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Abstract— Realistic manipulation tasks require a robot to
interact with an environment with a prolonged sequence of
motor actions. While deep reinforcement learning methods
have recently emerged as a promising paradigm for au-
tomating manipulation behaviors, they usually fall short in
long-horizon tasks due to the exploration burden. This work
introduces Manipulation Primitive-augmented reinforcement
Learning (MAPLE), a learning framework that augments
standard reinforcement learning algorithms with a pre-defined
library of behavior primitives. These behavior primitives are
robust functional modules specialized in achieving manipu-
lation goals, such as grasping and pushing. To use these
heterogeneous primitives, we develop a hierarchical policy
that involves the primitives and instantiates their executions
with input parameters. We demonstrate that MAPLE out-
performs baseline approaches by a significant margin on a
suite of simulated manipulation tasks. We also quantify the
compositional structure of the learned behaviors and highlight
our method’s ability to transfer policies to new task variants
and to physical hardware. Videos and code are available at
https://ut-austin-rpl.github.io/maple

I. INTRODUCTION

Enabling autonomous robots to solve diverse and complex
manipulation tasks has been a grand challenge for decades. In
recent years, deep reinforcement learning (DRL) approaches
have made great strides towards designing robot manipula-
tion behaviors that are difficult to engineer manually [27,
28, 150, |51]]. Nonetheless, state-of-the-art DRL models fall
short in long-horizon tasks due to the exploration challenge
— the robot has to explore a prohibitively large space of
possible behaviors for accomplishing a task. To remedy the
exploration burden, prior DRL work has developed various
temporal abstraction frameworks to exploit the hierarchical
structure of manipulation tasks [4, |12} 43| |57]]. These meth-
ods learn low-level controllers, often modeled as skills or
options, together with high-level controllers from trial-and-
error. While they have demonstrated greater scalability than
vanilla DRL methods, they often suffer from high sample
complexity, lack of interpretability, and brittle generalization.

In the meantime, decades-long research in robotics has
developed a rich repertoire of functional modules specialized
at particular robot behaviors, such as grasping [[7] and motion
planning [23] |29]]. These pre-built functional modules, which
we refer to as behavior primitives, exhibit a high degree of
robustness and reusability for achieving certain manipulation
goals, such as picking up objects with the end-effector and
moving the robot to a target configuration in a collision-
free path. In spite of their specialties, it remains a challenge
for DRL algorithms to use them as the building blocks to
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Fig. 1: Overview of MAPLE. (a) We present a learning framework that
augments the robot’s atomic motor actions with a library of versatile
behavior primitives. (b) Our method learns to compose these primitives
via reinforcement learning. (c) This enables the agent to solve complex
long-horizon manipulation tasks.

scaffold complex tasks. The challenge is primarily due to
the fact that these behavior primitives are heterogeneous
by design. They take non-uniform parameters as input,
operate at varying temporal resolutions, and exhibit distinct
behaviors. This thus requires an algorithm to reason about
the temporal decomposition of a complex task and adaptively
compose these behavior primitives accordingly.

A variety of hierarchical modeling approaches in robotics
have used behavior modules as low-level building blocks.
Notably, task-and-motion planning [[17, |26} 66] and neural
programming [22| [71] methods have used primitives such
as motion planners and pick-and-place controllers to model
manipulation tasks in a compositional fashion. They require
well-specified domain knowledge to perform task planning or
strong human supervision to train a high-level controller with
ground-truth task decomposition. These assumptions limit
the scalability of these methods in realistic tasks.

In this work, we introduce MAPLE (Manipulation
Primitive-augmented reinforcement Learning), a general
DRL algorithm that harnesses a set of pre-built behavior
primitives for solving long-horizon manipulation tasks. To
address the exploration challenge of DRL algorithms, our
method uses a library of high-level behavior primitives (such
as grasping or pushing objects) in conjunction with low-level
motor actions to autonomously learn a hierarchical policy
(see Fig.[I). Our algorithm models each behavior primitive as
an implementation-agnostic controller that produces a tem-
porally extended behavior. At a given state, our DRL policy
invokes a behavior primitive (or an atomic motor action) and
instantiates it with input parameters. For example, the input
parameters to a 6-DoF grasping module can be the pre-grasp
end-effector pose. The selected primitive interprets the input
parameters and executes one or a sequence of motor actions
to realize its specialized behavior. By integrating behavior
primitives into DRL algorithms, MAPLE shields away a
substantial portion of complexity in manipulation planning,
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while leaving the flexibility to a generic reinforcement learn-
ing algorithm to discover the compositional structure of tasks
without strong domain knowledge. Furthermore, by retaining
low-level motor actions MAPLE can rely on these actions
for the stages of tasks where the finite library of behavior
primitives is insufficient to express a desired behavior.

We conduct an extensive set of experiments on a suite of
eight manipulation tasks of varying complexities in the robo-
suite simulation framework [74]]. We compare our method to
standard DRL approaches [19] that only use low-level motor
actions, hierarchical DRL methods that learn options [S8} 43|
73| or open-loop task schemas [8]. MAPLE achieves a 70%
increase in task success rate compared to using only atomic
actions, becoming the only method that consistently solved
all single-arm tasks in the standard robosuite benchmark. We
also devise a data-driven metric to quantitatively examine
the compositionality of manipulation tasks contingent on the
available primitives, offering new insight on the challenges
and opportunities of compositional modeling for realistic
manipulation tasks.

