only needs to handle 3 packets in the system nominal mode

(1st slotframe) (see the 3nd and the 4th waveform from top).

As shown in Fig. 4(b), at slot-offset 4 in the 1st slotframe,

there are three transmissions (V0 → V1, V2 → V4, and

V5 → V6). Transmission V0 → V1 and transmission V2 → V4

happen on different channels, while transmission V0 → V1 and

transmission V5 → V6 happen on the same channel since they

are beyond interference range of each other and spatial reuse

is allowed. The transmissions of τ0’s packets are marked by

red dashed lines in Fig. 4(b). To accommodate the increased

workload (i.e., four packets of τ0 instead three as in the

nominal mode) in the system rhythmic mode, the first released

packet of τ1 in the 2nd slotframe is dropped. V1 sends τ0’s

packet instead of τ1’s packet. However, since V2 and V4 do not

receive the disturbance information, they still follow the static

schedule by enabling their radios and waiting for τ1’s packet at

slot offset 3 and 4, respectively (marked by the purple circles

in Fig. 4(b)). This behavior exactly matches the results from

the simulation. We also measured the computation overhead

878

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on January 14,2023 at 20:49:00 UTC from IEEE Xplore.  Restrictions apply. 



Slot-offset 3Slot-offset 4

Slotframe (Nominal
mode)

Slotframe (Rhythmic
mode)

Shared
slot

Shared
slot

Shared
slot

Fig. 4. (a) An overview of the testbed and employed network topology/task set used for functional validation of the DS-PaS framework. (b) Slot information
and radio activities in the test case captured by Logic Sniffer. A blue (or green) rectangle represents a send/accept operation on Channel 0 (or Channel 1).

of the cell selection algorithm on the testbed. Executing the

cell selection algorithm takes 5500 CPU cycles on CC2538

with the CPU frequency of 32MHz. Thus, executing the cell

selection algorithm takes 5500/(32× 1024× 1024) = 163μs,

which is a rather small overhead compare to the TxOffset
length (3180μs) and the slot length (15000μs).

B. Simulation Study

In the simulation study, we compare DS-PaS with the state-

of-the-art approach FD-PaS. Both DS-PaS and FD-PaS can

handle unexpected external disturbances in RTWNs, but FD-

PaS does not exploit multiple channels and spatial reuse. We

compare their performance using two metrics. Acceptance
Ratio (AR): the fraction of feasible task sets over all the

generated task sets. (Note that a task set is feasible only if

it is schedulable in the system nominal mode under EDF. Our

experiments are to evaluate the improved system schedulabil-

ity benefited from multi-channel RTWNs supporting spatial

reuse.) Drop Rate (DR): the ratio between the number of

dropped periodic packets and the total number of generated

packets in the system rhythmic mode.

To ensure fairness, we randomly generate network topolo-

gies and task sets. We use an abstract 10×10 grid to construct

the network and ensure that the generated topology is a

connected graph. The total number of nodes, M , is an integer

in the set of {10, 20, . . . , 100}. The number of channels C is

an integer in the set of {1, 2, . . . , 8}.

After a feasible network topology is constructed, we gen-

erate random periodic task sets. Each task set is generated

according to a target normalized utilization U (defined as the

total utilization U∗ of all the tasks divided by the number of

channels) in the system nominal mode and by incrementally

adding random periodic tasks to an initially empty set T .

Each task τi is generated according to the number of hops

Hi, nominal period Pi randomly selected from [20, 50], and

nominal relative deadline Di = Pi. After all tasks in T are

generated, one task is randomly selected as the rhythmic task

τ0. We control the workload of the rhythmic task by tuning

the number of elements in
−→
P0, denoted as R, which can be

any integer in the set of {4, 6, . . . , 16}.

In the first set of experiments, we compare the average

AR of FD-PaS and DS-PaS by varying the number of nodes

(M ), normalized utilization (U ), and number of channels (C).

We first evaluate the schedulability improvement brought by

spatial reuse by setting C = 1. As shown in Fig. 5(a), when

U ≥ 1, the AR of FD-PaS drops to 0 while DS-PaS still

maintains a high AR. This is because spatial reuse is supported

by DS-PaS where multiple transmissions can be scheduled

within one time slot. Further, we can observe from Fig. 5(a)

that AR increases along with the increase of M since more

spatial reuse opportunities can be exploited as the network

scales up. Next, we set M = 60 with a fixed network topology

and vary the number of channels C. Fig. 5(b) shows that DS-

PaS maintains a relatively high AR while the AR of FD-PaS

drops to 0 when C ≥ 2 even in the case of U < 1. The reason

is that for a fixed number of nodes M , more transmission

conflicts (caused by shared nodes) may occur within each time

slot when the total utilization U∗ increases with the increase

of C. Note that U is normalized utilization and the total task

utilization U∗ is higher for larger C. Last, Fig. 5(c) shows the

AR of both methods with varying M and C where the trends

of AR are similar to those in the previous experiments.

In the second set of experiments, we compare the average

DR of FD-PaS and DS-PaS by varying normalized utilization

U in the nominal mode, number of nodes M , and number of

rhythmic periods R of the rhythmic task. For each framework,

we also evaluate the DR gap between storing the global

interference table and the local interference table at individ-

ual nodes when making the packet dropping decisions. For

fairness, we compare the DR when FD-PaS and DS-PaS are

both schedulable in the nominal mode. We fix the number of

channels as C = 2 and modify the packet dropping algorithm

in FD-PaS to support multiple channels. The “−L” and

“−G” in the legends indicate the local and global interference

case, respectively. Fig. 6 summarizes the DR results. We can

observe that DS-PaS achieves a significantly lower average

DR compared to FD-PaS. The data also show that with the

global interference information, DR can be further reduced.

However, the difference between DS-PaS-L and DS-PaS-G is

rather small. This is because when U < 1, DS-PaS can already

achieve a very low DR. From Fig. 6(a) and Fig. 6(b), we can
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(a) (b) (c)

Fig. 5. Comparison of the avg. AR between DS-PaS and FD-PaS under different settings, (a) C = 1, (b) M = 60, and (c) U = 0.9.

(a) (b) (c)

Fig. 6. Comparison of the avg. DR between DS-PaS and FD-PaS under different settings, (a) C = 2, R = 4, (b) C = 2, U = 0.45, and (c) N = 60, C = 2.
The DS-PaS-G surface mostly co-insides with the DS-PaS-L one.

observe that when M increases, DR drops due to more spatial

reuse opportunities. Another observation from Fig. 6(a) and

Fig. 6(c) is that when U increases, DR increases due to more

workloads in the network. An interesting observation is that

when R (the number of rhythmic periods, hence the number

of rhythmic packets) increases, the average DR drops first then

increases (see Fig. 6(b) and Fig. 6(c)). This is because when

R is small, though we need to drop more packets due to the

increase in the workload of the rhythmic task, the number

of dropped packets grows more slowly than the number of

packets in the rhythmic mode.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose DS-PaS, a distributed successive

packet scheduling framework, to handle external disturbances

in multi-channel RTWNs with spatial reuse while guaranteeing

to meet the deadlines of all critical tasks. DS-PaS is built on a

novel successive scheduling mechanism and an efficient packet

dropping heuristic method. Our extensive experiments validate

the correctness and effectiveness of DS-PaS. As future work,

we will explore how to handle concurrent disturbances in a

distributed fashion.
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