ODHD: One-Class Brain-Inspired Hyperdimensional Computing
for Outlier Detection

Ruixuan Wang
Villanova University
rwang8@villanova.edu

ABSTRACT

Outlier detection is a classical and important technique that has
been used in different application domains such as medical diagno-
sis and Internet-of-Things. Recently, machine learning-based out-
lier detection algorithms, such as one-class support vector machine
(OCSVM), isolation forest and autoencoder, have demonstrated
promising results in outlier detection. In this paper, we take a radi-
cal departure from these classical learning methods and propose
ODHD, an outlier detection method based on hyperdimensional
computing (HDC). In ODHD, the outlier detection process is based
on a P-U learning structure, in which we train a one-class HV
based on inlier samples. This HV represents the abstraction infor-
mation of all inlier samples; hence, any (testing) sample whose
corresponding HV is dissimilar from this HV will be considered as
an outlier. We perform an extensive evaluation using six datasets
across different application domains and compare ODHD with
multiple baseline methods including OCSVM, isolation forest, and
autoencoder using three metrics including accuracy, F1 score and
ROC-AUC. Experimental results show that ODHD outperforms all
the baseline methods on every dataset for every metric. Moreover,
we perform a design space exploration for ODHD to illustrate the
tradeoff between performance and efficiency. The promising results
presented in this paper provide a viable option and alternative to
traditional learning algorithms for outlier detection.

1 INTRODUCTION

Outlier detection, also known as anomaly detection, remains to be
an essential and important technique which has been used in dif-
ferent application domains such as medical diagnosis [1], Internet-
of-Things (I0Ts) [2], and financial fraud detection [3]. Outliers in a
dataset are typically defined as extreme values that deviate from
other observations on data, or an observation that diverges from an
overall pattern in a sample set. In general, outliers are an indication
of variability in a measurement, experimental errors or a novelty.
Recently, cyber-attackers also fabricate outliers by intentional ma-
nipulations, which threaten the security of cyber-physical systems
such as those in autonomous vehicles [4].

Over the years, researchers continue to design robust solutions
to detect outliers efficiently where statistical methods and machine

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

DAC 22, July 10-14, 2022, San Francisco, CA, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9142-9/22/07...$15.00
https://doi.org/10.1145/3489517.3530395

Xun Jiao
Villanova University
xun.jiao@villanova.edu

X. Sharon Hu

University of Notre Dame

shu@nd.edu

learning methods are two most popular solutions. Statistical meth-
ods include parametric methods such as Gaussian mixture model
(GMM) methods [5, 6] and regression methods [7, 8], and non-
parametric methods such as kernel density estimation methods [9].
While statistical methods are mathematically well explainable, fast
to evaluate, and easier to implement, their results could be unre-
liable for practical applications due to their dependency on and
assumption of a specific distribution model.

Recently, machine learning-based approaches are increasingly
applied in outlier detection. Some of the most successful methods
are one-class support vector machine (OCSVM), isolation forest,
and neural network-based autoencoder. OCSVM is an alteration
of traditional SVM that separates outliers from the inliers with the
maximum margin [10]. Isolation forest is an ensemble model of
isolation trees where outliers are more sensitive to isolation and
have a relatively short traversal path length [11]. Autoencoder is
an emerging unsupervised learning-based outlier detection method
using a neural network to reconstruct the data samples, where
outliers are detected based on the reconstruction errors [12].

We take a radical departure from these learning methods by
developing an hyperdimensional computing (HDC)-based method
referred to as ODHD. As an emerging computing paradigm, HDC
is inspired by the attributes of human brain circuits including high-
dimensionality and fully distributed holographic representation [13,
14]. Similarly, HDC represents symbols with high-dimensional vec-
tors called hypervectors that usually have a dimension D = 10, 000.
HDC postulates the generation, manipulation, and comparison of
such HVs to perform learning tasks. Compared with DNNs, the
advantages of HDC include smaller model size, less computation
cost, and one/few-shot learning, making it a promising alternative,
especially in low-cost computing platforms [14]. Recently, HDC
has shown promising results in different applications such as com-
puter vision [15], bio-signal processing [16], drug discovery [17],
robotics [18], and natural language processing [19]. In this paper
we introduce a novel outlier detection method by developing a one-
class HDC based on a P-U learning structure. This is inspired by a
simple yet reasonable assumption that a single HV can represent the
abstract information of all inlier samples, which will be sufficiently
different than the HV representing outlier sample for detection.
Specifically, this paper makes the following contributions:

(1) We introduce ODHD, a novel one-class HDC-based out-
lier detection employing a P-U learning structure, which
attempts to form a high-dimensional representation of in-
liers samples. The promising results present in this paper
provide a viable alternative to existing approaches in outlier
detection field.