We highlight three contributions of this work: 1) We
develop a novel method that augments standard DRL al-
gorithms with pre-defined behavior primitives to reduce the
exploration burden; 2) We validate the effectiveness of our
method in solving diverse manipulation tasks and quantita-
tively analyze the compositional structure of these tasks; and
3) We show that the modularity and abstraction offered by
the behavior primitives facilitate knowledge transfer of the
learned policies to new task variants and physical hardware.

II. RELATED WORK

Deep Reinforcement Learning. Prior work on DRL has
investigated a number of approaches to solve long-horizon
tasks, through improved exploration strategies [6, 21, 53}
54], learning options [4} |5} |43} 163} 73], unsupervised skill
discovery [11} |59], and integrating planning [[12 47]. De-
spite these efforts, today’s DRL methods still struggle in
long-horizon robotic tasks due to the exploration burden
of learning from scratch. Recent work has examined the
use of offline data to alleviate the exploration burden in
DRL, through demonstration-guided RL [18} 46, |56]], learned
behavioral priors [55, |62] and action spaces [1, |2] from
demonstrations, and offline RL [15}, |16, 33, 40]. While
promising, these methods can be difficult to scale up due
to the costs of acquiring offline data.

Hierarchical Modeling in Robotics. Outside of DRL, there
has been a plethora of work in robotics dedicated to build-
ing customized functional modules that emit specific robot
behaviors, such as grasping [7, [38]] and motion planning [3}
29||. Prior works on task-and-motion planning [[17} 26, (66|
and neural programming [22| /1] have developed hierarchi-
cal models that leverage these modules as building blocks
to scaffold manipulation tasks. While these methods have
demonstrated impressive capabilities in restrictive domains,
their applicability has been limited by their reliance on
domain knowledge or human supervision.

To bridge the gap between these models and DRL algo-
rithms that learn from scratch, recent work has harnessed pre-
built primitives, such as model-based planners [34], motion
planners [68] [72], movement primitives [23} 48|, and pre-
built skills [8} [35, |60l 61} [64]], to expedite DRL algorithms.
These approaches aim at retaining the flexibilities of RL
algorithms while benefiting from the temporal abstraction
provided by the primitives. However, these works are limited
as they are confined to using only one or two specific
primitives [34} |68, [72]], employ rigid primitives that are not
reconfigurable [60, [64], or hard-code how the primitives
are composed [61]. In contrast, our method adopts a set of
versatile primitives to solve diverse manipulation tasks.
Reinforcement Learning with PAMDPs. Our formalism
specifically falls under the established reinforcement learning
framework of Parameterized Action MDPs (PAMDPs) [41]],
in which the agent executes a parameterized primitive at each
decision-making step. We note that several prior works [13}
20,124,167, |69] have adapted off-the-shelf deep RL algorithms
to the PAMDP setting. Nonetheless, they have focused on
relatively simple game domains, shielding away practical
challenges in robot manipulation, such as high-dimensional
continuous state/action spaces and heterogeneous primitives.
We note that Chitnis et al. [8] and Lee et al. [35] have
modeled robot manipulation with PAMDPs. We provide
empirical comparisons to demonstrate the limitations of their
modeling choices, yielding less competitive performance in
challenging manipulation tasks than ours. Concurrent work
by Dalal et al. [9] also studies the application of robotic
primitives for manipulation tasks. Our work complements
theirs with additional analysis on the compositional structure
of the learned behavior and experiments demonstrating the
ability to transfer learned policies to novel task variants and
to physical hardware.

III. METHOD

Our goal is to enable robots to leverage behavior primitives
to solve manipulation tasks effectively and efficiently. To
that end, we seek a library of behavior primitives that
serve as the building blocks to scaffold manipulation tasks
and a reinforcement learning algorithm that composes these
primitives to solve tasks. To evaluate whether our algorithm
facilitates compositional behaviors, we also propose a metric
to quantify the degree to which the resulting learned behavior
is compositional. See Fig. [I] for an overview of our method.

A. Decision-Making with Parameterized Behavior Primitives

We adopt reinforcement learning (RL) as the underlying
decision-making framework. The objective of RL is to max-
imize the expected infinite sum of discounted rewards in a
Markov Decision Process (MDP), defined by the tuple M =
(S, A, r,p,po, 7). The entities in the tuple represent the state
space, the action space, the reward function, the transition
function, the initial state distribution, and the discount factor.
In most robotic RL problems, the action space A consists
of all atomic actions u € R%o provided by the robot,
such as end-effector displacements. We augment this action



space with a heterogeneous library of behavior primitives
L = {a',a? ---,a*} that perform semantically meaningful
behaviors. Formally, each behavior primitive a € L is
represented by a control module M, (z) that executes a finite,
variable sequence of atomic actions (up,ug,---,ut),u; €
Rl where the exact action sequences are specified by
input parameters * € R%. Here d, is the dimension of
the input parameters to the primitive a that varies across
different primitives. To incorporate these behavior primitives,
we recast our decision-making problem as a Parameterized
Action MDP (PAMDP) [41]], where at each decision-making
step the agent executes a parameterized action (a,z) € A
consisting of the type of primitive a and its parameters .

B. Behavior Primitives: Building Blocks for Manipulation

We are interested in equipping agents with a library of
versatile primitives that serve as the core building blocks for
diverse manipulation tasks. Our decision-making algorithm
assumes no knowledge of the implementations of these
primitives; these primitives can comprise closed-loop skills
learned via reinforcement [19, 58] or imitation learning [52],
analytical motion planners [29], and even full-fledged grasp-
ing systems [7, 38]. Regardless of their inner workings, we
must ensure that our primitives are versatile and adaptive
to behavioral variations. In our learning framework, we
consider these primitives as functional APIs that take input
parameters x that instantiate action execution. The input
parameters usually have clear semantics, such as the 6-DoF
end-effector pose for a grasping primitive or a target robot
configuration for a motion planning primitive. We recognize
that our library of primitives may still not be universally
applicable in every setting, and equipping the agent solely
with these primitives may limit the set of possible behaviors
that the agent can achieve. We address this limitation by
introducing an additional atomic primitive a®°™ dedicated to
performing atomic robot actions to fill in any missing gaps
that cannot be fulfilled by the other primitives.

In this work, we design a library of five primitives,
including prehensile and non-prehensile motions, that forms
the basis for many manipulation tasks:

« Reaching: The robot moves its end-effector to a target
location (z,y,z), specified by the input parameters.
Execution takes at most 15 atomic actions.

o Grasping: The robot moves its end-effector to a pre-
grasp location (z,y, z) at a yaw angle v, specified by
the input parameters, and closes its gripper. Execution
takes at most 20 atomic actions.

« Pushing: The robot reaches a starting location (x,y, 2)
at a yaw angle ¢ and then moves its end-effector by a
displacement (,, d,, ¢,). The input parameters are 7D.
Execution takes at most 20 atomic actions.

o Gripper Release: The robot repeatedly applies atomic
actions to open its gripper. This primitive has no input
parameters. Execution takes 4 atomic actions.

« Atomic: The robot applies an atomic action € Ronrl,
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Fig. 2: Policy Architecture. We adopt a hierarchical policy, with a high-
level task policy that determines which primitive to apply and a low-level
parameter policy that determines how to instantiate that primitive.

We implemented these primitives as hard-coded closed-loop
controllers, each requiring only a handful of lines of code.
We highlight that these primitives take input parameters of
different dimensions, operate at variable temporal lengths,
and produce distinct behaviors. These properties make them
challenging to utilize in a learning framework. In the fol-
lowing, we will introduce our algorithm for composing these
primitives to solve diverse manipulation tasks.

C. Composing Primitives via Reinforcement Learning

We follow the PAMDP framework outlined in Section [[II=
[Al Previous work has explored various policy structures
that reason over parameterized primitives. The simplest
approach is a flat policy [20, [68|] that outputs a distribu-
tion over the primitive type a and all primitive parameters
{z',22,.--,2%}. A major drawback of this approach is that
the total number of policy outputs can quickly become in-
tractable as additional primitives are introduced. We address
this limitation with a hierarchical policy where at the high
level a task policy w5, determines the primitive type a
and at the low level a parameter policy m, determines the
corresponding primitive parameters x. For implementation,
we represent the task policy as a single neural network
and the parameter policy as a collection of sub-networks,
with one sub-network dedicated for each primitive. This
enables us to accommodate primitives with heterogeneous
parameterizations. To allow batch tensor computations across
primitives with different parameter dimensions, these pa-
rameter policy sub-networks all output a “one size fits all”
distribution over parameters x € R4, where d4 = max, d,
is the maximum parameter dimension over all primitives.
At primitive execution we simply truncate the parameters
x to the length d, of the chosen primitive a. See Fig. [2|
for an illustration of our policy architecture. In addition
to reducing the overall number of output parameters our
hierarchical design facilitates modular reasoning, delegating
the high-level to focus on which primitive to execute and the
low-level to focus on how to instantiate that primitive. We
note that a few prior works have previously explored this
hierarchical design [[13| 67] but to our knowledge we are
the first to demonstrate its utility on complex manipulation
domains with a set of heterogeneous primitives.

In principle, we can integrate our policy architecture
with any DRL algorithm designed for continuous control;



we choose Soft Actor-Critic (SAC) [19]. We modify the
standard critic neural network (Qg(s,a) and actor neural
network my(al|s) with our critic network Qg(s,a,z) and
our hierarchical policy networks s, (als), mp, (2|s,a).
The losses for the critic, task policy, and parameter policy
are defined respectively (with components pertaining to
the task policy in red and the parameter policy in blue):

Jo(8) = (Qg(&@7 x) — (7’(37a,x) + 7(@9’(8,704/,1'/)

2
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Here oy, and ) control the maximum entropy objective
for the task policy and parameter policy, respectively.