(2) We develop a complete pipeline for HDC-based outlier detec-
tion. We map all inliers samples in high-dimensional space

https://doi.org/10.1145/3489517.3530395

and form a one-class hypervector to represent the abstrac-
tion information of inliers. We propose a confidence-based
method to automatically compute a threshold which will
be used for outlier detection. During testing time, we com-
pute the similarity between the unseen testing sample and
the one-class HV, and compare such similarity with the pre-
computed threshold, based on which ODHD can detect the
outliers.

(3) We evaluate the performance of ODHD using six datasets
from the Outlier Detection Datasets (ODDS) Library [20] and
compare ODHD with emerging baseline methods including
OCSVM, isolation forest, autoencoder, and HDAD. The com-
prehensive evaluation results show that ODHD is able to
outperform all the baseline methods on all six datasets in all
metrics including accuracy, F1 score and ROC-AUC.

2 RELATED WORK

Outlier detection has been intensively studied in the past. [5] devel-
oped an globally optimal Exemplar-Based Gaussian Mixture Model
(GMM)-based unsupervised outlier detection method. They used
global optimal expectation maximization (EM) algorithm to fit the
GMM to a given data set. [6] further enhanced such a method by
combining GMM with locality preserving projections. Regression-
based methods are also proposed such as [7] which detects outliers
with linear regression. The key idea is based on a non-interactive
covariance matrix and concentration steps applied in the least
trimmed square estimation. While statistical methods are mathe-
matically well acceptable, fast to evaluate, and easier to implement,
their assumption and dependency on a specific distribution model
could hinder their practical use.

Among the most popular machine learning-based outlier detec-
tion methods are OCSVM [10], isolation forest [11], and autoen-
coder [12]. OCSVM separates outliers from the inliers with the
maximum margin, where the inference results within the estimated
region are detected as normal samples where the samples outside
the region are predicted as outliers [10]. In the isolation forest,
outliers are more sensitive to isolation and have a relatively short
traversal path length thus can be detected by examining the path
length [11]. Neural network-based autoencoder contains an encod-
ing network and a decoding network. The encoder maps the original
input sample into a low-dimensional feature space, while the de-
coder attempts to reconstruct this sample from this encoded feature.
The autoencoder is trained to minimize the overall reconstruction
error, and the preserved information of the autoencoder is required
to be as much relevant as possible to the normal instances. Outlier
samples that diverge from the majority of the training samples are
hardly reconstructed, which leads to a high reconstruction error.
Thus, the outliers can be detected by examining the reconstruction
error [12].

Recently, HDAD [21] applied HDC to anomaly detection by
following the principles of autoencoder; it attempts to “recontruct”
the input samples and detect anomalies based on reconstruction
error. However, the detection process of HDAD is tedious where it
needs to go through both encoding and decoding process (similar
to autoencoder) to “reconstruct” the sample. ODHD is drastically
different from HDAD by proposing a one-class HDC approach

to detect outliers. We comprehensively compare the performance
of ODHD with all the four baseline methods mentioned above —
OCSVM, isolation forest, autoencoder, and HDAD.

3 HDC PRELIMINARIES

In this section, we briefly describe the basic background and math-
ematical foundations of HDC. Basic HDC Component Hyper-
vectors (HVs) are the fundamental components in HDC. An HV
is a high-dimensional holographic vector with independent and
identically distributed (i.i.d.) elements. The HV with D = d dimen-
sions is denoted as ﬁ = (h1, hy, ..., hy), where h; is an element
in HV and can be a binary, bipolar or integer number [14]. HVs
are used to embed and represent information in different scales
and levels, such as representing new information or aggregating
existing information.