D. Facilitating Exploration with Affordances

Compared with existing methods that reason purely over
atomic actions, our algorithm benefits from accelerated
exploration due to the temporal abstraction provided by
our behavior primitives. However, even reasoning with
temporally extended actions can present an exploration
challenge [55]. One way to address this issue is to equip
the agent with affordances that help to discern the utility of
actions in different settings. For example, a grasping skill is
only appropriate when applied in the vicinity of graspable
objects, and a pushing skill is only appropriate in the vicinity
of pushable objects. In our framework, these affordances can
be expressed by adding to the reward function an auxiliary
affordance score su(s,z;a) € [0,1] that measures the
affinity for parameters x at a particular state s for a given
primitive a. These affordances scores can in principle come
from learned models trained on robot interaction data [39,
42,145,161} [70] or human data [10, (14, [32, |44]]. Nonetheless,
as our primitive parameters carry clear semantic meanings,
we can analytically define these affordance scores based on
the objects’ physical states. Concretely, for the atomic and
gripper release primitives, we always give an affordance
score of 1 to enable the universal applicability of these
primitives. For the remaining reach, grasp, and push
primitives we implement general, easy-to-define affordances
encouraging the agent to reach relevant areas of interest in
the workspace. More specifically, these primitives all involve
reaching a location Z,eqcn, = [x[0], x[1], x[2]] and
we encourage the agent to specify the reaching parameters
Treach to be within a threshold of a set of keypoints P:

Satt(8, 30) = I;lél]g( 1 — tanh (max(”xmach —pll-T, O))
The keypoints P are the locations of objects to push for
the push primitive, the locations of objects to grasp for the
grasp primitive, and the locations of reaching targets for the
reach primitive.
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Fig. 3: Simulated Environments. We perform evaluations on eight
manipulation tasks. The first six come from the robosuite benchmark [74].
We designed the last two to test our method in multi-stage, contact-rich
tasks: Cleanup requires storing a spam can into a storage bin and a jello
box at a corner; Peg Insertion requires inserting a peg into a block.

E. Quantifying Compositionality

Our framework is based upon the hypothesis that most
manipulation tasks have an intrinsic compositional structure
and that our algorithm can discover this structure. While
there is no explicit mechanism to discover recurring patterns
of primitives, our algorithm exhibits compositional reasoning
by preferring the use of high-level primitives over low-level
ones. Due to the temporal abstraction encapsulated by the
high-level primitives, the agent can make far greater progress
toward solving the task by using high-level primitives and
thus receives higher average reward per timestep. This in-
centivizes the agent to choose higher-level primitives over
lower-level actions whenever appropriate. We additionally
examine the degree to which our learned agent exhibits
compositional behaviors with a quantifiable metric. Assum-
ing a set of trajectories in which the agent solved a task
T: {7_2}?:1 = {(s1, (alh 1), S_ZTiv (_a’ZTia z’ll“l)’ 53“1;-&-1)}?:1’
the task sketches {K'}7_; = {(aj,as,---ap,)}i; capture
high-level task semantics and provide useful abstractions
through which we can analyze the compositional structure
of these trajectories. Intuitively, agents that demonstrate
compositional reasoning will express recurring patterns of
behaviors across their task sketches and prefer the use of
high-level primitives over low-level ones. We quantify this
intuition by computing the Levenshtein distance [36] among
task sketches, which measures the minimum number of
single-token edits needed to transform one task sketch to
another. We represent each non-atomic primitive fype as a
unique token, and in order to explicitly discourage the use
of low-level atomic actions, we represent each individual
occurrence of an atomic primitive in our task sketches as a
unique token. Given a task 7 and available primitives L, we
compute the compositionality of the agent’s behavior as the
average pairwise normalized score between the task sketches:

dLev(Ki7Kj)

o Ao i) g
max(Ki K

1
fcomp(T§ ﬁ) = m ; 1

IV. EXPERIMENTS

In our experiments we study 1) whether our method can
compose pre-built behavior primitives and atomic actions
to solve complex tasks, 2) the degree to which the learned
behavior is compositional, and 3) whether our approach is
amenable to transfer to task variants and to real hardware.
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Fig. 4: Main Results. Learning curves showing average episodic task rewards throughout training, normalized between 0 and 100. All experiments are

averaged over 5 seeds, with shaded regions depicting the standard deviation.

A. Experimental Setup

We examine these questions on robosuite [74]], a frame-
work for simulated robot manipulation tasks. We consider
a comprehensive suite of eight manipulation tasks of vary-
ing complexities (see Fig. [3). We adopt a Franka Emika
Panda robot arm controlled via operational space control
(OSCO) [30]. At each decision-making step the agent executes
either an atomic OSC action or one of the non-atomic
primitives outlined in Section In return the agent
receives 1) a dense reward signal indicating task progress
and 2) an observation comprising the robot’s proprioceptive
state and pose information of the objects in the environment.

B. Quantitative Evaluation

We compare our method (MAPLE) to five base-
lines. The first baseline uses exclusively atomic actions
(Atomic), which corresponds to the standard Soft Actor-
Critic model [19] trained on end-effector commands. To
understand the effect of hierarchy on our policy design, we
compare to a flat variant where the policy outputs the prim-
itive type and parameters independently (Flat), following
the design by Lee et al. [35] and Neunert et al. [49]. We
also compare to a variant of our method using an open loop
task policy (Open Loop), following Chitnis et al. [8] which
suggests utilizing an open-loop task schema improves the
sample efficiency of the algorithm. Next, we compare to Hi-
erarchical Reinforcement learning with Off-policy correction
(HIRO) [43] and Double Actor-Critic (DAC) [73]], state-
of-the-art hierarchical DRL methods which learn low-level
policies (or options) along with high-level controllers. HIRO
failed to make progress and we thus omit it from our results.
Finally, we compare to a self baseline where we include
all primitives except the atomic primitive (MAPLE (Non-
Atomic)), to understand whether we need atomic actions to
satisfy behaviors that cannot be fulfilled by the non-atomic
primitives. All baselines using behavior primitives use the
affordance score outlined in Section

Fig. [ outlines environment rewards throughout training.
We also evaluated the final task success rates at the end
of training: MAPLE achieved the highest average success
rate across all baselines (90%), compared to 19% for the
Atomic baseline, 36% for Flat, 41% for Open Loop, 11%
for DAC, and 79% for MAPLE (Non-Atomic). First, we see

that the inclusion of non-atomic primitives allows MAPLE to
significantly outperform the Atomic baseline, achieving on
average 2-3x higher rewards and 71% higher success rate.
Qualitatively we found that the Atomic baseline fails to
advance past the first stage in most tasks while our method
successfully solves all tasks. Next we find that the Flat
baseline is unable to reliably solve all tasks, demonstrating
that our hierarchical policy design is key to reasoning over
a heterogeneous set of primitives. While the Open Loop
baseline is able to solve basic tasks such as Door Opening
and Pick and Place, it struggles with tasks that require the
agent to adaptively reason about the current state of the task.
DAC is only able to solve the Lift task, highlighting the
difficulty of learning complex tasks from scratch even when
employing temporal abstraction. Finally we find that the
Non-Atomic self baseline is on par with our method in most
tasks, yet it notably fails for Peg Insertion as the non-atomic
primitives are not expressive enough to perform the contact-
rich insertion phase. Together, these results highlight that
given an appropriate primitive library and policy structure
we can solve a wide range of manipulation tasks.

C. Model Analysis

Emergence of Compositional Structures. We present an
analysis of the task sketches that our method learned for
each task in Fig. We see evidence that the agent un-
veils compositional task structures by applying temporally
extended primitives whenever appropriate and relying on
atomic actions otherwise. For example, for the peg insertion
task the agent leverages the grasping primitive to pick up
the peg and the reaching primitive to align the peg with the
hole in the block, but then it uses atomic actions for the
contact-rich insertion phase. In Fig. [5] we also quantify the
compositionality of these task sketches via fcom, defined
in Eq. (I). As expected, tasks involving contact interactions
such as Peg Insertion and Wiping have lower scores than
prehensile tasks such as Pick and Place and Stacking.

Transfer to Semantically Similar Task Variants. We have
seen how task sketches enable interpretability by serving
as blueprints of high-level semantic task structure. We can
leverage these task sketches to accelerate learning on similar
task instances. We propose to re-use the task sketch from a
semantically similar task, and only learn the corresponding
primitive parameters. We validate this idea on the Pick and
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Fig. 5: Analyzing Learned Behavior. (Top) We visualize the task sketches that our agent has learned. Each row corresponds to a single sketch progressing
temporally from left to right. For each task we also report the compositionality score feomp. (Bottom) We visualize the behavior for a peg insertion sketch.
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Place domain, where we transfer the task sketch from a
source task of placing a soda can into one bin, to a target
task of placing a loaf of bread into a different bin. As shown
in Fig. [6a] we solve the bread task significantly faster than
learning the task from scratch with a sample efficiency of
over 5x. This suggests that our task sketch serves as a high-
level scaffold of a manipulation task, which can be re-used
by learning algorithms for faster adaptation to related tasks.
Ablation Study. We perform an ablation study examining the
role of affordances and individual manipulation primitives in
facilitating exploration. We specifically perform experiments
on the Pick and Place task, comparing our method (Ours)
to ablations 1) without affordances in the reward function
(No Aff), 2) without the reaching skill (No Reach), and 3)
without the grasping skill (No Grasp). We see in Fig. [6b] that
without these components the agent fails to solve the task,
underscoring that our method is reliant on the appropriate
primitive skills and affordances to effectively overcome the
exploration burden.

D. Real-World Evaluation

We conclude with an evaluation on real-world copies of
the Stack and Cleanup tasks (see Fig. [7). As our behavior
primitives offer high-level action abstractions and encapsu-
late low-level complexities of motor actuation, our policies
can directly transfer to the real world. We trained MAPLE on
simulated versions of these tasks and executed the resulting
policies to the real world. We re-implemented our behavior
primitives on the real robot and used an off-the-shelf pose
estimation model to estimate environment states. We
successfully transferred the policy to the real world, with an
average success rate of 93% on Stack and 83% on Cleanup.

Simulation

Cleanup

Fig. 7: Transfer to Real-World Tasks. We transfer our policy trained on
simulated environments to the real-world Stack and Cleanup tasks.

V. CONCLUSION

We presented MAPLE, a reinforcement learning frame-
work that incorporates behavior primitives in conjunction
with low-level motor actions to solve complex manipulation
tasks. Our experiments demonstrate that behavior primitives
can significantly improve exploration while low-level motor
actions allow us to retain flexibility to learn intricate be-
haviors. Our work opens the possibility for several avenues
for future work. First, learning affordances using data-driven
methods can expand the scalability of our
method. Second, while atomic actions can help fill in gaps
where the primitives are insufficient (such as peg insertion),
we are unable to fill in large gaps that require a significant
number of low-level action executions (as seen in the ablation
experiments). Further research on exploration and credit
assignment is needed to overcome these challenges. Finally,
an exciting avenue for future work is to continually discover
recurring compositions of primitives and add them to the
library of primitives, which can ultimately enable curriculum
learning of progressively more challenging tasks.
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APPENDIX

A. Behavior Primitives

We elaborate on the manipulation primitives that we out-
lined in Section [III-B} reaching, grasping, pushing, gripper
release, and atomic. We classify all primitives that are not
the atomic primitive as non-atomic primitives. Under the
hood, all non-atomic primitives execute a variable sequence
of atomic actions, either until the primitive is successfully
executed or until a time limit is reached. All atomic actions
specifically interface with the Operational Space Control
(OSC) controller, which has 5 degrees of freedom: 3 degrees
to control the position of the end effector, 1 degree to control
the yaw angle, and (for all tasks but wiping) 1 degree to open
and close the gripper.