In this paper, we employ bipolar HVs, which means each element
in a HV are either —1 or 1. We use cosine distance to measure the
similarity of information embedded between two HVs, as shown in
Eq. 1. Moreover, when the dimensionality is sufficiently high (e.g.,
D = 10, 000), the HVs are quasi-orthogonal where any two random
bipolar HVs are nearly orthogonal [13].

HY Hy 3% hehy
[|Hx || X ||Hy|| \/2?=1 hxiz-\/Z?:lhyiz
Basic HDC Operations HDC supports three basic arithmetic op-
erations including addition (+), multiplication (*) and permutation
(p), as illustrated in Eq. 2. Additions and multiplications both take
two input HVs as operands and perform element-wise add or mul-
tiply operations. Permutation takes one HV as the input operand
and perform cyclic rotation. All the three operations preserve the

dimensionality of the input HVs, i.e., the input HVs and the output
HVs have the same dimension.

Hy + Hy = (hx1 + hy1, hxz + hya, .
Hy x Hy = (hy1 * hy1, hx2 * hy, ..

1 -
p (H) = (hg.h1,ha, ... ha—1)
All the three HD operations have their corresponding physical
meanings. Addition is used to bundle the same-type of information,
while multiplication is used to bind different types of information
together and to generate new information. Permutation is used to
reflect spatial or temporal changes in the information, such as time

S(Hy, Hy) = &

) hxd + hyd>
o hxa hyd) @)

series or spatial coordinates [13].

4 ODHD FRAMEWORK

In this section, we leverage the mathematical properties of HDC and
develop a novel one-class HDC-based outlier detection framework
called ODHD, which essentially learns abstract representation of
inlier samples and then performs one-class classification-based out-
lier detection. In ODHD, the outlier detection process is based
on a P-U learning structure [22], which means we use only inlier
samples for training, and test on an testing set (may contain both
inliers and outliers) without the information of labels. The one-class
HV we trained contains the information from all the patterns of
inlier (training) samples. For testing, we detect whether a query
HV conforms to the one-class HV by using cosine similarity. We
develop a confidence-based algorithm to calculate a threshold based

E Seed HVs generation n Encoding i
[l 1
Efmax——.|] 1 1|1|1| |1|]|1|1|1| EI Fa=1fi, fare s ful E
e) s By | L
b s [[l faf e e e : S S S b
: s [[l []a] DfIIP(SZVE) of ptf o gmt|
. :) foeE) & F e ;
i : i i
A CUFIEIET R EI S EV RN RN ETEY | Y |
-:l";;ining i Thresht-);(;-Calculation l;i:l-e:Tunning i“-(;l_lt-l;er Detection -15
T={HF1""'HFN} T = {le, “"HFN} Ht HOC Hq Hoc
l | |
() ()
> ? 1 1
Sim; Sim,
S = {Simy, ..., Simy} l <R l <R
| one class HV Hy¢ | 1 Hoc += H, Outlier
S | Y I o;

Figure 1: ODHD framework with six key phases.

on training samples. If the cosine similarity between a query HV
and one-class HV is lower than the threshold, the query HV will
be detected as an outlier. Fig. 1 illustrates the whole process of
ODHD, which is divided into six key phases: Seed HV Generation,
Encoding, Training, Threshold Calculation, Fine-Tuning, and Out-
lier Detection. We describe each phase of ODHD in detail in the
following sections.

4.1 Seed HVs Generation

As the first step, we need to generate seed HVs so that we can en-
code the raw sample features to HVs. As noted previously, each HV
is a high-dimensional vector with ii.d elements [13]. We choose to
use a simple HV generation method consistent with the one in [23]
to create k seed HVs that can support later encoding. Specifically,
we initiate a random bipolar D-dimension HV 57, and then gener-
ate other HVs by randomly flip E = D/2k elements. This method
is more computationally efficient compared to randomly generat-
ing k random HVs directly, while preserving the orthogonality of
HVs [23].

k is a configurable parameter depending on how we discretize
the input data. Assume for a specific dataset, we have each fea-
ture vector with m features F, = (fi, f2, ..., fm). According to the
training set we can capture the minimum and the maximum values
of each feature value fin and fiax. Then we discretize the input
feature space (fmin, fmax) into k uniform intervals. Thus, each fea-
ture value corresponds to a specific interval, and we can convert
the feature vector into an integer vector, which will be used for
encoding. A larger k means that we have more quantization levels,

and hence we can more precisely represent the original data but
also increase the memory overhead (will discuss in Section.5.4).