We elaborate further on our non-atomic primitives. The
gripper release primitive executes a fixed number of atomic
actions to open the gripper. The reaching, grasping, and
pushing primitives are hard-coded closed-loop controllers
that all entail a reaching phase, either for reaching the starting
location (for pushing) or for reaching the final location (for
reaching and grasping). To implement this functionality for
table-top environments (all except door), the robot first lifts
its end effector to a pre-specified height, then hovers to
the target XY position, and finally lowers its end effector
to the target location. For other environments (door), the
robot moves to toward the target location directory via the
OSC controller. During this reaching phase, the reaching
primitive keeps its gripper closed (except for the non-tabletop
environments like door) and the grasping and pushing prim-
itives keep their grippers open. The grasping and pushing
primitives can be configured to achieve a specified yaw angle,
which they satisfy during the reaching phase simultaneously
while applying end effector displacements. Upon reaching,
the grasping primitive emulates grasping by closing its
gripper and the pushing the primitive emulates pushing by
applying end effector displacements in a specified direction.

B. Algorithm

Our algorithm implementation is based on Soft Actor-
Critic. Our algorithm alternates between collecting on-policy
transitions in the environment and performing off-policy
training on data sampled from the replay buffer. Training
specifically entails optimizing the Q network, task policy,
and parameter policy via gradient descent. As in the original
SAC implementation, we use the reparameterization trick
with respect to the parameter policy loss in order to reduce
the variance of our gradient estimates. While we assume con-
tinuous primitive parameters we can also represent discrete
parameters and apply reparameterization with the Gumbel-
Softmax trick [25, 37]. We provide a full outline of our
algorithm in Algorithm [I} Code is publicly available at
https://github.com/UT-Austin—-RPL/maple.

C. Affordance Score

We elaborate on the affordance score introduced in Sec-

tion [II-D}

Saff(8, 2;0) = max 1 — tanh (max(H:cTwch — pll—, 0))
peP
The keypoint p is dependent on the primitive a and the
current state s. For example for the cleanup task, the keypoint
for the pushing primitive is the location of a pushable object
(the jello box), the keypoint for a grasping primitive is
the location of a graspable object (the spam can), and the
keypoint for the reaching primitive is the location of the
bin. If there are multiple keypoints of interest we calculate
the affordance score corresponding to each keypoint and
consider the maximum score. If no applicable keypoint exists
for a primitive (e.g. there are no pushable objects in door
opening) we give an affordance score of 0. By default we
set the threshold 7 to 0.03 for grasping, 0.06 for reaching,
and 0.12 for pushing. There are a few exceptions for tasks
that need larger affordance regions for reaching large objects.

D. Flat Baseline

We considered two variants for our flat baseline. One
variant, which has been explored by prior work [20, 68],
outputs a distribution over the primitive type a and the pa-
rameters {z', 22, --- 2¥} for all primitives. As we discussed
in Section under this approach the number of policy
outputs scales linearly with the total number of primitive
parameters, which can lead to optimization difficulties for
large behavior libraries. Empirically we found this to be the
case, as we were unable to make any progress on any of
our tasks despite extensive hyperparamter tuning. Neunert et
al. [49] proposed an alternative approach of replacing the
distribution over all parameter outputs with the “one size fits
all” distribution that we described in Section [[II-=Cl Parameter
selection occurs by independently sampling a primitive type
a and parameters x, and subsequently truncating the sampled
parameters by the dimension of the sampled primitive type.
This sampling strategy was also adopted by Lee et al. [35].
We note that this independent sampling process is in contrast
to our two-stage hierarchical process. We adopted this variant
as our flat baseline, and in Figure [Z_f] we see that it often leads
to sub-optimal performance. We hypothesize that this is due
the fact that the parameter selection process is not informed
by the primitive type selection process, which reduces the
agent’s utility especially when dealing with primitives that
have heterogeneous parameter structures.

E. Open Loop Baseline

Our open loop baseline follows an open loop task schema,
and is inspired from Chitnis et al. [8]. The open loop
baseline and our method share identical implementations,
except for the input to the task policy: our method takes in the
current environment observation while the open loop baseline
takes in only the current episode timestep. We highlight
that while our implementation is inspired from Chitnis et
al. [8]], there are notable differences. Their update rule for
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Algorithm 1 Manipulation Primitive-augmented reinforcement Learning (MAPLE)

1: Initialize Q network Qg (s, a, x), task policy .y, (als), parameter policy m,  (x|s, a), replay buffer D