4.2 Encoding

The encoding module projects the original fea_t)ure vector into an
HV. The encoding process of feature vector F, = (fi, f2, ..., fm)
is shown in the Part B of Fig. 1. We first index the seed HV corre-
sponding to each feature value. For example, if a feature value f3
falls into the 5" interval among the k intervals, the corresponding
seed HV is the 5% of the k seed HVs.

Then, we employ the permutation operation to embed the infor-
mation of the feature position into the seed HV. As the permutation
operation reflects the spatial change of information, we bundle the
information of feature position by deploying a cyclic rotation on
each seed HV as shown in Eq. 2. Particularly, we keep the first seed
HV un-permuted (po(s}T)), and for seed HV 53 to sg, we circularly
rotate the it? seed HV by i — 1 elements, i.e., pi_1 (s—f:)

At the end of the encoding process, we aggregate all permuted
seed HVs corresponding to all feature values into one HV IiI;::
representing the entire feature vector I*T,: Note that if we have 100
inlier samples (i.e., 100 feature vectors) in the training dataset, we
would have 100 corresponding encoded HVs. The overall encoding
process is denoted as Eq. 3.

Hp, = p°GR) +p GR) +-+ p™ ' GF) (3)

4.3 Training

After encoding all feature vectors in the training set, the training
phase generates the one-class HV (Hpc) of the entire training set,
i.e., all inlier samples. Eq. 4 illustrates the process of HDC training
by adding (bundling) every HV representing each inlier feature
vector. For example, if there are 100 inlier samples, then the 100
corresponding encoded HVs generated by the encoding process are
added together to generate a single one-class HV Hpc representing
inlier samples or patterns.

N
Hoc =) HF, 4
i=1

4.4 Threshold Calculation

In ODHD, we propose a confidence-based threshold calculation
approach. In order to calculate a threshold to separate inliers and
outliers, we measure the cosine similarity between I%C) and all
training HVs to obtain a similarity array S. As the Part D in Fig. 1
shows, each similarity Sim; in array S can be considered as the
confidence of the training HV to be an inlier sample.

We calculate the mean value S;eqn and the standard deviation
S¢¢q of all the similarity values in array S. And we deploy a threshold
estimation strategy according to [12] shown in Eq.5.

R = Smean +2 % Sgq ®)

Ultimately, we compute the threshold R based on the confidence of
all training HVs. In the outlier detection domain, only the samples
with cosine similarity higher than the threshold are determined as
an inlier, while all the samples with cosine similarity lower than
the threshold are identified as outliers.

4.5 Fine-Tuning

We perform extra fine-tuning for ODHD. Note that we still only
use the given training dataset for the fine-tuning process. The fine-
tuning process of ODHD is shown in Part E of Fig. 1.

After the training phase, we expect that all training HVs should
be properly determined as inliers (but this may not be the case).
In each fine-tuning epoch, we feed all the training samples to the
ODHD. For each training sample, we estimate the cosine similarity
Sim; between the training HV Itl: and one-class HV HEE When
Simy is higher than the threshold R, which means the estimation
is correct, we do not make any changes on the IET However, if
Sim; is lower than R, which means ODHD mistakenly considers
the inlier sample ¢ as an outlier, we will update the one-class HV:
we add the mis-detected training HV ﬁ; into the one-class HV to
update the corresponding information in I%C’. For consistency, we
perform 10 fine-tuning epoches for all cases.

Hoc = Hoc + H; (6)

4.6 Outlier Detection

After we train the PKC) and obtain the threshold R based on confi-
dences of the training HVs, we deploy the outlier detection on an
unseen sample without the knowledge of labels based on ODHD.
The outlier detection process is shown as the Part F in Fig. 1.
During the outlier detection phase, we encode the testing sample
q into an HV called query HV 17(; following the same encoding

process in Eq. 3 based on the same seed HVs. Then we compute the
cosine similarity Simq between the query HV 17(; and the one-class
HV IE) In the event that Simg is lower than the pre-computed
threshold, the sample g will be determined as an outlier.