2: for iteration 1,..., N do
3. for episode 1,..., M do {Exploration Phase}

4 Initialize timer ¢ <— 0

5 Initialize episode sq

6: while episode not terminated do

7 Sample primitive type a; from task policy s, (a¢|s;)

8 Sample primitive parameters x; from parameter policy ,,, (2¢|s¢, at)

9: Truncate sampled parameters to dimension of sampled primitive z; <— x[: dg, ]
10: Execute a; and z; in environment, obtain reward 7; and next state S;41
11: Add affordance score to reward 7 < 7 + ASagr(St, Tt ar)

12: Add transition to replay buffer D < D U {s;, at, ¢, Tty St41}

13: Update timer t <t + 1
14: end while

15:  end for

16:  for training step 1,..., K do {Training Phase}
17: Update Q network: 6 < 6 — A\, Vg Jg(0)

18: Update task policy: ¢ < ¢ — AV, (0)

19: Update parameter policy: ¢ < 9 — A\, VyJr, ()
20:  end for
21: end for

the “task policy” (or equivalent thereof) does not use gradient
descent, relies on on-policy sampling, and is designed for
the sparse reward setting only. We found these assumptions
to be restrictive for our algorithmic and task setup, and we
instead use gradient-based, off-policy reinforcement learning
methods which can work with sparse or dense rewards.
Despite these differences, we believe that our open loop
baseline captures the essence of the ideas proposed in Chitnis
et al. [8] — namely that open loop task shemas can enable
more efficient and effective learning. As we show in Figure ]
however, we did not find this to be the case for the relatively
more complex tasks in our suite of manipulation domains.

F. DAC Baseline

We considered a number of potential methods as our rep-
resentative option-learning baseline. While prominent prior
work [4) 31, [73] has focused on learning options, we
verified that Double Actor-Critic (DAC) achieves superior
performance on the OpenAl HalfCheetah-v2 task and our lift
task, so we chose DAC as our representative options baseline.
We also considered Deep Skill Chaining [5]], another recent
work that learns options; however it was not applicable to our
manipulation domains given that it is designed primarily for
goal-based navigation agents. We used the implementation
publicly released by the DAC authors |’} and we adopted the
hyperparameters that they suggested in their paper.

G. Environments

We conduct experiments on eight manipulation tasks of
varying complexities, spanning diverse prehensile and non-
prehensile behaviors. The first six come from the standard ro-
bosuite benchmark [74]. We designed the last two (cleanup,

https://github.com/Shangtongzhang/DeepRL/tree/DAC

peg insertion) to evaluate our method in multi-stage, contact-
rich tasks. We elaborate on each as follows:

Y

Pick and Place:

Lift: the robot Door Opening: Wipe: the robot
must pick up a the robot must therobot mustpick  must wipe a table
cube and lift it turn the door wup a soda can and  containing spilled

above the table.

Stack: the robot
must stack a cube
on top of another
cube.

handle and open
the door.

Nut  Assembly:
the robot must fit
a nut tool onto the
round peg.

place it into a spe-
cific target com-
partment.

' g

Cleanup: the
robot must store
a spam can into
a storage bin and

debris. A penalty is
given if the robot
presses too hard
into the table.

Peg Insertion: the
robot must pick up
the peg and insert
it into the opening

store a jello box of a wooden block.

at the upper right
corner.

H. Training

We provide a full list of our algorithm hyperparameters in
Table . We note a few additional details. For a consistent
comparison across baselines, our episode lengths are fixed
to 150 atomic timesteps, meaning that we execute a variable
number of primitives until we have exceeded the maximum
number of atomic actions for the episode. Also, for the first
600k environment steps we set the target entropy for the task
policy and parameter policy to a high value to encourage
higher exploration during the initial stages of training.

1. Evaluation

We elaborate on the evaluation protocol for our experi-
ments in Figure [} We evaluate each experimental variant
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TABLE I: Hyperparameters for our algorithm

Hyperparameter Value
Hidden sizes (all networks) 256, 256
Q network and policy activation ReLU
Q network output activation None
Policy network output activation tanh
Optimizer Adam
Batch Size 1024
Learning rate (all networks) 3e—5
Target network update rate 7 le—3
# Training steps per epoch 1000
# (Low-level) exploration actions per epoch 3000
Replay buffer size le6
Episode length (# low-level actions) 150 (except wipe, 300)
Discount factor 0.99
Reward scale 5.0
Affordance score scale A 3.0
Automatic entropy tuning True
Target Task Policy Entropy 0.50 x log(k), k is number of primitives
Target Parameter Policy Entropy — maxg dg

(combination of task and method) over 5 seeds and we (1)
plot the agent’s rewards throughout training and (2) report
the task success rate at the end of training. Specifically for
the reward plots, we evaluate the agent’s average episodic
task rewards (excluding the affordance reward) at regularly
spaced training checkpoints every 30k environment explo-
ration steps. The episodic rewards are averaged over 20
episodes and are normalized between 0 and 100, where 100
corresponds to the agent receiving the maximum possible
reward at every single timestep of the episode. We post-
process the plots, showing the moving average of results over
the last 150k environment steps. For reporting the final task
success rate, we load the final training checkpoint and report
the average task success rate over 20 episodes. Success rates
for our tasks are defined as follows:

« Lift: whether the block is above a height threshold

o Door: whether the door angle is past a threshold

o Pick and Place: whether the can is in the correct target
bin and the robot is not holding the can

o Wipe: whether all of the debris is wiped off the table

o Stack: whether the smaller cube is on top of the larger
cube and the robot is not holding either cube

o Nut Assembly: whether the nut is fitted completely onto
the round peg and the robot is not holding the nut

o Cleanup: whether the spam can is in the bin and the
jello box is within a threshold distance away from the
table corner

o Peg Insertion: whether the peg is inserted into wooden
block past a threshold distance

Final task success rates for all baselines across all tasks are
outlined in Table [

We also elaborate on the evaluation protocol for the
compositionality scores that we report in Figure [5] Our
compositionality scores are averaged over 5 seeds for each
task. For each seed we sample 50 task sketches from the
last training checkpoint and we discard sketches that did
not correspond to the agent solving the task. Of these

remaining task sketches we calculate the compositionality
score according to Equation (T).