— Inlier Simg > R
Hy = (7)
Outlier Simg <R

5 EXPERIMENT RESULTS

In this section, we evaluate the performance of ODHD on six
datasets and compare ODHD with four baseline methods. We also
present a design space exploration for ODHD to illustrate the
tradeoff between ODHD performance and memory efficiency.

5.1 Experiment Setup

We evaluate the performance of ODHD on six datasets selected
from the Outlier Detection Datasets (ODDS) Library [20] spanning
multiple application domains such as medical diagnosis and wire-
less communication. These datasets are Wisconsin-Breast Cancer
(Diagnostics) dataset (WBC), Mammography (MAMMO), MNIST,
Cardiotocography (CARDIO), lymphography (LYMPHO), and Land-
sat Satellite (SATI2). These datasets are widely used as benchmarks
in existing outlier detection studies [24-26]. Each dataset contains
a certain number of outliers specified by ODDS library, e.g., WBC
dataset has 21 outliers. The testing dataset is a mixed inliers and
outliers, e.g., 25% — 75% outlier - inlier mix. More details of these
datasets can be found on the (ODDS) Library website [20]. We re-
peat the experiments independently for 10 times and report the
average performance. We also present error bars as shown in Fig. 2
to illustrate the performance variations due to the randomness in
different learning methods.

We compare ODHD with the following four baseline outlier
detection methods:

e Autoencoder: Autoencoder is an emerging unsupervised
learning outlier detection approach based on neural network.
In this paper, we use the same autoencoder architecture
as [12].

e Isolation Forest: Isolation Forest is an ensemble model of
isolation trees, which uses the path length of each sample to
detect outliers. In this paper, we establish an isolation forest
model using the same configuration as [11].

e OCSVM: OCSVM attempts to separate outliers from the
inliers with the maximum margin. We have a grid search
for an appropriate set of hyper-parameters such as kernel
functions and the value of gamma to fine-tune the OCSVM
model following [27].

e HDAD: HDAD follows the similar principles of autoencoder;
it first “recontruct” the input samples and then it detects
anomalies based on reconstruction error. We use the same
architecture of [21].

We implement ODHD and the four baseline methods in Python
and perform our experiments on a desktop with i7-7700 CPU and
12 GB RAM. To comprehensively quantify the performance, we
use three metrics to evaluate the performance of ODHD: accuracy
(ACC), F1 score (F1) and ROC-AUC (AUC). Note that while accuracy
is widely used and easy to understand, an outlier detection dataset

may be significantly imbalanced. Hence, accuracy may not precisely
reveal the performance of outlier detectors. Therefore, we also use
ROC-AUC, which is widely used for outlier detection as it can
accurately represent the trade-off between true positive and false
positive [28]. Meanwhile, F1 score is also a widely-used metric
in binary classification which can comprehensively indicate the
trade-off between precision and recall [29].

5.2 ODHD Performance

As shown in Fig. 2, we compare the performance of ODHD with
the baseline methods on all six datasets for the three metrics with
error bar. We can observe several important facts.

First, we can observe that ODHD is able to consistently outper-
form the four baseline methods on every dataset for every metric.
For ACC, the average ACC of ODHD is 90.4% on all datasets, repre-
senting an improvement of 17.1% over OCSVM (73.3%), 11.1% over
isolation forest (79.3%), 10.5% over HDAD (81.8%) and 15.7% over
autoencoder (74.7%). For F1, the average F1 of ODHD is 82.3% on
all datasets, representing an improvement of 18.5% over OCSVM
(63.8%), 12.8% over isolation forest (69.5%), 15.8% over HDAD (71.1%)
and 19.8% over autoencoder (62.5%). For AUC, the average AUC
of ODHD is 89.4%, representing an improvement of 10.9% over
OCSVM (78.5%), 6.5% over isolation forest (82.9%), 6.8% over HDAD
(83.7%) and 12.7% over autoencoder (76.7%).

Second, while ODHD has a certain level of fluctuation (error
bars) in different runs (just like all the other models), we can observe
that even the low end of ODHD is higher than the high end of any
baseline method, representing the robustness of the performance
of ODHD.

Third, while the performance of different methods all vary with
the change of different datasets, ODHD shows a better stability
compared to other methods. For example, for ACC, the lowest ACC
of ODHD is over 80%, while the lowest ACC are about 60%, 70%,
60% and 70% for OCSVM, Isolation Forest, Autoencoder and HDAD,
respectively. Similar phenomenon can also be seen in F1 and AUC.

Last but not least, in certain datasets, e.g., LYMPHO, all base-
line methods significantly under-perform while ODHD maintains
a high accuracy close to 100%. The reason is possibly related to
the fact that the lymphography data are relatively small so that
the baseline methods cannot converge to a proper point; however,
ODHD is able to learn useful information even from a small amount
of data. Similar advantages of HDC have been observed in various
supervised classification studies for biomedical datasets that are
often small [30].

5.3 ODHD Execution Time

In this experiment we compare the execution time (both training
and testing) of different methods. For a fair comparison, since neu-
ral network-based Autoencoder requires GPU support, we compare
the ODHD with the other three baseline models, OCSVM, isolation
forest and HDAD. The comparison result is indicated in Table 2. In
general, HDC-based approaches (HDAD and ODHD) take longer
execution time than conventional approaches such as OCSVM and
isolation forest. It is worth mentioning that the main time consump-
tion comes from the encoding process in ODHD, which takes 72.3%
of the training time and 82.5% of the testing time on average. While

it is out of scope of this paper, there are existing methods and a
growing research effort in accelerating HDC encoding process both
from software and hardware [31, 32]. Our future work will consider
the efficient hardware implementation of ODHD.

Table 1: Average performance of different models over six
datasets

OCSVM Isolation Forest HDAD Autoencoder =~ ODHD

ACC(%) 73.3x2.3 79.3£2.5 81.8+1.8 74.7£1.5 90.4+0.8
F1(%) 63.8+2 69.5+2.4 71.1£2.8 62.5+1.3 82.3+1.1
AUC(%) 78.5+1.4 82.9+1.7 83.7+£2.3 76.7£1.1 89.4+0.7

Table 2: Executime time(s) comparison of different models
over six datasets (training time/testing time)

OCSVM Isolation Forest HDAD ODHD
WBC 0.003/0.002 0.112/0.03 0.412/0.198 0.399/0.112
MNIST 0.925/0.782 0.355/0.198 20.773/25.662 18.024/9.631
CARDIO 0.031/0.045 0.115/0.042 1.134/1.248 1.212/0.615
LYMPHO 0.001/0.001 0.111/0.028 0.169/0.053 0.119/0.02
SATI2 0.965/0.084 0.211/0.036 7.205/0.704 9.109/0.549
MAMMO 1.942/0.478 0.151/0.044 7.474/1.129 5.644/0.555

5.4 Design Space Exploration

Recall that in Section 4.1, we describe the configurable parameter k
which represents the quantization level of input data, and directly
determines the number of seed HVs. In general, the more levels
we have for input data (i.e., the more seed HVs), the more distinct
information we can represent using seed HVs, hence the higher
performance we can obtain. However, more seed HVs lead to a
higher memory requirement. Note that the total memory storage
required by ODHD is the storage size of k seed HVs and the single
one-class HV. In this section, without loss of generality, we explore
the trade-off between the model size and the model performance.

We perform an extensive design space exploration by experi-
menting six different k values and repeat the experiments on all
datasets and metrics for every k value. The results are summarised
in Table.3. Interestingly, k value reducing to a certain extent of does
not affect the performance of ODHD. For example, when reducing
k from 200 to 100, the performance is almost unchanged for all
metrics while the model size is almost half of what it was before.
This indicates that by carefully tuning k value, we can improve the
memory efficiency of ODHD without affecting the performance.
However, when further reducing the k value to 50, some datasets
can see a slightly larger drop for certain metrics. For example, we
can see a 4% drop for the F1 score of the LYMPHO dataset. Such ex-
ploration can lead to follow-up studies in how to efficiently balance
the performance-efficiency trade-off.