J. Task Sketch Transfer Experiments

For our task sketch experiments we first extract a set of
task sketches { K71, - - -, K, } from the source task. We subse-
quently select the sketch K that has the lowest Levenshtein
distance with all other task sketches. In the case of our pick
and place task this was {Grasp, Reach, Release}. Once we
have extracted the sketch K from the source task, we train on
the target task with a fixed task sketch of K. For each episode
we iterate through the sequence of primitives in K, repeating
each primitive up to 5 times until the agent receives high
affordance reward, before moving onto the next primitive in
the sketch. Upon executing all of the primitives in the task
sketch the agent executes 10 atomic primitives to satisfy any
behaviors that it was not able to fulfill with the sketch alone,
and then the episode terminates.

K. Real-World Experiments

We performed evaluations on two real-world manipulation
tasks:

Cleanup: the robot must (1) pick up the
butter box and place it into the bin and
(2) push the popcorn to the right side of
the table (the white area).

Stack: the robot must pick up the butter
box and stack it on top of the popcorn
box.

Both tasks resemble the simulated stack and cleanup tasks
outlined in Appendix [G, but have differences in the size of
the objects, table size, and workspace layout. To account
for these differences we designed variations of our existing
simulated stack and cleanup tasks to match the characteristics
of our real-world tasks. We trained policies in simulation
(until convergence) and transferred them to the real-world
for evaluation.



TABLE II: Final Task Success Rates (%)

Lift Door Pick and Wipe Stack Nut Cleanup Peg
Place Assembly Insertion
Atomic [[19] 980+24| 00£00 | 0.0£00 [18.0+183|38.0+28.7| 0.0+£0.0 | 0.0£0.0 | 0.0£0.0
Flat [35}149] 61.0 £47.8(1000+00| 1.0+20 | 220+98 | 98.0+24 | 0.0+ 00 | 0.0+0.0 | 8.0+ 13.6
Open Loop [8] 43.0 +43.5|100.0 = 0.0 [ 81.0 £38.0| 16.0+£4.9 | 850£32 | 0.0+0.0 | 0.0£0.0 | 0.0£0.0
DAC [73] 750+£127| 00£00 | 0.0+0.0 | 0.0£0.0 | 0.0£00 | 0.0£0.0 | 0.0+£0.0 |16.0+32.0
MAPLE (Non-At.) |100.0 & 0.0 | 100.0 & 0.0 | 100.0 £ 0.0 | 42.0 + 9.8 | 99.0 £+ 2.0 |93.0 & 14.0{100.0 £ 0.0 | 0.0 £ 0.0
MAPLE (ours) 100.0 + 0.0 | 100.0 = 0.0 | 95.0 + 7.7 |42.0 £ 11.7 | 98.0 2.4 | 99.0 £ 2.0 | 91.0 £ 5.8 | 100.0 £ 0.0

For perception we use the robot proprioception data from
the robot’s on-board sensors, in conjunction with pose esti-
mates of the objects using the deep object pose estimation
system [65] paired with a single Microsoft Kinect camera.
Under this setup the objects are sometimes out of the camera
view or are occluded by the robot arm; in these cases the pose
estimator does not return estimates of the object. We mostly
alleviate such conditions through a three step procedure: (1)
the robot lifts its end-effector to a pre-determined location
in the air where occlusions are minimized, (2) the pose
estimator re-computes the poses of the objects, (3) the robot
moves back to its initial location. At the end of step (3), the
pose of objects are assumed to be the pose estimates from
step (2), with the exception of objects that were moved by
the robot during step (1). Such objects comprise objects that
the robot was already holding before step (1) and that the
robot subsequently lifted into the air during step (1). For
such objects, we compute the pose of the object as the final
robot pose in addition to the relative pose difference of the
robot end effector and object during step (2). In addition
to handling occlusions, we noticed that the pose estimation
system routinely made small errors when estimating the
position and orientation of the objects. To minimize the
influence of such errors, we hard-coded the pitch and yaw
angles of the objects (as they were always flat either on the
table or in the air) and the height of the object whenever
it was detected to lie on the table. These constraints were
necessary to ensure reliable perception estimates, but we
anticipate that with improved perception systems in the
future such constraints can be relaxed.

For evaluation, we performed 30 trials for each task, where
the robot was allowed a maximum of 20 primitive calls per
episode. We recorded an average success rate of 93% for
stack (in contrast to 97% in simulation), and 83% for cleanup
(in contrast to 93% in simulation). Most failures were either
due to the robot repeatedly applying poor grasping actions
or the robot hitting its joint limits, subsequently triggering a
safety call to halt the robot.
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