6 CONCLUSION

Outlier detection aims to detect extreme values that deviate from
other observations in a dataset, or an observation that diverges
from an overall pattern on a sample. In this paper we propose
ODHD, a novel outlier detection algorithm based on one-class
brain-inspired hyperdimensional computing (HDC). The aim of
ODHD is to generate (train) a one-class HV that can represent the
abstract information of inliers in a high-dimensional space. To this

Acc

F1

Auc

100 T 100 I 100 1
% M i I i
80 80 1 N
70 70
60 60
50 50
40 WBC MNIST CARDIO LYMPHO SATI2 MAMMO WBC MNIST CARDIO LYMPHO SATI2 MAMMO 40 WBC MNIST CARDIO LYMPHO SATI2 MAMMO
(a) ACC (b) F1 (c) AUC
s OCSVM I solation Forest s HDAD Bl Autoencoder mm ODHD
Figure 2: Comparison between ODHD and four baseline methods based on three metrics, ACC, F1 and AUC
Table 3: Design Space Exploration of ODHD on six datasets
WBC MNIST CARDIO LYMPHO SATI2 MAMMO
Level (k) Memory (KB) ACC F1 AUC ACC F1 AUC ACC F1 AUC ACC F1 AUC ACC F1 AUC ACC F1 AUC
200 7897 0.912 0.84 0.916 0.788 0.653 0.791 0.883 0.775 0.857 0.975 0.956 0.983 0.938 0.882 0.934 0.836 0.702 0.815
100 3988 0.903 0.829 0.916 0.784 0.653 0.793 0.867 0.758 0.855 0.967 0.941 0.978 0.934 0.875 0.931 0.822 0.696 0.819
50 2033 0.9 0.824 0.911 0.785 0.65 0.79 0.867 0.741 0.831 0.95 0.914 0.966 0.93 0.868 0.929 0.82 0.695 0.819
20 860 0.8950.814 0.902 0.779 0.651 0.794 0.861 0.684 0.78 0.942 0.901 0.961 0.927 0.864 0.929 0.819 0.679 0.808
10 470 0.876 0.794 0.902 0.781 0.635 0.775 0.844 0.629 0.739 0.925 0.877 0.95 0.92 0.854 0.925 0.798 0.669 0.808
5 274 0.874 0.779 0.881 0.779 0.627 0.767 0.788 0.603 0.739 0.858 0.664 0.761 0.908 0.838 0.921 0.797 0.369 0.612

end, ODHD employs a P-U learning structure and leverages the
HDC arithmetics to generate one-class HV. We use a confidence-
based approach to determine the threshold. We evaluate ODHD us-
ing six datasets and compare ODHD with four baseline methods.
Experimental results show that ODHD is able to outperform all the
baseline methods on all six datasets in three performance metrics
including accuracy, F1 score and ROC-AUC. The promising results
presented in this paper open the door for a new viable alternative
to traditional learning algorithms for outlier detection.

Acknowledgments. This work is supported in part by NSF CCF-
2028879, CCF-2028889, CNS-1822099 and CCF-1640081.

REFERENCES

[1] Q. Wei et al., “Anomaly detection for medical images based on a one-class classi-
fication,” in Medical Imaging 2018: Computer-Aided Diagnosis, 2018.

[2] T.Yu et al, “Recursive principal component analysis-based data outlier detection
and sensor data aggregation in iot systems,” IEEE Internet of Things Journal, 2017.

[3] A. Anandakrishnan et al., “Anomaly detection in finance: editors’ introduction,”
in KDD 2017 Workshop on Anomaly Detection in Finance. PMLR, 2018.

[4] J. Petit et al., “Remote attacks on automated vehicles sensors: Experiments on
camera and lidar,” Black Hat Europe, 2015.

[5] X. Yang et al., “Outlier detection with globally optimal exemplar-based gmm,” in
Proceedings of the 2009 SIAM International Conference on Data Mining, 2009.

[6] X.-m. Tang et al., “Outlier detection in energy disaggregation using subspace
learning and gaussian mixture model,” Int. J. Control Autom, 2015.

[7] M. H. Satman, “A new algorithm for detecting outliers in linear regression,”
International Journal of statistics and Probability, vol. 2, no. 3, p. 101, 2013.

[8] C. M. Park and J. Jeon, “Regression-based outlier detection of sensor measure-
ments using independent variable synthesis,” in International Conference on Data
Science. Springer, 2015, pp. 78-86.

[9] L.]J. Latecki et al, “Outlier detection with kernel density functions,” in Interna-
tional Workshop on Machine Learning and Data Mining in Pattern Recognition.
Springer, 2007.

[10] Y. Li et al, “Anomaly detection of user behavior for database security audit
based on ocsvm,” in International Conference on Information Science and Control
Engineering. 1EEE, 2016.

[11] F.T.Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in International Conference
on Data Mining. IEEE, 2008.

[12] T. He et al, “Exploring inherent sensor redundancy for automotive anomaly
detection,” in DAC. IEEE, 2020.

(13]

(14]

[15]

[16]

(17]

(18]
(19]
[20]
[21]
[22]
(23]
[24]
[25]
[26]
[27]
(28]
[29]

[30]

(31]

(32]

P. Kanerva, “Hyperdimensional computing: An introduction to computing in
distributed representation with high-dimensional random vectors,” Cognitive
computation, vol. 1, no. 2, pp. 139-159, 2009.

L. Ge et al, “Classification using hyperdimensional computing: A review,” IEEE
Circuits and Systems Magazine, 2020.

M. Hersche et al., “Integrating event-based dynamic vision sensors with sparse
hyperdimensional computing: a low-power accelerator with online learning
capability,” in ISLPED, 2020.

A. Rahimi et al., “Efficient biosignal processing using hyperdimensional comput-
ing: Network templates for combined learning and classification of exg signals,”
Proceedings of the IEEE, 2018.

D. Ma et al, “Molehd: Automated drug discovery using brain-inspired
hyperdimensional computing,” 2021. [Online]. Available: https://arxiv.org/abs/
2106.02894

A. Mitrokhin et al,, “Learning sensorimotor control with neuromorphic sensors:
Toward hyperdimensional active perception,” Science Robotics, 2019.

A. Rahimi et al., “A robust and energy-efficient classifier using brain-inspired
hyperdimensional computing,” in ISLPED, 2016.

S. Rayana, “Outlier detection datasets (odds) library,” 2016. [Online]. Available:
http://odds.cs.stonybrook.edu

R. Wang et al., “Brief industry paper: Hdad: Hyperdimensional computing-based
anomaly detection for automotive sensor attacks,” in RTAS, 2021.

B. Liu et al., “Building text classifiers using positive and unlabeled examples,” in
IEEE International Conference on Data Mining, 2003, pp. 179-186.

Y. Kim et al., “Efficient human activity recognition using hyperdimensional
computing,” in International Conference on the Internet of Things, 2018.

C. C. Aggarwal and S. Sathe, “Theoretical foundations and algorithms for outlier
ensembles,” Acm sigkdd explorations newsletter, vol. 17, no. 1, pp. 24-47, 2015.
A. Zimek et al., “Subsampling for efficient and effective unsupervised outlier
detection ensembles,” in KDD, 2013.

S. Sathe and C. Aggarwal, “Lodes: Local density meets spectral outlier detection,”
in SIAM international conference on data mining, 2016.

S. Wang et al., “Hyperparameter selection of one-class support vector machine
by self-adaptive data shifting,” Pattern Recognition, 2018.

Z.Wang et al., “Further analysis of outlier detection with deep generative models,”
Advances in Neural Information Processing Systems, 2020.

M. Everingham et al., “The pascal visual object classes (voc) challenge,” Interna-
tional journal of computer vision, 2010.

A. Burrello et al., “One-shot learning for ieeg seizure detection using end-to-end
binary operations: Local binary patterns with hyperdimensional computing,” in
IEEE Biomedical Circuits and Systems Conference (BioCAS), 2018.

S. Salamat et al., “Accelerating hyperdimensional computing on fpgas by exploit-
ing computational reuse,” IEEE Transactions on Computers, 2020.

Y. Kim et al,, “Geniehd: efficient dna pattern matching accelerator using hyperdi-
mensional computing,” in DATE, 2020.

https://arxiv.org/abs/2106.02894
https://arxiv.org/abs/2106.02894
http://odds.cs.stonybrook.edu

	Abstract
	1 Introduction
	2 Related Work
	3 HDC Preliminaries
	4 ODHD Framework
	4.1 Seed HVs Generation
	4.2 Encoding
	4.3 Training
	4.4 Threshold Calculation
	4.5 Fine-Tuning
	4.6 Outlier Detection

	5 Experiment Results
	5.1 Experiment Setup
	5.2 ODHD Performance
	5.3 ODHD Execution Time
	5.4 Design Space Exploration

	6 Conclusion
	References

